JP2013243303A - Power generator and power generation method - Google Patents

Power generator and power generation method Download PDF

Info

Publication number
JP2013243303A
JP2013243303A JP2012116729A JP2012116729A JP2013243303A JP 2013243303 A JP2013243303 A JP 2013243303A JP 2012116729 A JP2012116729 A JP 2012116729A JP 2012116729 A JP2012116729 A JP 2012116729A JP 2013243303 A JP2013243303 A JP 2013243303A
Authority
JP
Japan
Prior art keywords
heat storage
heat
temperature
thermoelectric conversion
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012116729A
Other languages
Japanese (ja)
Inventor
Mitsuru Iwaoka
満 岩岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2012116729A priority Critical patent/JP2013243303A/en
Publication of JP2013243303A publication Critical patent/JP2013243303A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a power generator and a power generation method capable of generating power even if a heat source, e.g., waste-heat, cannot be obtained.SOLUTION: A heat storage tank housing a heat storage material for suppressing internal temperature change is provided. The heat storage surface, i.e., one end face of a thermoelectric conversion module, is thermally coupled with the heat storage material and the heat absorption/radiation surface, i.e., the other end face of the thermoelectric conversion module, is thermally coupled with the outside. When the external temperature goes above the internal temperature of the heat storage tank, the thermoelectric conversion module stores external heat in the heat storage tank via the heat absorption/radiation surface and the heat storage surface and generates power. When the external temperature goes below the internal temperature of the heat storage tank, the thermoelectric conversion module radiates the heat stored in the heat storage tank via the heat storage surface and the heat absorption/radiation surface and generates power.

Description

本発明は、電子機器等へ電力を供給する発電装置に関し、特に、熱電変換材料の温度差により発電可能な熱電変換モジュールを用いた発電装置等に関する。   The present invention relates to a power generator that supplies electric power to an electronic device or the like, and more particularly, to a power generator using a thermoelectric conversion module that can generate power due to a temperature difference between thermoelectric conversion materials.

特許文献1には、未利用の排熱を使用して発電する小容量電源装置に関する技術が開示されている。この手法によれば、熱源からの熱の供給の遮断時にも、小容量電力の発電を一時的に継続して維持できる。   Patent Document 1 discloses a technique relating to a small-capacity power supply device that generates power using unused exhaust heat. According to this method, even when the supply of heat from the heat source is interrupted, the power generation of the small-capacity electric power can be temporarily maintained.

特開2008−251928号公報JP 2008-251928 A

しかし、上記の装置では適当な排熱等の熱源が得られない場合には発電することができず、熱源からの熱の供給がない状態が長時間続けば、その後、発電を継続することはできない。   However, the above device cannot generate power if a suitable heat source such as exhaust heat cannot be obtained, and if power is not supplied from the heat source for a long time, power generation cannot be continued thereafter. Can not.

本発明の目的は、排熱等の熱源が得られない場合であっても発電可能な発電装置及び発電方法を提供することにある。   An object of the present invention is to provide a power generation apparatus and a power generation method capable of generating power even when a heat source such as exhaust heat cannot be obtained.

本発明の発電装置は、熱電変換材料の温度差により発電可能な熱電変換モジュールを用いた発電装置において、内部の温度変化を抑制する蓄熱材を収容した蓄熱タンクを備え、前記熱電変換モジュールの一端面である蓄熱面を前記蓄熱材に熱的に結合させるとともに、前記熱電変換モジュールの他端面である吸熱・放熱面を外部に熱的に結合させ、外部の温度が前記蓄熱タンク内の温度よりも高くなると、前記熱電変換モジュールが前記吸熱・放熱面および前記蓄熱面を介して外部の熱を前記蓄熱タンクに蓄えつつ発電し、外部の温度が前記蓄熱タンク内の温度よりも低くなると、前記熱電変換モジュールが前記蓄熱面および前記吸熱・放熱面を介して前記蓄熱タンクに蓄えた熱を外部に放熱しつつ発電することを特徴とする。
この発電装置によれば、外部の温度変化を利用して発電するため、排熱等の熱源を必要とせずに発電が可能になる。
The power generation device of the present invention is a power generation device using a thermoelectric conversion module capable of generating power due to a temperature difference between thermoelectric conversion materials, and includes a heat storage tank containing a heat storage material that suppresses an internal temperature change. The heat storage surface, which is an end surface, is thermally coupled to the heat storage material, and the heat absorption / radiation surface, which is the other end surface of the thermoelectric conversion module, is thermally coupled to the outside. If the temperature becomes higher, the thermoelectric conversion module generates electric power while storing external heat in the heat storage tank via the heat absorption / radiation surface and the heat storage surface, and when the external temperature becomes lower than the temperature in the heat storage tank, The thermoelectric conversion module generates electricity while radiating the heat stored in the heat storage tank to the outside through the heat storage surface and the heat absorption / radiation surface.
According to this power generation apparatus, power generation is possible without using a heat source such as exhaust heat because power generation is performed using an external temperature change.

