JP2013243276A - Method of manufacturing semiconductor device and semiconductor device - Google Patents

Method of manufacturing semiconductor device and semiconductor device Download PDF

Info

Publication number
JP2013243276A
JP2013243276A JP2012116234A JP2012116234A JP2013243276A JP 2013243276 A JP2013243276 A JP 2013243276A JP 2012116234 A JP2012116234 A JP 2012116234A JP 2012116234 A JP2012116234 A JP 2012116234A JP 2013243276 A JP2013243276 A JP 2013243276A
Authority
JP
Japan
Prior art keywords
resistance element
resistance
semiconductor device
opening
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012116234A
Other languages
Japanese (ja)
Other versions
JP5983024B2 (en
Inventor
Kohei Nishiguchi
浩平 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012116234A priority Critical patent/JP5983024B2/en
Publication of JP2013243276A publication Critical patent/JP2013243276A/en
Application granted granted Critical
Publication of JP5983024B2 publication Critical patent/JP5983024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device that allows downsizing the semiconductor device and simultaneously forming a plurality of resistance elements having different resistance values, and to provide the semiconductor device manufactured by the method.SOLUTION: A method of manufacturing a semiconductor device includes: a step of forming, on a substrate, a resist having a first opening and a second opening having a narrower width than the first opening; a spatter deposition step of simultaneously forming, by spatter deposition, a first resistance element and a second resistance element in a portion exposed by the first opening and a portion exposed by the second opening of the substrate, respectively; a step of removing the resist after the spatter deposition step; and a step of forming metal layers on both sides of the first resistance element and on both sides of the second resistance element after the removal of the resist. The second resistance element has a narrower width than the first resistance element, and the second resistance element has a thinner film thickness than the first resistance element.

Description

本発明は、例えばアナログ集積回路などに用いられる抵抗素子を有する半導体装置の製造方法とその製造方法で製造された半導体装置に関する。   The present invention relates to a method for manufacturing a semiconductor device having a resistance element used for an analog integrated circuit, for example, and a semiconductor device manufactured by the manufacturing method.

特許文献1には薄膜抵抗素子を有する半導体装置が開示されている。この半導体装置は絶縁膜の上に形成したタングステンシリサイド膜を薄膜抵抗素子として用いるものである。タングステンシリサイド膜は所望の形状に加工して所望の抵抗値を得る。タングステンシリサイド膜の加工にはフォトリソグラフィ法とエッチング法を用いる。   Patent Document 1 discloses a semiconductor device having a thin film resistance element. This semiconductor device uses a tungsten silicide film formed on an insulating film as a thin film resistance element. The tungsten silicide film is processed into a desired shape to obtain a desired resistance value. Photolithography and etching are used for processing the tungsten silicide film.

特開昭63−272064号公報JP 63-272064 A

特許文献1に開示の半導体装置では、基板上に抵抗値の高い抵抗素子を形成しようとした場合、抵抗素子の長さを長くする必要がある。そのため、抵抗素子が基板の広い面積を占めて半導体装置を小型化できない問題があった。   In the semiconductor device disclosed in Patent Document 1, when a resistive element having a high resistance value is formed on a substrate, it is necessary to increase the length of the resistive element. Therefore, there is a problem that the resistance element occupies a large area of the substrate and the semiconductor device cannot be reduced in size.

高抵抗の抵抗素子を小面積で形成するために、当該抵抗素子を低抵抗の抵抗素子とは別の材料で形成することも考えられる。この場合抵抗素子を形成するための工程が増加するのでコスト高となる問題があった。   In order to form a high-resistance resistance element with a small area, it is conceivable to form the resistance element using a material different from that of the low-resistance resistance element. In this case, the number of steps for forming the resistance element is increased, and there is a problem that the cost is increased.

本発明は、上述のような課題を解決するためになされたもので、半導体装置を小型化でき、かつ複数の抵抗値の異なる抵抗素子を同時に形成できる半導体装置の製造方法と半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a semiconductor device manufacturing method and a semiconductor device in which a semiconductor device can be miniaturized and a plurality of resistance elements having different resistance values can be simultaneously formed. For the purpose.

本願の発明に係る半導体装置の製造方法は、第1開口と該第1開口よりも幅の狭い第2開口を有するレジストを基板上に形成する工程と、該基板の該第1開口によって露出した部分と該第2開口によって露出した部分に、それぞれ第1抵抗素子と第2抵抗素子をスパッタ成膜により同時に形成するスパッタ成膜工程と、該スパッタ成膜工程の後に該レジストを除去する工程と、該レジストを除去した後に該第1抵抗素子の両端と、該第2抵抗素子の両端に金属層を形成する工程と、を備え、該第2抵抗素子は該第1抵抗素子よりも幅が狭く、該第2抵抗素子は該第1抵抗素子よりも膜厚が薄いことを特徴とする。   In the method of manufacturing a semiconductor device according to the present invention, a step of forming a resist having a first opening and a second opening having a narrower width than the first opening on the substrate, and the first opening of the substrate are exposed. A sputter film forming step in which the first resistance element and the second resistance element are simultaneously formed on the portion and the portion exposed by the second opening by sputter film formation; and a step of removing the resist after the sputter film formation step; And a step of forming metal layers on both ends of the first resistance element and on both ends of the second resistance element after removing the resist, the second resistance element having a width wider than that of the first resistance element. The second resistance element is narrow and has a thickness smaller than that of the first resistance element.

