JP2013244492A - METHOD FOR MANUFACTURING ROUND CAST SLAB FOR MAKING HIGH Cr STEEL SEAMLESS STEEL PIPE - Google Patents
METHOD FOR MANUFACTURING ROUND CAST SLAB FOR MAKING HIGH Cr STEEL SEAMLESS STEEL PIPE Download PDFInfo
- Publication number
- JP2013244492A JP2013244492A JP2012117793A JP2012117793A JP2013244492A JP 2013244492 A JP2013244492 A JP 2013244492A JP 2012117793 A JP2012117793 A JP 2012117793A JP 2012117793 A JP2012117793 A JP 2012117793A JP 2013244492 A JP2013244492 A JP 2013244492A
- Authority
- JP
- Japan
- Prior art keywords
- solidification
- axial
- cooling
- continuous casting
- strand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 84
- 239000010959 steel Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title description 8
- 238000001816 cooling Methods 0.000 claims abstract description 116
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000011651 chromium Substances 0.000 claims abstract description 32
- 239000007790 solid phase Substances 0.000 claims abstract description 28
- 239000000498 cooling water Substances 0.000 claims abstract description 10
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 3
- 238000007711 solidification Methods 0.000 claims description 103
- 230000008023 solidification Effects 0.000 claims description 102
- 238000009749 continuous casting Methods 0.000 claims description 40
- 230000008569 process Effects 0.000 claims description 20
- 239000007787 solid Substances 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 4
- 238000005266 casting Methods 0.000 abstract description 8
- 230000015271 coagulation Effects 0.000 abstract description 7
- 238000005345 coagulation Methods 0.000 abstract description 7
- 238000005204 segregation Methods 0.000 description 18
- 230000009467 reduction Effects 0.000 description 12
- 230000007547 defect Effects 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 238000005096 rolling process Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 229910000669 Chrome steel Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、油井の掘削用に利用されるマルテンサイト系の高クロム継目無鋼管、中でもCr含有量が質量比で12〜18%の高Cr継目無鋼管の製管用に用いられる丸鋳片の製造方法、特に好ましくは、13Cr継目無鋼管(API−13Cr鋼管)の製管に用いられる丸鋳片の製造方法に関する。なお、13Cr継目無鋼管製管用丸鋳片とは、特に、Cr含有量が12.7〜13.3mass%である高クロム鋼の継目無鋼管製管用丸鋳片をいう。 The present invention relates to a round slab used for the production of martensitic high chromium seamless steel pipes used for oil well drilling, in particular, high Cr seamless steel pipes having a Cr content of 12 to 18% by mass. More particularly, the present invention relates to a method for producing a round slab used for producing a 13Cr seamless steel pipe (API-13Cr steel pipe). The 13Cr seamless steel pipe round slab particularly refers to a high chrome steel seamless steel pipe round slab having a Cr content of 12.7 to 13.3 mass%.
継目無鋼管は、一般に、出発素材として丸ビレット(丸鋳片)を準備し、マンネスマン穿孔法によって穿孔した後、エロンゲータ、プラグミル又はマンドレルミル等の圧延機により延伸し、さらに、サイザーやストレッチレデューサにより定径化する一連の工程によって製造される。 Seamless steel pipes are generally prepared with a round billet (round slab) as a starting material, drilled by the Mannesmann drilling method, then stretched by a rolling machine such as an elongator, plug mill or mandrel mill, and further by a sizer or stretch reducer. Manufactured by a series of steps to make the diameter constant.
このような丸ビレットを準備する方法として、丸ビレットを直接連続鋳造する方法が知れており、低炭素鋼の場合には、鋳造された状態で良好な内質をもった丸ビレットが得られる。しかしながら、高Cr鋼、特に13Cr鋼、15Cr鋼、さらに17Cr鋼の場合には、鋳造された状態では、丸ビレットの内部にポロシティや偏析に起因した内部割れが発生しやすく、マンネスマン穿孔時に疵が発生しやすいという問題がある。そのため、例えば、特許文献1に開示されているように、連続鋳造によって、丸ビレットの断面積に対して3倍以上に当たる長方形断面を有する鋳片に大圧下を伴う分塊圧延を施してポロシティを機械的に圧着させて内部品質を向上させることが行われてきた。 As a method for preparing such a round billet, a method in which a round billet is directly continuously cast is known. In the case of low carbon steel, a round billet having a good inner quality in a cast state can be obtained. However, in the case of high Cr steel, especially 13Cr steel, 15Cr steel, and 17Cr steel, in the cast state, internal cracks due to porosity and segregation are likely to occur inside the round billet, and wrinkles occur during Mannesmann drilling. There is a problem that it is likely to occur. Therefore, for example, as disclosed in Patent Document 1, the porosity is obtained by subjecting the slab having a rectangular cross-section corresponding to three times or more to the cross-sectional area of the round billet by continuous rolling and carrying out a block rolling with large reduction. It has been performed to improve the internal quality by mechanically pressing.
かかる方法は内質が優れた丸ビレット(丸鋳片)が得られるものの、コスト高であるという問題がある。この問題を解決するために、例えば、特許文献2〜4には、連続鋳造により丸ビレット(丸鋳片)を製造するに当たり、未凝固圧下を加える一連の手段が開示されており、これらの手段により、内部割れ、中心部ポロシティ、中心部偏析、軸心部割れの生成の防止が可能とされている。 Although this method can obtain a round billet (round slab) having an excellent internal quality, there is a problem that the cost is high. In order to solve this problem, for example, Patent Documents 2 to 4 disclose a series of means for applying unsolidified reduction when manufacturing a round billet (round cast piece) by continuous casting. Therefore, it is possible to prevent the generation of internal cracks, center porosity, center segregation, and axial center cracks.
しかしながら、特許文献2〜4に記載の手段は、いずれも丸ビレット(丸鋳片)の連続鋳造過程で未凝固部に機械的圧下を加え、未凝固溶鋼を上流側へ排出する過程を伴うため、製品歩留り率の低下が避けられないという本質的な問題を包含している。また、機械的圧下のための装置が大がかりになり設備費が嵩むという問題もある。 However, all of the means described in Patent Documents 2 to 4 involve a process of applying mechanical reduction to an unsolidified portion in a continuous casting process of a round billet (round cast slab) and discharging unsolidified molten steel to the upstream side. This includes the essential problem that a decrease in product yield is inevitable. In addition, there is a problem in that the equipment for mechanical reduction becomes large and equipment costs increase.
これに対し、特許文献5には、連続鋳造鋳片のセンターポロシティ及び中心偏析の軽減方法として、鋳片冷却の際の熱収縮を利用する二次冷却方法が提案されており、具体的には、鋼のブルームまたはビレット連続鋳造において、残溶湯プールの鋳込み方向最先端より手前0.1〜2.0mの位置から鋳片中心部の固相率が0.99以上となるまで、凝固末期強制冷却帯で鋳片表面を水量密度100〜300リットル/(min・m2)で水冷却する方法が示されている(特許文献5:請求項1参照)。 On the other hand, Patent Document 5 proposes a secondary cooling method that uses thermal shrinkage during slab cooling as a method for reducing the center porosity and center segregation of continuously cast slabs. In continuous bloom or billet casting of steel, the final solidification is forced until the solid fraction at the center of the slab reaches 0.99 or more from the position 0.1 to 2.0 m before the casting direction of the residual molten metal pool. A method of cooling the slab surface with a water density of 100 to 300 liters / (min · m 2 ) in the cooling zone is shown (Patent Document 5: refer to claim 1).
