JP2013249382A - Fuel oil base material, method for production thereof, and fuel oil composition including the fuel oil base material - Google Patents

Fuel oil base material, method for production thereof, and fuel oil composition including the fuel oil base material Download PDF

Info

Publication number
JP2013249382A
JP2013249382A JP2012125003A JP2012125003A JP2013249382A JP 2013249382 A JP2013249382 A JP 2013249382A JP 2012125003 A JP2012125003 A JP 2012125003A JP 2012125003 A JP2012125003 A JP 2012125003A JP 2013249382 A JP2013249382 A JP 2013249382A
Authority
JP
Japan
Prior art keywords
fuel oil
base material
oil base
component
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012125003A
Other languages
Japanese (ja)
Other versions
JP5990404B2 (en
Inventor
Tomoji Kajitani
智史 梶谷
Mamoru Nomura
守 野村
Hiroshi Ohashi
洋 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012125003A priority Critical patent/JP5990404B2/en
Publication of JP2013249382A publication Critical patent/JP2013249382A/en
Application granted granted Critical
Publication of JP5990404B2 publication Critical patent/JP5990404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a fuel oil base material that has excellent oxidation stability and from which a high heating value is obtained; a method for production thereof; and a fuel oil composition including the fuel oil base material.SOLUTION: A fuel oil base material contains one or both selected from a monoalkylbenzene compound (component A) to which a 15C alkyl group bonds, and a monoalkylcyclohexane compound (component B) to which the 15C alkyl group bonds.

Description

本発明は、バイオマスを原料とする燃料油基材、該燃料油基材の製造方法、及び該燃料油基材を含む燃料油組成物に関する。   The present invention relates to a fuel oil base material using biomass as a raw material, a method for producing the fuel oil base material, and a fuel oil composition containing the fuel oil base material.

従来、植物資源を含む生物由来の資源(いわゆる、バイオマス)をガソリン、灯油、及び軽油の原料として活用することが進められている。特に、植物資源由来のバイオマス燃料は、植物が成長過程において光合成により大気中から取り込んだ二酸化炭素の炭素原子から変換された有機化合物であるため、植物資源由来のバイオマス燃料を燃焼して排出される二酸化炭素は、大気中の二酸化炭素総量の増加に繋がらない。このように、植物資源由来のバイオマス燃料は、カーボンニュートラルの観点から有益である。   2. Description of the Related Art Conventionally, the use of biological resources (so-called biomass) including plant resources as raw materials for gasoline, kerosene, and light oil has been promoted. In particular, biomass fuel derived from plant resources is an organic compound converted from carbon atoms of carbon dioxide taken from the atmosphere by photosynthesis during plant growth, so the biomass fuel derived from plant resources is burned and discharged Carbon dioxide does not lead to an increase in the total amount of carbon dioxide in the atmosphere. Thus, the biomass fuel derived from plant resources is beneficial from the viewpoint of carbon neutrality.

バイオマス燃料の一例である脂肪酸メチルエステル油(Fatty Acid Methyl Ester:以下FAMEとする)FAMEは、グリセリンと脂肪酸とがエステル結合したトリグリセリド構造を有する動植物油脂と、メタノールとをアルカリ雰囲気下でエステル交換反応して得られる。
しかし、FAMEには、実用上の問題点が指摘されている。例えば、FAMEは、二重結合を有する。二重結合は、酸化安定性と低温流動性に影響する。二重結合の量が多いと酸化安定性が低下し、二重結合の量が少ないと低温流動性が悪化する。このため、酸化安定性と低温流動性とを両立するように、二重結合量を調整することは難しい。
また、FAMEは、一般的なディーゼル燃料よりも重質な成分が多いため、燃え切り性が悪く、燃費の悪化や燃焼時の未燃炭化水素の排出を増加させる懸念があった。更にまた、FAMEは、含酸素化合物であるため、燃焼機関に用いられる金属やゴムなどの部材を劣化させたり、燃焼時にアルデヒド類の排出を増加させたりする懸念があった。
バイオマス燃料としては、FAMEのほかに、トリグリセリド構造を有する動植物油脂を、脱酸素化処理、異性化処理、及び水素化処理して得られる水素化処理軽油(HBD:Hydro−generated Biodiesel)が提案されている。
HBDもまた、いくつかの問題点が指摘されている。例えば、HBDは、一般的なディーゼル燃料よりも密度が小さいため、燃費が悪く、潤滑性も劣る。また、低温における流動性を確保するために、異性化処理などが必要になることから、ライフサイクル全体でみたとき、完全なカーボンニュートラルを達成することが難しい。
このように、FAME、HBDなどのバイオマス燃料の普及には、問題点が多い。しかし、バイオマス燃料を現行の燃料油の原料として使用できる比率が高まれば、二酸化炭素排出量の削減には、一層有益である。そこで、近年では、上述した問題点の一部の改良が進められている(特許文献1〜5参照)。
ところが、現行の燃料油に求められる酸化安定性、高発熱量などの諸性能を満足するバイオマス燃料を得るには、依然として課題が多く残されており、更なる改良が望まれている。
Fatty Acid Methyl Ester (hereinafter referred to as FAME) FAME, which is an example of biomass fuel, is a transesterification reaction between methanol and animal and vegetable fats and oils having a triglyceride structure in which glycerin and a fatty acid are ester-bonded. Is obtained.
However, practical problems have been pointed out in FAME. For example, FAME has a double bond. Double bonds affect oxidative stability and low temperature fluidity. When the amount of double bonds is large, the oxidation stability is lowered, and when the amount of double bonds is small, low-temperature fluidity is deteriorated. For this reason, it is difficult to adjust the double bond amount so as to achieve both the oxidation stability and the low temperature fluidity.
Moreover, since FAME has many heavier components than general diesel fuel, there was a concern that the burn-out property was poor, and fuel consumption deteriorated and unburned hydrocarbon emissions increased during combustion. Furthermore, since FAME is an oxygen-containing compound, there are concerns that it may deteriorate members such as metal and rubber used in the combustion engine, or increase emission of aldehydes during combustion.
In addition to FAME, hydro-treated biodiesel (HBD) obtained by deoxygenating, isomerizing, and hydrotreating animal and vegetable oils and fats having a triglyceride structure has been proposed as a biomass fuel. ing.
HBD also points out several problems. For example, since HBD has a density lower than that of general diesel fuel, fuel consumption is poor and lubricity is also poor. In addition, since isomerization is required to ensure fluidity at low temperatures, it is difficult to achieve complete carbon neutral when viewed over the entire life cycle.
Thus, there are many problems in the spread of biomass fuels such as FAME and HBD. However, if the ratio at which biomass fuel can be used as a raw material for current fuel oil increases, it will be even more beneficial for reducing carbon dioxide emissions. Thus, in recent years, some of the above-described problems have been improved (see Patent Documents 1 to 5).
However, in order to obtain a biomass fuel that satisfies various performances such as oxidation stability and high calorific value required for current fuel oil, many problems still remain, and further improvement is desired.