本願の発明に係る他の半導体装置の製造方法は、第1開口と該第1開口よりも幅の狭い第2開口を有するレジストを基板上に形成する工程と、窒素を含むガス雰囲気中で、Ta、Cr、TaSi、又はWSiのいずれか1つをスパッタリングターゲットとした反応性スパッタ成膜により、該基板の該第1開口によって露出した部分と該第2開口によって露出した部分に、それぞれ第1抵抗素子と第2抵抗素子を同時に形成する反応性スパッタ成膜工程と、該反応性スパッタ成膜工程の後に該レジストを除去する工程と、を備え、該第2抵抗素子は該第1抵抗素子よりも窒化率が高いことを特徴とする。   In another method of manufacturing a semiconductor device according to the present invention, a step of forming a resist having a first opening and a second opening having a width narrower than the first opening on a substrate, and a gas atmosphere containing nitrogen, By reactive sputtering film formation using any one of Ta, Cr, TaSi, or WSi as a sputtering target, the first exposed portion and the second exposed portion of the substrate are exposed to the first opening, respectively. A reactive sputter film forming step of simultaneously forming the resistance element and the second resistance element; and a step of removing the resist after the reactive sputter film formation step, wherein the second resistance element is the first resistance element It is characterized by a higher nitridation rate.

本願の発明に係る半導体装置は、基板と、Ta、Cr、TaSi、又はWSiのいずれか1つの抵抗材料を窒化して該基板の上に形成された第1抵抗素子と、該第1抵抗素子と同一の抵抗材料を窒化したものであって該第1抵抗素子よりも窒化率の高い材料で該基板の上に形成された、該第1抵抗素子よりも幅の狭い第2抵抗素子と、を備えたことを特徴とする。   A semiconductor device according to the present invention includes a substrate, a first resistance element formed on the substrate by nitriding any one of Ta, Cr, TaSi, or WSi, and the first resistance element A second resistance element having a width narrower than that of the first resistance element, which is formed on the substrate with a material having a higher nitridation rate than the first resistance element. It is provided with.

本発明によれば、半導体装置を小型化でき、かつ複数の抵抗値の異なる抵抗素子を同時に形成できる。   According to the present invention, the semiconductor device can be downsized and a plurality of resistance elements having different resistance values can be formed simultaneously.

本発明の実施の形態1に係る半導体装置の平面図である。1 is a plan view of a semiconductor device according to a first embodiment of the present invention. 図1の2−2線における断面図である。It is sectional drawing in the 2-2 line of FIG. パターニングしたレジストを形成した後の断面図である。It is sectional drawing after forming the patterned resist. スパッタ成膜後の断面図である。It is sectional drawing after sputtering film-forming. 抵抗素子の線幅と膜厚の関係を示すグラフである。It is a graph which shows the relationship between the line width of a resistive element, and a film thickness. 本発明の実施の形態2に係る半導体装置の平面図である。It is a top view of the semiconductor device which concerns on Embodiment 2 of this invention. 図6の7−7線における断面図である。It is sectional drawing in the 7-7 line | wire of FIG. パターニングしたレジストを形成した後の断面図である。It is sectional drawing after forming the patterned resist. 反応性スパッタ成膜後の断面図である。It is sectional drawing after reactive sputter film-forming. 反応性スパッタにより成膜したTaNのシート抵抗と線幅の関係を示すグラフである。It is a graph which shows the relationship between the sheet resistance and line width of TaN formed into a film by reactive sputtering. 反応性スパッタにより成膜したTaNの相対膜厚と線幅の関係を示すグラフである。It is a graph which shows the relationship between the relative film thickness and line width of TaN formed into a film by reactive sputtering. 本発明の実施の形態3に係る半導体装置の平面図である。It is a top view of the semiconductor device which concerns on Embodiment 3 of this invention. 抵抗素子の抵抗率と抵抗温度係数の関係を示すグラフである。It is a graph which shows the relationship between the resistivity of a resistive element, and a resistance temperature coefficient.

実施の形態1.
図1は、本発明の実施の形態1に係る半導体装置の平面図である。半導体装置は例えばGaAsなどの化合物半導体で形成された基板10を備えている。基板10の上にはNiCrで第1抵抗素子12が形成されている。第1抵抗素子12の幅はX1で長さはY1である。第1抵抗素子12の両端には金属層14、16が形成されている。
Embodiment 1 FIG.
FIG. 1 is a plan view of a semiconductor device according to Embodiment 1 of the present invention. The semiconductor device includes a substrate 10 made of a compound semiconductor such as GaAs. A first resistance element 12 is formed of NiCr on the substrate 10. The first resistance element 12 has a width X1 and a length Y1. Metal layers 14 and 16 are formed on both ends of the first resistance element 12.

基板10の上にはNiCrで第2抵抗素子22が形成されている。第2抵抗素子22の幅はX2で長さはY2である。第2抵抗素子22は、第1抵抗素子12よりも抵抗値が高くなるように、第1抵抗素子12よりも幅が狭くかつ長く形成されている。第2抵抗素子22の幅X2は2μm程度である。第2抵抗素子22の両端には金属層24、26が形成されている。第1抵抗素子12、第2抵抗素子22、及び金属層14、16、24、26はパッシベーション膜30で覆われている。図2は、図1の2−2線における断面図である。第2抵抗素子22は第1抵抗素子12よりも膜厚が薄い。   A second resistance element 22 is formed of NiCr on the substrate 10. The second resistance element 22 has a width X2 and a length Y2. The second resistance element 22 is formed narrower and longer than the first resistance element 12 so that the resistance value is higher than that of the first resistance element 12. The width X2 of the second resistance element 22 is about 2 μm. Metal layers 24 and 26 are formed on both ends of the second resistance element 22. The first resistance element 12, the second resistance element 22, and the metal layers 14, 16, 24, and 26 are covered with a passivation film 30. 2 is a cross-sectional view taken along line 2-2 of FIG. The second resistance element 22 is thinner than the first resistance element 12.

本発明の実施の形態1に係る半導体装置の製造方法を説明する。まず、基板10の上にパターニングしたレジストを形成する。図3は、パターニングしたレジストを形成した後の断面図である。レジスト50をパターニングしてレジスト50に第1開口50aと第1開口50aよりも幅の狭い第2開口50bを形成する。レジスト50の膜厚は1.0μm以上であることが望ましい。   A method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described. First, a patterned resist is formed on the substrate 10. FIG. 3 is a cross-sectional view after the patterned resist is formed. The resist 50 is patterned to form a first opening 50a and a second opening 50b narrower than the first opening 50a in the resist 50. The film thickness of the resist 50 is desirably 1.0 μm or more.