特許文献5に記載の手段により、特許文献2〜4に記載の手段の内包する問題点、すなわち、製品歩留り率の低下や高い設備費などの問題の解決がある程度可能と推定される。しかしながら、特許文献5において実施例として挙げられている低炭素鋼及び1%Cr鋼は、凝固区間(液相線−固相線の温度間隔)が比較的短く、かつ、凝固時に偏析し易いCrの含有量が少ない。そのため、本発明で問題にする軸心部割れが発生しがたい。これに対して、油井の掘削用に利用される12〜18%Cr鋼は、凝固区間が長く、かつ、凝固時にCrが偏析し易いという特徴がある。そのため、特許文献5に記載の手段をそのまま適用しても、これら高Cr鋼においては、後述するAタイプ及びCタイプの軸心部割れが多発し、十分な効果を挙げることができない。また、凝固末期強制冷却帯で鋳片表面に与える水量密度の如何によっては、製品丸鋳片に過大な鋳片反りが生じ、連続鋳造の安定操業が阻害される場合がある。なかでも、13Cr鋼は、15Cr鋼や17Cr鋼に比べて炭素濃度を高めることによって高強度としており、そのため凝固区間が著しく広く、上記Aタイプ割れが顕著に発生しやすい。 With the means described in Patent Document 5, it is estimated that the problems included in the means described in Patent Documents 2 to 4, that is, problems such as a decrease in product yield and high equipment costs can be solved to some extent. However, the low carbon steel and 1% Cr steel cited as examples in Patent Document 5 have a relatively short solidification section (liquidus-solidus temperature interval) and are easily segregated during solidification. The content of is low. For this reason, it is difficult for the shaft center part crack which is a problem in the present invention to occur. On the other hand, 12-18% Cr steel used for drilling oil wells has a feature that the solidification section is long and Cr is easily segregated during solidification. Therefore, even if the means described in Patent Document 5 is applied as it is, in these high Cr steels, A-type and C-type axial center cracks described later frequently occur, and sufficient effects cannot be obtained. In addition, depending on the water density applied to the slab surface in the forced cooling zone at the end of solidification, excessive slab warpage may occur in the product round slab, which may hinder the stable operation of continuous casting. Among them, 13Cr steel has high strength by increasing the carbon concentration as compared with 15Cr steel and 17Cr steel. Therefore, the solidification zone is remarkably wide, and the A-type crack is likely to occur remarkably.
本発明は、上記特許文献5の有する問題点を解決し、前記軸心部割れ、特に後述する凝固時末期に発生する収縮孔とそれに起因するAタイプ割れの発生を、Cタイプ割れとともに実用レベルで十分抑制でき、かつ、鋳片反りが小さい高Cr継目無鋼管製管用丸鋳片の連続鋳造方法を提供することを目的とする。 The present invention solves the problems of the above-mentioned Patent Document 5, and the axial crack, particularly the shrinkage hole generated at the end of solidification described later and the occurrence of A-type crack caused by this, along with the C-type crack, is a practical level. It is an object of the present invention to provide a continuous casting method for round slabs for pipe making of high Cr seamless steel pipes, which can be sufficiently suppressed by slab and has small slab warpage.
本発明者は、高Cr継目無鋼管製管用丸鋳片の連続鋳造過程に生ずる欠陥の発生原因について詳細な調査を行い、その結果、連続鋳造の過程において、ストランドの軸心部における凝固の開始直後から水冷を強化して、いわゆるV偏析の発生を厳しく防止することが、前記Aタイプ割れの発生の抑止に寄与すること、さらには、前記ストランドの軸心部がマクロ偏析を含まないと仮定して完全凝固してもなお、低水量で冷却を続行することがその後の冷却過程において発生する収縮孔に起因する割れを効果的に低減できることを発見し、本発明を完成した。 The present inventor has conducted a detailed investigation on the cause of defects that occur in the continuous casting process of high-Cr seamless steel pipe round slabs. As a result, in the process of continuous casting, solidification at the axial center of the strand starts. Immediately after that, water cooling is strengthened to strictly prevent the occurrence of so-called V segregation, which contributes to the suppression of the occurrence of the A-type crack, and further, it is assumed that the axial center portion of the strand does not contain macro segregation. Thus, the present invention has been completed by discovering that continuing cooling with a low amount of water can effectively reduce cracks due to shrinkage holes that occur in the subsequent cooling process even after complete solidification.
具体的には、本発明に係る高Cr継目無鋼管製管用丸鋳片の連続鋳造方法は、質量比でCrを12〜18%含有する高Cr継目無鋼管製管用丸鋳片を連続鋳造するに当たり、
連続鋳造の過程における内部に未凝固溶鋼を含む断面円形のストランドに対し、少なくとも前記ストランドの軸心部固相率fsが0.2となる位置から0.5となる区間に亘って、水量密度Q1が30〜90L/m2/minである軸心部凝固前期強制冷却を行った後、軸心部固相率fsが0.5となる位置から0.8となる位置に至る間で切り替えて、少なくとも前記fsが0.8となる位置からストランドの軸心部温度が(Ts−145)℃となるまでの区間に亘って、水量密度Q2が20〜60L/m2/minであって、かつ、該水量密度Q2が、前記軸心部凝固前期強制冷却の終了時の冷却水量密度Q1Eより小さい軸心部凝固後期強制冷却を行うことを特徴とする。
ここに、軸心部固相率fsとは、ストランド軸心部における[固相/(固相+液相)]の質量比をいい、Tsとは、連続鋳造に供される溶鋼の固相線温度をいう。
Specifically, the continuous casting method of the high-Cr seamless steel pipe pipe round cast piece according to the present invention continuously casts a high-Cr seamless steel pipe pipe round cast piece containing 12 to 18% of Cr by mass ratio. Hitting
For a strand having a circular cross section containing unsolidified molten steel inside in the process of continuous casting, the water density is at least over a section where the axial solid phase ratio fs of the strand is 0.5 from the position of 0.2. Between the position where the axial center solid phase ratio fs becomes 0.5 and the position where the axial center solid phase ratio fs becomes 0.5 after the forced cooling of the axial center solidification in which Q 1 is 30 to 90 L / m 2 / min. The water density Q 2 is 20 to 60 L / m 2 / min over the interval from the position where the fs is 0.8 to the axial center temperature of the strand is (Ts-145) ° C. there are, and water amount density Q 2, characterized in that performing the axis portion coagulation year of forced cooling at the end of the cooling water density Q 1E smaller axial portion solidified later forced cooling.
Here, the axial solid part ratio fs means the mass ratio of [solid phase / (solid phase + liquid phase)] in the strand axial part, and Ts is the solid phase of the molten steel used for continuous casting. Refers to the line temperature.
上記発明において、前記軸心部凝固前期強制冷却が、軸心部固相率fsが0.01以後0.2までの位置から開始されることとするのが好ましい。 In the above invention, it is preferable that the forced cooling of the axial center solidification first phase is started from a position where the axial solid phase ratio fs is 0.01 to 0.2.
前記各発明において、前記軸心部凝固後期強制冷却において与えられる冷却水量密度が、ストランド下流側に向かって低減されることとするのが好ましい。 In each of the above inventions, it is preferable that the cooling water density provided in the forced cooling of the axial center solidification is reduced toward the downstream side of the strand.
前記各発明において、高クロム鋼を、質量比でCrを12.7〜13.2%含有する13Cr鋼に適用するのが効果的である。また、継目無鋼管製管用丸鋳片の直径を170〜330mmの間に取るのが望ましい。 In each of the above inventions, it is effective to apply the high chromium steel to 13Cr steel containing 12.7 to 13.2% Cr by mass. Moreover, it is desirable to take the diameter of the round cast slab for seamless steel pipe production between 170 and 330 mm.
本発明により、従来提案されている機械的圧下によらず、水冷手段のみによって、軸心部割れを実用レベルでほぼ完全に抑制するとともに鋳片反りの小さい高Cr継目無鋼管製管用丸鋳片を連続鋳造することが可能となる。特に、本発明により、高Cr継目無鋼管製管用丸鋳片の連続鋳造時に発生するV偏析割れを高度に防止できる結果、軸心部に発生するAタイプ割れの発生を極めて高度のレベルで低減することができる。その結果、本発明により得られた丸鋳片は、再加熱後、通常の縮径圧延を経て、そのまま、製管工程に供することができ、製品鋼管に現れる欠陥発生率を極めて低くすることができる。 According to the present invention, a round slab for a high-Cr seamless steel pipe made of high-Cr seamless steel pipe having a practically low level of cracking in the axial center portion and a small slab warpage, by using only water-cooling means, regardless of conventionally proposed mechanical reduction. Can be continuously cast. In particular, according to the present invention, it is possible to highly prevent V segregation cracking that occurs during continuous casting of high-Cr seamless steel pipe round slabs. As a result, the occurrence of A-type cracking in the shaft center is reduced to a very high level. can do. As a result, the round slab obtained according to the present invention can be subjected to a normal diameter reduction rolling after reheating, and can be used as it is in a pipe making process, and the defect occurrence rate appearing in a product steel pipe can be made extremely low. it can.