特開2007−153928号公報JP 2007-153928 A 特開2007−308565号公報JP 2007-308565 A 特開2007−308566号公報JP 2007-308566 A 特開2007−308567号公報JP 2007-308567 A 特開2009−161669号公報JP 2009-161669 A

本発明は、酸化安定性に優れ、高発熱量が得られる燃料油基材、該燃料油基材の製造方法、及び該燃料油基材を含む燃料油組成物の提供を目的とする。   An object of the present invention is to provide a fuel oil base material having excellent oxidation stability and a high calorific value, a method for producing the fuel oil base material, and a fuel oil composition containing the fuel oil base material.

本発明者らは、鋭意研究を重ねた結果、特定の化合物を有するバイオマスから抽出された油分を水素化処理して得られる燃料油基材が、酸化安定性に優れ、高発熱量が得られることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies, the present inventors have obtained a fuel oil base material obtained by hydrotreating an oil extracted from biomass having a specific compound, which has excellent oxidation stability and a high calorific value. Based on this finding, the present invention has been completed.

すなわち、本発明は、
[1]炭素数15のアルキル基が結合したモノアルキルベンゼン化合物(A成分)、及び炭素数15のアルキル基が結合したモノアルキルシクロヘキサン化合物(B成分)から選ばれる1つ又は両方が含まれる燃料油基材、
[2]上記[1]の燃料油基材の製造方法であって、カシューナッツ殻から抽出された油分を水素化処理触媒によって水素化処理することにより燃料油基材を製造する製造方法、
[3]上記[1]の燃料油基材を、燃料油組成物全容量に対して1〜99容量%含む燃料油組成物、
を提供する。
That is, the present invention
[1] Fuel oil containing one or both selected from a monoalkylbenzene compound (component A) to which an alkyl group having 15 carbons is bonded and a monoalkylcyclohexane compound (component B) to which an alkyl group having 15 carbons is bonded Base material,
[2] The method for producing a fuel oil base material according to [1], wherein the oil component extracted from the cashew nut shell is hydrotreated with a hydrotreating catalyst,
[3] A fuel oil composition comprising 1 to 99% by volume of the fuel oil base material of [1] above with respect to the total volume of the fuel oil composition,
I will provide a.

本発明によれば、酸化安定性に優れ、高発熱量が得られる燃料油基材、該燃料油基材を含む燃料油組成物、及び該燃料油基材の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fuel oil base material which is excellent in oxidation stability and can obtain high calorific value, the fuel oil composition containing this fuel oil base material, and the manufacturing method of this fuel oil base material can be provided. .