前記蓄熱材は、前記外部の温度の最高温度と、最低温度の中間に融点を持つよう構成してもよい。   The heat storage material may be configured to have a melting point between the maximum temperature and the minimum temperature of the external temperature.

前記蓄熱材は、融点が異なる複数の材料により構成してもよい。   The heat storage material may be composed of a plurality of materials having different melting points.

前記熱電変換モジュールにより発電された電力を蓄える蓄電手段を備えてもよい。   You may provide the electrical storage means to store the electric power generated by the said thermoelectric conversion module.

前記外部の温度は気温であって、昼の気温と、夜の気温の温度差を利用するものであってもよい。   The external temperature may be air temperature, and may utilize a temperature difference between daytime air temperature and night air temperature.

前記外部の温度は任意の装置の周囲温度であって、前記任意の装置の稼働時の温度と、停止時の温度の温度差を利用するものであってもよい。   The external temperature may be an ambient temperature of an arbitrary device, and may utilize a temperature difference between a temperature when the arbitrary device is operating and a temperature when the arbitrary device is stopped.

本発明の発電方法は、熱電変換材料の温度差により発電可能な熱電変換モジュールを用いた発電方法において、内部の温度変化を抑制する蓄熱材を収容した蓄熱タンクを用い、前記熱電変換モジュールの一端面である蓄熱面を前記蓄熱材に熱的に結合させるとともに、前記熱電変換モジュールの他端面である吸熱・放熱面を外部に熱的に結合させ、外部の温度が前記蓄熱タンク内の温度よりも高くなると、前記熱電変換モジュールが前記吸熱・放熱面および前記蓄熱面を介して外部の熱を前記蓄熱タンクに蓄えつつ発電する工程と、外部の温度が前記蓄熱タンク内の温度よりも低くなると、前記熱電変換モジュールが前記蓄熱面および前記吸熱・放熱面を介して前記蓄熱タンクに蓄えた熱を外部に放熱しつつ発電する工程と、を有することを特徴とする。
この発電方法によれば、外部の温度変化を利用して発電するため、排熱等の熱源を必要とせずに発電が可能になる。
The power generation method of the present invention is a power generation method using a thermoelectric conversion module capable of generating power due to a temperature difference between thermoelectric conversion materials, using a heat storage tank containing a heat storage material that suppresses an internal temperature change, and The heat storage surface, which is an end surface, is thermally coupled to the heat storage material, and the heat absorption / radiation surface, which is the other end surface of the thermoelectric conversion module, is thermally coupled to the outside. The thermoelectric conversion module generates power while storing external heat in the heat storage tank via the heat absorption / heat dissipation surface and the heat storage surface, and the external temperature becomes lower than the temperature in the heat storage tank. The thermoelectric conversion module has a step of generating electricity while radiating heat stored in the heat storage tank to the outside via the heat storage surface and the heat absorption / heat radiation surface. And butterflies.
According to this power generation method, since power generation is performed using an external temperature change, power generation is possible without the need for a heat source such as exhaust heat.

本発明の発電装置によれば、外部の温度変化を利用して発電するため、排熱等の熱源を必要とせずに発電が可能になる。   According to the power generation device of the present invention, power generation is performed using an external temperature change, so power generation is possible without the need for a heat source such as exhaust heat.

本発明の発電方法によれば、外部の温度変化を利用して発電するため、排熱等の熱源を必要とせずに発電が可能になる。   According to the power generation method of the present invention, power generation is performed using an external temperature change, so power generation is possible without the need for a heat source such as exhaust heat.

一実施形態の発電装置を備えた発電システムを示す図であり、(a)は充電システムの概略断面図、(b)はコントローラの構成を示すブロック図。It is a figure which shows the electric power generation system provided with the electric power generating apparatus of one Embodiment, (a) is a schematic sectional drawing of a charging system, (b) is a block diagram which shows the structure of a controller. 吸熱・放熱面と、蓄熱面の一日の間の気温の変化を示す図。The figure which shows the change of the air temperature between the heat absorption / radiation surface and the heat storage surface during one day.