図1は、本発明を実施するための連続鋳造設備における冷却帯とその配置を示す概念図である。図1に示すように、タンディッシュ(図示しない)から断面円形の連続鋳造鋳型1に溶鋼に注入された溶鋼は、スプレーノズルを備えた二次冷却帯2を通過する間に凝固シェルが成長し、内部に未凝固溶鋼を有するストランドSが形成され、完全凝固後、矯正帯5によって矯正された後、切断手段(図示しない)によって所定長の継目無鋼管製管用丸鋳片とされる。本発明においては、上記連続鋳造過程、特に二次冷却帯2に続いて軸心部凝固前期強制冷却帯3及び軸心部凝固後期強制冷却帯4により適正な水量密度の強制冷却を行い、高Cr鋼継目無鋼管製管用丸鋳片内部に発生する欠陥の低減を図っている。なお、軸心部凝固前期強制冷却帯3及び軸心部凝固後期強制冷却帯4とは、連続鋳造設備において通常設けられている二次冷却帯2の下流域側に設けられる、ストランド軸心部に対し圧縮応力を付与するための冷却帯をいう。 FIG. 1 is a conceptual diagram showing a cooling zone and its arrangement in a continuous casting facility for carrying out the present invention. As shown in FIG. 1, the molten steel injected into the molten steel from the tundish (not shown) into the continuous casting mold 1 having a circular cross section has a solidified shell grown while passing through the secondary cooling zone 2 equipped with a spray nozzle. A strand S having unsolidified molten steel is formed inside, and after complete solidification, the strand S is straightened by the straightening band 5, and then is made into a round cast piece of seamless steel pipe having a predetermined length by a cutting means (not shown). In the present invention, the continuous cooling process, particularly the secondary cooling zone 2, followed by the axial solidification early forced cooling zone 3 and the axial solidification late forced cooling zone 4 forcibly cools at an appropriate water density, It aims to reduce defects that occur inside the round cast slabs for making Cr steel seamless steel pipes. In addition, the axial center part solidification early forced cooling zone 3 and the axial center solidification late forced cooling zone 4 are a strand axial center part provided in the downstream area side of the secondary cooling zone 2 normally provided in the continuous casting equipment. Refers to a cooling zone for applying compressive stress.
以下、本発明を、特に13Cr継目無鋼管製管用丸鋳片の連続鋳造に適用する場合を例にとって説明する。連続鋳造設備を用いて13Cr鋼を連続鋳造すると、二次冷却帯及びその後の軸心部強制冷却帯の水量密度等の連続鋳造条件に依存して、製品丸鋳片に種々の内部欠陥である軸心部割れが発生する。典型的には、これらの軸心部割れは、(1)Aタイプ、(2)Bタイプ、(3)Cタイプ割れの3種に分類される。ここに、Aタイプ軸心部割れは、図2(a)に示すように、ストランドの鋳造方向に垂直な断面の中心部に生ずる比較的小さい割れ欠陥であって、ストランドの凝固末期ないし凝固直後に生ずる収縮孔を起点として発生する星形の割れである。Bタイプ軸心部割れは、図2(b)に示すように、ストランドの鋳造方向断面に生ずるV字形の割れであって、凝固中期ないし末期にかけて生ずるV字状偏析に由来する。Cタイプ軸心部割れは、図2(c)に示すように、ストランドの鋳造方向に垂直な断面に現れる比較的大きな開口部を有する割れであって、ストランドがほぼ凝固した後、その軸心部に掛かる復熱時の引張応力によって収縮孔が拡大することによって生ずるものである。 Hereinafter, the case where the present invention is applied to continuous casting of a round cast piece for 13Cr seamless steel pipe production will be described as an example. When 13Cr steel is continuously cast using a continuous casting facility, there are various internal defects in the round product slab depending on the continuous casting conditions such as the water density of the secondary cooling zone and the forced cooling zone of the axial center thereafter. A crack in the shaft center occurs. Typically, these axial cracks are classified into three types: (1) A type, (2) B type, and (3) C type crack. Here, as shown in FIG. 2 (a), the A-type axial center crack is a relatively small crack defect that occurs in the central portion of the cross section perpendicular to the casting direction of the strand. This is a star-shaped crack generated from the shrinkage hole generated in As shown in FIG. 2 (b), the B-type axial center crack is a V-shaped crack that occurs in the cross-section of the strand in the casting direction, and is derived from a V-shaped segregation that occurs from the middle to the end of solidification. As shown in FIG. 2 (c), the C-type axial center crack is a crack having a relatively large opening that appears in a cross section perpendicular to the casting direction of the strand. This is caused by expansion of the shrinkage hole due to the tensile stress at the time of recuperation applied to the part.
本発明では、連続鋳造機を用いて丸鋳片を鋳造するに当たり、二次冷却の後、軸心部凝固前期強制冷却を行った後、軸心部凝固後期強制冷却が行われる。図3は、本発明において適用する軸心部凝固前期強制冷却における水量密度Q1及び軸心部凝固後期強制冷却における水量密度Q2を、ストランドの軸心部の凝固状態(fs及び軸心部温度(Ts−X)℃)に対して模式的に示した説明図であり、実際に適用した典型的な凝固状態に対する水量密度との関係の一例を実線で示している。図中(A)で示す領域は軸心部凝固前期強制冷却において適用可能な軸心部凝固状態(固相率fs)−水量密度の範囲を、図中(B)で示す領域は軸心部凝固後期強制冷却において適用可能な軸心部凝固状態(固相率fs又は軸心部温度(Ts−X))−水量密度の範囲を示し、実線は、実際に適用された凝固状態−水量密度の関係曲線を示す。 In the present invention, when casting a round slab using a continuous casting machine, after the secondary cooling, the forced cooling of the axial center solidification early stage is performed, and then the forced cooling of the axial center solidification late stage is performed. FIG. 3 shows the water amount density Q1 in the forced cooling of the first axial solidification applied in the present invention and the water density Q2 in the forced cooling of the second axially solidified phase in the solidification state (fs and axial center of the strand central portion). It is explanatory drawing typically shown with respect to temperature (Ts-X) (degreeC), and shows the example of the relationship with the water amount density with respect to the typical solidification state actually applied with the continuous line. The area indicated by (A) in the figure indicates the range of the axial center solidification state (solid phase ratio fs) -water density that can be applied in the forced cooling of the axial center solidification early stage, and the area indicated by (B) in the figure indicates the axial center part. The solidified state of the axial center (solid phase ratio fs or axial temperature (Ts-X)) applicable to the forced cooling in the latter phase of solidification indicates the range of the water density, and the solid line indicates the actual applied solidification-water density. The relationship curve is shown.
本例においては、適用水量密度は、軸心部固相率fs:0.2において、二次冷却帯末期の水量密度Q0から軸心部凝固前期強制冷却のための水量密度Q1:70L/m2/minに切り替えられ、固相率fs:0.7に至るまでその状態が継続された後、軸心部凝固後期強制冷却のための水量密度Q2:40L/m2/minに切り替えられ、軸心部温度が(Ts−145)℃よりも30℃低下した温度においてさらに低水量密度Q3:10L/m2/minに切り替えられ、その状態が軸心部温度:(Ts−255)℃まで継続している。 In this example, the applied water volume density is from the water volume density Q 0 at the end of the secondary cooling zone to the water volume density Q 1 for forced cooling of the shaft center solidification first period at the shaft center solid fraction fs: 0.2: 70 L / After switching to m 2 / min and continuing until the solid phase ratio fs reaches 0.7, the water density Q 2 for forced cooling in the late stage of solidification of the axial center is switched to 40 L / m 2 / min. Then, at a temperature at which the shaft center temperature is lowered by 30 ° C. from (Ts-145) ° C., the water density Q 3 is further switched to 10 L / m 2 / min, and this state is the shaft center temperature: (Ts-255 ) Continues to ° C.
(軸心部凝固前期強制冷却条件とその技術的意義)
軸心部凝固前期強制冷却は、図3の領域(A)に示すように、少なくとも前記ストランドの軸心部固相率fsが0.2となる位置から0.5となる区間に亘って水量密度Q1が30〜90L/m2/minの冷却水をストランド表面に与えるものである。
( Forced cooling conditions in the early stage of solidification of the shaft center and its technical significance )
As shown in the region (A) of FIG. 3, the forced cooling of the axial center solidification first phase is a water amount at least over a section where the axial center solid phase ratio fs of the strand is 0.5. density Q 1 is intended to provide cooling water of 30~90L / m 2 / min into a strand surface.