[燃料油基材]
本発明の実施形態に係る燃料油基材は、炭素数15のアルキル基が結合したモノアルキルベンゼン化合物(A成分)、及び炭素数15のアルキル基が結合したモノアルキルシクロヘキサン化合物(B成分)から選ばれる1つ又は両方が含まれる。
燃料油基材において、A成分及びB成分から選ばれる1つ又は両方が燃料油基材の全質量に対して40〜95質量%含まれることが好ましい。燃料油基材には、A成分及びB成分の残部として、A成分及びB成分以外の成分も含まれる。
燃料油基材におけるA成分及びB成分から選ばれる1つ又は両方が40〜95質量%であると、十分な発熱量が得られる密度が得られ、上記十分な酸化安定性を得ることもできる。また、上記観点から、A成分及びB成分の両方が含まれ、A成分とB成分の合計が燃料油基材の全質量に対して50〜70質量%であることが好ましい。
また、燃料油基材には、A成分及びB成分の両方が含まれ、燃料油基材の全質量に対してA成分が20〜35質量%含まれることが好ましい。A成分含有量が35質量%より多く含まれると、排ガス中の全炭化水素、一酸化炭素が増加し、環境性能が悪化する。また、A成分含有量が20質量%より少なくなると、密度及び総発熱量が低くなり燃費向上効果が不十分になる。
なお、燃料油基材におけるA成分及びB成分をはじめとする各成分は、GC−MS分析装置により同定することができる。また、燃料油基材におけるA成分及びB成分は、GC−FID装置により定量できる。
[Fuel oil base material]
The fuel oil base according to the embodiment of the present invention is selected from a monoalkylbenzene compound (component A) having a C15 alkyl group bonded thereto and a monoalkylcyclohexane compound (B component) having a C15 alkyl group bonded thereto. One or both are included.
In the fuel oil base material, it is preferable that one or both selected from the A component and the B component are contained in an amount of 40 to 95% by mass based on the total mass of the fuel oil base material. The fuel oil base material includes components other than the A component and the B component as the remainder of the A component and the B component.
When one or both selected from the A component and the B component in the fuel oil base is 40 to 95% by mass, a density capable of obtaining a sufficient calorific value can be obtained, and the above sufficient oxidation stability can be obtained. . Moreover, from the said viewpoint, it is preferable that both A component and B component are contained and the sum total of A component and B component is 50-70 mass% with respect to the total mass of a fuel oil base material.
Moreover, it is preferable that both A component and B component are contained in a fuel oil base material, and A component is contained 20-35 mass% with respect to the total mass of a fuel oil base material. If the A component content is more than 35% by mass, the total hydrocarbons and carbon monoxide in the exhaust gas increase, and the environmental performance deteriorates. On the other hand, when the A component content is less than 20% by mass, the density and the total calorific value are lowered, and the fuel efficiency improvement effect becomes insufficient.
In addition, each component including A component and B component in a fuel oil base material can be identified with a GC-MS analyzer. Moreover, A component and B component in a fuel oil base material can be quantified with a GC-FID apparatus.

燃料油基材の15℃における密度は、0.820〜0.880g/cm3であることが好ましい。より好ましくは、0.845〜0.864g/cm3であり、更に好ましくは、0.850〜0.863g/cm3である。15℃における密度が上記範囲であると、総発熱量を高めることができ、燃焼性を良好にできるため、燃費を良好に保つことができる。
なお、15℃における密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される値である。
また、総発熱量は、JIS K 2279「原油及び石油製品―発熱量試験方法及び計算による推定方法」の推定式(箇条番号6.3e)1)によって算出される値である。総発熱量は、38.0J/L以上であることが好ましく、38.5J/L以上であることがより好ましい。
The density at 15 ° C. of the fuel oil base material is preferably 0.820 to 0.880 g / cm 3 . More preferably, it is 0.845-0.864 g / cm < 3 >, More preferably, it is 0.850-0.863 g / cm < 3 >. When the density at 15 ° C. is in the above range, the total calorific value can be increased and the combustibility can be improved, so that the fuel efficiency can be kept good.
The density at 15 ° C. is a value measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
Further, the total calorific value is a value calculated by an estimation formula (clause number 6.3e) 1) of JIS K 2279 “Crude oil and petroleum products—heating value test method and calculation estimation method”. The total calorific value is preferably 38.0 J / L or more, and more preferably 38.5 J / L or more.

燃料油基材の30℃における動粘度は、2.7〜12.0mm2/sであることが好ましく、より好ましくは、5.0〜10.0mm2/sである。30℃における動粘度が上記範囲であると、潤滑性を維持できるとともに、適正噴霧を確保できる。
なお、30℃における動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される値である。
Kinematic viscosity at 30 ° C. of the fuel oil base material is preferably 2.7~12.0mm 2 / s, more preferably 5.0~10.0mm 2 / s. When the kinematic viscosity at 30 ° C. is in the above range, lubricity can be maintained and proper spraying can be ensured.
The kinematic viscosity at 30 ° C. is a value measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.

[燃料油基材の製造方法]
本発明の燃料油基材は、カシューナッツ殻から抽出された油分を水素化処理触媒によって水素化処理することにより製造することができる。
カシューナッツ殻から抽出された油分のなかでも、アナカルド酸、カルドール、及びカルダノールから選ばれる少なくとも1つの化合物が含まれることが好ましい。
なかでも、油分全質量に対して、アナカルド酸0〜10.0質量%、カルドール0〜25.0質量%、及びカルダノール65.0〜100質量%が含まれることが好ましい。
また、カシューナッツ殻から抽出された油分に限らず、炭素数15以上のアルキル基が結合したアルキルベンゼン化合物、あるいは炭素数15以上のアルキル基が結合したフェノール化合物を40質量%以上含むバイオマスであれば本発明の燃料油基材を得るのに有利である。
[Method for producing fuel oil base]
The fuel oil base material of the present invention can be produced by hydrotreating oil extracted from cashew nut shells with a hydrotreating catalyst.
Among oils extracted from cashew nut shells, it is preferable that at least one compound selected from anacardic acid, cardol, and cardanol is contained.
Especially, it is preferable that anacardic acid 0-10.0 mass%, cardol 0-25.0 mass%, and cardanol 65.0-100 mass% are contained with respect to the oil total mass.
In addition, the present invention is not limited to oil extracted from cashew nut shell, and any biomass containing 40% by mass or more of an alkylbenzene compound having an alkyl group having 15 or more carbon atoms or a phenol compound having an alkyl group having 15 or more carbon atoms bonded thereto may be used. It is advantageous to obtain the fuel oil base of the invention.

