JP2013247723A - Induction heating power source device - Google Patents

Induction heating power source device Download PDF

Info

Publication number
JP2013247723A
JP2013247723A JP2012118273A JP2012118273A JP2013247723A JP 2013247723 A JP2013247723 A JP 2013247723A JP 2012118273 A JP2012118273 A JP 2012118273A JP 2012118273 A JP2012118273 A JP 2012118273A JP 2013247723 A JP2013247723 A JP 2013247723A
Authority
JP
Japan
Prior art keywords
semiconductor switch
circuit
series
induction heating
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118273A
Other languages
Japanese (ja)
Other versions
JP6115026B2 (en
Inventor
Toshie Miura
敏栄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012118273A priority Critical patent/JP6115026B2/en
Publication of JP2013247723A publication Critical patent/JP2013247723A/en
Application granted granted Critical
Publication of JP6115026B2 publication Critical patent/JP6115026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem in an induction heating power source using a magnetic energy recovery switch (MERS) that a circuit voltage rises when a semiconductor switch is instantaneously interrupted due to an overload thereby to damage a semiconductor element due to an overvoltage.SOLUTION: An induction heating power source device comprises: first and second semiconductor switch series circuits in each of which semiconductor switches are series connected; a third semiconductor switch series circuit in which a capacitor, a diode and a semiconductor switch are series connected and which is connected with the first and second semiconductor switch series circuit in parallel with each other; an induction heating load connected between series connection points of the first and second semiconductor switch series circuits; and a reactor connected between a series connection point of the third semiconductor switch series circuit and a DC power supply. The induction heating power source device controls, at the time of an output overcurrent, all of the semiconductor switches of the first and second semiconductor switch series circuits to be turned off and the semiconductor switch of the third semiconductor switch series circuit to be turned on and controls the DC power supply to cause reduction in a current of the reactor.

Description

本発明は、MERS(Magnetic Energy Recovery Switch、 磁気エネルギー回生スイッチ)を用いた誘導加熱電源装置に関する。   The present invention relates to an induction heating power supply device using MERS (Magnetic Energy Recovery Switch).

図4に、背景技術を説明するためのMERSの回路図を、図2にその動作を説明する波形図を示す。MERSの回路は、IGBT、MOSFETなどの自己消弧形素子とダイオードを逆並列接続した半導体スイッチ(ここではIGBT)51と52とを直列接続した回路と、同様に半導体スイッチ(ここではIGBT)53と54を直列接続した回路と、コンデンサ6とを並列接続した回路で構成され、その出力は直列接続した半導体スイッチ(IGBT)の直列接続点で、誘導加熱負荷のコイル7と被加熱物の損失を表わす抵抗8に接続される。また、入力は、半導体スイッチ(IGBT)を直列接続した回路2回路とコンデンサ6を並列接続した回路の両端で、リアクトル2を介して直流電源1に接続される。以下、半導体スイッチはIGBTとして説明する。   FIG. 4 is a circuit diagram of MERS for explaining the background art, and FIG. 2 is a waveform diagram for explaining the operation thereof. The MERS circuit includes a semiconductor switch (in this case, IGBT) 51 and 52 in which self-extinguishing elements such as IGBTs and MOSFETs and diodes are connected in antiparallel, and a semiconductor switch (in this case, IGBT) 53 in the same manner. And 54 and a circuit in which a capacitor 6 is connected in parallel, the output of which is a series connection point of serially connected semiconductor switches (IGBT), the loss of the coil 7 of the induction heating load and the object to be heated Is connected to a resistor 8 representing Further, the input is connected to the DC power source 1 via the reactor 2 at both ends of the circuit 2 circuit in which semiconductor switches (IGBTs) are connected in series and the circuit in which the capacitor 6 is connected in parallel. Hereinafter, the semiconductor switch will be described as an IGBT.