次いで、スパッタ成膜を行う。図4は、スパッタ成膜後の断面図である。この工程ではNiCrのスパッタ成膜により、基板10の第1開口50aによって露出した部分と第2開口50bによって露出した部分に、それぞれ第1抵抗素子12と第2抵抗素子22を同時に形成する。この工程をスパッタ成膜工程と称する。   Next, sputtering film formation is performed. FIG. 4 is a cross-sectional view after sputtering film formation. In this step, the first resistance element 12 and the second resistance element 22 are simultaneously formed in the portion exposed by the first opening 50a and the portion exposed by the second opening 50b of the substrate 10 by sputtering of NiCr. This process is called a sputter film forming process.

スパッタ成膜工程の後にレジスト50を除去する。これによりレジスト50の上に形成されたNiCr層52をリフトオフする。レジスト50を除去した後に第1抵抗素子12の両端に配線となる金属層14、16を形成する。同時に、第2抵抗素子22の両端に配線となる金属層24、26を形成する。最後にCVD法でパッシベーション膜30を形成することで図1の半導体装置が完成する。   The resist 50 is removed after the sputter film forming step. Thereby, the NiCr layer 52 formed on the resist 50 is lifted off. After the resist 50 is removed, metal layers 14 and 16 serving as wirings are formed on both ends of the first resistance element 12. At the same time, metal layers 24 and 26 to be wirings are formed on both ends of the second resistance element 22. Finally, the passivation film 30 is formed by the CVD method, thereby completing the semiconductor device shown in FIG.

ところで、スパッタ成膜は基板に対して金属粒子が等方的に入射する成膜方法である。従って等方性を有する成膜が可能である。等方性を有する成膜では、レジストの開口幅(抵抗素子の線幅、以下同じ)を狭くすることで基板に対して斜めに入射する金属粒子をレジストに衝突させ基板に到達する金属粒子の数を減らすことができる。一方レジストの開口幅が広い場合は基板に対して斜めに入射する金属粒子の多くが基板に到達できる。   By the way, sputter film formation is a film formation method in which metal particles are isotropically incident on a substrate. Therefore, it is possible to form a film having isotropic properties. In isotropic film formation, the opening width of the resist (the line width of the resistance element, the same applies hereinafter) is made narrow so that the metal particles incident obliquely to the substrate collide with the resist and the metal particles reaching the substrate The number can be reduced. On the other hand, when the opening width of the resist is wide, many metal particles incident obliquely with respect to the substrate can reach the substrate.

そのため、レジストの開口幅が狭い場所に形成された抵抗素子の膜厚を、レジストの開口幅が広い場所に形成された抵抗素子の膜厚よりも薄くすることができる。つまり線幅の太い抵抗素子の膜厚を厚く、線幅の細い抵抗素子の膜厚を薄くすることができる。   Therefore, the film thickness of the resistance element formed in a place where the resist opening width is narrow can be made thinner than the film thickness of the resistance element formed in a place where the resist opening width is wide. That is, it is possible to increase the thickness of the resistor element having a large line width and reduce the thickness of the resistor element having a small line width.

本発明の実施の形態1に係る半導体装置の製造方法では、スパッタ成膜により抵抗素子を形成するので、レジストの開口幅を変化させることで抵抗素子の膜厚を自在に制御できる。具体的には、第2抵抗素子22の膜厚を第1抵抗素子12の膜厚よりも薄くできるので第2抵抗素子22を長く形成すること無く高抵抗にできる。これにより半導体装置を小型化できる。   In the method for manufacturing a semiconductor device according to the first embodiment of the present invention, since the resistance element is formed by sputtering film formation, the thickness of the resistance element can be freely controlled by changing the opening width of the resist. Specifically, since the film thickness of the second resistance element 22 can be made thinner than the film thickness of the first resistance element 12, it is possible to increase the resistance without forming the second resistance element 22 longer. Thereby, the semiconductor device can be miniaturized.

またレジストの膜厚を厚くするほど、スパッタ成膜時に基板に到達する金属粒子の数を減らすことができる。本発明の実施の形態1ではレジスト50の膜厚を1.0μm以上としたので、2μmの線幅の第2抵抗素子22を十分に薄く形成できる。なお、第2抵抗素子22の線幅を変えずにさらに薄く形成したい場合は、レジスト50の膜厚を厚くすればよい。   Further, as the resist film thickness is increased, the number of metal particles that reach the substrate during the sputtering film formation can be reduced. In Embodiment 1 of the present invention, since the film thickness of the resist 50 is 1.0 μm or more, the second resistance element 22 having a line width of 2 μm can be formed sufficiently thin. In addition, when it is desired to form the second resistance element 22 further thinly without changing the line width, the resist 50 may be thickened.

図5は、抵抗素子の線幅と膜厚の関係を示すグラフである。膜厚としては、線幅50μmの時の膜厚を1として規格化した相対膜厚を示す。スパッタ成膜で抵抗素子を形成した場合は抵抗素子の線幅が狭くなるほど膜厚が薄くなる。一方、等方性のない蒸着で抵抗素子を形成した場合は抵抗素子の線幅と膜厚の相関性が低い。従って、本発明の実施の形態1に係る半導体装置の製造方法としてはスパッタ成膜を採用する必要がある。   FIG. 5 is a graph showing the relationship between the line width and film thickness of the resistance element. As the film thickness, a relative film thickness normalized with the film thickness when the line width is 50 μm as 1 is shown. When the resistance element is formed by sputtering film formation, the film thickness decreases as the line width of the resistance element decreases. On the other hand, when the resistance element is formed by vapor deposition that is not isotropic, the correlation between the line width and the film thickness of the resistance element is low. Therefore, it is necessary to employ sputter deposition as the method for manufacturing the semiconductor device according to the first embodiment of the present invention.