以下、本発明による発電装置の一実施形態について説明する。本発明の発電装置を、熱電変換モジュールと蓄熱タンクを備えた発電装置、さらに、蓄電手段としての蓄電部を備えた発電システムに適用する場合を例に説明する。   Hereinafter, an embodiment of a power generator according to the present invention will be described. The case where the power generation device of the present invention is applied to a power generation device including a thermoelectric conversion module and a heat storage tank, and further to a power generation system including a power storage unit as power storage means will be described as an example.

図1は一実施形態の発電装置を備えた発電システムを示す図であり、(a)は充電システムの概略断面図、(b)はコントローラの構成を示すブロック図である。   FIG. 1 is a diagram illustrating a power generation system including a power generation device according to an embodiment, where (a) is a schematic cross-sectional view of a charging system, and (b) is a block diagram illustrating a configuration of a controller.

図1(a)に示すように、発電システム1は、温度差を利用した発電を行う発電装置10と、発電装置10により発電された電力を制御するコントローラ20と、コンデンサ等を用いた蓄電部30と、により構成される。発電装置10で発電された電力がコントローラ20を介して蓄電部30に充電され、外部の機器(不図示)に供給される。外部の機器は、例えば、温度センサ、圧力センサ等である。   As shown in FIG. 1A, a power generation system 1 includes a power generation device 10 that generates power using a temperature difference, a controller 20 that controls the power generated by the power generation device 10, and a power storage unit that uses a capacitor and the like. 30. The electric power generated by the power generation apparatus 10 is charged in the power storage unit 30 via the controller 20 and supplied to an external device (not shown). The external device is, for example, a temperature sensor or a pressure sensor.

発電装置10は、ゼーベック効果を利用して熱電変換材料の温度差により熱エネルギーを電気エネルギーに変換する熱電変換モジュール11と、内部の温度を略一定に保つ蓄熱材12aおよび蓄熱材12aを収容する断熱容器12bからなる蓄熱タンク12と、を備える。この断熱容器12bにより蓄熱材12aと外気との間の熱の出入りが抑制される。   The power generation device 10 accommodates a thermoelectric conversion module 11 that converts thermal energy into electrical energy using the Seebeck effect, and a heat storage material 12a and a heat storage material 12a that keep the internal temperature substantially constant. A heat storage tank 12 including a heat insulating container 12b. The heat insulating container 12b suppresses the heat entering and leaving between the heat storage material 12a and the outside air.

熱電変換モジュール11としては任意構成のものを使用できるが、例えば、図1に示すように、複数のn型熱電変換材料からなる部材11Aと、同数のp型熱電変換材料からなる部材11Bとを用い、同数の部材11Aおよび部材11Bの対からなる発電要素を形成した熱電変換モジュール11を構成することができる。各対の部材11Aと部材11Bとは互いに接合され、その両端の温度差に応じた電位差を生じ発電する発電要素が形成される。これらの発電要素を直列接続することで、個々の発電要素の電位差が足し合わされた電圧を得ることができる。熱電変換モジュール11が発電した電力は、リード線14により引き出され、コントローラ20を経て蓄熱部30に接続され、発電システム1が構成される。なお、熱電変換モジュールの構成は周知であるため、その詳細説明は省略する。   As the thermoelectric conversion module 11, an arbitrary configuration can be used. For example, as shown in FIG. 1, a member 11A made of a plurality of n-type thermoelectric conversion materials and a member 11B made of the same number of p-type thermoelectric conversion materials It is possible to configure the thermoelectric conversion module 11 in which the power generation elements composed of the same number of members 11A and 11B are formed. Each pair of members 11A and 11B is joined to each other to form a power generation element that generates a potential difference corresponding to a temperature difference between both ends thereof. By connecting these power generation elements in series, a voltage in which the potential differences of the individual power generation elements are added can be obtained. The electric power generated by the thermoelectric conversion module 11 is drawn out by the lead wire 14 and connected to the heat storage unit 30 via the controller 20, thereby configuring the power generation system 1. In addition, since the structure of the thermoelectric conversion module is known, the detailed description is abbreviate | omitted.

蓄熱タンク12の蓄熱材12aとしては、パラフィン、シリコンゲル、水、各種有機化合物等の材料又はこれらの混合物を使用できる。例えば、昼と夜の気温差を利用する場合、蓄熱材12aとして、蓄熱タンク12内の温度を、外気の昼の気温と夜の気温の中間に保つ能力が高いものを選定することで発電効率を向上させることができる。   As the heat storage material 12a of the heat storage tank 12, materials such as paraffin, silicon gel, water, various organic compounds, or a mixture thereof can be used. For example, when using the temperature difference between daytime and nighttime, power generation efficiency is selected by selecting a heat storage material 12a that has a high ability to maintain the temperature in the heat storage tank 12 between the midday air temperature and the night air temperature. Can be improved.