このような構成における動作を図2に基づいて説明する。コンデンサ6とコイル7の共振動作により出力電流Ioの極性を切替える方式である。期間Aでは、出力電流Ioの初期値は負であり、IGBT51、54をオンさせても電流はIGBT51、54に逆並列接続されたダイオードに流れているが、コイル7に蓄積されたエネルギーによりコンデンサ6を充電しているため、出力電流Ioは負から零に減少していく。その後、共振動作により極性が反転した後は、IGBT51と54がオンであるため、IGBTに電流が切替わり、コンデンサ6に蓄積されたエネルギーにより出力電流Ioは零から正へ増加し、コンデンサ6の電荷は放電され、再びコイル7にエネルギーが移行する。   The operation in such a configuration will be described with reference to FIG. In this method, the polarity of the output current Io is switched by the resonance operation of the capacitor 6 and the coil 7. In the period A, the initial value of the output current Io is negative, and even if the IGBTs 51 and 54 are turned on, the current flows through the diodes connected in reverse parallel to the IGBTs 51 and 54, but the capacitor accumulated by the energy accumulated in the coil 7 6 is charged, the output current Io decreases from negative to zero. After that, after the polarity is reversed by the resonance operation, the IGBTs 51 and 54 are on, so that the current is switched to the IGBT, and the output current Io increases from zero to positive by the energy accumulated in the capacitor 6. The electric charge is discharged, and energy is transferred to the coil 7 again.

コンデンサ6の電圧VDC≒0になると、期間Bになる。コイル7に蓄積されたエネルギーによるコンデンサ6を充電する経路が無いため、出力電流Ioは還流する。還流の経路はコイル7と抵抗8に流れているIoが、IGBT53のダイオードとIGBT51の経路、及びIGBT54とIGBT52のダイオードの経路に分流する。この電流は抵抗8などによる損失により、徐々に減少する。   The period B is reached when the voltage VDC of the capacitor 6 becomes ≈0. Since there is no path for charging the capacitor 6 by the energy accumulated in the coil 7, the output current Io circulates. In the return path, Io flowing through the coil 7 and the resistor 8 is shunted into the diode 53 and IGBT 51 paths, and the IGBT 54 and IGBT 52 diode paths. This current gradually decreases due to loss due to the resistor 8 and the like.

所望の周波数に応じて、IGBT51と54をオフすると、期間Cとなる。出力電流Ioは、IGBT52と53のダイオードに全て流れ、コイル7に蓄積されたエネルギーにより再びコンデンサ6を充電し、以後、同様の動作を繰り返す。ここで、出力電圧VoにはIGBT51と54が導通している時はコンデンサ6の電圧VDCが表れ、IGBT52と53が導通している時は〔−VDC〕となる。また、リアクトル2の電流IDCは、ほぼ一定で流れ続けており、各部の電流に重畳している。   When the IGBTs 51 and 54 are turned off in accordance with a desired frequency, the period C is reached. The output current Io all flows through the diodes of the IGBTs 52 and 53, charges the capacitor 6 again with the energy accumulated in the coil 7, and thereafter repeats the same operation. Here, the output voltage Vo shows the voltage VDC of the capacitor 6 when the IGBTs 51 and 54 are conductive, and becomes [−VDC] when the IGBTs 52 and 53 are conductive. Further, the current IDC of the reactor 2 continues to flow substantially constant and is superimposed on the current of each part.

時点D以降は、負荷の短絡が生じた場合を表わしている。時点DのVoが最大の時点で、コイル7に短絡(この場合は一部短絡)が生じると、コンデンサ6に蓄積されているエネルギーが、通常運転をしている時のコイル7のインダクタンスよりも減少した短絡の生じていないコイルに移動して電流が流れる。この時、通常の運転をしている時よりも出力電流Ioが増加し、過大な電流となる。   After time point D, a case where a short circuit of the load occurs is shown. When a short circuit occurs in the coil 7 when the Vo at the time point D is the maximum (in this case, a partial short circuit), the energy stored in the capacitor 6 is greater than the inductance of the coil 7 during normal operation. The current flows by moving to the reduced coil where no short circuit occurs. At this time, the output current Io increases compared to that during normal operation, resulting in an excessive current.