本発明の実施の形態1に係る半導体装置の製造方法によれば、第1抵抗素子12と第2抵抗素子22を1回のスパッタ成膜工程で同時に形成するので、第1抵抗素子12と第2抵抗素子22を別工程で形成する場合と比較して低コストである。また、第1抵抗素子2と第2抵抗素子22は同一材料で形成できるので、複数の材料を用いる場合と比較して低コストである。   According to the method of manufacturing a semiconductor device according to the first embodiment of the present invention, the first resistance element 12 and the second resistance element 22 are formed at the same time in one sputter film formation step. Compared to the case where the two-resistance element 22 is formed in a separate process, the cost is low. Moreover, since the 1st resistive element 2 and the 2nd resistive element 22 can be formed with the same material, it is low-cost compared with the case where a several material is used.

スパッタ成膜工程では、NiCrをスパッタ成膜したが他の金属材料を用いてもよい。第1抵抗素子12と第2抵抗素子22の寸法やレジスト50の膜厚は特に上記の値に限定されない。また、基板10は化合物半導体以外の材料で形成してもよい。基板10の上には、抵抗素子だけでなく他の素子を形成してもよい。例えば、基板10の上に整合回路を形成する場合、抵抗素子に加えてトランジスタ、キャパシタ、及びインダクタなどを形成する。   In the sputter deposition process, NiCr is sputter deposited, but other metal materials may be used. The dimensions of the first resistance element 12 and the second resistance element 22 and the film thickness of the resist 50 are not particularly limited to the above values. The substrate 10 may be formed of a material other than the compound semiconductor. On the substrate 10, not only the resistance element but also other elements may be formed. For example, when a matching circuit is formed on the substrate 10, a transistor, a capacitor, an inductor, and the like are formed in addition to the resistance element.

実施の形態2.
図6は、本発明の実施の形態2に係る半導体装置の平面図である。実施の形態1との相違点を中心に説明する。第1抵抗素子100はTaNで形成されている。第2抵抗素子102もTaNで形成されている。第2抵抗素子102は第1抵抗素子100よりも窒化率が高い。
Embodiment 2. FIG.
FIG. 6 is a plan view of the semiconductor device according to the second embodiment of the present invention. The description will focus on the differences from the first embodiment. The first resistance element 100 is made of TaN. The second resistance element 102 is also made of TaN. The second resistance element 102 has a higher nitridation rate than the first resistance element 100.

図7は、図6の7−7線における断面図である。第2抵抗素子102は第1抵抗素子100よりも幅が狭く形成されている。第1抵抗素子100と第2抵抗素子102の膜厚は略一致している。   7 is a cross-sectional view taken along line 7-7 in FIG. The second resistance element 102 is formed to be narrower than the first resistance element 100. The film thicknesses of the first resistance element 100 and the second resistance element 102 are substantially the same.

次いで、本発明の実施の形態2に係る半導体装置の製造方法を説明する。まず、基板の上にパターニングしたレジストを形成する。図8は、パターニングしたレジストを形成した後の断面図である。レジスト50をパターニングして、レジスト50に第1開口50aと第1開口50aよりも幅の狭い第2開口50bを形成する。   Next, a method for manufacturing a semiconductor device according to the second embodiment of the present invention will be described. First, a patterned resist is formed on a substrate. FIG. 8 is a cross-sectional view after the patterned resist is formed. The resist 50 is patterned to form a first opening 50a and a second opening 50b narrower than the first opening 50a in the resist 50.

次いで、反応性スパッタ成膜を行う。この工程では、窒素を含むガス雰囲気中で、Taをスパッタリングターゲットとした反応性スパッタ成膜を行う。この反応性スパッタ成膜により基板10の第1開口50aによって露出した部分と第2開口50bによって露出した部分に、それぞれ第1抵抗素子100と第2抵抗素子102を同時に形成する。スパッタリングターゲットに衝突させる物質は特に限定されないが例えばアルゴンを用いる。この工程を反応性スパッタ成膜工程と称する。図9は、反応性スパッタ成膜後の断面図である。   Next, reactive sputtering film formation is performed. In this step, reactive sputtering film formation using Ta as a sputtering target is performed in a gas atmosphere containing nitrogen. By this reactive sputtering film formation, the first resistance element 100 and the second resistance element 102 are simultaneously formed in the portion exposed by the first opening 50a and the portion exposed by the second opening 50b of the substrate 10, respectively. The substance that collides with the sputtering target is not particularly limited, but, for example, argon is used. This process is referred to as a reactive sputter film forming process. FIG. 9 is a cross-sectional view after reactive sputter deposition.

反応性スパッタ成膜工程の後にレジスト50を除去する。レジスト50を除去した後に第1抵抗素子100の両端に金属層14、16を形成し、第2抵抗素子102の両端に金属層24、26を形成する。最後にCVD法でパッシベーション膜30を形成することで図6の半導体装置が完成する。   The resist 50 is removed after the reactive sputter deposition process. After removing the resist 50, metal layers 14 and 16 are formed on both ends of the first resistance element 100, and metal layers 24 and 26 are formed on both ends of the second resistance element 102. Finally, a passivation film 30 is formed by CVD, thereby completing the semiconductor device shown in FIG.

反応性スパッタによりTaNを成膜する場合、成膜されたTaの窒化率はレジスト50の開口幅に依存する。具体的には、レジスト50の開口幅が狭いほどTaの窒化率が高まる。これは、窒素分子は基板上の各場所において等密度で存在しているところ、レジストの開口幅が狭い場所ではTaの供給量が減るのでこの場所でのTaの窒化率が高くなるためと考えられる。   When TaN is formed by reactive sputtering, the nitridation rate of the formed Ta depends on the opening width of the resist 50. Specifically, the nitridation rate of Ta increases as the opening width of the resist 50 becomes narrower. This is because nitrogen molecules are present at equal density at each location on the substrate, and the amount of Ta supplied is reduced at locations where the resist opening width is narrow, so the nitriding rate of Ta increases at this location. It is done.