図1(a)において下面にあたる熱電変換モジュール11の蓄熱面11Cには、熱伝導性が高い材料で構成された接触部材15が接着され、その表面15a(図1(a)において下面)は蓄熱材12aと接触している。この接触部材15により、蓄熱材12aから熱電変換モジュール11への、あるいは熱電変換モジュール11から蓄熱材12aへの熱の効率的な移動が果される。   A contact member 15 made of a material having high thermal conductivity is bonded to the heat storage surface 11C of the thermoelectric conversion module 11 corresponding to the lower surface in FIG. 1A, and the surface 15a (the lower surface in FIG. 1A) is the heat storage surface. It is in contact with the material 12a. By this contact member 15, efficient transfer of heat from the heat storage material 12 a to the thermoelectric conversion module 11 or from the thermoelectric conversion module 11 to the heat storage material 12 a is achieved.

図1(a)において上面にあたる熱電変換モジュール11の吸熱・放熱面11Dは外気に露出している。なお、外気と熱電変換モジュール11との間の熱抵抗を低減するため、吸熱・放熱面11Dに放熱器を取り付けてもよい。   In FIG. 1A, the heat absorption / radiation surface 11D of the thermoelectric conversion module 11 corresponding to the upper surface is exposed to the outside air. In addition, in order to reduce the thermal resistance between the outside air and the thermoelectric conversion module 11, a heat radiator may be attached to the heat absorption / heat radiation surface 11D.

図1(b)に示すように、コントローラ20は、熱電変換モジュール11の発電の極性を検出する検出回路21と、蓄電部30を充電するための充電電流を出力する充電回路22と、検出回路21の検出結果に応じて制御されるスイッチSW1およびスイッチSW2と、を備える。スイッチSW1およびスイッチSW2は、検出回路21からの信号に基づいてP側、Q側のいずれかに連動して切り替えられる。これにより、熱電変換モジュール11の発電の極性に関わらず、充電回路22に与えられる熱電変換モジュール11からの電圧の極性が反転しないように制御される。   As shown in FIG. 1B, the controller 20 includes a detection circuit 21 that detects the polarity of power generation of the thermoelectric conversion module 11, a charging circuit 22 that outputs a charging current for charging the power storage unit 30, and a detection circuit. The switch SW1 and the switch SW2 controlled according to the detection result 21 are provided. The switches SW1 and SW2 are switched in conjunction with either the P side or the Q side based on the signal from the detection circuit 21. Thereby, the polarity of the voltage from the thermoelectric conversion module 11 given to the charging circuit 22 is controlled so as not to be reversed regardless of the polarity of the power generation of the thermoelectric conversion module 11.

次に、本実施形態の発電装置1の動作について説明する。   Next, operation | movement of the electric power generating apparatus 1 of this embodiment is demonstrated.

図2は、吸熱・放熱面11Dと、蓄熱面11Cの一日の間の気温の変化を示す図である。図2では、吸熱・放熱面11Dの温度が外気温と連動するように吸熱・放熱面11Dに放熱器を付け、蓄熱材12aとして外気の最低温度と最高温度の中間に融点を持つ潜熱型蓄熱材を用いた場合の温度変化の例を示している。図2では、一日のサイクル(A)〜(F)を例に説明する。なお、図2において、吸熱・放熱面11Dの温度を実線で示し、蓄熱面11Cの温度を破線で示す。   FIG. 2 is a diagram illustrating a change in the air temperature during one day between the heat absorption / heat radiation surface 11D and the heat storage surface 11C. In FIG. 2, a heat sink / heat radiating surface 11D is provided with a radiator so that the temperature of the heat absorbing / heat radiating surface 11D is linked to the outside air temperature, and the latent heat type heat storage having a melting point between the lowest temperature and the highest temperature of the outside air as the heat storage material 12a The example of the temperature change at the time of using a material is shown. In FIG. 2, the daily cycles (A) to (F) will be described as an example. In FIG. 2, the temperature of the heat absorption / radiation surface 11D is indicated by a solid line, and the temperature of the heat storage surface 11C is indicated by a broken line.