<水素化処理触媒>
水素化処理触媒を構成する担体を構成する混合物としては、アルミナを含有する多孔質無機酸化物が使用できる。
水素化処理触媒を構成する活性成分としては、周期表第6族の金属元素から選ばれた少なくとも1種、周期表第9族の金属元素から選ばれた少なくとも1種、及び第10族の金属元素から選ばれた少なくとも1種のうちから選ばれた活性金属が挙げられる。
周期表第6族の活性成分としては、好ましくは、モリブデン、タングステンである。これら活性成分を担体上に担持するモリブデン化合物としては、三酸化モリブデン、モリブデン酸アンモニウム等が好ましく、タングステン化合物としては、三酸化タングステン、タングステン酸アンモニウム等が好ましい。
周期表第9族及び10族の活性成分としては、コバルト、ニッケルである。これら活性成分を担体上に担持する有効なコバルト化合物としては、炭酸コバルト、塩基性炭酸コバルト、硝酸コバルト等が好ましく、ニッケル化合物としては、炭酸ニッケル、塩基性炭酸ニッケル、硝酸ニッケル等が好ましい。第9族と第10族の金属元素の担持量は、酸化物換算で該水素化処理触媒の全質量比で2〜5%であることが好ましい。
上述した活性成分のなかでは、ニッケルとモリブデンとを組み合わせたニッケルモリブデン系触媒が好ましい。
また、上述の水素化処理触媒を、水素雰囲気下で、300〜400℃で、1〜36時間、水素還元処理して使用することが好ましい。
<Hydroprocessing catalyst>
As the mixture constituting the carrier constituting the hydrotreating catalyst, a porous inorganic oxide containing alumina can be used.
The active component constituting the hydrotreating catalyst includes at least one selected from Group 6 metal elements of the periodic table, at least one selected from Group 9 metal elements of the periodic table, and Group 10 metals. Examples thereof include an active metal selected from at least one selected from elements.
The active component of Group 6 of the periodic table is preferably molybdenum or tungsten. Molybdenum compounds supporting these active ingredients on a carrier are preferably molybdenum trioxide, ammonium molybdate and the like, and tungsten compounds are preferably tungsten trioxide, ammonium tungstate and the like.
The active ingredients of Groups 9 and 10 of the periodic table are cobalt and nickel. Effective cobalt compounds for supporting these active ingredients on a carrier are preferably cobalt carbonate, basic cobalt carbonate, cobalt nitrate, and the like, and nickel compounds are preferably nickel carbonate, basic nickel carbonate, nickel nitrate, and the like. The amount of the Group 9 and Group 10 metal elements supported is preferably 2 to 5% in terms of oxide in terms of the total mass ratio of the hydrotreating catalyst.
Among the active components described above, a nickel molybdenum catalyst in which nickel and molybdenum are combined is preferable.
Moreover, it is preferable to use the above-mentioned hydrotreating catalyst after hydrogen reduction treatment at 300 to 400 ° C. for 1 to 36 hours in a hydrogen atmosphere.

<水素化処理条件>
上述した水素化処理触媒を用いて、原料油を水素化処理する際の反応条件としては、処理温度:300〜390℃、原料油流量(LHSV):0.5〜2.0h-1、水素/原料油比:500〜2400NL/kLとすることが好ましい。
水素化処理条件における原料油流量、あるいは水素/原料油比を変更することにより、A成分とB成分の比率を変更できる。
<Hydrogenation conditions>
The reaction conditions for hydrotreating the feedstock oil using the hydrotreating catalyst described above are as follows: treatment temperature: 300 to 390 ° C., feedstock oil flow rate (LHSV): 0.5 to 2.0 h −1 , hydrogen / Raw material ratio: It is preferable to set it as 500-2400NL / kL.
The ratio of the A component and the B component can be changed by changing the feed oil flow rate or the hydrogen / feed oil ratio in the hydrotreating conditions.