これを検出し、出力電流Ioが設定値以上となった時にIGBTを保護するため、時点Eで全てのIGBT51〜54をオフする。この時点は、コンデンサ6の電圧VDC≒0となった時のタイミングと同じである。これにより、IGBT51と54に流れていた電流は、IGBT52と53の逆並列接続されたダイオードに転流して、コイル7に蓄積されたエネルギーにより再びコンデンサ6を充電し、出力電流Ioは減少する。   In order to protect the IGBT when this is detected and the output current Io exceeds the set value, all the IGBTs 51 to 54 are turned off at the time point E. This timing is the same as the timing when the voltage VDC of the capacitor 6 becomes approximately zero. As a result, the current flowing in the IGBTs 51 and 54 is commutated to the diodes connected in reverse parallel of the IGBTs 52 and 53, and the capacitor 6 is charged again by the energy accumulated in the coil 7, so that the output current Io decreases.

時点Fで出力電流Ioが零になると、それ以降はコンデンサ6の電荷を放電し、電流を流す経路が無いため、負荷に電流は流れない。
一方、リアクトルの電流IDCは流れ続けており、コンデンサ6を充電し続ける。直流電源1をサイリスタを用いたフルブリッジ回路で構成し、位相制御で出力電圧を逆極性にすることによって、リアクトル2の電流IDCを減少させる操作を行うが、リアクトル2に蓄積されたエネルギーが大であるときや、例として示したサイリスタコンバータ等の直流電圧源1の応答によっては、遅れが生じ点線のようにリアクトルの電流IDCが流れ続け、コンデンサ6の電圧VDCが過大となり、コンデンサ6及びIGBT51〜54の耐圧を超える場合がある。
When the output current Io becomes zero at the time point F, the electric charge of the capacitor 6 is discharged thereafter and there is no path for current flow, so no current flows through the load.
On the other hand, the reactor current IDC continues to flow and continues to charge the capacitor 6. The DC power source 1 is configured by a full bridge circuit using a thyristor, and the operation of reducing the current IDC of the reactor 2 is performed by setting the output voltage to a reverse polarity by phase control. However, the energy stored in the reactor 2 is large. Or depending on the response of the DC voltage source 1 such as the thyristor converter shown as an example, a delay occurs and the reactor current IDC continues to flow as shown by the dotted line, the voltage VDC of the capacitor 6 becomes excessive, and the capacitor 6 and the IGBT 51 May exceed a withstand voltage of ~ 54.

特許文献1には、回路定数例として、LDC(2)=20mH、C(6)=16μF、L(7)=100μH、R(8)=50mΩ、Vo=6000Vヒ゜ーク、Io=3000Aヒ゜ーク、f=1000Hz、P=300kW、IDC=300A、とした時の保護方法の記載があるが、リアクトル2の電流IDCが小さい場合で、またコンデンサ6の電荷を放電し終わり、コンデンサ6の電圧VDCが零となり、出力電流Ioが減少して零になった後に全てのIGBTのゲート信号をオフする方法である。半導体素子(IGBT)の保護のために、過電流が生じた時点で、ゲート信号をオフすることの記載はない。   In Patent Document 1, as circuit constant examples, LDC (2) = 20 mH, C (6) = 16 μF, L (7) = 100 μH, R (8) = 50 mΩ, Vo = 6000 V peak, Io = 3000 A peak, f = 1000 Hz, P = 300 kW, IDC = 300 A, there is a description of the protection method. However, when the current IDC of the reactor 2 is small, the charge of the capacitor 6 is completely discharged, and the voltage VDC of the capacitor 6 is zero. Thus, after the output current Io decreases and becomes zero, the gate signals of all IGBTs are turned off. There is no description of turning off the gate signal when an overcurrent occurs in order to protect the semiconductor element (IGBT).