図2の例で、0時の時点(A)では、蓄熱タンク12内の蓄熱材12aは、前日の日中に蓄えた熱で溶融状態にある。夜になり、外気温が低下すると、吸熱・放熱面11Dの温度も低下する。一方、蓄熱面11Cの温度は、蓄熱材12aの融点付近で蓄熱材12aが凝固し始め、潜熱が放出されるようになるため、ほぼ一定となる。このため、蓄熱面11Cと吸熱・放熱面11Dとの温度差が維持され、熱電変換モジュール11は、この温度差に応じた電位差を発生させる。   In the example of FIG. 2, at time 0:00 (A), the heat storage material 12 a in the heat storage tank 12 is in a molten state with the heat stored during the day before. When the outside air temperature decreases at night, the temperature of the heat absorption / radiation surface 11D also decreases. On the other hand, the temperature of the heat storage surface 11C becomes substantially constant because the heat storage material 12a starts to solidify near the melting point of the heat storage material 12a and latent heat is released. For this reason, the temperature difference between the heat storage surface 11C and the heat absorption / radiation surface 11D is maintained, and the thermoelectric conversion module 11 generates a potential difference corresponding to the temperature difference.

熱電変換モジュール11で温度差による発電を行うと蓄熱面11Cから吸熱・放熱面11Dに熱が移動し、蓄熱材12aの凝固、すなわち、潜熱の放出が進む(B)。このように、外部の温度が蓄熱タンク12内の温度よりも低くなると、熱電変換モジュール11が蓄熱タンク12に蓄えた熱を放熱しつつ発電する。   When the thermoelectric conversion module 11 performs power generation based on a temperature difference, the heat moves from the heat storage surface 11C to the heat absorption / radiation surface 11D, and the heat storage material 12a solidifies, that is, releases latent heat (B). Thus, when the external temperature becomes lower than the temperature in the heat storage tank 12, the thermoelectric conversion module 11 generates power while radiating the heat stored in the heat storage tank 12.

蓄熱材12aが全て凝固すると、蓄熱面11Cの温度は吸熱・放熱面11Dに略等しくなる。そのため、発電は停止する(C)。   When all of the heat storage material 12a is solidified, the temperature of the heat storage surface 11C becomes substantially equal to the heat absorption / radiation surface 11D. Therefore, power generation stops (C).

日が昇り、外気温が上昇すると、吸熱・放熱面11Dの温度も上昇する。蓄熱材12aの融点付近で蓄熱材12aが溶融し始め、潜熱が吸収されるようになる。そのため、蓄熱面11Cの温度は略一定となり、吸熱・放熱面11Dとの温度差が発生して、再び熱電変換モジュール11で発電が可能となる(D)。   When the sun rises and the outside air temperature rises, the temperature of the heat absorption / heat radiation surface 11D also rises. The heat storage material 12a starts to melt near the melting point of the heat storage material 12a, and latent heat is absorbed. Therefore, the temperature of the heat storage surface 11C becomes substantially constant, a temperature difference from the heat absorption / radiation surface 11D occurs, and the thermoelectric conversion module 11 can generate power again (D).

熱電変換モジュール11で発電を行うと、吸熱・放熱面11Dから蓄熱面11Cに熱が移動し、蓄熱材12aの溶融、すなわち、潜熱の蓄積が進む(E)。このように、熱電変換モジュール11では、外部の温度が蓄熱タンク12内の温度よりも高くなったときには、熱を蓄熱タンク12に蓄えつつ発電する。   When power is generated by the thermoelectric conversion module 11, heat is transferred from the heat absorption / radiation surface 11D to the heat storage surface 11C, and the heat storage material 12a is melted, that is, latent heat is accumulated (E). As described above, the thermoelectric conversion module 11 generates power while storing heat in the heat storage tank 12 when the external temperature becomes higher than the temperature in the heat storage tank 12.

蓄熱材12aが全て溶融すると、蓄熱面11Cの温度は吸熱・放熱面11Dに略等しくなる。温度差が無くなり、熱電変換モジュール11での発電が停止する(F)   When all of the heat storage material 12a is melted, the temperature of the heat storage surface 11C becomes substantially equal to the heat absorption / radiation surface 11D. The temperature difference disappears and power generation in the thermoelectric conversion module 11 stops (F).

図2の(A)〜(F)のサイクルを毎日繰り返すことにより、(B)及び(E)の間、熱電変換モジュール11で発電が行われる。発電された電力は、コントローラ20により極性及び電圧の変換が行われ、蓄電部30に充電される。   By repeating the cycle of (A) to (F) in FIG. 2 every day, the thermoelectric conversion module 11 generates power during (B) and (E). The generated power is converted in polarity and voltage by the controller 20, and the power storage unit 30 is charged.