図10は、反応性スパッタにより成膜したTaNのシート抵抗と線幅の関係を示すグラフである。この図から線幅が狭くなるほどシート抵抗が上昇することが分かる。図11は、反応性スパッタにより成膜したTaNの相対膜厚と線幅の関係を示すグラフである。この図から線幅が変わっても膜厚はほぼ一定であることが分かる。図10、11のデータから、線幅が狭くなるほどシート抵抗が高くなるのは、膜厚が薄くなるからではなく、Taの窒化率が高くなるためであることが分かる。   FIG. 10 is a graph showing the relationship between the sheet resistance and the line width of TaN formed by reactive sputtering. From this figure, it can be seen that the sheet resistance increases as the line width decreases. FIG. 11 is a graph showing the relationship between the relative film thickness and the line width of TaN deposited by reactive sputtering. From this figure, it can be seen that the film thickness is almost constant even if the line width changes. From the data of FIGS. 10 and 11, it can be seen that the sheet resistance increases as the line width decreases, not because the film thickness decreases, but because the nitriding rate of Ta increases.

上記のとおり、本発明の実施の形態2では第2抵抗素子102の線幅を第1抵抗素子100の線幅よりも狭く形成したので、第2抵抗素子102の窒化率を第1抵抗素子100の窒化率よりも高くすることができる。よって第2抵抗素子102を長くすること無く高抵抗にできる。これにより半導体装置を小型化できる。また、第1抵抗素子100と第2抵抗素子102を1回の反応性スパッタ成膜工程で同時に形成するので、低コストで半導体装置を製造できる。   As described above, in the second embodiment of the present invention, since the line width of the second resistance element 102 is formed narrower than the line width of the first resistance element 100, the nitridation rate of the second resistance element 102 is set to the first resistance element 100. The nitridation rate can be higher. Therefore, the second resistance element 102 can be increased in resistance without increasing the length. Thereby, the semiconductor device can be miniaturized. In addition, since the first resistance element 100 and the second resistance element 102 are formed simultaneously in one reactive sputtering film forming step, a semiconductor device can be manufactured at low cost.

本発明の実施の形態2は、レジストの開口に露出した基板に対し反応性スパッタ成膜で抵抗素子を形成することが特徴である。この特徴を失わない範囲において様々な変形が可能である。例えば、抵抗素子100、102の材料はTaNに限定されない。第1抵抗素子100は、Ta、Cr、TaSi、又はWSiのいずれか1つの抵抗材料を窒化して基板10の上に形成されたものであればよい。また、第2抵抗素子102は、第1抵抗素子100と同一の抵抗材料を窒化したものであって第1抵抗素子100よりも窒化率の高い材料で基板10の上に形成されたものであればよい。この場合、Ta、Cr、TaSi、又はWSiのいずれか1つがスパッタリングターゲットとなる。その他、少なくとも実施の形態1と同程度の変形が可能である。   The second embodiment of the present invention is characterized in that a resistance element is formed by reactive sputtering film formation on a substrate exposed in a resist opening. Various modifications are possible as long as this characteristic is not lost. For example, the material of the resistance elements 100 and 102 is not limited to TaN. The first resistance element 100 only needs to be formed on the substrate 10 by nitriding any one of Ta, Cr, TaSi, and WSi. The second resistance element 102 is formed by nitriding the same resistance material as the first resistance element 100 and formed on the substrate 10 with a material having a higher nitriding rate than the first resistance element 100. That's fine. In this case, any one of Ta, Cr, TaSi, or WSi is a sputtering target. In addition, at least the same deformation as that of the first embodiment is possible.

実施の形態3.
図12は、本発明の実施の形態3に係る半導体装置の平面図である。実施の形態2との相違点を中心に説明する。第1抵抗素子150と第2抵抗素子152が接続されて1つの抵抗素子154となっている。第2抵抗素子152の幅X2は第1抵抗素子150の幅X1よりも狭くなっている。
Embodiment 3 FIG.
FIG. 12 is a plan view of the semiconductor device according to the third embodiment of the present invention. The difference from the second embodiment will be mainly described. The first resistance element 150 and the second resistance element 152 are connected to form one resistance element 154. The width X2 of the second resistance element 152 is narrower than the width X1 of the first resistance element 150.

第1抵抗素子150は正の抵抗温度係数を有し、第2抵抗素子152は負の抵抗温度係数を有している。正の抵抗温度係数を有する場合は温度が上昇すると抵抗値が増加し、負の抵抗温度係数を有する場合は温度が上昇すると抵抗値が低下する。   The first resistance element 150 has a positive resistance temperature coefficient, and the second resistance element 152 has a negative resistance temperature coefficient. In the case of having a positive resistance temperature coefficient, the resistance value increases as the temperature increases, and in the case of a negative resistance temperature coefficient, the resistance value decreases as the temperature increases.

第1抵抗素子150の一部には第1金属層156が形成されている。第2抵抗素子152の一部には第2金属層158が形成されている。第1金属層156と第2金属層158は抵抗素子154の両端の配線として機能する。抵抗素子154の抵抗温度係数は10ppm/Kから−10ppm/Kの間の値である。   A first metal layer 156 is formed on a part of the first resistance element 150. A second metal layer 158 is formed on part of the second resistance element 152. The first metal layer 156 and the second metal layer 158 function as wirings at both ends of the resistance element 154. The resistance temperature coefficient of the resistance element 154 is a value between 10 ppm / K and −10 ppm / K.

抵抗素子154と平行に、第1抵抗素子160と第2抵抗素子162が金属層164を介して接続された抵抗素子166が形成されている。第2抵抗素子162の幅X4は第1抵抗素子160の幅X3よりも狭くなっている。第1抵抗素子160は正の抵抗温度係数を有し、第2抵抗素子162は負の抵抗温度係数を有している。   A resistance element 166 in which the first resistance element 160 and the second resistance element 162 are connected via the metal layer 164 is formed in parallel with the resistance element 154. The width X4 of the second resistance element 162 is narrower than the width X3 of the first resistance element 160. The first resistance element 160 has a positive resistance temperature coefficient, and the second resistance element 162 has a negative resistance temperature coefficient.