表2は、図1に示す形式の内径210mmの水冷銅鋳型を備える垂直曲げ型の連続鋳造設備を用い、表1に示す組成の13Cr鋼の溶鋼を連続鋳造したときの、軸心部凝固前期強制冷却の適用時期と13Cr鋼継目無鋼管製管用丸鋳片に現れるAタイプ軸心部割れ長さ及びBタイプ軸心部割れ有無との関係を示す。表2において、条件(a)は、軸心部固相率fsが0.2〜0.5の区間に亘って、上記水量密度Q1を30〜90L/m2/minの範囲とする軸心部凝固前期強制冷却を行い、その状態を軸心部固相率fsが0.7になるまで継続した後、水量密度を低下させて、ストランドの軸心部温度が(Ts−145)℃となるまでの区間に亘って軸心部凝固後期強制冷却を行った場合であり、軸心部凝固前期強制冷却が適正に行われた場合に当たる。一方、条件(b),(c)は、軸心部凝固前期強制冷却の適用時期をそれぞれ、軸心部固相率fsが0.3〜0.5,0.1〜0.4の区間に亘って行い、その後、水量密度を低下させて、ストランドの軸心部温度が(Ts−145)℃となるまでの区間に亘って軸心部凝固後期強制冷却を行った場合であり、それぞれ、軸心部凝固前期強制冷却の開始が遅れた場合、早期に終了した場合に当たる。これに対し、条件(d)は、二次冷却後に軸心部凝固前期強制冷却をまったく行わなかった場合である。なお、軸心部凝固後期強制冷却は、いずれの場合についても、図2の領域(B)の範囲を満たすように行った。 Table 2 shows the first stage of solidification of the axial center when a molten steel of 13Cr steel having the composition shown in Table 1 is continuously cast using a vertical bending type continuous casting equipment having a water-cooled copper mold having an inner diameter of 210 mm of the type shown in FIG. The relationship between the application time of forced cooling and the A type shaft center part crack length and B type shaft center part crack presence which appear in the round cast slab for 13Cr steel seamless steel pipe production is shown. In Table 2, the condition (a) is an axis in which the water density Q 1 is in the range of 30 to 90 L / m 2 / min over a section where the axial center solid fraction fs is 0.2 to 0.5. After forced cooling in the first stage of solidification of the core, the state is continued until the axial solid fraction fs becomes 0.7, and then the water density is decreased so that the axial temperature of the strand becomes (Ts-145) ° C. This corresponds to the case where the axial center solidification late forced cooling is performed over the interval until the axial center solidification, and this is the case where the axial center solidification early forced cooling is properly performed. On the other hand, the conditions (b) and (c) are the periods in which the axial solid phase ratio fs is 0.3 to 0.5 and 0.1 to 0.4, respectively. And then the water density is decreased and the axial center solidification late forced cooling is performed over the interval until the axial center temperature of the strand reaches (Ts-145) ° C., respectively. This corresponds to the case where the start of forced cooling in the early stage of solidification of the axial center is delayed, or is terminated early. On the other hand, the condition (d) is a case where no forced cooling is performed at all before the axial solidification after the secondary cooling. In addition, axial solidification late forced cooling was performed so that the range of the area | region (B) of FIG. 2 might be satisfy | filled in any case.
なお、軸心部固相率fsとは、ストランド軸心部における[固相/(固相+液相)]の質量比をいい、例えば、大中 逸雄 著「コンピュータ伝熱・凝固解析入門 1985年 丸善発行」の第196〜208頁に記載の「4.3.2 合金の凝固解析」等の伝熱凝固計算によって求めることができる。また、Tsとは、連続鋳造に供されるバルク溶鋼の固相線温度をいい、例えば、市販の状態図計算ソフト「Thermocalc」(Thermocalc software Inc.)を利用して算出することができる。 The axial solid part ratio fs means the mass ratio of [solid phase / (solid phase + liquid phase)] in the strand axial part. For example, Izuo Ohnaka, “Introduction to Computer Heat Transfer and Solidification Analysis 1985”. It can be obtained by heat transfer solidification calculation such as “4.3.2 Solidification analysis of alloy” described on pages 196 to 208 of “Year Maruzen”. Ts refers to the solidus temperature of bulk molten steel subjected to continuous casting, and can be calculated using, for example, commercially available phase diagram calculation software “Thermocalc” (Thermocalc software Inc.).
表2から、軸心部凝固前期強制冷却の適用時期が適正範囲にあるときは、軸心部に現れるAタイプ軸心部割れの長さが激減するが、凝固前期強制冷却の開始が遅れる場合や早期に終了する場合には、Aタイプ軸心部割れの発生を充分に低減することが困難になることがわかる。また、軸心部凝固前期強制冷却が行われなかった場合や、その開始が遅れた場合には、Bタイプ軸心部われが発生することが分かる。このように、凝固前期制強制冷却の適正化を図ることにより、Aタイプ軸心部割れがBタイプ軸心部割れとともに減少する理由は、ストランド中に発生するV状偏析ひいてはAタイプ割れの原因となる収縮孔が激減するためであると推定される。すなわち、軸心部割れは、凝固過程で発生するV状偏析あるいはザクなどの中心偏析が著しく、最終凝固位置でも未凝固あるいは空孔の状態で存在する部分に凝固後に軸心から表面に向かった引張応力が作用した場合に発生するものであるが、凝固前期制強制冷却の適正化を図ることにより、これら軸心部割れの根源となる要因を低減することが可能になったと推定される。 From Table 2, when the application time of forced cooling of the axial center solidification early phase is within the proper range, the length of the A type axial center crack appearing in the axial center is drastically reduced, but the start of forced cooling of the solidified early phase is delayed It can be seen that when it is finished early, it is difficult to sufficiently reduce the occurrence of A-type axial center cracks. Further, it can be seen that when the forced cooling is not performed in the early stage of the axial center solidification or when the start thereof is delayed, the B type axial center crack is generated. As described above, the reason why the A type axial center crack is reduced together with the B type axial center crack by optimizing the forced cooling in the first stage of solidification is the cause of the V-shaped segregation generated in the strands and the A type crack. It is presumed that this is because the shrinkage pores are drastically reduced. In other words, cracks in the center of the shaft are remarkably center segregated such as V-shaped segregation or zaku, which occurs during the solidification process, and the solidified from the shaft center to the surface after solidification in the portion that is in the unsolidified or vacant state even at the final solidification position Although it occurs when tensile stress is applied, it is presumed that it became possible to reduce the cause of these axial cracks by optimizing the pre-solidification forced cooling.
ところで、連続鋳造過程において発生するV状偏析は、Bタイプ割れの直接的な原因となるものであるが、軸心部固相率fs:0.3〜0.7のV状偏析生成期において、いわゆる濃化溶鋼がストランド上流側から瞬間的かつ周期的に流入してくることにより生ずるものであると推定されている。したがって、この流入を抑制し、V状偏析の発生を抑制するためには、上記V状偏析生成期に軸心部に十分な圧縮応力が掛るよう、ストランドの冷却を強化することが必要であると考えられる。しかしながら、上記実験結果は、それだけでは十分ではなく、それ以前の段階、特に、軸心部において凝固が開始する直後から、具体的には、遅くとも軸心部固相率fsが0.2に達した段階から、軸心部凝固前期強制冷却を行う必要があることを示している。 By the way, the V-shaped segregation generated in the continuous casting process is a direct cause of the B-type crack, but in the V-shaped segregation generation period of the axial center solid fraction fs: 0.3 to 0.7. It is presumed that the so-called concentrated molten steel is caused by instantaneous and periodic inflow from the upstream side of the strand. Therefore, in order to suppress this inflow and suppress the occurrence of V-shaped segregation, it is necessary to enhance the cooling of the strands so that a sufficient compressive stress is applied to the shaft center portion during the V-shaped segregation generation period. it is conceivable that. However, the above experimental results are not sufficient, and the solid phase ratio fs of the axial center reaches 0.2 at the latest, particularly immediately after the start of coagulation in the axial center. From this stage, it is shown that it is necessary to perform forced cooling in the early stage of solidification of the shaft center.