特開2011−147299号公報JP 2011-147299 A

解決しようとする課題は、誘導加熱負荷を接続したMERSの保護回路技術に関し、負荷のコイル短絡等により全ての半導体スイッチのゲート信号をオフにした時に、直流電流が流れ続け、MERSのコンデンサが充電され続けて、半導体素子及びコンデンサに過電圧が印加され、破壊することを防止することである。   The problem to be solved is related to the MERS protection circuit technology connected to the induction heating load. When the gate signals of all the semiconductor switches are turned off due to the load coil short circuit, etc., the DC current continues to flow and the MERS capacitor is charged. This is to prevent the overvoltage from being applied to the semiconductor element and the capacitor to prevent the destruction.

上述の課題を解決するために、第1の発明においては、正極と負極とを備えた直流電源と、リアクトルと、それぞれダイオードを逆並列接続した半導体スイッチを直列接続した第1及び第2の半導体スイッチ直列回路と、コンデンサと、ダイオードと半導体スイッチとを直列接続した第3の半導体スイッチ直列回路と、を備え、前記第1及び第2の半導体スイッチ直列回路と前記コンデンサと前記第3の半導体スイッチ直列回路とを並列接続し、前記第1及び第2の半導体スイッチ直列回路内部の直列接続点間に誘導加熱負荷を接続し、前記第3の半導体スイッチ直列回路内の半導体スイッチと並列に前記直流電源と前記リアクトルとの直列回路を接続する。   In order to solve the above-described problem, in the first invention, a first and second semiconductors in which a DC power source having a positive electrode and a negative electrode, a reactor, and semiconductor switches each having a diode connected in antiparallel are connected in series. A switch series circuit; a capacitor; a third semiconductor switch series circuit in which a diode and a semiconductor switch are connected in series; and the first and second semiconductor switch series circuits, the capacitor, and the third semiconductor switch. A series circuit is connected in parallel, an induction heating load is connected between series connection points inside the first and second semiconductor switch series circuits, and the direct current is connected in parallel with the semiconductor switches in the third semiconductor switch series circuit A series circuit of a power source and the reactor is connected.

第2の発明においては、第1の発明における前記直流電源は、サイリスタを用いたブリッジ整流回路で構成し、前記誘導加熱負荷が過電流となった際には、前記第1及び第2の半導体スイッチ直列回路の全ての半導体スイッチをオフし、前記第3の半導体スイッチ直列回路の半導体スイッチをオンさせ、前記ブリッジ整流回路を前記リアクトルの電流が減少するように制御する。   In a second invention, the DC power source in the first invention is constituted by a bridge rectifier circuit using a thyristor, and when the induction heating load becomes an overcurrent, the first and second semiconductors All the semiconductor switches of the switch series circuit are turned off, the semiconductor switches of the third semiconductor switch series circuit are turned on, and the bridge rectifier circuit is controlled so that the current of the reactor is reduced.

本発明では、誘導加熱負荷を接続したMERSに関し、負荷のコイル短絡等により全てのゲート信号をオフした時に、直流電源の出力に接続したリアクトルと、半導体スイッチを直列接続した回路を2回路とコンデンサを並列接続した回路の間に、追加した直流電源の正負間をリアクトルを介して短絡する短絡用スイッチをオンすることにより、直流電流をバイパスさせるため、コンデンサが充電されず、半導体スイッチ及びコンデンサが過電圧になることを防ぐことができる。   The present invention relates to MERS to which an induction heating load is connected. When all gate signals are turned off due to a coil short circuit of the load, a reactor connected to the output of a DC power source and a circuit in which semiconductor switches are connected in series are connected to two circuits and a capacitor. By switching on the shorting switch that short-circuits the positive and negative of the added DC power supply via the reactor between the circuits connected in parallel, the DC current is bypassed, so the capacitor is not charged and the semiconductor switch and capacitor Overvoltage can be prevented.