第1抵抗素子160の一部には第1金属層168が形成されている。第2抵抗素子162の一部には第2金属層170が形成されている。第1金属層168と第2金属層170は抵抗素子166の両端の配線として機能する。抵抗素子166の抵抗温度係数は10ppm/Kから−10ppm/Kの間の値である。   A first metal layer 168 is formed on a part of the first resistance element 160. A second metal layer 170 is formed on part of the second resistance element 162. The first metal layer 168 and the second metal layer 170 function as wirings at both ends of the resistance element 166. The resistance temperature coefficient of the resistance element 166 is a value between 10 ppm / K and −10 ppm / K.

本発明の実施の形態3に係る半導体装置の製造方法は、実施の形態2と同様に反応性スパッタによりTaNを成膜することで抵抗素子を形成するものである。レジスト開口幅を調整することで幅の太い第1抵抗素子150、160と幅の狭い第2抵抗素子152、162を成膜する。   In the semiconductor device manufacturing method according to the third embodiment of the present invention, a resistor element is formed by depositing TaN by reactive sputtering, as in the second embodiment. By adjusting the resist opening width, the first resistance elements 150 and 160 having a large width and the second resistance elements 152 and 162 having a small width are formed.

反応性スパッタ成膜の後にレジストを除去し、第1抵抗素子150と第2抵抗素子152がひとつの抵抗素子154を形成するように第1抵抗素子150の一端と第2抵抗素子152の一端に金属層156、158をそれぞれ形成する。同様に、第1抵抗素子160と第2抵抗素子162がひとつの抵抗素子166を形成するように、第1抵抗素子160の一端と第2抵抗素子162の一端に金属層168、170をそれぞれ形成する。同時に金属層164も形成する。   After the reactive sputter deposition, the resist is removed, and one end of the first resistance element 150 and one end of the second resistance element 152 are formed so that the first resistance element 150 and the second resistance element 152 form one resistance element 154. Metal layers 156 and 158 are formed, respectively. Similarly, metal layers 168 and 170 are formed on one end of the first resistance element 160 and one end of the second resistance element 162 so that the first resistance element 160 and the second resistance element 162 form one resistance element 166. To do. At the same time, a metal layer 164 is also formed.

ここで、第1抵抗素子150、160は正の抵抗温度係数を有し、第2抵抗素子152、162は負の抵抗温度係数を有することについて説明する。図13は、抵抗素子の抵抗率と抵抗温度係数の関係を示すグラフである。このグラフは、TaN形成のための反応性スパッタ成膜におけるN2/Ar流量比を変化させることで抵抗率の異なる抵抗素子を複数形成し、各抵抗素子の抵抗温度係数を求めた結果を示す。   Here, it will be described that the first resistance elements 150 and 160 have a positive resistance temperature coefficient, and the second resistance elements 152 and 162 have a negative resistance temperature coefficient. FIG. 13 is a graph showing the relationship between the resistivity of the resistance element and the resistance temperature coefficient. This graph shows a result of forming a plurality of resistance elements having different resistivity by changing the N2 / Ar flow rate ratio in reactive sputtering film formation for forming TaN, and obtaining the resistance temperature coefficient of each resistance element.

このグラフから、概ね1.7E−4[Ω・cm]以上の抵抗率が高い抵抗素子は負の抵抗温度係数を有し、概ね1.5E−4[Ω・cm]以下の抵抗率が低い抵抗素子は正の抵抗温度係数を有することが分かる。従って、抵抗率の高い抵抗素子と抵抗率の低い抵抗素子を形成することで、負の抵抗温度係数を有する抵抗素子と正の抵抗温度係数を有する抵抗素子を形成できる。本発明の実施の形態3では、反応性スパッタ成膜で抵抗素子を形成する場合レジストの開口幅を変化させることで抵抗率を自在に制御できることを利用して、正の抵抗温度係数を有する第1抵抗素子150、160と負の抵抗温度係数を有する第2抵抗素子152、162を形成した。   From this graph, a resistive element having a high resistivity of approximately 1.7E-4 [Ω · cm] or more has a negative resistance temperature coefficient, and a resistivity of approximately 1.5E-4 [Ω · cm] or less is low. It can be seen that the resistive element has a positive resistance temperature coefficient. Therefore, by forming a resistance element having a high resistivity and a resistance element having a low resistivity, a resistance element having a negative resistance temperature coefficient and a resistance element having a positive resistance temperature coefficient can be formed. In the third embodiment of the present invention, when a resistance element is formed by reactive sputter deposition, the resistivity can be freely controlled by changing the opening width of the resist. The first resistance elements 150 and 160 and the second resistance elements 152 and 162 having a negative resistance temperature coefficient were formed.

一般に、抵抗素子の抵抗値は温度に依存しないことが好ましい。具体的には抵抗素子の抵抗温度係数は10ppm/Kから−10ppm/Kの間であることが好ましい。しかし、薄膜で形成した抵抗素子の抵抗温度係数は材料に大きく依存するので上述の条件を満たすためには抵抗素子の材料が限定されたり材料組成を精密に制御する必要が生じたりするなどの不利益があった。   In general, the resistance value of the resistance element is preferably independent of temperature. Specifically, the resistance temperature coefficient of the resistance element is preferably between 10 ppm / K and −10 ppm / K. However, since the temperature coefficient of resistance of a resistive element formed of a thin film depends greatly on the material, there are problems such as limiting the material of the resistive element or requiring precise control of the material composition in order to satisfy the above conditions. There was a profit.

ところが、本発明の実施の形態3にかかる半導体装置は、正の抵抗温度係数を有する抵抗素子と負の抵抗素子を有する抵抗素子を直接又は金属層を介して接続することで、抵抗素子全体としての抵抗温度係数を0に近づけることができる。よって上述の不利益なく容易に、温度に対して安定な抵抗素子を形成することができる。   However, in the semiconductor device according to the third embodiment of the present invention, a resistance element having a positive resistance temperature coefficient and a resistance element having a negative resistance element are connected directly or via a metal layer, so that the entire resistance element is obtained. The resistance temperature coefficient can be made close to zero. Therefore, it is possible to easily form a resistance element that is stable with respect to temperature without the above disadvantages.