上記のとおり、軸心部凝固前期強制冷却は、少なくとも、ストランドの軸心部の固相率fsが0.2となる位置から0.5となる区間に亘って行う必要がある。しかしながら、それだけでは十分ではない。その区間における適用水量密度を30〜90L/m2/minの範囲にとる必要がある。この適用水量密度は、連続鋳造における軸心部fsが0.2以上の凝固過程で発生する体積割合で4〜5%程度の液相部の凝固収縮に相応するように、軸心部の体積変化を生じさせるのに適正なものである。適用水量密度が30L/m2/min未満の場合には、V状偏析の発生を十分抑制することができず、ひいては、後述する軸心部凝固後期強制冷却を適正に行っても、Aタイプ軸心部割れの発生を充分抑制することができない。一方、適用水量密度が90L/m2/minを超える場合には、ストランド全周に亘る均一冷却が困難になり、表面割れ(横割れ)やストランド(丸鋳片)に矯正不能の曲がりが生ずるおそれがある。 As described above, it is necessary to perform the forced cooling of the axial center solidification first phase at least over a section where the solid phase ratio fs of the axial center portion of the strand is 0.5. However, that is not enough. The applied water density in that section needs to be in the range of 30 to 90 L / m 2 / min. The applied water volume density is such that the volume of the shaft center portion corresponds to the solidification shrinkage of the liquid phase portion of about 4 to 5% in the volume ratio generated in the solidification process when the shaft center portion fs is 0.2 or more in continuous casting. It is the right thing to make a change. When the applied water density is less than 30 L / m 2 / min, the occurrence of V-shaped segregation cannot be sufficiently suppressed. As a result, even if the axial center solidification late forced cooling described later is appropriately performed, the A type The occurrence of cracks in the shaft center cannot be sufficiently suppressed. On the other hand, when the applied water density exceeds 90 L / m 2 / min, uniform cooling over the entire circumference of the strand becomes difficult, resulting in surface cracks (lateral cracks) and uncorrectable bends in the strands (round cast pieces). There is a fear.
(凝固後期強制冷却条件とその意義)
上記のように、凝固前期強制冷却は、V状偏析あるいはAタイプ軸心部割れの起点となる欠陥の発生を抑制するための条件としての意義を有する。これに対し、凝固後期強制冷却は、直接的にV状偏析の発生を抑制するとともに、凝固最終段階において発生するAタイプ軸心部割れ(後述する復熱時Aタイプ割れを含む)の発生を抑制する意義を有する。
( Conditions for forced cooling at the end of solidification and its significance )
As described above, the pre-solidification forced cooling has significance as a condition for suppressing the occurrence of defects that are the starting points of V-shaped segregation or A-type axial center cracks. On the other hand, the forced solidification late-solidification directly suppresses the occurrence of V-shaped segregation and also causes the occurrence of A-type axial center cracks (including A-type cracks during recuperation described later) that occur in the final solidification stage. It has a meaning to suppress.
本発明においては、軸心部凝固後期強制冷却は、軸心部固相率fsが少なくとも0.8となる位置からストランドの軸心部温度が(Ts−145)℃となるまでの区間に亘って、水量密度Q2が20〜60L/m2/minを与えるように行われる。なお、この場合において、その水量密度は、前記軸心部凝固前期強制冷却の終了時における水量密度を下回るように取らねばならない。 In the present invention, the axially solidified late forced cooling is performed over a period from the position where the axial solid phase fraction fs is at least 0.8 to the axial temperature of the strand reaching (Ts-145) ° C. Te, water flow rate Q 2 is performed to provide 20~60L / m 2 / min. In this case, the water density must be set to be lower than the water density at the end of the forced cooling of the axial center solidification first period.
本発明では、上記のように、fsが0.8となる位置から軸心部の温度が(Ts−145)℃となる位置までの間に亘って凝固末期強制冷却を行うこととするが、この領域は、Aタイプ割れが発生する領域に対応している。fsが0.8未満の上流側の領域では、軸心部の溶鋼の流動性が高く、Aタイプ割れが発生しないのであり、一方、軸心部の温度が(Ts−145)℃より低下すれば、軸心部の部材にそこに生ずる引張応力(ほぼ8MPa程度と推定される)に耐え得る熱間強度が生じる。上記区間では、軸心部に残るフィルム状の残溶鋼のため、軸心部の熱間強度が低く、わずかな引張応力が掛かってもAタイプ割れに進展するのである。 In the present invention, as described above, the coagulation end-stage forced cooling is performed from the position where fs is 0.8 to the position where the temperature of the axial center is (Ts-145) ° C. This region corresponds to a region where an A type crack occurs. In the upstream region where fs is less than 0.8, the fluidity of the molten steel in the shaft center portion is high and A-type cracks do not occur, while the temperature of the shaft center portion falls below (Ts-145) ° C. For example, a hot strength that can withstand the tensile stress (estimated to be about 8 MPa) generated in the shaft center member is generated. In the above section, because of the film-like residual molten steel remaining in the shaft center portion, the hot strength of the shaft center portion is low, and even if a slight tensile stress is applied, it develops into an A-type crack.
なお、上記軸心部の熱間強度は、本発明の代表的適用鋼種である13Cr鋼を例にとれば、その凝固過程における1×10−3/sの低速の高温熱間引張試験を行って測定可能である。かかる測定の結果、13Cr鋼の凝固過程において有意な断面減少率を獲得する温度が1300℃であると決定される。その前記Tsとの差は145℃であり、これに基づき上記軸心部凝固後期強制冷却の適用範囲が(Ts−145)℃となるまでと決定される。 Note that the hot strength of the shaft center part is obtained by performing a high-temperature hot tensile test at a low speed of 1 × 10 −3 / s in the solidification process of 13Cr steel, which is a typical applicable steel type of the present invention. Can be measured. As a result of such measurement, it is determined that the temperature at which a significant cross-sectional reduction rate is obtained in the solidification process of 13Cr steel is 1300 ° C. The difference from Ts is 145 ° C., and based on this difference, it is determined that the application range of the above-mentioned axial center solidification late forced cooling becomes (Ts-145) ° C.
上記軸心部凝固後期強制冷却は、13Cr鋼の連続鋳造過程において、上記ストランドの軸心部の固相率fsが0.8となる位置から前記軸心部の温度が(Ts−145)℃となる位置までの間において、ストランド外周面に適用される冷却水の水量密度を20〜60L/m2/minとすることが必要である。水量密度を20L/m2/min以上とするのは、20L/m2/min未満ではストランド表面と軸心部との間の温度勾配が小さく、ストランド軸心部に十分な圧縮応力を掛けることができないためである。一方、水量密度が60L/m2/min以下とするのは、60L/m2/minを超えると、冷却終了後の復熱時に軸心部に掛る引張応力が大きくなりすぎ、Cタイプ割れが発生するためである。さらに、ストランドを切断して得た製品丸鋳片に反りが残存する危険性が顕著になるためである。なお、上記水量密度は、冷却帯に与えられる単位時間当たりの水量(L/min)をその冷却帯内にあるストランドの表面積で除して得られるものである。 In the continuous solidification process of 13Cr steel, the temperature of the shaft center portion is (Ts-145) ° C. from the position where the solid phase ratio fs of the shaft center portion of the strand is 0.8 in the continuous casting process of 13Cr steel. It is necessary that the water density of the cooling water applied to the outer peripheral surface of the strand is 20 to 60 L / m 2 / min. The water density is set to 20 L / m 2 / min or more when the temperature density is less than 20 L / m 2 / min, the temperature gradient between the strand surface and the shaft center is small, and a sufficient compressive stress is applied to the strand shaft center. This is because they cannot. On the other hand, when the water density is 60 L / m 2 / min or less, if it exceeds 60 L / m 2 / min, the tensile stress applied to the shaft center portion at the time of reheating after completion of cooling becomes too large, and the C-type crack is caused. This is because it occurs. Furthermore, this is because the risk of warping remaining in the round product slab obtained by cutting the strand becomes significant. The water density is obtained by dividing the amount of water per unit time (L / min) given to the cooling zone by the surface area of the strands in the cooling zone.
図6(a)は、軸心部凝固後期強制冷却の水量密度と軸心部における圧縮応力−引張応力転換点との関係図である。図6(a)から明らかなように、軸心部凝固後期強制冷却を行うことにより、圧縮応力−引張応力転換点(連続鋳造過程においてストランド軸心部に掛る応力が圧縮側から引張側に転換する位置、連続鋳造鋳型中の溶鋼メニスカスから下流側への距離)が大きくなること及び、その距離が水量密度60L/min/m2において極大値をとることが分かる。また、図6(b)から、軸心部凝固後期強制冷却の水量密度を増加していくと、製品丸鋳片に現れる鋳片反りが増大し、水量密度が60L/min/m2を超えると大幅に増大することが分かる。 FIG. 6A is a diagram showing the relationship between the water amount density of the axially solidified late-stage forced cooling and the compressive stress-tensile stress transition point in the axial center. As is clear from FIG. 6 (a), by performing forced cooling at the end of solidification of the shaft center, the stress applied to the compression stress-tensile stress (the stress applied to the strand shaft in the continuous casting process is changed from the compression side to the tension side). The distance from the molten steel meniscus in the continuous casting mold to the downstream side) and the distance reaches a maximum value at a water density of 60 L / min / m 2 . Further, from FIG. 6 (b), when the water amount density of the axial center solidification late forced cooling increases, the slab warpage appearing in the product round slab increases, and the water amount density exceeds 60 L / min / m 2 . It can be seen that it increases significantly.