また、正電位又は負電位に追加されたダイオードにより、コンデンサから短絡スイッチに電流が流れ込むことを防ぐことができる。
この結果、保護の信頼性の向上及び部品の低耐圧化を図ることが可能となる。
Further, the diode added to the positive potential or the negative potential can prevent current from flowing from the capacitor to the short-circuit switch.
As a result, it is possible to improve the reliability of protection and reduce the breakdown voltage of the parts.

本発明の第1の実施例を示す回路図である。1 is a circuit diagram showing a first embodiment of the present invention. 本発明の第1の実施例の動作波形を示す。2 shows operation waveforms of the first embodiment of the present invention. 本発明の第2の実施例を示す回路図である。It is a circuit diagram which shows the 2nd Example of this invention. 従来例を示す回路図である。It is a circuit diagram which shows a prior art example.

本発明の要点は、それぞれダイオードを逆並列接続した半導体スイッチを直列接続した第1及び第2の半導体スイッチ直列回路と、コンデンサと、ダイオードと半導体スイッチを直列接続した第3の半導体スイッチ直列回路と、を並列接続し、前記第1及び第2の半導体スイッチ直列回路内部の直列接続点間に誘導加熱負荷を接続し、前記第3の半導体スイッチ直列回路の直列接続点と直流電源との間にリクトルを接続した誘導加熱電源装置において、出力過電流時第1及び第2の半導体スイッチ直列回路の半導体スイッチを全てオフさせ、第3の半導体スイッチ直列回路の半導体スイッチをオンさせ、さらに直流電源をリアクトルの電流が低減するように制御する点である。   The main points of the present invention are a first and second semiconductor switch series circuit in which semiconductor switches each having diodes connected in antiparallel are connected in series, a capacitor, and a third semiconductor switch series circuit in which diodes and semiconductor switches are connected in series. Are connected in parallel, and an induction heating load is connected between the series connection points inside the first and second semiconductor switch series circuits, and between the series connection point of the third semiconductor switch series circuit and the DC power supply. In the induction heating power supply apparatus connected to the reactor, when the output overcurrent, all the semiconductor switches of the first and second semiconductor switch series circuits are turned off, the semiconductor switches of the third semiconductor switch series circuit are turned on, and the DC power supply is turned on. It is a point which controls so that the electric current of a reactor may reduce.

図1に、本発明の第1の実施例を示す。IGBT51と52を直列接続した第1のIGBT直列回路と、IGBT53と54を直列接続した第2のIGBT直列回路と、コンデンサ6と、ダイオード4とIGBT3を直列接続した第3の半導体スイッチ直列回路とが並列接続され、第1のIGBT直列回路の直列接続点と第2のIGBT直列回路の直列接続点との間にはコイル7と抵抗8の直列回路(誘導加熱負荷)が、IGBT3と並列にリアクトル2とサイリスタで構成された直流電源1が、各々接続された構成である。従来技術との違いは、出力にリアクトル2を接続した直流電源1と、IGBT51〜54で構成された回路との間に、直流電源1の正極Pと負極Nとの間をリアクトル2を介して短絡するためのIGBT3と正極Pライン側にコンデンサ6の放電を抑制するダイオード4が接続されている点である。   FIG. 1 shows a first embodiment of the present invention. A first IGBT series circuit in which IGBTs 51 and 52 are connected in series; a second IGBT series circuit in which IGBTs 53 and 54 are connected in series; a capacitor 6; a third semiconductor switch series circuit in which a diode 4 and IGBT 3 are connected in series; Are connected in parallel, and a series circuit (inductive heating load) of the coil 7 and the resistor 8 is in parallel with the IGBT 3 between the series connection point of the first IGBT series circuit and the series connection point of the second IGBT series circuit. A DC power source 1 composed of a reactor 2 and a thyristor is connected to each other. The difference from the prior art is that between the DC power source 1 with the reactor 2 connected to the output and the circuit composed of the IGBTs 51 to 54, the positive electrode P and the negative electrode N of the DC power source 1 are connected via the reactor 2. This is that a diode 4 for suppressing discharge of the capacitor 6 is connected to the IGBT 3 for short-circuiting and the positive electrode P line side.