[燃料油組成物]
本発明の実施形態に係る燃料油組成物は、上述した燃料油基材に、石油系留分を適宜比率で添加して製造される。燃料油基材は、燃料油組成物全容量に対して1〜99容量%含まれ、好ましくは3〜50容量%含まれ、さらに好ましくは3〜30容量%含まれる。残部には、石油系留分、燃料油組成物に適用可能な添加剤などが含まれていてもよい。
燃料油組成物全容量に対するA成分の含量は、2〜95容量%であることが好ましい。A成分の含量が上記範囲であれば、ポンプなどに使用されるゴムの収縮を抑えることができる。
[Fuel oil composition]
The fuel oil composition according to the embodiment of the present invention is produced by adding a petroleum fraction in an appropriate ratio to the above-described fuel oil base material. The fuel oil base is contained in an amount of 1 to 99% by volume, preferably 3 to 50% by volume, more preferably 3 to 30% by volume, based on the total volume of the fuel oil composition. The remainder may contain petroleum fractions, additives applicable to the fuel oil composition, and the like.
The content of the component A with respect to the total volume of the fuel oil composition is preferably 2 to 95% by volume. If the content of the component A is in the above range, shrinkage of rubber used for a pump or the like can be suppressed.

燃料油組成物の15℃における密度は、0.800〜0.860g/cm3であることが好ましい。より好ましくは、0.810〜0.859g/cm3である。15℃における密度が上記範囲であると、総発熱量を高めることができ、燃焼性を良好にできるため、燃費を良好に保つことができる。
なお、15℃における密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される値である。
The density at 15 ° C. of the fuel oil composition is preferably 0.800 to 0.860 g / cm 3 . More preferably, it is 0.810-0.859 g / cm < 3 >. When the density at 15 ° C. is in the above range, the total calorific value can be increased and the combustibility can be improved, so that the fuel efficiency can be kept good.
The density at 15 ° C. is a value measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.

燃料油組成物の30℃における動粘度は、1.7〜9.0mm2/sであり、より好ましくは、2.5〜7.0mm2/sである。30℃における動粘度が上記範囲であると、潤滑性を維持できるとともに、適正噴霧を確保できる。
なお、30℃における動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される値である。
The kinematic viscosity at 30 ° C. of the fuel oil composition is 1.7 to 9.0 mm 2 / s, more preferably 2.5 to 7.0 mm 2 / s. When the kinematic viscosity at 30 ° C. is in the above range, lubricity can be maintained and proper spraying can be ensured.
The kinematic viscosity at 30 ° C. is a value measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.

次に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[評価方法]
原料油(カシューナッツ殻から抽出された油分)から生成された燃料油基材を用いて燃料油組成物を調製し、燃料油組成物の性状を次の方法により評価した。
<15℃における密度>
燃料油基材及び燃料油組成物の15℃における密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度である。
<30℃における動粘度>
燃料油基材及び燃料油組成物の30℃における動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度である。
<A成分及びB成分の同定及び定量>
A成分及びB成分は、7890A GC System(Agilent Technologies)を用い、下記条件にて同定(GC−MS)及び定量(GC−FID)を行った。
カラム:VF−5ms(Agilent Technologies)GC−MS測定
注入口温度:300℃
オーブン温度:300℃(40℃から6℃/minで昇温)
キャリアガス:He
注入量:0.1μl
<酸化安定度>
燃料油基材及び燃料油組成物の酸化安定度は、PetroOXY試験により測定される誘導期間で表した。誘導期間とは、試料5mlに所定量の酸素を封入し、140℃まで上昇させて、初期圧力が10%低下するまでの時間である。
<総発熱量>
総発熱量は、JIS K 2279「原油及び石油製品―発熱量試験方法及び計算による推定方法」の推定式(箇条番号6.3e)1)によって算出される値である。
なお、後述する植物油脂メチルエステル化物の総発熱量は、JIS K 2279「原油及び石油製品―発熱量試験方法及び計算による推定方法」に従って算出した。
総発熱量38.5J/L以上を「優」、38.0〜38.49J/Lを「良」、38.0未満を「不可」とした。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[Evaluation method]
A fuel oil composition was prepared using a fuel oil base material produced from raw material oil (oil extracted from cashew nut shells), and the properties of the fuel oil composition were evaluated by the following methods.
<Density at 15 ° C>
The density at 15 ° C. of the fuel oil base material and the fuel oil composition is a density measured by JIS K 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
<Kinematic viscosity at 30 ° C.>
The kinematic viscosity at 30 ° C. of the fuel oil base material and the fuel oil composition is a kinematic viscosity measured by JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
<Identification and quantification of A component and B component>
A component and B component were identified (GC-MS) and quantified (GC-FID) under the following conditions using 7890A GC System (Agilent Technologies).
Column: VF-5ms (Agilent Technologies) GC-MS measurement Inlet temperature: 300 ° C
Oven temperature: 300 ° C. (heated from 40 ° C. at 6 ° C./min)
Carrier gas: He
Injection volume: 0.1 μl
<Oxidation stability>
The oxidative stability of the fuel oil base and fuel oil composition was expressed as the induction period measured by the PetroOXY test. The induction period is the time from when a predetermined amount of oxygen is sealed in 5 ml of the sample and raised to 140 ° C. until the initial pressure is reduced by 10%.
<Total calorific value>
The total calorific value is a value calculated by the estimation formula (clause number 6.3e) 1) of JIS K 2279 “Crude oil and petroleum products—heating value test method and calculation estimation method”.
The total calorific value of the methyl esterified product of vegetable oils and fats to be described later was calculated according to JIS K 2279 “Crude oil and petroleum products: calorific value test method and calculation estimation method”.
The total calorific value of 38.5 J / L or more was “excellent”, 38.0 to 38.49 J / L was “good”, and less than 38.0 was “impossible”.