以上説明したように、本実施形態の発電装置10は、温度差により発電可能な熱電変換モジュール11と、内部の温度変化を抑制する蓄熱材を収容した蓄熱タンク12とを備え、外部の温度が蓄熱タンク12内の温度よりも高くなると、熱電変換モジュール11は熱を蓄熱タンク12に蓄えつつ発電し(図2の(E))、外部の温度が蓄熱タンク12内の温度よりも低くなると、熱電変換モジュール11は畜熱タンク12に蓄えた熱を放熱しつつ発電する(図2の(B))よう構成している。これにより、屋外、空調されていない屋内等の広い範囲で存在する昼夜の温度など、外部の温度差を用いて発電するため、排熱等の熱源を必要とせずに発電が可能になる。   As described above, the power generation apparatus 10 of the present embodiment includes the thermoelectric conversion module 11 that can generate power due to a temperature difference, and the heat storage tank 12 that stores a heat storage material that suppresses a change in internal temperature, and has an external temperature. When it becomes higher than the temperature in the heat storage tank 12, the thermoelectric conversion module 11 generates power while storing heat in the heat storage tank 12 ((E) of FIG. 2), and when the external temperature becomes lower than the temperature in the heat storage tank 12, The thermoelectric conversion module 11 is configured to generate electricity while dissipating the heat stored in the livestock heat tank 12 ((B) in FIG. 2). As a result, power generation is possible without using a heat source such as exhaust heat because power is generated using an external temperature difference such as the temperature of day and night that exists in a wide range such as outdoors or indoors that are not air-conditioned.

また、本実施形態の発電装置10は、発電した電力を一時的に蓄電部30に蓄えてから使用するため、発電が行えない間も、蓄電部30に充電された電力を用いることができる。さらに、蓄電部30の蓄電容量を十分に大きくすれば、例えば、天候等の影響で昼夜の温度差が小さい日でも蓄電部30から電力を供給することができ、温度センサ、圧力センサ等の外部の機器(不図示)を継続して動作させることができる。   In addition, since the power generation apparatus 10 of the present embodiment is used after the generated power is temporarily stored in the power storage unit 30, the power charged in the power storage unit 30 can be used even while power generation cannot be performed. Furthermore, if the power storage capacity of the power storage unit 30 is sufficiently large, for example, power can be supplied from the power storage unit 30 even on a day when the temperature difference between day and night is small due to the influence of the weather, etc. The device (not shown) can be continuously operated.

なお、蓄熱材12aとして、融点が異なる複数の材料の混合物を使用してもよい。融点が異なる複数の材料を用いることにより、季節による最高温度(最高気温)、最低温度(最低気温)の違いが生じても潜熱を常に利用でき、安定した発電性能を得ることができる。   Note that a mixture of a plurality of materials having different melting points may be used as the heat storage material 12a. By using a plurality of materials having different melting points, it is possible to always use latent heat even when there is a difference between the maximum temperature (maximum temperature) and the minimum temperature (minimum temperature) depending on the season, and stable power generation performance can be obtained.

また、本実施形態の発電装置10では、潜熱を利用できる蓄熱材12aを使用しているが、顕熱のみを利用する蓄熱材を使用してもよい。さらに、吸熱・放熱面15が外気温と極力同じになるように構成する代わりに、日中は太陽光を受けて高温となり、夜間は放射冷却により低温となるような吸熱・放熱パネルを用いて、外気温よりも温度差が大きくなるよう構成してもよい。   Moreover, in the electric power generating apparatus 10 of this embodiment, although the heat storage material 12a which can utilize latent heat is used, you may use the heat storage material which utilizes only sensible heat. In addition, instead of configuring the heat absorption / radiation surface 15 to be as close as possible to the outside air temperature, use a heat absorption / heat radiation panel that is exposed to sunlight during the day and becomes hot and cool at night due to radiation cooling. The temperature difference may be larger than the outside air temperature.

さらに、本実施形態の発電システム1では、発電装置10で蓄えた電力を蓄電手段としてのコンデンサに蓄えているが、発電装置10で蓄えた電力をリチウムイオン電池等の二次電池に蓄えてもよい。   Furthermore, in the power generation system 1 of the present embodiment, the power stored in the power generation device 10 is stored in a capacitor as a power storage means. However, even if the power stored in the power generation device 10 is stored in a secondary battery such as a lithium ion battery. Good.