動作波形図は、図2に示すように背景の技術と同様であるが、短絡用IGBT3を時点Gでオンすることにより、流れていたIDCは、実線のようにIGBT3に移行し、図中のIsとして流れる。このため、これ以降コンデンサ6が充電されることは無く、コンデンサ6の電圧VDCも実線のようになり、電圧上昇を抑制することができる。   The operation waveform diagram is the same as the background technology as shown in FIG. 2, but by turning on the short-circuit IGBT 3 at the time point G, the IDC that has flowed shifts to the IGBT 3 as shown by the solid line in FIG. It flows as Is. For this reason, the capacitor 6 is not charged thereafter, and the voltage VDC of the capacitor 6 also becomes a solid line, and the voltage rise can be suppressed.

また、ダイオード4は、短絡用IGBT3をオンした時、コンデンサ6から短絡用IGBT3に電流が流れることを防止するために接続されている。また、短絡用IGBT3には直流電源1から電流が流れ込むが、リアクトル2を介しての短絡であるため、電流が急峻に増加することは無い。このような状態で、直流電源1の出力電圧を逆極性にすることによって、リアクトル2を流れる直流電流を減少させ、電源全てを安全に停止させることができる。直流電源としてサイリスタ整流器を用いた場合、位相制御角αを90度以上とすることにより、リアクトル2に逆電圧を印加することが可能で、電流を減少させて遮断することができる。サイリスタ整流器の制御については、刊行本「モータ制御のしくみと考え方」(1981年、オーム社)の43ページなどに記載されている。また、直流電源として他の回路構成を使用する場合には極性を反転させることにより、リアクトル2の電流を減少させて遮断する。   The diode 4 is connected to prevent a current from flowing from the capacitor 6 to the short-circuit IGBT 3 when the short-circuit IGBT 3 is turned on. Further, although current flows from the DC power supply 1 to the short-circuit IGBT 3, since it is a short circuit via the reactor 2, the current does not increase sharply. In such a state, by setting the output voltage of the DC power supply 1 to the reverse polarity, the DC current flowing through the reactor 2 can be reduced and all the power supplies can be safely stopped. When a thyristor rectifier is used as the DC power supply, by setting the phase control angle α to 90 degrees or more, a reverse voltage can be applied to the reactor 2 and the current can be reduced and cut off. The control of the thyristor rectifier is described in page 43 of the publication “Motor control mechanism and concept” (1981, Ohmsha). Further, when another circuit configuration is used as the DC power source, the current of the reactor 2 is reduced and cut off by reversing the polarity.

図3に、本発明の第2の実施例を示す。第1の実施例との違いは、短絡用IGBT3とダイオード4の挿入位置である。実施例1では直流電源1の正極Pライン側にダイオード4が接続されていたが、第2の実施例では直流電源1の負極Nライン側に接続されている。この構成における動作は、実施例1と同じであり、負荷の過電流時にコンデンサ6の電圧を所定値以上に上昇させることなく、安全に回路を遮断させることが可能である。   FIG. 3 shows a second embodiment of the present invention. The difference from the first embodiment is the insertion position of the short-circuit IGBT 3 and the diode 4. In the first embodiment, the diode 4 is connected to the positive P line side of the DC power supply 1, but in the second embodiment, the diode 4 is connected to the negative N line side of the DC power supply 1. The operation in this configuration is the same as that of the first embodiment, and the circuit can be safely interrupted without increasing the voltage of the capacitor 6 to a predetermined value or more when the load is overcurrent.

尚、上記実施例には、直流電源と第3の半導体スイッチ直列回路の直列接続点との間にリアクトル2を挿入する例を示したが、リアクトル2は直流電源1と第3の半導体スイッチ直列回路内の半導体スイッチと直列に接続されておれば良いので、挿入位置は変更可能である。   In the above embodiment, the example in which the reactor 2 is inserted between the DC power source and the series connection point of the third semiconductor switch series circuit is shown. However, the reactor 2 is connected to the DC power source 1 and the third semiconductor switch series. The insertion position can be changed as long as it is connected in series with the semiconductor switch in the circuit.

本発明は、直流電源から共振動作により高周波の交流を作り出す回路における保護に関する提案であり、誘導加熱電源装置の他、スイッチング電源などへの適用が可能である。   The present invention is a proposal relating to protection in a circuit that generates high-frequency alternating current from a direct-current power supply by a resonant operation, and can be applied to an induction heating power supply apparatus as well as a switching power supply.

1・・・直流電源 2・・・リアクトル 4・・・ダイオード
3、51〜54・・・IGBT 6・・・コンデンサ
7・・・コイル 8・・・抵抗
DESCRIPTION OF SYMBOLS 1 ... DC power supply 2 ... Reactor 4 ... Diode 3, 51-54 ... IGBT 6 ... Capacitor 7 ... Coil 8 ... Resistance

Claims (2)

正極と負極とを備えた直流電源と、リアクトルと、それぞれダイオードを逆並列接続した半導体スイッチを直列接続した第1及び第2の半導体スイッチ直列回路と、コンデンサと、ダイオードと半導体スイッチとを直列接続した第3の半導体スイッチ直列回路と、を備え、前記第1及び第2の半導体スイッチ直列回路と前記コンデンサと前記第3の半導体スイッチ直列回路とを並列接続し、前記第1及び第2の半導体スイッチ直列回路内部の直列接続点間に誘導加熱負荷を接続し、前記第3の半導体スイッチ直列回路内の半導体スイッチと並列に前記直流電源と前記リクトルとの直列回路を接続することを特徴とする誘導加熱電源装置。   A DC power source having a positive electrode and a negative electrode, a reactor, first and second semiconductor switch series circuits each including a semiconductor switch in which diodes are connected in reverse parallel, a capacitor, a diode, and a semiconductor switch are connected in series. A third semiconductor switch series circuit, wherein the first and second semiconductor switch series circuits, the capacitor and the third semiconductor switch series circuit are connected in parallel, and the first and second semiconductors are connected in parallel. An induction heating load is connected between series connection points inside the switch series circuit, and a series circuit of the DC power source and the reactor is connected in parallel with the semiconductor switch in the third semiconductor switch series circuit. Induction heating power supply. 前記直流電源は、サイリスタを用いたブリッジ整流回路で構成し、前記誘導加熱負荷が過電流となった際には、前記第1及び第2の半導体スイッチ直列回路の全ての半導体スイッチをオフし、前記第3の半導体スイッチ直列回路の半導体スイッチをオンさせ、前記ブリッジ整流回路を前記リアクトルの電流が減少するように制御することを特徴とする請求項1に記載の誘導加熱電源装置。   The DC power source is configured by a bridge rectifier circuit using a thyristor, and when the induction heating load becomes an overcurrent, all the semiconductor switches of the first and second semiconductor switch series circuits are turned off, 2. The induction heating power supply device according to claim 1, wherein a semiconductor switch of the third semiconductor switch series circuit is turned on, and the bridge rectifier circuit is controlled so that a current of the reactor is reduced.
JP2012118273A 2012-05-24 2012-05-24 Induction heating power supply Active JP6115026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118273A JP6115026B2 (en) 2012-05-24 2012-05-24 Induction heating power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118273A JP6115026B2 (en) 2012-05-24 2012-05-24 Induction heating power supply

Publications (2)

Publication Number Publication Date
JP2013247723A true JP2013247723A (en) 2013-12-09
JP6115026B2 JP6115026B2 (en) 2017-04-19

Family

ID=49847126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118273A Active JP6115026B2 (en) 2012-05-24 2012-05-24 Induction heating power supply

Country Status (1)

Country Link
JP (1) JP6115026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017203828A1 (en) * 2016-05-24 2018-06-07 新日鐵住金株式会社 Power system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246783A (en) * 1988-03-29 1989-10-02 Toshiba Corp Electromagnetic cooking apparatus
JPH0951680A (en) * 1995-08-08 1997-02-18 Meidensha Corp Current-type inverter
JP2000312480A (en) * 1999-04-26 2000-11-07 Meidensha Corp Current inverter
JP2006351371A (en) * 2005-06-16 2006-12-28 Toshiba Corp Induction heating cooker
JP4350160B1 (en) * 2008-02-20 2009-10-21 株式会社MERSTech Magnetic energy regenerative switch with protection circuit
JP2011135668A (en) * 2009-12-24 2011-07-07 Panasonic Corp Inverter device
WO2011087105A1 (en) * 2010-01-15 2011-07-21 株式会社MERSTech Protected power conversion device and control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246783A (en) * 1988-03-29 1989-10-02 Toshiba Corp Electromagnetic cooking apparatus
JPH0951680A (en) * 1995-08-08 1997-02-18 Meidensha Corp Current-type inverter
JP2000312480A (en) * 1999-04-26 2000-11-07 Meidensha Corp Current inverter
JP2006351371A (en) * 2005-06-16 2006-12-28 Toshiba Corp Induction heating cooker
JP4350160B1 (en) * 2008-02-20 2009-10-21 株式会社MERSTech Magnetic energy regenerative switch with protection circuit
JP2011135668A (en) * 2009-12-24 2011-07-07 Panasonic Corp Inverter device
WO2011087105A1 (en) * 2010-01-15 2011-07-21 株式会社MERSTech Protected power conversion device and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017203828A1 (en) * 2016-05-24 2018-06-07 新日鐵住金株式会社 Power system

Also Published As

Publication number Publication date
JP6115026B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6735900B2 (en) Semiconductor device and power conversion system
US9318969B2 (en) Frequency converter with DC link capacitor and method for pre-charging the DC link capacitor
KR101724217B1 (en) Power conversion apparatus
US9979286B2 (en) Power converting device
JP6070853B2 (en) Insulated gate semiconductor device
WO2012105112A1 (en) Dc-dc converter
WO2018110440A1 (en) Snubber circuit and power conversion system using same
CN102655376A (en) DC power supply
US20120037616A1 (en) Power inverter
CN108701556B (en) DC voltage switch
JP2011147299A (en) Protected power conversion device, and control method
JPWO2013088652A1 (en) DC power supply
JP2013074767A (en) Dc/dc converter
JP6582175B2 (en) DC-DC converter device
JP2016149878A (en) Power conversion device
JP6115026B2 (en) Induction heating power supply
JP5976953B2 (en) Bridge leg
JP6937432B2 (en) Control method of resonance type power conversion device and resonance type power conversion device
KR101227374B1 (en) Motor circuit including an overcurrent detecting circuit for inverter and power supporting method of an overcurrent detecting circuit
WO2017064848A1 (en) Electric power conversion device and power conditioner using same
JP6501064B2 (en) Induction heating device
US6594130B2 (en) Method and circuit for the protection of a thyristor
JP6447944B2 (en) Power converter and power conditioner using the same
KR20180106622A (en) Apparatus for controlling active clamp
JP2018074734A (en) Switching power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250