[燃料油基材の製造]
<製造例1>
高圧固定床流通式のベンチスケール反応器(全長500mm)の中央部分に5ccの水素化処理触媒を充填し、入口側と出口側とを石英ウールで挟み、触媒が充填された部分以外をセラミックボールで満たし、開口端に石英ウールを配置し、反応管を形成した。
原料油としてカシューナッツ殻から抽出された油分(カシュー株式会社製、商品名「CX−1000」)を用いた。水素化処理触媒として、特開2004−16975号公報の実施例2記載のNiMo系触媒を16〜32メッシュに整粒し、水素雰囲気中にて、360℃、24時間の水素還元処理を施したものを用いた。水素化処理の反応条件は、下記のとおりとした。
処理温度:370℃
原料油流量(LHSV):1.0h-1
水素/原料油比:2200NL/kL
原料油として使用したカシューナッツ殻から抽出された油分の性状は、第4表の参考例2に示す。また、前記油分を水素化処理することにより得られた燃料油基材の性状は、第4表の実施例3(100容量%)に示す。
[Manufacture of fuel oil base]
<Production Example 1>
The center part of the high-pressure fixed bed flow type bench scale reactor (total length: 500 mm) is filled with 5 cc of the hydrotreating catalyst, the inlet side and the outlet side are sandwiched with quartz wool, and the ceramic balls other than the part filled with the catalyst And quartz wool was placed at the open end to form a reaction tube.
The oil extracted from cashew nut shells (trade name “CX-1000” manufactured by Cashew Co., Ltd.) was used as the raw material oil. As a hydrotreating catalyst, the NiMo catalyst described in Example 2 of JP-A-2004-16975 was sized to 16 to 32 mesh, and subjected to hydrogen reduction treatment at 360 ° C. for 24 hours in a hydrogen atmosphere. A thing was used. The reaction conditions for the hydrogenation treatment were as follows.
Processing temperature: 370 ° C
Raw material oil flow rate (LHSV): 1.0 h -1
Hydrogen / raw oil ratio: 2200NL / kL
The properties of the oil extracted from the cashew nut shell used as the raw material oil are shown in Reference Example 2 in Table 4. The properties of the fuel oil base material obtained by hydrotreating the oil component are shown in Example 3 (100% by volume) in Table 4.

<比較製造例1>
第1表に示す性状を有する植物油脂に硫黄化合物(DMDS;ジメチルジサルファイド)を5質量ppm添加して調製した油分を第2表、第3表に示す反応条件で2段階の水素化処理し、植物油脂水素化処理油を得た。
<Comparative Production Example 1>
Oils prepared by adding 5 mass ppm of sulfur compound (DMDS; dimethyl disulfide) to vegetable fats and oils having the properties shown in Table 1 are subjected to a two-stage hydrotreatment under the reaction conditions shown in Tables 2 and 3. A vegetable oil hydrotreated oil was obtained.

Figure 2013249382
Figure 2013249382

Figure 2013249382
Figure 2013249382

Figure 2013249382
Figure 2013249382

<比較製造例2>
第1表に示す性状を有する植物油脂とメタノールとを反応させて、比較例2の植物油脂メチルエステル化物を得た。ここではアルカリ触媒(ナトリウムメチラート)の存在下で70℃、1時間程度の撹拌を行い、アルキルアルコールと直接反応させてエステル化合物を得るエステル交換反応を用いた。
<Comparative Production Example 2>
The vegetable oil and fat having the properties shown in Table 1 was reacted with methanol to obtain a methyl esterified vegetable oil of Comparative Example 2. Here, an ester exchange reaction was used in which stirring was performed at 70 ° C. for about 1 hour in the presence of an alkali catalyst (sodium methylate) to directly react with an alkyl alcohol to obtain an ester compound.

[燃料油組成物の調製]
製造例1により製造された実施例3の燃料油基材に、石油系軽油成分を調合して、実施例1〜2の燃料油組成物を製造した。実施例1の燃料油組成物は、石油系軽油成分を95容量%、燃料油基材を5容量%含み、実施例2の燃料油組成物は、石油系軽油成分を90容量%、燃料油基材を10容量%含む。
また、比較製造例1により比較例1の水素化処理油を、比較製造例2により比較例2の植物油脂のメチルエステル化物を製造した。
実施例1〜3,比較例1,2の組成物を上述の評価方法により特性を評価した。なお、参考例1は、汎用の石油系軽油成分である。また、参考例2は、製造例1で使用した油分であり、具体的にはカシューナッツ殻から抽出した油分である。評価結果を第1表に示す。
[Preparation of fuel oil composition]
The fuel oil composition of Examples 1-2 was manufactured by preparing a petroleum-based light oil component in the fuel oil base material of Example 3 manufactured according to Production Example 1. The fuel oil composition of Example 1 includes 95% by volume of a petroleum-based light oil component and 5% by volume of a fuel oil base material. The fuel oil composition of Example 2 includes 90% by volume of a petroleum-based light oil component, fuel oil. 10% by volume of substrate is included.
Further, the hydrotreated oil of Comparative Example 1 was produced by Comparative Production Example 1, and the methyl esterified product of the vegetable oil and fat of Comparative Example 2 was produced by Comparative Production Example 2.
The characteristics of the compositions of Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated by the evaluation method described above. Reference Example 1 is a general-purpose petroleum-based light oil component. Reference Example 2 is the oil used in Production Example 1, and specifically is the oil extracted from the cashew nut shell. The evaluation results are shown in Table 1.