上記軸心部凝固後期強制冷却を適正な水量密度で行うことによって、Aタイプ割れの発生を顕著に抑制するとともに鋳片反りを小さくすることができる。しかしながら、その後、例えば、ストランドを空冷状態に放置するときには、ストランド外周部が復熱することにより、再び軸心部に引張応力が掛ることになり、これによりAタイプ割れ(復熱時のAタイプ割れ)が拡大する場合がある。 By performing the above-mentioned forced cooling of the shaft center solidification at an appropriate water density, generation of A-type cracks can be remarkably suppressed and slab warpage can be reduced. However, after that, for example, when the strand is left in an air-cooled state, the outer peripheral portion of the strand is reheated, and tensile stress is again applied to the shaft center portion. As a result, an A type crack (A type at the time of recuperation) Cracks) may expand.
この復熱時のAタイプ割れの拡大は、前記軸心部凝固後期強制冷却の終了後、さらに、ストランドの軸心部の温度が低下するまで低い水量密度、例えば、10〜20L/m2/minによる冷却を行うことにより防止することができる。 The expansion of the A-type crack at the time of recuperation is performed after the end of the forced cooling at the end of solidification of the axial center, and further, until the temperature of the axial center of the strand decreases, for example, 10-20 L / m 2 / It can prevent by performing cooling by min.
上記復熱時のAタイプ割れは、連続鋳造過程においてストランド軸心部に生ずる直径数mm程度の収縮孔又は前記軸心部凝固後期強制冷却によってもなお残る収縮孔の周辺に、過大な引張応力が掛ることによって生ずるものと推定される。したがって、その低減のためには、その発生温度区間において軸心部の引張応力が過大にならないように鋳片の復熱を抑制することが必要となり、そのため上記のような低水量密度で冷却を継続することがさらに好ましい。 The A-type crack at the time of recuperation is caused by excessive tensile stress in the periphery of the shrinkage hole having a diameter of about several millimeters generated in the strand shaft center part in the continuous casting process or the shrinkage hole still remaining after the forced cooling of the shaft center part after the solidification. It is presumed to be caused by Therefore, in order to reduce this, it is necessary to suppress the reheating of the slab so that the tensile stress of the shaft center does not become excessive in the generated temperature section. More preferably it continues.
上記復熱時Aタイプ割れ防止のための付加的な強制冷却区間は、前記その発生温度区間に対応させることが好ましい。具体的に、13Cr鋼を例にとれば、上記付加的な強制冷却は、前記軸心部凝固後期強制冷却に引続いてストランド軸心部の温度が(Ts−255)℃以下に低下するまで行うことが好ましい。 It is preferable that the additional forced cooling section for preventing the A-type crack at the time of recuperation corresponds to the generated temperature section. Specifically, taking 13Cr steel as an example, the additional forced cooling is performed until the temperature of the strand axis decreases to (Ts-255) ° C. or lower following the forced cooling after the axial center solidification. Preferably it is done.
上記のとおり軸心部凝固前期強制冷却及び軸心部凝固後期強制冷却を適正に行うことにより、13Cr鋼に代表される高クロム鋼の丸鋳片の軸心部割れを実用レベルでほぼ完全に抑制するとともに鋳片反りの小さい高Cr継目無鋼管製管用丸鋳片を連続鋳造することが可能となる。以下、これら強制冷却の好適実施条件について述べる。 As described above, the axial center solidification early forced cooling and the axial central solidification forced cooling are appropriately performed, so that the axial center cracking of high chrome steel round cast pieces represented by 13Cr steel is almost completely achieved at the practical level. It is possible to continuously cast a round slab for pipe making of high Cr seamless steel pipe with reduced slab warpage. Hereinafter, preferred conditions for forced cooling will be described.
軸心部凝固前期強制冷却は、図3に示す領域(A)を満たすよう、少なくとも軸心部固相率fsが0.2となる位置から0.5となる区間に亘って水量密度Q1が30〜90L/m2/minを与えるように行うことが必要条件である。その開始前の条件は、通常の継目無鋼管製管用丸鋳片の連続鋳造における二次冷却条件をそのまま適用できる。しかしながら、fs:0.2に達する前、例えば、fs:0.01の位置から軸心部凝固前期強制冷却に相当する水量密度による強制冷却を開始することができ、これにより、本発明の効果をさらに高めることができる。fs:0.2に達する前から軸心部凝固前期強制冷却を開始すれば、鋳片の表面温度を早期に低下させて冷却効率を高める効果もある。 In the axial solidification pre-stage forced cooling, the water density Q 1 is at least over the interval where the axial solid phase ratio fs is 0.5 from the position where the axial solid phase ratio fs is 0.2 so as to satisfy the region (A) shown in FIG. Is necessary to give 30 to 90 L / m 2 / min. As the conditions before the start, the secondary cooling conditions in the continuous casting of normal round pipes for seamless steel pipe production can be applied as they are. However, before reaching fs: 0.2, for example, forced cooling can be started from the position of fs: 0.01 by the water density corresponding to the forced cooling in the first stage of solidification of the shaft center portion. Can be further enhanced. If forced cooling of the axial center solidification first phase is started before fs: 0.2 is reached, there is also an effect that the surface temperature of the slab is lowered early to increase the cooling efficiency.
軸心部凝固前期強制冷却において適用される水量密度は、図3に示す領域(A)を外れない限り自由にとり得る。例えば、その区間内において、ストランド軸心部の凝固状態あるいは、凝固シェルの形成状態等に応じて、漸増すること、あるいは漸減することも可能である。 The water density applied in the forced cooling of the axial center solidification first phase can be freely set as long as it does not deviate from the region (A) shown in FIG. For example, in the section, it is possible to gradually increase or decrease in accordance with the solidification state of the strand shaft center part or the formation state of the solidified shell.
軸心部凝固前期強制冷却は、図3に示す領域(A)を超えてfs:0.8に至るまで継続することができる。その間の冷却水量密度は、前記軸心部凝固前期強制冷却の水量密度:30〜90L/m2/minの範囲を維持することが必要である。なお、好ましくは、fs:0.5を超えた後、次第に又は段階的に水量密度を低減して、続く軸心部凝固後期強制冷却の冷却水量密度に低減するようにするのがよい。 The forced cooling of the axial center solidification first phase can be continued until fs: 0.8 is exceeded beyond the region (A) shown in FIG. During this period, the cooling water density needs to be maintained in the range of 30 to 90 L / m 2 / min. Preferably, after exceeding fs: 0.5, the water amount density is gradually or stepwise reduced so as to reduce to the cooling water amount density of the subsequent forced cooling of the axial center solidification.
軸心部凝固前期強制冷却から軸心部凝固後期強制冷却への切替は、図3に示したように、fs:0.5に達した後、0.8に達するまでの間で行われる。その時期は、ストランド軸心部の凝固状態あるいは、凝固シェルの形成状態等に応じて任意に定めることができる。だたし、その切替時における冷却水量密度は、軸心部凝固前期強制冷却の終了時の水量密度Q1Eより軸心部凝固後期強制冷却の開始時の水量密度Q2が下回るようにする必要がある。 As shown in FIG. 3, the switching from the forced cooling of the axial center solidification early period to the forced cooling of the late axial center solidification is performed after reaching fs: 0.5 until reaching 0.8. The timing can be arbitrarily determined according to the solidification state of the strand shaft center portion or the formation state of the solidified shell. However, the cooling water density at the time of switching needs to be lower than the water density Q 1E at the end of the early cooling of the axial center solidification, and lower than the water density Q 2 at the start of the forced cooling of the latter of the axial solidification. There is.