なお、本発明の実施の形態3に係る半導体装置の製造方法と半導体装置は少なくとも実施の形態1、2と同程度の変形が可能である。   The semiconductor device manufacturing method and the semiconductor device according to the third embodiment of the present invention can be modified at least as much as the first and second embodiments.

10 基板、 12 第1抵抗素子、 14,16,24,26 金属層、 22 第2抵抗素子、 30 パッシベーション膜、 50 レジスト、 50a,50b 開口、 100 第1抵抗素子、 102 第2抵抗素子、 150,160 第1抵抗素子、 152,162 第2抵抗素子、 154,166 抵抗素子   DESCRIPTION OF SYMBOLS 10 Board | substrate, 12 1st resistance element, 14, 16, 24, 26 Metal layer, 22 2nd resistance element, 30 Passivation film, 50 Resist, 50a, 50b Opening, 100 1st resistance element, 102 2nd resistance element, 150 , 160 First resistance element, 152, 162 Second resistance element, 154, 166 Resistance element

Claims (9)

第1開口と前記第1開口よりも幅の狭い第2開口を有するレジストを基板上に形成する工程と、
前記基板の前記第1開口によって露出した部分と前記第2開口によって露出した部分に、それぞれ第1抵抗素子と第2抵抗素子をスパッタ成膜により同時に形成するスパッタ成膜工程と、
前記スパッタ成膜工程の後に前記レジストを除去する工程と、
前記レジストを除去した後に前記第1抵抗素子の両端と、前記第2抵抗素子の両端に金属層を形成する工程と、を備え、
前記第2抵抗素子は前記第1抵抗素子よりも幅が狭く、前記第2抵抗素子は前記第1抵抗素子よりも膜厚が薄いことを特徴とする半導体装置の製造方法。
Forming a resist having a first opening and a second opening having a narrower width than the first opening on the substrate;
A sputter film forming step of simultaneously forming a first resistance element and a second resistance element by sputtering film formation on the portion exposed by the first opening and the portion exposed by the second opening of the substrate, respectively;
Removing the resist after the sputter deposition step;
Forming metal layers on both ends of the first resistance element and on both ends of the second resistance element after removing the resist,
The method of manufacturing a semiconductor device, wherein the second resistance element is narrower than the first resistance element, and the second resistance element is thinner than the first resistance element.
前記スパッタ成膜工程では、NiCrをスパッタ成膜することを特徴とする請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein in the sputtering film forming step, NiCr is formed by sputtering. 第1開口と前記第1開口よりも幅の狭い第2開口を有するレジストを基板上に形成する工程と、
窒素を含むガス雰囲気中で、Ta、Cr、TaSi、又はWSiのいずれか1つをスパッタリングターゲットとした反応性スパッタ成膜により、前記基板の前記第1開口によって露出した部分と前記第2開口によって露出した部分に、それぞれ第1抵抗素子と第2抵抗素子を同時に形成する反応性スパッタ成膜工程と、
前記反応性スパッタ成膜工程の後に前記レジストを除去する工程と、を備え、
前記第2抵抗素子は前記第1抵抗素子よりも窒化率が高いことを特徴とする半導体装置の製造方法。
Forming a resist having a first opening and a second opening having a narrower width than the first opening on the substrate;
By reactive sputtering film formation using any one of Ta, Cr, TaSi or WSi as a sputtering target in a gas atmosphere containing nitrogen, a portion exposed by the first opening of the substrate and the second opening A reactive sputter film forming step of simultaneously forming the first resistance element and the second resistance element on the exposed portions,
Removing the resist after the reactive sputter film forming step,
The method of manufacturing a semiconductor device, wherein the second resistance element has a nitridation rate higher than that of the first resistance element.
前記第1抵抗素子の両端と、前記第2抵抗素子の両端に金属層を形成する工程と、を備えたことを特徴とする請求項3に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 3, further comprising: forming metal layers on both ends of the first resistance element and on both ends of the second resistance element. 前記第1抵抗素子と前記第2抵抗素子がひとつの抵抗素子を形成するように前記第1抵抗素子の一端と前記第2抵抗素子の一端に金属層を形成する工程と、を備え、
前記第1抵抗素子は正の抵抗温度係数を有し、
前記第2抵抗素子は負の抵抗温度係数を有することを特徴とする請求項3に記載の半導体装置の製造方法。
Forming a metal layer on one end of the first resistance element and one end of the second resistance element so that the first resistance element and the second resistance element form one resistance element,
The first resistance element has a positive temperature coefficient of resistance;
The method of manufacturing a semiconductor device according to claim 3, wherein the second resistance element has a negative resistance temperature coefficient.
基板と、
Ta、Cr、TaSi、又はWSiのいずれか1つの抵抗材料を窒化して前記基板の上に形成された第1抵抗素子と、
前記第1抵抗素子と同一の抵抗材料を窒化したものであって前記第1抵抗素子よりも窒化率の高い材料で前記基板の上に形成された、前記第1抵抗素子よりも幅の狭い第2抵抗素子と、を備えたことを特徴とする半導体装置。
A substrate,
A first resistance element formed on the substrate by nitriding any one of Ta, Cr, TaSi, or WSi;
The first resistance element is formed by nitriding the same resistance material as that of the first resistance element, and is formed on the substrate with a material having a higher nitridation rate than the first resistance element. A semiconductor device comprising: a two-resistance element.
前記第1抵抗素子の両端に形成された金属層と、
前記第2抵抗素子の両端に形成された金属層と、を備えたことを特徴とする請求項6に記載の半導体装置。
Metal layers formed on both ends of the first resistance element;
The semiconductor device according to claim 6, further comprising a metal layer formed on both ends of the second resistance element.
前記第1抵抗素子の一部に形成された第1金属層と、
前記第2抵抗素子の一部に形成された第2金属層と、を備え、
前記第1抵抗素子は正の抵抗温度係数を有し、前記第2抵抗素子は負の抵抗温度係数を有し、
前記第1抵抗素子と前記第2抵抗素子は、直接又は金属層を介して接続されてひとつの抵抗素子を形成していることを特徴とする請求項6に記載の半導体装置。
A first metal layer formed on a part of the first resistance element;
A second metal layer formed on a part of the second resistance element,
The first resistance element has a positive resistance temperature coefficient, the second resistance element has a negative resistance temperature coefficient;
The semiconductor device according to claim 6, wherein the first resistance element and the second resistance element are connected directly or via a metal layer to form one resistance element.
前記抵抗素子の抵抗温度係数は10ppm/Kから−10ppm/Kの間の値であることを特徴とする請求項8に記載の半導体装置。   The semiconductor device according to claim 8, wherein the resistance temperature coefficient of the resistance element is a value between 10 ppm / K and −10 ppm / K.
JP2012116234A 2012-05-22 2012-05-22 Semiconductor device manufacturing method and semiconductor device Active JP5983024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012116234A JP5983024B2 (en) 2012-05-22 2012-05-22 Semiconductor device manufacturing method and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012116234A JP5983024B2 (en) 2012-05-22 2012-05-22 Semiconductor device manufacturing method and semiconductor device