[評価結果]
実施例1〜3,比較例1,2の燃料油組成物の特性を、上述した評価方法により評価した。結果を、第4表に示す。
[Evaluation results]
The characteristics of the fuel oil compositions of Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated by the evaluation method described above. The results are shown in Table 4.

Figure 2013249382
Figure 2013249382

第4表において、
*1:汎用の石油系軽油成分(出光興産株式会社愛知製DGO(水素化脱硫軽油))
*2:製造例1により製造された燃料油基材
*3:比較製造例1により製造された植物油脂水素化処理油
*4:比較製造例2により製造された植物油脂メチルエステル化物
In Table 4,
* 1: General-purpose petroleum-based light oil component (DGO (hydrodesulfurized light oil) manufactured by Idemitsu Kosan Co., Ltd., Aichi)
* 2: Fuel oil base material produced by Production Example 1 * 3: Vegetable oil / fat hydrotreated oil produced by Comparative Production Example 1 * 4: Vegetable oil / fat methyl ester produced by Comparative Production Example 2

実施例3の燃料油基材の密度は、参考例1の石油系軽油成分の密度よりも高く、総発熱量の大きい燃料油基材であるといえる。また、実施例3の燃料油基材は、酸化安定性に優れた燃料油基材である。比較例1の植物油脂水素化処理油は、酸化安定性に優れるが、植物油脂水素化処理油の総発熱量は、実施例1,2の燃料油組成物及び実施例3の燃料油基材の総発熱量よりも小さい。比較例2の植物油脂メチルエステル化物は、酸化安定性、総発熱量ともに実施例3の燃料油基材よりも劣る。このことから、本発明の燃料油基材は、酸化安定性及び発熱量に優れる燃料油基材であるといえる。   It can be said that the density of the fuel oil base material of Example 3 is higher than the density of the petroleum-based light oil component of Reference Example 1 and is a fuel oil base material having a large total calorific value. Moreover, the fuel oil base material of Example 3 is a fuel oil base material excellent in oxidation stability. The vegetable oil hydrotreated oil of Comparative Example 1 is excellent in oxidation stability, but the total calorific value of the vegetable oil hydrotreated oil is the fuel oil composition of Examples 1 and 2 and the fuel oil base of Example 3. Is less than the total calorific value. The vegetable oil methyl esterified product of Comparative Example 2 is inferior to the fuel oil base material of Example 3 in both oxidation stability and total calorific value. From this, it can be said that the fuel oil base material of the present invention is a fuel oil base material excellent in oxidation stability and calorific value.

Claims (8)

炭素数15のアルキル基が結合したモノアルキルベンゼン化合物(A成分)、及び炭素数15のアルキル基が結合したモノアルキルシクロヘキサン化合物(B成分)から選ばれる1つ又は両方が含まれる燃料油基材。   A fuel oil base comprising one or both selected from a monoalkylbenzene compound (component A) to which an alkyl group having 15 carbons is bonded and a monoalkylcyclohexane compound (component B) to which an alkyl group having 15 carbons is bonded. 前記A成分及び前記B成分から選ばれる1つ又は両方が前記燃料油基材の全質量に対して40〜95質量%含まれる請求項1に記載の燃料油基材。   2. The fuel oil base material according to claim 1, wherein one or both selected from the A component and the B component are contained in an amount of 40 to 95 mass% with respect to the total mass of the fuel oil base material. 前記A成分及び前記B成分の合計が前記燃料油基材の全質量に対して50〜70質量%含まれる請求項2に記載の燃料油基材。   The fuel oil base material according to claim 2, wherein the total of the A component and the B component is contained in an amount of 50 to 70 mass% with respect to the total mass of the fuel oil base material. 前記A成分及び前記B成分の両方が含まれ、前記燃料油基材の全質量に対して前記A成分が20〜35質量%含まれる請求項3に記載の燃料油基材。   The fuel oil base material according to claim 3, wherein both the A component and the B component are contained, and the A component is contained in an amount of 20 to 35 mass% with respect to the total mass of the fuel oil base material. 前記燃料油基材の15℃における密度が0.820〜0.880g/cm3である請求項1〜4のいずれかに記載の燃料油基材。 Fuel oil substrate according to any one of claims 1 to 4 density at 15 ℃ of the fuel oil base is 0.820~0.880g / cm 3. 前記燃料油基材の30℃における動粘度が2.7〜12.0mm2/sである請求項1〜5のいずれかに記載の燃料油基材。 The fuel oil base material according to claim 1, wherein the fuel oil base material has a kinematic viscosity at 30 ° C. of 2.7 to 12.0 mm 2 / s. 請求項1〜6のいずれかに記載の燃料油基材の製造方法であって、
カシューナッツ殻から抽出された油分を水素化処理触媒によって水素化処理することにより燃料油基材を製造する製造方法。
A method for producing a fuel oil base material according to any one of claims 1 to 6,
A production method for producing a fuel oil base material by hydrotreating oil extracted from cashew nut shells with a hydrotreating catalyst.
請求項1〜6のいずれかに記載の燃料油基材を、燃料油組成物全容量に対して1〜99容量%含む燃料油組成物。   A fuel oil composition comprising 1 to 99% by volume of the fuel oil base material according to any one of claims 1 to 6 with respect to the total volume of the fuel oil composition.
JP2012125003A 2012-05-31 2012-05-31 FUEL OIL BASE, METHOD FOR PRODUCING THE FUEL OIL BASE, AND FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE Active JP5990404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012125003A JP5990404B2 (en) 2012-05-31 2012-05-31 FUEL OIL BASE, METHOD FOR PRODUCING THE FUEL OIL BASE, AND FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012125003A JP5990404B2 (en) 2012-05-31 2012-05-31 FUEL OIL BASE, METHOD FOR PRODUCING THE FUEL OIL BASE, AND FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE

Publications (2)

Publication Number Publication Date
JP2013249382A true JP2013249382A (en) 2013-12-12
JP5990404B2 JP5990404B2 (en) 2016-09-14

Family

ID=49848402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012125003A Active JP5990404B2 (en) 2012-05-31 2012-05-31 FUEL OIL BASE, METHOD FOR PRODUCING THE FUEL OIL BASE, AND FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE

Country Status (1)

Country Link
JP (1) JP5990404B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113408A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Light oil composition
JP2015113406A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Fuel oil composition
JP2015113407A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Light oil composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531912A (en) * 2007-06-29 2010-09-30 ビッグテック プライベート リミテッド Biofuel composition, production method thereof, and fuel supply method thereof
JP2012092339A (en) * 2010-10-28 2012-05-17 Infineum Internatl Ltd Marine engine lubrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531912A (en) * 2007-06-29 2010-09-30 ビッグテック プライベート リミテッド Biofuel composition, production method thereof, and fuel supply method thereof
JP2012092339A (en) * 2010-10-28 2012-05-17 Infineum Internatl Ltd Marine engine lubrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016000832; Figueiredo, M. K., Romeiro, G. A., Silva, R. V. S., Pinto, P. A., Damasceno, R. N., d'Avila, L. A.,: 'Pyrolysis oil from the fruit and cake of jatropha curcas produced using a low temperature conversion' Energy and Power Engineering 3(3), 2011, 332-338, Scientific&#x3000 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113408A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Light oil composition
JP2015113406A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Fuel oil composition
JP2015113407A (en) * 2013-12-11 2015-06-22 出光興産株式会社 Light oil composition

Also Published As

Publication number Publication date
JP5990404B2 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
US9505986B2 (en) Fuel oil base and aviation fuel composition containing same
JP7325422B2 (en) Blended fuel composition with improved emission profile
BRPI0720497A2 (en) HYDROTREATMENT PROCESS OF A MIXTURE CONSTITUTED OF OIL OF ANIMAL OR VEGETABLE ORIGIN AND OIL CUTTING WITH INTERMEDIATE WITHDRAWAL
JP5530134B2 (en) Aviation fuel oil composition
WO2011025002A1 (en) Method for producing aviation fuel oil base, and aviation fuel oil composition
JP6181538B2 (en) FUEL OIL BASE, PROCESS FOR PRODUCING THE SAME, AND FUEL OIL COMPOSITION
JP5990404B2 (en) FUEL OIL BASE, METHOD FOR PRODUCING THE FUEL OIL BASE, AND FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE
JP5520115B2 (en) Light oil composition
CN109294746B (en) Method for preparing diesel oil fraction by hydrogenation of oil raw material
CN109294623B (en) Hydrogenation method for preparing diesel oil fraction from oil raw material
JP6145397B2 (en) Light oil composition
JP6181539B2 (en) Fuel oil composition
JP6181540B2 (en) Light oil composition
JP6181537B2 (en) FUEL OIL BASE, FUEL OIL COMPOSITION CONTAINING THE FUEL OIL BASE, AND JET FUEL COMPOSITION
JP6957148B2 (en) Diesel fuel base material, diesel fuel composition, method for producing diesel fuel base material and method for producing diesel fuel composition
JP2017031304A (en) Light oil composition and production process therefor
JP5684181B2 (en) Light oil composition
Jaiswal et al. Synthesis of renewable diesel as a substitute for fossil fuels
RU2602278C1 (en) Catalyst and process of hydrodeoxygenation of vegetal raw materials and its application
CN103756723A (en) Method for producing high-cetane number diesel fuel by hydrogenating biodiesel fuel and coal tar
WO2009139325A1 (en) Gas oil base material and gas oil compositions
FI20195288A1 (en) Diesel fuel composition
JP5684180B2 (en) Light oil composition
Hebish et al. The impact of operating conditions on H2-free catalytic deoxygenation of triglycerides for bio-jet fuel synthesis: A step towards sustainable aviation
JP5684183B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5990404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150