さらに、本実施形態の発電装置10では、昼と夜で自然に発生する外気温の温度差を利用しているが、人工的に発生する温度差を用いて発電してもよい。例えば、任意の装置の稼働時と停止時の温度差(装置の周囲温度と、蓄熱材との温度差)を用いて発電してもよい。装置としては、例えば、一日の間の一定の時間だけ稼働する装置を利用できる。   Furthermore, although the power generation apparatus 10 of the present embodiment uses the temperature difference between the outside air temperatures that naturally occur between day and night, the power generation may be performed using a temperature difference that occurs artificially. For example, you may generate electric power using the temperature difference (temperature difference with the ambient temperature of an apparatus, and a thermal storage material) at the time of operation | movement of an arbitrary apparatus, and a stop. As an apparatus, for example, an apparatus that operates only for a certain time during a day can be used.

本発明の適用範囲は上記実施形態に限定されることはない。熱電変換材料の温度差により発電可能な熱電変換モジュールと、吸熱・放熱面の熱を蓄熱可能な蓄熱タンクとを有する発電装置に適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be applied to a power generation apparatus having a thermoelectric conversion module capable of generating power due to a temperature difference between thermoelectric conversion materials and a heat storage tank capable of storing heat of the heat absorption / radiation surface.

1 発電システム(発電装置)
10 発電装置(発電装置)
11 熱電変換モジュール
12 蓄熱タンク
12a 蓄熱材
30 蓄電部(蓄電手段)
1 Power generation system (power generation equipment)
10 Power generator (power generator)
DESCRIPTION OF SYMBOLS 11 Thermoelectric conversion module 12 Thermal storage tank 12a Thermal storage material 30 Electrical storage part (electric storage means)

Claims (7)

熱電変換材料の温度差により発電可能な熱電変換モジュールを用いた発電装置において、
内部の温度変化を抑制する蓄熱材を収容した蓄熱タンクを備え、
前記熱電変換モジュールの一端面である蓄熱面を前記蓄熱材に熱的に結合させるとともに、
前記熱電変換モジュールの他端面である吸熱・放熱面を外部に熱的に結合させ、
外部の温度が前記蓄熱タンク内の温度よりも高くなると、前記熱電変換モジュールが前記吸熱・放熱面および前記蓄熱面を介して外部の熱を前記蓄熱タンクに蓄えつつ発電し、
外部の温度が前記蓄熱タンク内の温度よりも低くなると、前記熱電変換モジュールが前記蓄熱面および前記吸熱・放熱面を介して前記蓄熱タンクに蓄えた熱を外部に放熱しつつ発電することを特徴とする発電装置。
In the power generation device using the thermoelectric conversion module that can generate power due to the temperature difference of the thermoelectric conversion material,
It has a heat storage tank that contains a heat storage material that suppresses internal temperature changes,
While thermally connecting the heat storage surface which is one end surface of the thermoelectric conversion module to the heat storage material,
The heat absorption / radiation surface which is the other end surface of the thermoelectric conversion module is thermally coupled to the outside,
When the external temperature becomes higher than the temperature in the heat storage tank, the thermoelectric conversion module generates electric power while storing external heat in the heat storage tank via the heat absorption / heat radiation surface and the heat storage surface,
When the external temperature becomes lower than the temperature in the heat storage tank, the thermoelectric conversion module generates electricity while radiating the heat stored in the heat storage tank to the outside via the heat storage surface and the heat absorption / radiation surface. A power generator.
前記蓄熱材は、前記外部の温度の最高温度と、最低温度の中間に融点を持つことを特徴とする請求項1に記載の発電装置。   The power generation device according to claim 1, wherein the heat storage material has a melting point between the highest temperature and the lowest temperature of the external temperature. 前記蓄熱材は、融点が異なる複数の材料により構成されることを特徴とする請求項1または2に記載の発電装置。   The power generation device according to claim 1, wherein the heat storage material includes a plurality of materials having different melting points. 前記熱電変換モジュールにより発電された電力を蓄える蓄電手段を備えることを特徴とする請求項1乃至3のいずれか一項に記載の発電装置。   The power generator according to claim 1, further comprising a power storage unit that stores electric power generated by the thermoelectric conversion module. 前記外部の温度は気温であって、昼の気温と、夜の気温の温度差を利用するものであることを特徴とする請求項1乃至4のいずれか一項に記載の発電装置。   The power generation apparatus according to any one of claims 1 to 4, wherein the external temperature is an air temperature, and uses a temperature difference between a daytime air temperature and a night air temperature. 前記外部の温度は任意の装置の周囲温度であって、前記任意の装置の稼働時の温度と、停止時の温度の温度差を利用するものであることを特徴とする請求項1乃至4のいずれか一項に記載の発電装置。   The external temperature is an ambient temperature of an arbitrary device, and uses a temperature difference between a temperature during operation of the arbitrary device and a temperature during shutdown. The electric power generating apparatus as described in any one. 熱電変換材料の温度差により発電可能な熱電変換モジュールを用いた発電方法において、
内部の温度変化を抑制する蓄熱材を収容した蓄熱タンクを用い、
前記熱電変換モジュールの一端面である蓄熱面を前記蓄熱材に熱的に結合させるとともに、
前記熱電変換モジュールの他端面である吸熱・放熱面を外部に熱的に結合させ、
外部の温度が前記蓄熱タンク内の温度よりも高くなると、前記熱電変換モジュールが前記吸熱・放熱面および前記蓄熱面を介して外部の熱を前記蓄熱タンクに蓄えつつ発電する工程と、
外部の温度が前記蓄熱タンク内の温度よりも低くなると、前記熱電変換モジュールが前記蓄熱面および前記吸熱・放熱面を介して前記蓄熱タンクに蓄えた熱を外部に放熱しつつ発電する工程と、
を有することを特徴とする発電方法。
In the power generation method using the thermoelectric conversion module capable of generating power due to the temperature difference of the thermoelectric conversion material,
Using a heat storage tank that contains a heat storage material that suppresses internal temperature changes,
While thermally connecting the heat storage surface which is one end surface of the thermoelectric conversion module to the heat storage material,
The heat absorption / radiation surface which is the other end surface of the thermoelectric conversion module is thermally coupled to the outside,
When the external temperature becomes higher than the temperature in the heat storage tank, the thermoelectric conversion module generates electricity while storing external heat in the heat storage tank via the heat absorption / heat radiation surface and the heat storage surface;
When the external temperature becomes lower than the temperature in the heat storage tank, the thermoelectric conversion module generates electricity while radiating the heat stored in the heat storage tank to the outside via the heat storage surface and the heat absorption / heat radiation surface;
A power generation method comprising:
JP2012116729A 2012-05-22 2012-05-22 Power generator and power generation method Pending JP2013243303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116729A JP2013243303A (en) 2012-05-22 2012-05-22 Power generator and power generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116729A JP2013243303A (en) 2012-05-22 2012-05-22 Power generator and power generation method

Publications (1)

Publication Number Publication Date
JP2013243303A true JP2013243303A (en) 2013-12-05

Family

ID=49843899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116729A Pending JP2013243303A (en) 2012-05-22 2012-05-22 Power generator and power generation method

Country Status (1)

Country Link
JP (1) JP2013243303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098930A (en) * 2014-11-25 2016-05-30 マツダ株式会社 High pressure accumulator of automobile, and regeneration system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098930A (en) * 2014-11-25 2016-05-30 マツダ株式会社 High pressure accumulator of automobile, and regeneration system

Similar Documents

Publication Publication Date Title
WO2013099321A1 (en) Thermoelectric generator
KR100868492B1 (en) Solar cell generating apparatus with peltier circuit
WO2013178123A1 (en) Device for improving endurance of terminal and terminal thereof
GB2493092A (en) Electricity generation apparatus having a thermal store and thermoelectric heat exchanger
CN103368470A (en) Waste heat recovery device
CN109524496A (en) A kind of full-time solar battery based on energy storage thermo-electric generation
RU166483U1 (en) THERMOELECTRIC GENERATOR
CN210007948U (en) Power supply device for LED lamp and lighting system
JP2013243303A (en) Power generator and power generation method
CN104602484B (en) Portable apparatus and cooling device thereof
Wang et al. Efficient Power Conversion Using a PV-PCM-TE System Based on a Long Time Delay Phase Change With Concentrating Heat
CN215419617U (en) Circuit structure for converting heat energy of mobile phone into electric energy and mobile phone
NL2015268B1 (en) Solar power system
CN104124900A (en) Thermoelectric conversion device of computer
RU134698U1 (en) THERMOELECTRIC AUTONOMOUS POWER SUPPLY
JP4253471B2 (en) Energy conversion system
JP2013254637A (en) Battery pack
Szobolovszky et al. Waste heat recovery in solid-state lighting based on thin film thermoelectric generators
JP2008071879A (en) Thermoelectric conversion system
KR200415926Y1 (en) With generator for heater
JPWO2006054567A1 (en) Thermal energy transfer circuit system, electrical energy conversion supply system using thermal energy resources, and chemical energy resource storage system using thermal energy resources
CN205829501U (en) Thermoelectric power generation structure based on Seebeck effect and aerostatics
CN103607139B (en) Surge and solar hybrid power generation system
RU135450U1 (en) THERMOELECTRIC GENERATOR
JP2008251928A (en) Small capacity power unit and system