Publications (2)

Publication Number Publication Date
JP2013243276A true JP2013243276A (en) 2013-12-05
JP5983024B2 JP5983024B2 (en) 2016-08-31

Family

ID=49843878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012116234A Active JP5983024B2 (en) 2012-05-22 2012-05-22 Semiconductor device manufacturing method and semiconductor device

Country Status (1)

Country Link
JP (1) JP5983024B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806020B1 (en) 2016-04-26 2017-10-31 Kabushiki Kaisha Toshiba Semiconductor device
US10014363B2 (en) 2016-02-19 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor device having resistance elements and fabrication method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221098A (en) * 1994-02-08 1995-08-18 Nippon Telegr & Teleph Corp <Ntt> Formation method of quantum wire
JPH10173135A (en) * 1996-12-16 1998-06-26 Matsushita Electron Corp Semiconductor integrated circuit and manufacturing method thereof
JP2001511316A (en) * 1997-02-12 2001-08-07 ハリス コーポレーション Common patterning of thin film resistors of different configurations using conductive hard mask and method therefor
JP2008312121A (en) * 2007-06-18 2008-12-25 Advantest Corp Attenuator and electronic device
JP2009021509A (en) * 2007-07-13 2009-01-29 Hitachi Ltd Semiconductor device, and manufacturing method thereof
JP2012074481A (en) * 2010-09-28 2012-04-12 Renesas Electronics Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07221098A (en) * 1994-02-08 1995-08-18 Nippon Telegr & Teleph Corp <Ntt> Formation method of quantum wire
JPH10173135A (en) * 1996-12-16 1998-06-26 Matsushita Electron Corp Semiconductor integrated circuit and manufacturing method thereof
JP2001511316A (en) * 1997-02-12 2001-08-07 ハリス コーポレーション Common patterning of thin film resistors of different configurations using conductive hard mask and method therefor
JP2008312121A (en) * 2007-06-18 2008-12-25 Advantest Corp Attenuator and electronic device
JP2009021509A (en) * 2007-07-13 2009-01-29 Hitachi Ltd Semiconductor device, and manufacturing method thereof
JP2012074481A (en) * 2010-09-28 2012-04-12 Renesas Electronics Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10014363B2 (en) 2016-02-19 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor device having resistance elements and fabrication method thereof
US10510824B2 (en) 2016-02-19 2019-12-17 Mie Fujitsu Semiconductor Limited Semiconductor device having resistance elements and fabrication method thereof
US10720489B2 (en) 2016-02-19 2020-07-21 United Semiconductor Japan Co., Ltd. Semiconductor device having resistance elements and fabrication method thereof
US10840323B2 (en) 2016-02-19 2020-11-17 United Semiconductor Japan Co., Ltd. Method of fabricating semiconductor device having resistance elements
US9806020B1 (en) 2016-04-26 2017-10-31 Kabushiki Kaisha Toshiba Semiconductor device

Also Published As

Publication number Publication date
JP5983024B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5393005B2 (en) Method for improving metal defects in semiconductor device manufacturing
JP2006237371A5 (en)
CN112640092A (en) Semiconductor device with anti-deflection layer
JP5379717B2 (en) Evaporation mask
JP5983024B2 (en) Semiconductor device manufacturing method and semiconductor device
US20170011826A1 (en) Thin-film resistor and method for producing the same
JP2004232026A (en) Method for producing mask for vapor deposition
CN102237165A (en) Manufacturing method of 50 ohms TaN film resistor combined with MMIC technology
WO2011033920A1 (en) METHOD FOR FORMING Cu WIRING
US6993828B2 (en) Method for manufacturing metal thin film resistor
US7214550B2 (en) Method to produce thin film resistor using dry etch
US8026788B2 (en) Thin-film resistor with a layer structure and method for manufacturing a thin-film resistor with a layer structure
JP2008198749A (en) Semiconductor device
JP2011138991A (en) High-sound-quality resistance film and method of manufacturing the same
JP2009099755A (en) Thin-film resistor, and its manufacturing method
US7276777B2 (en) Thin film resistor and method of making the same
US20230170111A1 (en) Improved nickel chromium aluminum thin film resistor
JP2016081958A (en) Manufacturing method of thin film metal resistance
US8536014B2 (en) Self aligned silicide device fabrication
US20060040459A1 (en) Method to produce thin film resistor with no resistor head using dry etch
US20240113156A1 (en) Thin film resistor mismatch improvement using a self-aligned double pattern (sadp) technique
FR3071492A1 (en) MICRO DEVICE COMPRISING A PROTECTED ELEMENT AGAINST HF ETCHING AND FORM OF A MATERIAL COMPRISING A SEMICONDUCTOR AND A METAL
JP2760560B2 (en) Circuit board
JPH09503627A (en) Electrical resistance structure
CN114628389A (en) Method for manufacturing semiconductor structure and semiconductor structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5983024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250