軸心部凝固後期強制冷却は、図3に示す領域内で自由にとることができるが、次第に又は段階的に低減するように取るのが好ましい。これにより、連続鋳造工程における丸鋳片の曲がりや復熱時のAタイプ割れをさらに効果的に防止することが可能になる。 Although the axially solidified late-stage forced cooling can be freely performed within the region shown in FIG. 3, it is preferable to reduce it gradually or stepwise. This makes it possible to more effectively prevent the round cast slab from being bent and the A-type crack during recuperation in the continuous casting process.
本発明は、13Cr鋼のほか、15Cr鋼及び17Cr鋼に適用できる。その際の適用条件は、基本的には、13Cr鋼の場合と変わるところはない。ただし、Crの含有量や他の合金元素の添加等により、軸心部の凝固・偏析状態が変動するので、その点を加味した条件の修正を行うことが望ましい。 The present invention can be applied to 15Cr steel and 17Cr steel in addition to 13Cr steel. The application conditions at that time are basically the same as in the case of 13Cr steel. However, since the solidification / segregation state of the shaft center portion changes depending on the Cr content, the addition of other alloy elements, etc., it is desirable to correct the conditions in consideration of this point.
本発明は、直径が170〜330mmである継目無鋼管製管用丸鋳片の連続鋳造に適用できる。これらの場合において、軸心部凝固前期強制冷却及び軸心部凝固後期強制冷却の条件を基本的に変更することは要しない。ただし、鋳型のサイズ変更やそれに伴う連続鋳造条件の変更により、軸心部の凝固・偏析状態が変動するので、その点を加味した条件の修正を行うことが望ましい。 The present invention can be applied to continuous casting of seamless steel pipe round cast pieces having a diameter of 170 to 330 mm. In these cases, it is not basically necessary to change the conditions of the forced cooling before the solidification of the axial center and the forced cooling after the solidification of the axial center. However, since the solidification / segregation state of the shaft center portion is changed by changing the mold size or the continuous casting conditions accompanying it, it is desirable to correct the conditions in consideration of this point.
表3に示す組成(質量%)を有する高Cr鋼を内径210mmの円筒形鋳型を用いて連続鋳造した。連続鋳造に当たり、軸心部凝固前期強制冷却及び軸心部凝固後期強制冷却の条件は、図7の(a)〜(f)のパターンにとった。例えば、パターン(a)は、軸心部凝固前期強制冷却をfs:0.1からfs0.7の区間に亘って水量密度:70L/m2/minで行った後、軸心部凝固後期強制冷却をfs:0.7から軸心部温度:(Ts−145)℃に至るまで水量密度60L/m2/minで行った後、さらに軸心部温度:(Ts−255)℃に至るまで水量密度10L/m2/minの冷却を行った場合である。他のパターン(b)〜(f)についても図中に示すような経過をたどって強制冷却が行われている。 High Cr steel having the composition (mass%) shown in Table 3 was continuously cast using a cylindrical mold having an inner diameter of 210 mm. In the continuous casting, the conditions of the forced cooling at the early stage of solidification of the axial center and the forced cooling at the later stage of solidification of the axial center were taken in the patterns of (a) to (f) in FIG. For example, in pattern (a), after the initial cooling of the axial center solidification is performed at a water density of 70 L / m 2 / min over a section from fs: 0.1 to fs 0.7, the axial solidification late forced Cooling was performed at a water density of 60 L / m 2 / min from fs: 0.7 to axial temperature: (Ts-145) ° C., and further to axial temperature: (Ts-255) ° C. This is a case where the water density is 10 L / m 2 / min. The other patterns (b) to (f) are also subjected to forced cooling following the process shown in the figure.
得られた製品丸鋳片のAタイプ軸心部割れ(復熱時Aタイプ割れを含む)及びCタイプ割れの平均長ささらには、鋳片曲がりの程度を評価した。評価結果は表4に併せて示す。なお、Aタイプ割れの長さとは、図5に示すように、収縮孔から延びる割れの長さ(mm)をいい、評価は、多数の丸鋳片の試験片断面に観察されるAタイプ割れの長さの平均値によって行い、上記軸心部割れ長さが5mm以下の場合を合格とした。これは、本発明者の知見によれば、造管条件により多少の差は生じるものの、ビレット軸心部の割れ長さが5mm以下に抑制できれば、造管後の製品の内面カブレ欠陥は大幅に低減できることが経験的に確認されているためである。表4において、本発明例では割れ長さが5mm以下に抑制できており、また、ビレット曲がりも発生していないことが確認できている。Cタイプ割れについては、図2(c)に示すCタイプ割れの有無及びその差渡し長さによって評価した。鋳片曲がりについては、図5に示す曲がり量によって評価した。 The average length of A-type axial center cracks (including A-type cracks during recuperation) and C-type cracks of the obtained product round cast slab, and the degree of slab bending were evaluated. The evaluation results are also shown in Table 4. As shown in FIG. 5, the length of the A-type crack means the length (mm) of the crack extending from the shrinkage hole, and the evaluation is based on the A-type crack observed in the cross-sections of a number of round cast pieces. The average value of the lengths of the shafts was determined, and a case where the axial center crack length was 5 mm or less was regarded as acceptable. According to the knowledge of the present inventor, although there is a slight difference depending on the pipe making conditions, if the crack length of the billet shaft center part can be suppressed to 5 mm or less, the inner surface blurring defect of the product after pipe making is greatly reduced. This is because it has been empirically confirmed that this can be reduced. In Table 4, it can be confirmed that in the example of the present invention, the crack length can be suppressed to 5 mm or less, and no billet bending occurs. About the C type crack, it evaluated by the presence or absence of the C type crack shown in FIG.2 (c), and its passing length. The slab bending was evaluated based on the bending amount shown in FIG.
(製管試験)
表3に示す成分・組成を有し、表4のNo.1及びNo.5により製造された丸鋳片について製管試験を行った。製管は、在炉時間:3〜4hr、抽出温度:1100℃の再熱処理を行った後、オーバル孔型−ラウンド孔型−オーバル孔型−ラウンド孔型により順次圧下する4パス孔型圧延により縮径圧延を行った。この際、圧下比は、前段及び後段のオーバル孔型−ラウンド孔型においてそれぞれ、1〜2.5の範囲にとり、全圧下比を1(無圧下)〜5となるように調整した。
(Pipe making test)
It has the components and compositions shown in Table 3, and No. 1 and no. A pipe making test was performed on the round cast slab manufactured according to No. 5. Pipe making is performed by four-pass squeeze rolling, in which the furnace time is 3 to 4 hours and the extraction temperature is 1100 ° C., and then the oval hole type, round hole type, oval hole type, and round hole type are used for rolling down. Reduced diameter rolling was performed. At this time, the reduction ratio was adjusted to 1 to 2.5 in the oval hole type-round hole type of the former stage and the latter stage, respectively, and the total reduction ratio was adjusted to 1 (no pressure reduction) to 5.
上記再熱縮径圧延により得られた鋼片を1250〜1300℃に加熱後、マンネスマン穿孔圧延機を用いて穿孔圧延を行って中空素管とした後、直ちにマンドレルミルにより延伸して長尺素管とし、得られた長尺素管を再加熱後、ストレッチレデューサにより定径化して外径:25.4〜177.8mm、厚さ:2.3〜40mmの仕上り寸法に仕上げ、25mmのクロップ切断後熱処理を行って製品継目無鋼管とした。 The steel slab obtained by the above-mentioned reheat reduction rolling is heated to 1250 to 1300 ° C., pierced and rolled using a Mannesmann piercing and rolling machine to form a hollow shell, and then immediately stretched by a mandrel mill. After reheating the resulting long element tube, it was made constant by a stretch reducer and finished to a finished dimension of outer diameter: 25.4 to 177.8 mm, thickness: 2.3 to 40 mm, and a 25 mm crop. After cutting, heat treatment was performed to obtain a product seamless steel pipe.
得られた製品継目無鋼管に対し、その全長に亘って超音波探傷試験を行い、内面位置のエコー高さが閾値を超える管を欠陥有りの管と判定した。製管本数に対する欠陥有りの管の割合を欠陥率として評価した。評価結果は表5に示す。表5から明らかなように、本発明により、欠陥率は1/3以下に低減できており、造管後の手入れを大幅に低減可能となることから歩止まり改善やコスト削減効果が期待できる。 The obtained product seamless steel pipe was subjected to an ultrasonic flaw detection test over the entire length thereof, and a pipe having an echo height at the inner surface exceeding the threshold was determined to be a defective pipe. The ratio of pipes with defects to the number of pipes produced was evaluated as the defect rate. The evaluation results are shown in Table 5. As is apparent from Table 5, according to the present invention, the defect rate can be reduced to 1/3 or less, and the maintenance after pipe making can be greatly reduced, so that yield improvement and cost reduction effects can be expected.
1:連続鋳造鋳型
2:二次冷却帯
3:軸心部凝固前期強制冷却帯
4:軸心部凝固後期強制冷却帯
5:矯正帯
S:ストランド
1: Continuous casting mold 2: Secondary cooling zone 3: Axial solidification early forced cooling zone 4: Axial solidification late forced cooling zone 5: Straightening zone S: Strand
Claims (5)
連続鋳造の過程における内部に未凝固溶鋼を含む断面円形のストランドに対し、二次冷却に続いて、少なくとも前記ストランドの軸心部固相率fsが0.2となる位置から0.5となる区間に亘って、水量密度Q1が30〜90L/m2/minである軸心部凝固前期強制冷却を行った後、軸心部固相率fsが0.5となる位置から0.8となる位置に至る間で切り替えて、少なくとも前記fsが0.8となる位置からストランドの軸心部温度が(Ts−145)℃となるまでの区間に亘って、水量密度Q2が20〜60L/m2/minであって、かつ、該水量密度Q2が前記軸心部凝固前期強制冷却の終了時の冷却水量密度Q1Eより小さい軸心部凝固後期強制冷却を行うことを特徴とする高Cr継目無鋼管製管用丸鋳片の連続鋳造方法。
ここに、軸心部固相率fsとは、ストランド軸心部における[固相/(固相+液相)]の質量比をいい、Tsとは、連続鋳造に供される溶鋼の固相線温度をいう。 In continuous casting of high-Cr steel seamless steel pipe round slabs containing 12 to 18% Cr by mass ratio,
For a strand having a circular cross-section containing unsolidified molten steel inside in the process of continuous casting, following the secondary cooling, at least the axial solid phase ratio fs of the strand is 0.5 from the position where it becomes 0.2. From the position where the axial solid phase ratio fs becomes 0.5 after the axial solidification forcible cooling in the axial center in which the water density Q 1 is 30 to 90 L / m 2 / min is performed over the section. switch between reaching the a position, at least the fs is over a section from a position of 0.8 to axial center temperature of the strands is (Ts-145) ℃, the water density Q 2. 20 to 60 L / m 2 / min and the water volume density Q 2 is lower than the cooling water density Q 1E at the end of the forced cooling of the axial center solidification early stage solid phase late cooling is performed. Continuous casting of round slabs for making high Cr seamless steel pipes Method.
Here, the axial solid part ratio fs means the mass ratio of [solid phase / (solid phase + liquid phase)] in the strand axial part, and Ts is the solid phase of the molten steel used for continuous casting. Refers to the line temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012117793A JP5962206B2 (en) | 2012-05-23 | 2012-05-23 | Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012117793A JP5962206B2 (en) | 2012-05-23 | 2012-05-23 | Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013244492A true JP2013244492A (en) | 2013-12-09 |
JP2013244492A5 JP2013244492A5 (en) | 2015-07-02 |
JP5962206B2 JP5962206B2 (en) | 2016-08-03 |
Family
ID=49844686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012117793A Active JP5962206B2 (en) | 2012-05-23 | 2012-05-23 | Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5962206B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017039964A (en) * | 2015-08-18 | 2017-02-23 | 新日鐵住金株式会社 | Method of producing seamless steel tube |
WO2020203715A1 (en) * | 2019-04-02 | 2020-10-08 | Jfeスチール株式会社 | Method for continuous steel casting |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112122571B (en) * | 2020-09-17 | 2021-11-12 | 北京科技大学 | Control method of forced cooling system for large-section continuous casting round billet solidification tail end |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071096A (en) * | 1993-04-20 | 1995-01-06 | Sumitomo Metal Ind Ltd | Method for cooling cast slab in continuous casting |
JP2001062550A (en) * | 1999-08-27 | 2001-03-13 | Sumitomo Metal Ind Ltd | Casting piece cooling method in continuous casting |
JP2009006367A (en) * | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Method for continuously casting small cross-sectional cast billet |
-
2012
- 2012-05-23 JP JP2012117793A patent/JP5962206B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH071096A (en) * | 1993-04-20 | 1995-01-06 | Sumitomo Metal Ind Ltd | Method for cooling cast slab in continuous casting |
JP2001062550A (en) * | 1999-08-27 | 2001-03-13 | Sumitomo Metal Ind Ltd | Casting piece cooling method in continuous casting |
JP2009006367A (en) * | 2007-06-28 | 2009-01-15 | Sumitomo Metal Ind Ltd | Method for continuously casting small cross-sectional cast billet |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017039964A (en) * | 2015-08-18 | 2017-02-23 | 新日鐵住金株式会社 | Method of producing seamless steel tube |
WO2020203715A1 (en) * | 2019-04-02 | 2020-10-08 | Jfeスチール株式会社 | Method for continuous steel casting |
JPWO2020203715A1 (en) * | 2019-04-02 | 2021-04-30 | Jfeスチール株式会社 | Continuous steel casting method |
KR20210133282A (en) * | 2019-04-02 | 2021-11-05 | 제이에프이 스틸 가부시키가이샤 | Method of continuous casting of steel |
CN113677455A (en) * | 2019-04-02 | 2021-11-19 | 杰富意钢铁株式会社 | Method for continuously casting steel |
JP7004086B2 (en) | 2019-04-02 | 2022-01-21 | Jfeスチール株式会社 | Continuous steel casting method |
EP3932586A4 (en) * | 2019-04-02 | 2022-05-04 | JFE Steel Corporation | Method for continuous steel casting |
TWI787597B (en) * | 2019-04-02 | 2022-12-21 | 日商Jfe鋼鐵股份有限公司 | continuous casting method for steel |
CN113677455B (en) * | 2019-04-02 | 2023-09-05 | 杰富意钢铁株式会社 | Continuous casting method of steel |
US11759851B2 (en) | 2019-04-02 | 2023-09-19 | Jfe Steel Corporation | Method for continuously casting steel |
KR102635630B1 (en) * | 2019-04-02 | 2024-02-08 | 제이에프이 스틸 가부시키가이샤 | Continuous casting method of steel |
Also Published As
Publication number | Publication date |
---|---|
JP5962206B2 (en) | 2016-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5741162B2 (en) | Manufacturing method of round steel slab for high Cr steel seamless steel pipe making | |
JP5962206B2 (en) | Manufacturing method of round slab for pipe making of high Cr steel seamless steel pipe | |
JP2012110898A (en) | Continuous casting method of round cast billet for making 13cr seamless steel pipe | |
JP5835531B2 (en) | Continuous casting method for slabs for extra heavy steel plates | |
JP5716414B2 (en) | Continuous casting equipment for round slabs for seamless steel pipe production | |
JP2010029899A (en) | Continuous casting method of billet | |
JP6036125B2 (en) | Steel continuous casting method | |
JP4301133B2 (en) | Method for continuous casting of round slab, method for making round slab and seamless pipe | |
JP5157664B2 (en) | Continuous casting method of round slabs for seamless steel pipes | |
JP5790385B2 (en) | Continuous casting method of round slab for 13Cr seamless steel pipe | |
JP5343746B2 (en) | Continuous casting method of round slabs for seamless steel pipes | |
JP2013244492A5 (en) | ||
JP5760746B2 (en) | Continuous casting method of round slab for 13Cr seamless steel pipe making | |
JP2019076931A (en) | Continuous casting method for slab for seamless steel pipe | |
JP4285288B2 (en) | Steel continuous casting method | |
JP3671868B2 (en) | Method for casting high Cr steel | |
JP4946557B2 (en) | Billet and manufacturing method thereof | |
JP3619377B2 (en) | Billet continuous casting method and apparatus | |
JP5973703B2 (en) | Seamless pipe manufacturing method | |
JP5195636B2 (en) | Manufacturing method of continuous cast slab | |
JP5387205B2 (en) | Continuous casting method and continuous casting equipment for round slab | |
JP2012152804A (en) | Method for manufacturing seamless steel pipe in high alloy or stainless steel | |
JP2013180307A (en) | Method for producing continuous casting round slab for seamless steel pipe production, and method for producing seamless steel pipe | |
JP4259424B2 (en) | Method for producing high chromium steel large section billet | |
JP3829576B2 (en) | Ingot-making method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150518 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160506 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5962206 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |