JP2013239582A - Frame for solar panel, drive unit and program of frame for solar panel - Google Patents

Frame for solar panel, drive unit and program of frame for solar panel Download PDF

Info

Publication number
JP2013239582A
JP2013239582A JP2012111598A JP2012111598A JP2013239582A JP 2013239582 A JP2013239582 A JP 2013239582A JP 2012111598 A JP2012111598 A JP 2012111598A JP 2012111598 A JP2012111598 A JP 2012111598A JP 2013239582 A JP2013239582 A JP 2013239582A
Authority
JP
Japan
Prior art keywords
solar panel
main body
drive
receiving surface
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012111598A
Other languages
Japanese (ja)
Other versions
JP6156830B2 (en
Inventor
Hiroshi Shibano
浩志 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIBANOENG CO Ltd
Original Assignee
SHIBANOENG CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIBANOENG CO Ltd filed Critical SHIBANOENG CO Ltd
Priority to JP2012111598A priority Critical patent/JP6156830B2/en
Publication of JP2013239582A publication Critical patent/JP2013239582A/en
Application granted granted Critical
Publication of JP6156830B2 publication Critical patent/JP6156830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a frame for solar panel which can always face the light-receiving surface of a solar panel toward the sun.SOLUTION: A frame 10 for solar panel supporting a solar panel 100 includes a body 11 to which the solar panel 100 is fixed, a support 12 which pivotally supports the body 11 rotatably about the body rotating shaft 111 extending in parallel with the light-receiving surface 101 of the solar panel 100 for receiving sunlight, and a base 13 extending in parallel with the light-receiving surface 101 of the solar panel 100 and pivotally supporting the support 12 rotatably about the center of the support rotating shaft 121 which extends in a direction orthogonal to the body rotating shaft 111.

Description

本発明は、ソーラパネル用架台、ソーラパネル用架台駆動装置及びプログラムに関する。   The present invention relates to a solar panel mount, a solar panel mount driving apparatus, and a program.

従来、ソーラパネルは、建築物の屋根や架台に設置され、太陽エネルギーを集めてこれを電気エネルギーに変換して発電するために用いられている。また、ソーラパネルにおける太陽光を受ける受光面を太陽に対面させることで、太陽に対して受光面を斜めに配置した場合に比べ、発電効率が向上する。ところが、太陽は、ソーラパネルが設置された地点に対し、常に、方位と高度が変化する。   Conventionally, solar panels are installed on the roofs and mounts of buildings, and are used to collect solar energy, convert it into electrical energy, and generate electricity. Moreover, by making the light-receiving surface that receives sunlight in the solar panel face the sun, the power generation efficiency is improved as compared with the case where the light-receiving surface is arranged obliquely with respect to the sun. However, the azimuth and altitude of the sun always change from the point where the solar panel is installed.

そこで、ソーラパネルを搭載し、一端が回動可能な架台と、架台の他端側に設置した支柱体に沿って架台の他端を上下に移動させる駆動装置と、太陽光に対面できるようにソーラパネルの受光面の仰角を調節できる仰角設定装置と、を具備するソーラパネル用架台が提案されている(特許文献1参照)。
特許文献1の技術によれば、ソーラパネルを搭載した架台の他端を上下に移動させ、受光面の仰角を調節することで、受光面を太陽に対面させることができるので、発電効率が向上する。
Therefore, a solar panel is mounted and one end can be rotated, a driving device that moves the other end of the gantry up and down along a column installed on the other end of the gantry, and so that it can face sunlight A solar panel mount comprising an elevation angle setting device capable of adjusting the elevation angle of the light receiving surface of the solar panel has been proposed (see Patent Document 1).
According to the technique of Patent Document 1, the other end of the mount on which the solar panel is mounted is moved up and down, and the elevation angle of the light receiving surface can be adjusted so that the light receiving surface can face the sun. To do.

特開2002−317540号公報JP 2002-317540 A

ところで、太陽は、通常、東から南に向けて昇り、西に沈む。このため、特許文献1に記載されたソーラパネル用架台は、ソーラパネルの受光面を南側に向けて設置し、例えば、回動可能な一端を西側に配置し、所定時間毎に他端を上方に移動させることで、受光面を太陽に対面させることができる。   By the way, the sun usually rises from east to south and sinks to the west. For this reason, the solar panel pedestal described in Patent Document 1 is installed with the light receiving surface of the solar panel facing the south side, for example, one end that can be rotated is arranged on the west side, and the other end is placed upward every predetermined time. By moving to, the light receiving surface can face the sun.

しかしながら、太陽は、赤道より緯度が高い地域では、夏至近辺において、北東から昇り、北西に沈む。このとき、特許文献1に記載されたソーラパネル用架台は、ソーラパネルの受光面を南側に向けて設置した場合、全く受光できない。一方、夏至近辺における太陽の位置を考慮して、ソーラパネルの受光面を南側より北東側に向けて設置すると、午後の陽射しを受光できず、また、受光面を南側より北西側に向けて設置すると、午前の陽射しを受光できず、発電効率が著しく低下する。   However, in the region where the latitude is higher than the equator, the sun rises from the northeast and sinks to the northwest in the vicinity of the summer. At this time, the solar panel mount described in Patent Document 1 cannot receive light at all when it is installed with the light receiving surface of the solar panel facing the south side. On the other hand, if the solar panel's light receiving surface is installed from the south side toward the northeast side in consideration of the position of the sun near the summer solstice, the afternoon sunlight cannot be received, and the light receiving surface is installed from the south side toward the northwest side. Then, the morning sunlight cannot be received, and the power generation efficiency is significantly reduced.

本発明は、ソーラパネルの受光面を、常に太陽に対面させることができるソーラパネル用架台、ソーラパネル用架台駆動装置及びプログラムを提供することを目的とする。   An object of the present invention is to provide a solar panel gantry, a solar panel gantry driving device, and a program that can always make the light-receiving surface of the solar panel face the sun.

(1) ソーラパネルを支持するソーラパネル用架台であって、ソーラパネルが固定される本体と、前記ソーラパネルにおける太陽光を受光する受光面に対して平行して延びる本体回動軸を中心に、前記本体を回動自在に軸支する支持部と、前記ソーラパネルの前記受光面に平行して延び、前記本体回動軸と直交する方向に延びる支持部回動軸を中心に、前記支持部を回動自在に軸支する基台部と、を備えるソーラパネル用架台。   (1) A solar panel pedestal for supporting a solar panel, the main body being fixed to the solar panel, and a main body rotation shaft extending in parallel to a light receiving surface for receiving sunlight in the solar panel. The support portion pivotally supports the main body, and the support portion extends around the support portion rotation shaft extending in parallel to the light receiving surface of the solar panel and extending in a direction perpendicular to the main body rotation shaft. A solar panel pedestal comprising: a base part that pivotally supports the part.

(1)の発明によれば、ソーラパネルが固定される本体を、ソーラパネルの受光面に対して平行して延びる本体回動軸を中心に回動自在に支持部で軸支し、この支持部を、ソーラパネルの受光面に対して平行して延び、本体回動軸と直交する方向に延びる支持部回動軸を中心に回動自在に基台部で軸支する。   According to the invention of (1), the main body to which the solar panel is fixed is pivotally supported by the support portion so as to be rotatable about the main body rotation shaft extending parallel to the light receiving surface of the solar panel. The base portion is pivotally supported by the base portion so as to be rotatable about a support portion rotation shaft extending in parallel to the light receiving surface of the solar panel and extending in a direction orthogonal to the main body rotation shaft.

これにより、ソーラパネルの受光面を本体回動軸と本体回動軸と直交する方向に延びる支持部回動軸とを中心に回動できる。即ち、ソーラパネルの受光面を、互いに直交する2方向に回動できる。
よって、ソーラパネルの受光面を東側から西側に向けて回動できるとともに、ソーラパネルの受光面を南側から北側に向けて回動できるので、例えば、夜明け時に受光面を北東側に向け、正午に受光面を略水平にし、日没時に北西側に向けることが可能となる。
したがって、ソーラパネルの受光面を、常に太陽に対面させることができるソーラパネル用架台を提供できる。
Accordingly, the light receiving surface of the solar panel can be rotated around the main body rotation shaft and the support portion rotation shaft extending in the direction orthogonal to the main body rotation shaft. That is, the light receiving surface of the solar panel can be rotated in two directions orthogonal to each other.
Therefore, the light receiving surface of the solar panel can be rotated from the east side to the west side, and the light receiving surface of the solar panel can be rotated from the south side to the north side.For example, the light receiving surface is directed to the northeast side at dawn and at noon. It is possible to make the light receiving surface substantially horizontal and to face the northwest side at sunset.
Therefore, it is possible to provide a solar panel gantry in which the light receiving surface of the solar panel can always face the sun.

(2)前記本体回動軸及び前記支持部回動軸は、前記ソーラパネルが固定された前記本体の重心をとおる垂直線と交差する(1)に記載のソーラパネル用架台。
(2)の発明によれば、ソーラパネルが固定された本体を回動させるための負荷を均等にできる。
これにより、例えば、ソーラパネルが固定された本体を、電気により駆動する駆動手段により回動させる場合、消費電力を軽減できる。また、本体を、人力で回動させる場合、労力を軽減できる。
(2) The solar panel mount according to (1), wherein the main body rotation shaft and the support portion rotation shaft intersect a vertical line passing through the center of gravity of the main body to which the solar panel is fixed.
According to the invention of (2), the load for rotating the main body to which the solar panel is fixed can be made uniform.
Thereby, for example, when the main body to which the solar panel is fixed is rotated by driving means that is driven by electricity, power consumption can be reduced. Further, when the main body is rotated manually, the labor can be reduced.

(3) (1)又は(2)に記載のソーラパネル用架台と、前記本体に接続され、前記本体を回動させる本体駆動手段と、前記支持部に接続され、前記支持部を回動させる支持部駆動手段と、前記本体駆動手段及び前記支持部駆動手段の駆動を制御する駆動制御手段と、を備えるソーラパネル用架台駆動装置であって、前記駆動制御手段は、前記ソーラパネルの設置位置における、ある時毎の太陽の方位と高度を示す太陽位置情報に基づき算出された、前記本体又は前記支持部の移動方向と移動量を示す駆動情報に基づき前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、前記本体に固定された前記ソーラパネルの前記受光面を太陽に対面させて配置させるソーラパネル用架台駆動装置。   (3) The solar panel gantry described in (1) or (2), a main body driving means connected to the main body and rotating the main body, and connected to the support portion and rotating the support portion. A solar panel gantry driving device comprising: a supporting unit driving unit; and a driving control unit that controls driving of the main body driving unit and the supporting unit driving unit, wherein the driving control unit is an installation position of the solar panel. The main body driving unit and the support unit driving unit calculated based on the driving information indicating the moving direction and the moving amount of the main body or the support unit, calculated based on the sun position information indicating the azimuth and altitude of the sun every hour. The solar panel gantry driving device which controls the driving of the solar panel and arranges the light receiving surface of the solar panel fixed to the main body so as to face the sun.

(3)の発明によれば、駆動制御手段は、ソーラパネルの設置位置における、ある時毎の太陽の方位と高度を示す太陽位置情報に基づき算出された駆動情報に応じて、本体駆動手段及び支持部駆動手段の駆動を制御し、受光面を太陽に対面させて配置させる。
これにより、ソーラパネルの設置位置とある時における正確な太陽の位置に、ソーラパネルの受光面を対面させることができるので、より発電効率を向上できる。
According to the invention of (3), the drive control means includes the main body drive means and the drive information calculated based on the solar position information indicating the azimuth and altitude of the sun at every hour at the solar panel installation position. The driving of the support unit driving means is controlled, and the light receiving surface is arranged facing the sun.
Thereby, since the light-receiving surface of a solar panel can be made to face the exact solar position at a certain time with the installation position of a solar panel, electric power generation efficiency can be improved more.

(4) 風速を計測し、風速値を生成する風速計測手段と、前記風速計測手段が生成した前記風速値が、予め設定された閾値以上か否かを判定する風速判定手段と、を更に備え、前記駆動制御手段は、前記風速判定手段により前記風速値が前記閾値以上であると判定された場合、前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、前記ソーラパネルの前記受光面を水平面又は仰角が10度の範囲に配置させる(3)に記載のソーラパネル用架台駆動装置。   (4) Wind speed measuring means for measuring wind speed and generating a wind speed value; and wind speed determining means for determining whether or not the wind speed value generated by the wind speed measuring means is equal to or greater than a preset threshold value. The drive control means controls the drive of the main body drive means and the support drive means when the wind speed determination means determines that the wind speed value is equal to or greater than the threshold value, and the light receiving surface of the solar panel. The solar panel gantry driving device according to (3), wherein the horizontal plane or the elevation angle is 10 degrees.

(4)の発明によれば、風速値が閾値以上の場合、ソーラパネルの受光面を水平面又は仰角が10度の範囲に配置させる。
これにより、風が強いときには、ソーラパネルの受光面を、風圧が比較的小さくなる水平近傍に配置することができるので、風によりソーラパネルが破損するのを防止できる。
According to invention of (4), when a wind speed value is more than a threshold value, the light-receiving surface of a solar panel is arrange | positioned in the range whose horizontal surface or elevation angle is 10 degree | times.
As a result, when the wind is strong, the light receiving surface of the solar panel can be disposed near the horizontal where the wind pressure is relatively low, so that the solar panel can be prevented from being damaged by the wind.

(5) 前記駆動制御手段は、予め設定された降雪期において、前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、前記ソーラパネルの前記受光面を仰角が50度以上80度以下の範囲に配置させる(3)又は(4)に記載のソーラパネル用架台駆動装置。   (5) The drive control means controls the drive of the main body drive means and the support portion drive means in a preset snowfall period, and the elevation angle of the light receiving surface of the solar panel is 50 degrees or more and 80 degrees or less. The solar panel mount driving device according to (3) or (4), which is arranged in a range.

(5)の発明によれば、降雪期において、ソーラパネルの受光面を仰角が50度以上80度以下の範囲に配置させる。
これにより、ソーラパネルの受光面に降り積もった雪を、下方に滑らせて落下させることができるので、積雪によりソーラパネルが破損するのを防止できる。
According to the invention of (5), the light receiving surface of the solar panel is arranged in the range of the elevation angle of 50 degrees or more and 80 degrees or less in the snowing season.
Thereby, the snow that has accumulated on the light receiving surface of the solar panel can be slid down and dropped, so that the solar panel can be prevented from being damaged by the accumulated snow.

(6) (3)に記載のソーラパネル用架台駆動装置を制御するコンピュータを、前記太陽位置情報に基づき、前記ソーラパネルの前記設置位置とある時における太陽とを結ぶ仮想日光線を算出する仮想日光線算出手段、前記設置位置を含み、前記仮想日光線に対して直交する最大受光面を算出する最大受光面算出手段、前記設置位置を基準点とした、架台における特定点の現状の座標である現状座標を取得する現状座標取得手段、前記設置位置を基準点とした、前記特定点の可動範囲における経路と前記最大受光面算出手段が算出した前記最大受光面との交差点の座標である移動先座標を算出する移動先座標算出手段、前記現状座標取得手段が取得した前記現状座標から前記移動先座標算出手段が算出した移動先座標に向かうベクトルのX成分とY成分を算出するベクトル成分算出手段、前記ベクトル成分算出手段が算出した前記X成分の方向を前記本体の移動方向とし、前記X成分の長さを前記本体の移動量とし、前記本体駆動手段の駆動を制御するための前記駆動情報を生成する本体駆動情報生成手段、前記ベクトル成分算出手段が算出した前記Y成分の方向を前記本体及び前記支持部の移動方向とし、前記Y成分の長さを前記本体及び前記支持部の移動量とし、前記支持部駆動手段の駆動を制御するための前記駆動情報を生成する支持部駆動情報生成手段、として機能させることを特徴とするプログラム。   (6) A virtual computer that controls the solar panel gantry driving device described in (3), based on the solar position information, calculates a virtual daylight ray that connects the solar panel at a certain time with the installation position of the solar panel. Sunlight calculation means, maximum light receiving surface calculation means for calculating a maximum light receiving surface that includes the installation position and is orthogonal to the virtual daylight, and the current coordinates of a specific point on the gantry with the installation position as a reference point Current coordinate acquisition means for acquiring a certain current coordinate, a movement that is a coordinate of an intersection between the path in the movable range of the specific point and the maximum light receiving surface calculated by the maximum light receiving surface calculation means, with the installation position as a reference point A destination coordinate calculating means for calculating a destination coordinate, an X of a vector directed from the current coordinates acquired by the current coordinate acquisition means to the destination coordinates calculated by the destination coordinate calculating means Vector component calculating means for calculating the minute and Y components, the direction of the X component calculated by the vector component calculating means is the moving direction of the main body, the length of the X component is the moving amount of the main body, and the main body driving A main body drive information generation means for generating the drive information for controlling the drive of the means, and the direction of the Y component calculated by the vector component calculation means is the movement direction of the main body and the support portion, and the length of the Y component A program that causes the main body and the support part to move and functions as support part drive information generation means for generating the drive information for controlling the drive of the support part drive means.

(6)の発明によれば、(3)の発明と同様の作用効果を奏する。   According to invention of (6), there exists an effect similar to invention of (3).

本発明によれば、ソーラパネルの受光面を、常に太陽に対面させることができるソーラパネル用架台、ソーラパネル用架台駆動装置及びプログラムを提供できる。   According to the present invention, it is possible to provide a solar panel gantry, a solar panel gantry driving device, and a program that can always make the light receiving surface of the solar panel face the sun.

本発明の実施形態に係るソーラパネル用架台駆動装置を説明する図である。It is a figure explaining the gantry drive device for solar panels which concerns on embodiment of this invention. 本実施形態に係るソーラパネル用架台駆動装置を説明する図である。It is a figure explaining the gantry drive device for solar panels which concerns on this embodiment. 本実施形態に係る本体の平面図である。It is a top view of the main body concerning this embodiment. 本実施形態に係る支持部の平面図である。It is a top view of the support part which concerns on this embodiment. 本実施形態に係る制御部の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the control part which concerns on this embodiment. 図5の駆動情報生成部が実行する駆動情報生成処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the drive information generation process which the drive information generation part of FIG. 5 performs. 図5の駆動制御部が実行する駆動制御処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of the drive control process which the drive control part of FIG. 5 performs.

以下に、本発明の実施形態について説明する。
図1及び図2は、本発明の実施形態に係るソーラパネル用架台駆動装置1を説明する図である。
ソーラパネル用架台駆動装置1は、ソーラパネル100を支持するソーラパネル用架台10と、ソーラパネル用架台10の一部を回動させる本体駆動手段21及び支持部駆動手段22と、ソーラパネル用架台駆動装置1の動作を制御する制御部30と、を備える。
Hereinafter, embodiments of the present invention will be described.
FIG.1 and FIG.2 is a figure explaining the gantry drive device 1 for solar panels which concerns on embodiment of this invention.
The solar panel gantry driving device 1 includes a solar panel gantry 10 that supports the solar panel 100, a main body driving means 21 and a support driving means 22 that rotate a part of the solar panel gantry 10, and a solar panel gantry. And a control unit 30 that controls the operation of the driving device 1.

図1に示すソーラパネル用架台10は、ソーラパネル用架台10の正面図である。
図2に示すソーラパネル用架台10は、ソーラパネル用架台10の側面図である。
ソーラパネル用架台10は、ソーラパネル100が固定される本体11と、本体11の下方に配置され、本体11を回動自在に軸支する支持部12と、支持部12の下方に配置され、支持部12を回動自在に軸支する基台部13と、基台部13の下方に配置され、基台部13が固定される第1ベース14と、第1ベース14の下方に配置され、第1ベース14が固定される第2ベース15と、を備える。
The solar panel mount 10 shown in FIG. 1 is a front view of the solar panel mount 10.
The solar panel mount 10 shown in FIG. 2 is a side view of the solar panel mount 10.
The solar panel pedestal 10 is disposed below the main body 11 to which the solar panel 100 is fixed, the lower part of the main body 11, the support part 12 pivotally supporting the main body 11, and the lower part of the support part 12. A base portion 13 that pivotally supports the support portion 12, a first base 14 that is disposed below the base portion 13 and to which the base portion 13 is fixed, and a lower portion that is disposed below the first base 14. And a second base 15 to which the first base 14 is fixed.

図3は、本実施形態に係る本体11の平面図である。
本体11は、ソーラパネル100における太陽光を受光する受光面101に対して平行して延びる本体回動軸111と、本体11の外枠を形成する枠112と、枠112の内側に所定間隔で複数配置される補強部材113と、補強部材113の一部に設けられ、ソーラパネル100が固定されるパネル受け部材114と、補強部材113の一部に設けられ、本体駆動手段21の先端部が回動自在に接続される本体駆動手段接続部材115と、を備える。
FIG. 3 is a plan view of the main body 11 according to the present embodiment.
The main body 11 includes a main body rotation shaft 111 extending in parallel to the light receiving surface 101 that receives sunlight in the solar panel 100, a frame 112 that forms an outer frame of the main body 11, and an inner side of the frame 112 at predetermined intervals. A plurality of reinforcing members 113, a panel receiving member 114 provided on a part of the reinforcing member 113, to which the solar panel 100 is fixed, and provided on a part of the reinforcing member 113. And a main body driving means connecting member 115 that is rotatably connected.

本体回動軸111は、ソーラパネル100が固定された本体11の重心をとおる垂直線C(図1参照)と交差するように配置される。また、本体回動軸111は、ソーラパネル100が固定された本体11の重量を2分する本体中心線CA上を延びる。即ち、ソーラパネル100が固定された本体11は、本体回動軸111を中心とする軸対称構造で、支持部12により軸支されている。
なお、本実施形態において、本体回動軸111は、本体中心線CA上を延び、垂直線Cと交差するように配置したが、これに限らず、任意の位置に配置してもよい。
The main body rotation shaft 111 is disposed so as to intersect a vertical line C (see FIG. 1) passing through the center of gravity of the main body 11 to which the solar panel 100 is fixed. The main body rotation shaft 111 extends on a main body center line CA that bisects the weight of the main body 11 to which the solar panel 100 is fixed. That is, the main body 11 to which the solar panel 100 is fixed has an axially symmetrical structure with the main body rotation shaft 111 as the center, and is supported by the support portion 12.
In the present embodiment, the main body rotation shaft 111 is arranged so as to extend on the main body center line CA and intersect the vertical line C. However, the present invention is not limited to this and may be arranged at an arbitrary position.

枠112は、平面視で長方形に形成され、短辺を構成し互いに対向する2つの短辺部材112aと、長辺を構成し互いに対向する2つの長辺部材112bと、を備える。
本体回動軸111は、2つの短辺部材112aの中心を回転自在に貫通する。
なお、本実施形態において、枠112を平面視長方形に形成しているが、これに限らず、例えば、正方形や円形等の任意の形状に形成してもよい。また、枠112の寸法は、本体11に固定するソーラパネル100の大きさに応じた寸法で形成することができる。
The frame 112 is formed in a rectangular shape in plan view, and includes two short side members 112a that configure short sides and face each other, and two long side members 112b that configure long sides and face each other.
The main body rotation shaft 111 passes through the centers of the two short side members 112a in a rotatable manner.
In the present embodiment, the frame 112 is formed in a rectangular shape in plan view, but is not limited thereto, and may be formed in an arbitrary shape such as a square or a circle. Further, the size of the frame 112 can be formed according to the size of the solar panel 100 fixed to the main body 11.

補強部材113は、枠112の短辺方向に沿って延び、2つの長辺部材112bを互いに連結する。
本体回動軸111は、複数の補強部材113の中心を貫通する。
複数の補強部材113は、本体回動軸111上をスライド自在に移動可能であり、任意の位置において、2つの長辺部材112bに、溶接又は固定手段(螺子やボルト及びナット等)により固定される。
例えば、補強部材113と2つの長辺部材112bとを固定手段で固定する場合、長辺部材112bには、任意の位置に固定手段が挿通する孔を形成してもよい。これにより、補強部材113を本体回動軸111上において、本体回動軸111が延びる方向にスライドさせ、任意の位置(例えば、ソーラパネルを固定可能な位置)に配置して、補強部材113と2つの長辺部材112bとを固定手段で固定できる。
ここで、ソーラパネルの寸法は、製造メーカーや発電能力によって異なる。そこで、上記の構成によれば、本体11に固定するソーラパネルの寸法に応じた位置に補強部材113を配置し2つの長辺部材112bに固定できる。また、例えば、現状のソーラパネルから、大きさや形状が異なる他のソーラパネルに交換する場合、上記の構成によれば、補強部材113の位置を変える又は簡単な加工(例えば、長辺部材112bの適切な位置に固定手段を挿通する孔を形成する加工)を加えるだけで、本体11を他のソーラパネルを固定するのに適した形態に変形できる。
The reinforcing member 113 extends along the short side direction of the frame 112 and connects the two long side members 112b to each other.
The main body rotation shaft 111 passes through the centers of the plurality of reinforcing members 113.
The plurality of reinforcing members 113 are slidably movable on the main body rotation shaft 111, and are fixed to the two long side members 112b by welding or fixing means (screws, bolts, nuts, etc.) at an arbitrary position. The
For example, when the reinforcing member 113 and the two long side members 112b are fixed by the fixing means, the long side member 112b may be formed with a hole through which the fixing means is inserted. Accordingly, the reinforcing member 113 is slid on the main body rotating shaft 111 in the direction in which the main body rotating shaft 111 extends, and is disposed at an arbitrary position (for example, a position where the solar panel can be fixed). The two long side members 112b can be fixed by a fixing means.
Here, the dimensions of the solar panel vary depending on the manufacturer and the power generation capacity. Therefore, according to the above configuration, the reinforcing member 113 can be arranged at a position corresponding to the size of the solar panel fixed to the main body 11 and fixed to the two long side members 112b. Further, for example, when replacing the current solar panel with another solar panel having a different size or shape, according to the above configuration, the position of the reinforcing member 113 is changed or simple processing (for example, the long side member 112b The main body 11 can be transformed into a form suitable for fixing other solar panels only by adding a process for forming a hole for inserting the fixing means at an appropriate position.

パネル受け部材114は、例えば、螺子穴が形成され、ビスやボルトによりソーラパネル100が固定される。
本体駆動手段接続部材115は、本体11の長辺方向の中心近傍であって、本体中心線CAより2分された一方の範囲の中心近傍に設けられる。
The panel receiving member 114 is formed with, for example, screw holes, and the solar panel 100 is fixed with screws or bolts.
The main body driving means connecting member 115 is provided in the vicinity of the center in the long side direction of the main body 11 and in the vicinity of the center of one range divided by two from the main body center line CA.

図4は、本実施形態に係る支持部12の平面図である。
支持部12は、ソーラパネル100における太陽光を受光する受光面101に対して平行して延びる支持部回動軸121と、支持部12の外枠を形成する枠122と、枠122に設けられ、本体11の本体回動軸111を回転自在に軸支する本体回動軸受け部123と、本体駆動手段21の基端部が回動自在に接続される本体駆動手段支持部材124と、支持部駆動手段22の先端部が回動自在に接続される支持部駆動手段接続部材125と、を備える。
FIG. 4 is a plan view of the support portion 12 according to the present embodiment.
The support portion 12 is provided on the support portion rotating shaft 121 extending in parallel to the light receiving surface 101 that receives sunlight in the solar panel 100, a frame 122 that forms an outer frame of the support portion 12, and the frame 122. A main body rotation bearing portion 123 that rotatably supports the main body rotation shaft 111 of the main body 11, a main body driving means support member 124 to which a base end portion of the main body driving means 21 is rotatably connected, and a support portion. And a support portion drive means connecting member 125 to which the tip end portion of the drive means 22 is rotatably connected.

支持部回動軸121は、ソーラパネル100が固定された本体11の重心をとおる垂直線C(図1参照)と交差するように配置される。また、支持部回動軸121は、本体回動軸111と直交する方向に延びる。また、支持部回動軸121は、ソーラパネル100が固定された本体11及び支持部の重量を2分する支持部中心線CB上を延びる。即ち、ソーラパネル100が固定された本体11及び支持部12は、支持部回動軸121を中心とする軸対称構造で、基台部13により軸支されている。
このように、ソーラパネル100が固定された本体11及び支持部12を軸対称構造とすることで、ソーラパネル100が固定された本体11及び支持部12を回動させる電力を最小限にすることが可能となり、ソーラパネル用省電力架台を提供できる。
なお、本実施形態において、支持部回動軸121は、支持部中心線CB上を延び、垂直線Cと交差するように配置したが、これに限らず、任意の位置に配置してもよい。
The support part rotation shaft 121 is disposed so as to intersect a vertical line C (see FIG. 1) passing through the center of gravity of the main body 11 to which the solar panel 100 is fixed. Further, the support rotation shaft 121 extends in a direction orthogonal to the main body rotation shaft 111. Moreover, the support part rotation shaft 121 extends on the support part center line CB that bisects the weight of the main body 11 and the support part to which the solar panel 100 is fixed. That is, the main body 11 and the support part 12 to which the solar panel 100 is fixed are axially symmetrical about the support part rotation shaft 121 and are pivotally supported by the base part 13.
As described above, the main body 11 and the support portion 12 to which the solar panel 100 is fixed have an axisymmetric structure, thereby minimizing the electric power for rotating the main body 11 and the support portion 12 to which the solar panel 100 is fixed. This makes it possible to provide a power-saving stand for solar panels.
In addition, in this embodiment, although the support part rotation axis | shaft 121 was arrange | positioned so that it may extend on the support part centerline CB and cross | intersect the perpendicular line C, you may arrange | position not only in this but in arbitrary positions. .

枠122は、支持部中心線CB上に配置される中央部材122aと、枠122の両端部に配置される端部部材122bと、中央部材122aと端部部材122bとを連結する複数の連結部材122cと、を備える。
中央部材122aは、支持部回動軸121を軸支する。
The frame 122 includes a central member 122a disposed on the support center line CB, end members 122b disposed at both ends of the frame 122, and a plurality of connecting members that connect the central member 122a and the end member 122b. 122c.
The central member 122a pivotally supports the support portion rotation shaft 121.

本体回動軸受け部123は、本体中心線CA上において、中央部材122a及び端部部材122bの上端に固定されている。
本体駆動手段支持部材124は、中央部材122aの外側に、水平方向に突出するように固定されている。
支持部駆動手段接続部材125は、2つの連結部材122c間に配置され、これら2つの連結部材122cに固定されている。
The main body rotation bearing portion 123 is fixed to the upper ends of the central member 122a and the end member 122b on the main body center line CA.
The main body driving means supporting member 124 is fixed to the outside of the central member 122a so as to protrude in the horizontal direction.
The support part driving means connecting member 125 is disposed between the two connecting members 122c and is fixed to the two connecting members 122c.

図1及び図2に戻って、基台部13は、支持部中心線CB(図4参照)上に配置され、上端において、支持部12の支持部回動軸121を回転自在に軸支する。   Returning to FIGS. 1 and 2, the base portion 13 is disposed on the support portion center line CB (see FIG. 4) and rotatably supports the support portion rotating shaft 121 of the support portion 12 at the upper end. .

第1ベース14は、上方に延びる部材で構成され、本体11、支持部12及び基台部13の高さを確保し、ソーラパネル100が固定された本体11を回動させたときに、ソーラパネル100が地面に接触するのを防止するための部材である。
また、第1ベース14には、支持部駆動手段22の基端部が回動自在に接続される支持部駆動手段支持部材141が設けられている。
The first base 14 is composed of a member extending upward, ensures the height of the main body 11, the support portion 12 and the base portion 13, and when the main body 11 to which the solar panel 100 is fixed is rotated, the solar base 14 is rotated. It is a member for preventing the panel 100 from contacting the ground.
Further, the first base 14 is provided with a support portion drive means support member 141 to which the base end portion of the support portion drive means 22 is rotatably connected.

第2ベース15は、外径が直方体形状に形成され、例えば、地盤に形成された鉄筋コンクリート製の基礎の上に、第1ベース14が固定される上端が水平になるように固定される。   The second base 15 is formed in a rectangular parallelepiped shape. For example, the second base 15 is fixed on a reinforced concrete foundation formed on the ground so that the upper end to which the first base 14 is fixed is horizontal.

本体駆動手段21及び支持部駆動手段22は、先端側が伸縮するアームで構成されている。本体駆動手段21及び支持部駆動手段22は、例えば、油圧式のアームであり、制御部30にそれぞれ制御され、先端側が伸縮する。   The main body driving means 21 and the support part driving means 22 are configured by an arm whose front end side expands and contracts. The main body drive unit 21 and the support unit drive unit 22 are, for example, hydraulic arms, and are controlled by the control unit 30 so that the distal end side expands and contracts.

上記のように構成することで、ソーラパネル用架台10は、以下のように動作する。
本体11は、本体駆動手段21が伸縮すると、図2中点線で示すように、本体回動軸111を中心に回動する。これにともない、本体11に固定されたソーラパネル100も回動する。
また、本体11及び支持部12は、支持部駆動手段22が伸縮すると、図1中点線で示すように、支持部回動軸121を中心に回動する。
上記のソーラパネル用架台10の動作にともない、本体11に固定されたソーラパネル100も回動する。
With the configuration described above, the solar panel mount 10 operates as follows.
When the main body driving means 21 expands and contracts, the main body 11 rotates about the main body rotation shaft 111 as indicated by a dotted line in FIG. Along with this, the solar panel 100 fixed to the main body 11 also rotates.
Further, the main body 11 and the support part 12 rotate around the support part rotation shaft 121 as shown by a dotted line in FIG.
The solar panel 100 fixed to the main body 11 also rotates with the operation of the solar panel mount 10 described above.

図5は、本実施形態に係る制御部30の機能構成を示すブロック図である。
制御部30は、ある時における本体11又は支持部12の移動方向と移動量を示す駆動情報を生成する駆動情報生成部31と、駆動情報を記憶する駆動情報記憶部32と、駆動情報に基づき、本体駆動手段21及び支持部駆動手段22の駆動を制御する駆動制御部33と、風速を計測し風速値を生成する風速計測部34と、を備える。
なお、本実施形態において制御部30は、駆動情報生成部31を備えるが、これに限らず、駆動情報生成部31を別の装置とし、制御部30は、別の装置である駆動情報生成部が生成した駆動情報を読み込んでもよい。
FIG. 5 is a block diagram illustrating a functional configuration of the control unit 30 according to the present embodiment.
The control unit 30 is based on a drive information generation unit 31 that generates drive information indicating the movement direction and amount of movement of the main body 11 or the support unit 12 at a certain time, a drive information storage unit 32 that stores drive information, and the drive information. , A drive control unit 33 that controls the drive of the main body drive unit 21 and the support unit drive unit 22, and a wind speed measurement unit 34 that measures the wind speed and generates a wind speed value.
In the present embodiment, the control unit 30 includes the drive information generation unit 31, but is not limited thereto, and the drive information generation unit 31 is a separate device, and the control unit 30 is a separate device. The drive information generated by may be read.

駆動情報生成部31は、仮想日光線算出手段311と、最大受光面算出手段312と、現状座標取得手段313と、移動先座標算出手段314と、ベクトル成分算出手段315と、本体駆動情報生成手段316と、支持部駆動情報生成手段317と、を備える。
駆動情報生成部31は、予め設定された年月日の日の出時刻から日の入り時刻までの間において、予め設定された時間毎に、駆動情報を生成する。例えば、駆動情報生成部31は、ある年月日において、日の出が5時であり、日の入りが19時であれば、5時から19時の間において、1時間毎に駆動情報を生成する。
The drive information generation unit 31 includes a virtual sun ray calculation unit 311, a maximum light receiving surface calculation unit 312, a current coordinate acquisition unit 313, a movement destination coordinate calculation unit 314, a vector component calculation unit 315, and a main body drive information generation unit. 316 and support part drive information generation means 317.
The drive information generation unit 31 generates drive information for each preset time between the sunrise time and the sunset time set in advance. For example, if the sunrise is 5 o'clock and the sunset is 19:00 on a certain date, the drive information generator 31 generates drive information every hour between 5 o'clock and 19 o'clock.

仮想日光線算出手段311は、ソーラパネル100の設置位置(緯度、経度及び高度を示す設置位置情報で特定される地点)における、ある時毎の太陽の方位と高度を示す太陽位置情報に基づき、ソーラパネルの設置位置とある時における太陽とを結ぶ仮想日光線を算出する。
具体的には、仮想日光線算出手段311は、予め設定された年月日及び時刻を示す時刻情報を取得し、当該時刻情報が示す時における太陽位置情報に基づき、ソーラパネル100の設置位置の仮想日光線を算出する。
Based on the solar position information indicating the azimuth and altitude of the sun every time at the installation position of the solar panel 100 (the point specified by the installation position information indicating the latitude, longitude, and altitude) A virtual sunlight ray connecting the solar panel installation position and the sun at a certain time is calculated.
Specifically, the virtual daylight ray calculation means 311 acquires time information indicating a preset date and time, and based on the solar position information at the time indicated by the time information, the installation position of the solar panel 100 is obtained. Calculate virtual sunlight.

最大受光面算出手段312は、ソーラパネル100の設置位置を含み、仮想日光線に対して直交する最大受光面を算出する。
現状座標取得手段313は、ソーラパネル100の設置位置を基準点とした、架台における予め設定された3つの特定点の現状の座標である現状座標を取得する。
The maximum light receiving surface calculation means 312 calculates the maximum light receiving surface including the installation position of the solar panel 100 and orthogonal to the virtual sunlight.
The current coordinate acquisition unit 313 acquires current coordinates which are current coordinates of three specific points set in advance on the gantry with the installation position of the solar panel 100 as a reference point.

基準点は、任意の点とすることができる。例えば、基準点は、ソーラパネル100の受光面101を水平に配置した場合において、平面視で図4に示す本体中心線CAと支持部中心線CBとが交差する点をとおる垂直線と、ソーラパネル100の受光面101を水平に配置した場合における受光面101と、の交差点とすることができる。
また、3つの特定点は、例えば、ソーラパネル100の受光面101における任意の点とすることができる。
The reference point can be an arbitrary point. For example, when the light receiving surface 101 of the solar panel 100 is horizontally disposed, the reference point is a vertical line passing through a point where the main body center line CA and the support center line CB shown in FIG. When the light receiving surface 101 of the panel 100 is horizontally arranged, it can be an intersection with the light receiving surface 101.
Further, the three specific points can be arbitrary points on the light receiving surface 101 of the solar panel 100, for example.

移動先座標算出手段314は、設置位置を基準点とした、各特定点の可動範囲における経路と最大受光面算出手段312が算出した最大受光面との交差点の座標である移動先座標を算出する。特定点の可動範囲における経路とは、ソーラパネル100が固定された本体11及び支持部12が、本体駆動手段21及び支持部駆動手段22により回動されたときに、特定点が描く経路である。   The destination coordinate calculation unit 314 calculates a destination coordinate that is a coordinate of an intersection between the path in the movable range of each specific point and the maximum light receiving surface calculated by the maximum light receiving surface calculating unit 312 with the installation position as a reference point. . The path in the movable range of the specific point is a path drawn by the specific point when the main body 11 and the support unit 12 to which the solar panel 100 is fixed are rotated by the main body drive unit 21 and the support unit drive unit 22. .

ここで、現状座標取得手段313が取得する特定点の現状の座標とは、例えば、駆動情報生成部31が1時間毎に駆動情報を生成する場合であれば、7時の駆動情報を生成する処理では、6時の駆動情報を生成する処理によって移動先座標算出手段314が算出した移動先座標である。   Here, the current coordinate of the specific point acquired by the current coordinate acquisition unit 313 is, for example, when the drive information generation unit 31 generates drive information every hour, generates drive information at 7 o'clock. In the process, it is the movement destination coordinates calculated by the movement destination coordinate calculation means 314 by the process of generating the driving information at 6 o'clock.

ベクトル成分算出手段315は、現状座標取得手段313が取得した現状座標から移動先座標算出手段314が算出した移動先座標に向かうベクトルのX成分とY成分を算出する。   The vector component calculation unit 315 calculates an X component and a Y component of a vector from the current coordinates acquired by the current coordinate acquisition unit 313 toward the movement destination coordinates calculated by the movement destination coordinate calculation unit 314.

本体駆動情報生成手段316は、ベクトル成分算出手段315が算出したX成分の方向を本体11の移動方向とし、X成分の長さを本体11の移動量とし、本体駆動手段21の駆動を制御するための駆動情報を生成する。また、本体駆動情報生成手段316は、生成した駆動情報に、当該駆動情報を生成したときに仮想日光線算出手段311が用いた時間情報を対応付けて、駆動情報記憶部32に記憶する。   The body drive information generation unit 316 controls the drive of the body drive unit 21 by setting the X component direction calculated by the vector component calculation unit 315 as the movement direction of the body 11 and the length of the X component as the movement amount of the body 11. Drive information is generated. In addition, the main body drive information generation unit 316 stores the generated drive information in the drive information storage unit 32 in association with the time information used by the virtual daylight calculation unit 311 when the drive information is generated.

支持部駆動情報生成手段317は、ベクトル成分算出手段315が算出したY成分の方向を本体11及び支持部12の移動方向とし、Y成分の長さを本体11及び支持部12の移動量とし、支持部駆動手段22の駆動を制御するための駆動情報を生成する。また、支持部駆動情報生成手段317は、生成した駆動情報に、当該駆動情報を生成したときに仮想日光線算出手段311が用いた時間情報を対応付けて、駆動情報記憶部32に記憶する。   The support unit drive information generation unit 317 sets the Y component direction calculated by the vector component calculation unit 315 as the movement direction of the main body 11 and the support unit 12, and sets the Y component length as the movement amount of the main body 11 and the support unit 12. Drive information for controlling the drive of the support unit drive unit 22 is generated. Further, the support unit drive information generation unit 317 stores the generated drive information in the drive information storage unit 32 in association with the time information used by the virtual daylight calculation unit 311 when the drive information is generated.

駆動情報記憶部32は、時間情報に対応付けられた、本体駆動情報生成手段316及び支持部駆動情報生成手段317が生成した駆動情報を記憶する。
また、駆動情報記憶部32は、強風時又は夜間(降雪期を除く)に、読み出される特定駆動情報を記憶する。特定駆動情報は、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる駆動情報である。また、本実施形態において、夜間とは、日の入り時刻から日の出時刻までの間を言う。
The drive information storage unit 32 stores the drive information generated by the main body drive information generation unit 316 and the support unit drive information generation unit 317 associated with the time information.
In addition, the drive information storage unit 32 stores specific drive information that is read during strong winds or at night (except during the snowing season). The specific drive information is drive information for arranging the light receiving surface 101 of the solar panel 100 in a horizontal plane or an elevation angle range of 10 degrees. Moreover, in this embodiment, night means the time from sunset time to sunrise time.

なお、本実施形態において、特定駆動情報は、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる駆動情報としているが、特定駆動情報は、ソーラパネル用架台駆動装置1の設置場所に応じて、受光面101の仰角を適した角度にしてもよい。例えば、特定駆動情報は、ソーラパネル用架台駆動装置1の設置場所が傾斜地であれば、風が斜面に沿って吹く場合が多いので、受光面101を当該傾斜地の、例えば、平均地盤面と平行して配置させる駆動情報としてもよい。   In the present embodiment, the specific drive information is drive information for arranging the light receiving surface 101 of the solar panel 100 in a horizontal plane or an elevation angle of 10 degrees, but the specific drive information is the solar panel gantry drive device 1. The elevation angle of the light receiving surface 101 may be set to an appropriate angle depending on the installation location. For example, if the installation location of the solar panel gantry drive device 1 is inclined, the specific drive information often blows along the slope, so that the light receiving surface 101 is parallel to the inclined ground, for example, the average ground surface. It is good also as the drive information arrange | positioned.

駆動制御部33は、絶対時刻を取得する時刻取得手段331と、例外的駆動をするか否かを判定する判定手段332と、本体駆動手段21の駆動を制御する本体駆動制御手段333と、支持部駆動手段22の駆動を制御する支持部駆動制御手段334と、を備える。   The drive control unit 33 includes a time acquisition unit 331 that acquires absolute time, a determination unit 332 that determines whether or not to perform exceptional driving, a main body drive control unit 333 that controls driving of the main body driving unit 21, and a support And a support part drive control means 334 for controlling the drive of the part drive means 22.

時刻取得手段331は、タイマーで構成され、現在の絶対時刻(年月日及び時刻)を取得する。なお、時刻取得手段331は、標準電波の送信局から送信される原子時計による年月日及び時刻情報のデジタル信号を受信して、現在の絶対時刻を取得してもよい。   The time acquisition unit 331 includes a timer and acquires the current absolute time (year / month / day and time). Note that the time acquisition unit 331 may acquire a current absolute time by receiving a digital signal of date and time information from an atomic clock transmitted from a standard radio wave transmission station.

判定手段332は、風速計測部34が生成した風速値が、予め設定された閾値以上か否かを判定する。
また、判定手段332は、時刻取得手段331が取得した現在の絶対時刻が、夜間であるか否かを判定する。また、判定手段332は、時刻取得手段331が取得した現在の絶対時刻が、予め設定された降雪期(例えば、11月から3月)に含まれるか否かを判定する。
The determination unit 332 determines whether or not the wind speed value generated by the wind speed measuring unit 34 is greater than or equal to a preset threshold value.
The determination unit 332 determines whether or not the current absolute time acquired by the time acquisition unit 331 is nighttime. The determination unit 332 determines whether or not the current absolute time acquired by the time acquisition unit 331 is included in a preset snowfall period (for example, from November to March).

本体駆動制御手段333は、時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき本体駆動手段21の駆動を制御し、本体11に固定されたソーラパネル100の受光面101を太陽に対面させて配置させる。   The main body drive control means 333 reads drive information corresponding to the current absolute time acquired by the time acquisition means 331 from the drive information storage unit 32, controls the drive of the main body drive means 21 based on the drive information, and controls the main body 11. The light receiving surface 101 of the fixed solar panel 100 is arranged facing the sun.

また、本体駆動制御手段333は、判定手段332により風速値が閾値以上であると判定された場合、又は、判定手段332により現在の絶対時刻が、予め設定された夜間に含まれると判定され且つ降雪期に含まれないと判定された場合には、特定駆動情報を駆動情報記憶部32から読み出し、本体駆動手段21の駆動を制御し、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる。   Further, the main body drive control means 333 determines that the current absolute time is included in the preset night time when the determination means 332 determines that the wind speed value is equal to or greater than the threshold, or the determination means 332 If it is determined that it is not included in the snow season, the specific drive information is read from the drive information storage unit 32, the drive of the main body drive means 21 is controlled, and the light receiving surface 101 of the solar panel 100 is set to a horizontal plane or an elevation angle of 10 degrees. It arranges in the range.

また、本体駆動制御手段333は、判定手段332により現在の絶対時刻が、予め設定された夜間且つ降雪期に含まれると判定された場合には、時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき本体駆動手段21の駆動を制御するとともに、ソーラパネル100の受光面101の仰角が50度以上80度以下の範囲に配置されるように調整する。   In addition, the main body drive control unit 333 determines that the current absolute time is included in the preset nighttime and snowfall period by the determination unit 332 to the current absolute time acquired by the time acquisition unit 331. The corresponding drive information is read from the drive information storage unit 32, and the drive of the main body drive means 21 is controlled based on the drive information, and the elevation angle of the light receiving surface 101 of the solar panel 100 is arranged in the range of 50 degrees to 80 degrees. Adjust so that.

支持部駆動制御手段334は、時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき支持部駆動手段22の駆動を制御し、本体11に固定されたソーラパネル100の受光面101を太陽に対面させて配置させる。   The support unit drive control unit 334 reads drive information corresponding to the current absolute time acquired by the time acquisition unit 331 from the drive information storage unit 32, and controls the drive of the support unit drive unit 22 based on the drive information. 11 is arranged so that the light receiving surface 101 of the solar panel 100 fixed to 11 faces the sun.

また、支持部駆動制御手段334は、判定手段332により風速値が閾値以上であると判定された場合、又は、判定手段332により現在の絶対時刻が、予め設定された夜間に含まれると判定され且つ降雪期に含まれないと判定された場合には、特定駆動情報を駆動情報記憶部32から読み出し、支持部駆動手段22の駆動を制御し、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる。   Further, the support unit drive control unit 334 determines that the current absolute time is included in the preset nighttime when the determination unit 332 determines that the wind speed value is equal to or greater than the threshold. If it is determined that it is not included in the snow season, the specific driving information is read from the driving information storage unit 32, the driving of the support unit driving means 22 is controlled, and the light receiving surface 101 of the solar panel 100 is set to a horizontal plane or an elevation angle. It arrange | positions in the range of 10 degree | times.

また、支持部駆動制御手段334は、判定手段332により現在の絶対時刻が、予め設定された夜間且つ降雪期に含まれると判定された場合には、時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき支持部駆動手段22の駆動を制御するとともに、ソーラパネル100の受光面101の仰角が50度以上80度以下の範囲に配置されるように調整する。   In addition, the support unit drive control unit 334 determines that the current absolute time acquired by the time acquisition unit 331 when the determination unit 332 determines that the current absolute time is included in the preset nighttime and snowfall season. Is read from the drive information storage unit 32, the drive of the support unit drive unit 22 is controlled based on the drive information, and the elevation angle of the light receiving surface 101 of the solar panel 100 is in the range of 50 degrees to 80 degrees. Adjust to be placed.

なお、図5に示した機能構成を示すブロック図は、あくまでも一例であり、一つの機能部を分割したり、複数の機能部をまとめて一つの機能部として構成してもよい。各機能部は、制御部30に内蔵されたCPU(Central Processing Unit)が、ROM(Read Only Memory)またはハードディスク等の記憶装置に格納されたコンピュータ・プログラムを読み出し、CPUにより実行されるコンピュータ・プログラムが、記憶装置に格納されたデータベース(DB;Data Base)やメモリ上の記憶領域からテーブル等の必要なデータを読み書きし、場合によっては、関連するハードウェア(例えば、入出力装置、表示装置、通信インターフェース装置)を制御することによって実現される。   The block diagram illustrating the functional configuration illustrated in FIG. 5 is merely an example, and one functional unit may be divided or a plurality of functional units may be configured as one functional unit. Each functional unit is a computer program that is executed by the CPU by a CPU (Central Processing Unit) built in the control unit 30 reading a computer program stored in a storage device such as a ROM (Read Only Memory) or a hard disk. Reads and writes necessary data such as a table from a database (DB; Data Base) stored in a storage device or a storage area on a memory, and in some cases, related hardware (for example, an input / output device, a display device, This is realized by controlling the communication interface device.

次に、図5の機能構成により実現される駆動情報生成処理について説明する。
図6は、図5の駆動情報生成部31が実行する駆動情報生成処理の流れを説明するフローチャートである。
Next, drive information generation processing realized by the functional configuration of FIG. 5 will be described.
FIG. 6 is a flowchart for explaining the flow of drive information generation processing executed by the drive information generation unit 31 in FIG.

ステップS1において、仮想日光線算出手段311は、ソーラパネル100の設置位置における、ある時毎の太陽の方位と高度を示す太陽位置情報に基づき、ソーラパネルの設置位置とある時における太陽とを結ぶ仮想日光線を算出する。   In step S <b> 1, the virtual daylight calculation means 311 connects the solar panel installation position to the sun at a certain time based on the solar position information indicating the azimuth and altitude of the sun at every hour at the installation position of the solar panel 100. Calculate virtual sunlight.

ステップS2において、最大受光面算出手段312は、ソーラパネル100の設置位置を含み、仮想日光線に対して直交する最大受光面を算出する。
ステップS3において、現状座標取得手段313は、ソーラパネル100の設置位置を基準点とした、架台における予め設定された3つの特定点の現状の座標である現状座標を取得する。
In step S <b> 2, the maximum light receiving surface calculation unit 312 calculates the maximum light receiving surface that includes the installation position of the solar panel 100 and is orthogonal to the virtual sunlight.
In step S <b> 3, the current coordinate acquisition unit 313 acquires current coordinates that are current coordinates of three specific points set in advance on the gantry with the installation position of the solar panel 100 as a reference point.

ステップS4において、移動先座標算出手段314は、設置位置を基準点とした、各特定点の可動範囲における経路と、ステップS2において最大受光面算出手段312が算出した最大受光面との交差点の座標である移動先座標を算出する。   In step S4, the destination coordinate calculation means 314 uses the coordinates of the intersection of the path in the movable range of each specific point with the installation position as a reference point and the maximum light receiving surface calculated by the maximum light receiving surface calculation means 312 in step S2. The destination coordinate is calculated.

ステップS5において、ベクトル成分算出手段315は、ステップS3において現状座標取得手段313が取得した現状座標から、ステップS4において移動先座標算出手段314が算出した移動先座標に向かうベクトルのX成分とY成分を算出する。   In step S5, the vector component calculation unit 315 performs the X component and the Y component of the vector from the current coordinates acquired by the current coordinate acquisition unit 313 in step S3 toward the movement destination coordinates calculated by the movement destination coordinate calculation unit 314 in step S4. Is calculated.

ステップS6において、本体駆動情報生成手段316は、ステップS5においてベクトル成分算出手段315が算出したX成分の方向を本体11の移動方向とし、X成分の長さを本体11の移動量とし、本体駆動手段21の駆動を制御するための駆動情報を生成し、当該駆動情報に、ステップS1で仮想日光線算出手段311が用いた時間情報を対応付けて、駆動情報記憶部32に記憶する。   In step S6, the main body drive information generating unit 316 sets the X component direction calculated by the vector component calculating unit 315 in step S5 as the movement direction of the main body 11, the X component length as the movement amount of the main body 11, and the main body drive. Drive information for controlling the drive of the means 21 is generated, and the drive information is associated with the time information used by the virtual daylight ray calculation means 311 in step S1 and stored in the drive information storage unit 32.

ステップS7において、支持部駆動情報生成手段317は、ベクトル成分算出手段315が算出したY成分の方向を本体11及び支持部12の移動方向とし、Y成分の長さを本体11及び支持部12の移動量とし、支持部駆動手段22の駆動を制御するための駆動情報を生成し当該駆動情報に、ステップS1で仮想日光線算出手段311が用いた時間情報を対応付けて、駆動情報記憶部32に記憶する。   In step S <b> 7, the support unit drive information generation unit 317 sets the direction of the Y component calculated by the vector component calculation unit 315 as the movement direction of the main body 11 and the support unit 12, and sets the length of the Y component as the main unit 11 and the support unit 12. Drive information for controlling the drive of the support unit drive unit 22 is generated as the amount of movement, and the drive information is associated with the time information used by the virtual daylight calculation unit 311 in step S1. To remember.

次に、図5の機能構成により実現される駆動制御処理について説明する。
図7は、図5の駆動制御部33が実行する駆動制御処理の流れを説明するフローチャートである。
Next, drive control processing realized by the functional configuration of FIG. 5 will be described.
FIG. 7 is a flowchart for explaining the flow of drive control processing executed by the drive control unit 33 in FIG.

ステップS11において、判定手段332は、風速計測部34が生成した風速値が、予め設定された閾値以上か否かを判定し、閾値以上と判定した場合にはステップS17に処理を移し、閾値以上でないと判定した場合にはステップS12に処理を移す。
ステップS12において、時刻取得手段331は、現在の絶対時刻を取得する。
In step S11, the determination unit 332 determines whether or not the wind speed value generated by the wind speed measuring unit 34 is greater than or equal to a preset threshold value. If it is determined that the wind speed value is greater than or equal to the threshold value, the process proceeds to step S17. If it is determined that it is not, the process proceeds to step S12.
In step S12, the time acquisition unit 331 acquires the current absolute time.

ステップS13において、判定手段332は、ステップS12で時刻取得手段331が取得した現在の絶対時刻が、予め設定された夜間に含まれるか否かを判定し、夜間と判定した場合にはステップS16に処理を移し、夜間でないと判定した場合にはステップS14に処理を移す。   In step S13, the determination unit 332 determines whether or not the current absolute time acquired by the time acquisition unit 331 in step S12 is included in the preset night, and if it is determined to be night, the process proceeds to step S16. If it is determined that it is not nighttime, the process proceeds to step S14.

ステップS14において、本体駆動制御手段333は、ステップS12で時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき本体駆動手段21の駆動を制御する。   In step S14, the body drive control unit 333 reads drive information corresponding to the current absolute time acquired by the time acquisition unit 331 in step S12 from the drive information storage unit 32, and drives the body drive unit 21 based on the drive information. To control.

ステップS15において、支持部駆動制御手段334は、ステップS12で時刻取得手段331が取得した現在の絶対時刻に応じた駆動情報を駆動情報記憶部32から読み出し、当該駆動情報に基づき支持部駆動手段22の駆動を制御する。   In step S15, the support unit drive control unit 334 reads drive information corresponding to the current absolute time acquired by the time acquisition unit 331 in step S12 from the drive information storage unit 32, and the support unit drive unit 22 based on the drive information. Control the drive.

ステップS16において、判定手段332は、ステップS12で時刻取得手段331が取得した現在の絶対時刻が、予め設定された降雪期に含まれるか否かを判定し、降雪期と判定した場合にはステップS19に処理を移し、降雪期でないと判定した場合にはステップS17に処理を移す。   In step S16, the determination unit 332 determines whether or not the current absolute time acquired by the time acquisition unit 331 in step S12 is included in the preset snowfall season. The process moves to S19, and if it is determined that it is not the snowing season, the process moves to step S17.

ステップS17において、本体駆動制御手段333は、特定駆動情報を駆動情報記憶部32から読み出し、本体駆動手段21の駆動を制御し、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる。   In step S17, the body drive control unit 333 reads the specific drive information from the drive information storage unit 32, controls the drive of the body drive unit 21, and sets the light receiving surface 101 of the solar panel 100 to a horizontal plane or an elevation angle of 10 degrees. Arrange.

ステップS18において、支持部駆動制御手段334は、特定駆動情報を駆動情報記憶部32から読み出し、支持部駆動手段22の駆動を制御し、ソーラパネル100の受光面101を水平面又は仰角が10度の範囲に配置させる。   In step S18, the support unit drive control unit 334 reads the specific drive information from the drive information storage unit 32, controls the drive of the support unit drive unit 22, and sets the light receiving surface 101 of the solar panel 100 to a horizontal plane or an elevation angle of 10 degrees. Place in the range.

ステップS19において、本体駆動制御手段333は本体駆動手段21の駆動を制御し、支持部駆動制御手段334は支持部駆動手段22の駆動を制御し、ソーラパネル100の受光面101の仰角が50度以上80度以下の範囲に配置されるように調整する。   In step S19, the main body drive control means 333 controls the drive of the main body drive means 21, the support portion drive control means 334 controls the drive of the support portion drive means 22, and the elevation angle of the light receiving surface 101 of the solar panel 100 is 50 degrees. It adjusts so that it may arrange | position in the range below 80 degree | times.

上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェアにより実行させることもできる。
即ち、図5の機能構成は例示に過ぎず、特に限定されない。即ち、上述した一連の処理を全体として実行できる機能が制御部に備えられていれば足り、この機能を実現するためにどのような機能ブロックを用いるのかは特に図5の例に限定されない。
また、1つの機能ブロックは、ハードウェア単体で構成してもよいし、ソフトウェア単体で構成してもよいし、それらの組み合わせで構成してもよい。
The series of processes described above can be executed by hardware or can be executed by software.
That is, the functional configuration of FIG. 5 is merely an example, and is not particularly limited. That is, it is sufficient that the control unit has a function capable of executing the above-described series of processing as a whole, and what functional block is used to realize this function is not particularly limited to the example of FIG.
In addition, one functional block may be constituted by hardware alone, software alone, or a combination thereof.

一連の処理をソフトウェアにより実行させる場合には、そのソフトウェアを構成するプログラムが、コンピュータ等にネットワークや記録媒体からインストールされる。
コンピュータは、専用のハードウェアに組み込まれているコンピュータであってもよい。また、コンピュータは、各種のプログラムをインストールすることで、各種の機能を実行することが可能なコンピュータ、例えば汎用のパーソナルコンピュータであってもよい。
When a series of processing is executed by software, a program constituting the software is installed on a computer or the like from a network or a recording medium.
The computer may be a computer incorporated in dedicated hardware. The computer may be a computer capable of executing various functions by installing various programs, for example, a general-purpose personal computer.

このようなプログラムを含む記録媒体は、制御部30とは別にユーザに配布されるリムーバブルメディアにより構成されるだけでなく、制御部30に予め組み込まれた状態でユーザに提供される記録媒体等で構成される。リムーバブルメディアは、例えば、磁気ディスク(フロッピディスクを含む)、光ディスク、または光磁気ディスク等により構成される。光ディスクは、例えば、CD−ROM(Compact Disk−Read Only Memory),DVD(Digital Versatile Disk)等により構成される。光磁気ディスクは、MD(Mini−Disk)等により構成される。また、制御部30に予め組み込まれた状態でユーザに提供される記録媒体は、例えば、プログラムが記録されているROMや、駆動情報記憶部32に含まれるハードディスク等で構成される。   The recording medium including such a program is not only configured by a removable medium distributed to the user separately from the control unit 30, but also a recording medium provided to the user in a state of being incorporated in the control unit 30 in advance. Composed. The removable medium is composed of, for example, a magnetic disk (including a floppy disk), an optical disk, a magneto-optical disk, or the like. The optical disk is composed of, for example, a CD-ROM (Compact Disk-Read Only Memory), a DVD (Digital Versatile Disk), or the like. The magneto-optical disk is configured by an MD (Mini-Disk) or the like. Further, the recording medium provided to the user in a state of being incorporated in advance in the control unit 30 is configured by, for example, a ROM in which a program is recorded, a hard disk included in the drive information storage unit 32, or the like.

なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的或いは個別に実行される処理をも含むものである。   In the present specification, the step of describing the program recorded on the recording medium is not limited to the processing performed in time series along the order, but is not necessarily performed in time series, either in parallel or individually. The process to be executed is also included.

以上、本発明のいくつかの実施形態について説明したが、これらの実施形態は、例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態を取ることが可能であり、さらに、本発明の要旨を逸脱しない範囲で、省略や置換等種々の変更を行うことができる。これら実施形態やその変形は、本明細書等に記載された発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment is only an illustration and does not limit the technical scope of this invention. The present invention can take other various embodiments, and various modifications such as omission and replacement can be made without departing from the gist of the present invention. These embodiments and modifications thereof are included in the scope and gist of the invention described in this specification and the like, and are included in the invention described in the claims and the equivalent scope thereof.

10 ソーラパネル用架台
11 本体
12 支持部
13 基台部
101 受光面
111 本体回動軸
121 支持部回動軸
DESCRIPTION OF SYMBOLS 10 Solar panel mount 11 Main body 12 Support part 13 Base part 101 Light-receiving surface 111 Main body rotation axis 121 Support part rotation axis

Claims (6)

ソーラパネルを支持するソーラパネル用架台であって、
ソーラパネルが固定される本体と、
前記ソーラパネルにおける太陽光を受光する受光面に対して平行して延びる本体回動軸を中心に、前記本体を回動自在に軸支する支持部と、
前記ソーラパネルの前記受光面に平行して延び、前記本体回動軸と直交する方向に延びる支持部回動軸を中心に、前記支持部を回動自在に軸支する基台部と、
を備えるソーラパネル用架台。
A solar panel mount for supporting the solar panel,
A main body to which the solar panel is fixed;
A support part that pivotally supports the main body about a main body rotation axis that extends parallel to a light receiving surface that receives sunlight in the solar panel;
A base portion that pivotally supports the support portion around a support portion rotation axis that extends parallel to the light receiving surface of the solar panel and extends in a direction orthogonal to the main body rotation axis;
A solar panel mount.
前記本体回動軸及び前記支持部回動軸は、前記ソーラパネルが固定された前記本体の重心をとおる垂直線と交差する請求項1に記載のソーラパネル用架台。   2. The solar panel mount according to claim 1, wherein the main body rotation shaft and the support portion rotation shaft intersect a vertical line passing through the center of gravity of the main body to which the solar panel is fixed. 請求項1又は2に記載のソーラパネル用架台と、
前記本体に接続され、前記本体を回動させる本体駆動手段と、
前記支持部に接続され、前記支持部を回動させる支持部駆動手段と、
前記本体駆動手段及び前記支持部駆動手段の駆動を制御する駆動制御手段と、を備えるソーラパネル用架台駆動装置であって、
前記駆動制御手段は、
前記ソーラパネルの設置位置における、ある時毎の太陽の方位と高度を示す太陽位置情報に基づき算出された、前記本体又は前記支持部の移動方向と移動量を示す駆動情報に基づき前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、
前記本体に固定された前記ソーラパネルの前記受光面を太陽に対面させて配置させるソーラパネル用架台駆動装置。
The solar panel mount according to claim 1 or 2,
A main body driving means connected to the main body for rotating the main body;
A support drive means connected to the support and rotating the support;
A drive control means for controlling the drive of the main body drive means and the support section drive means, and a solar panel gantry drive device comprising:
The drive control means includes
The main body driving means based on driving information indicating the moving direction and moving amount of the main body or the support part, calculated based on solar position information indicating the sun's orientation and altitude at every hour at the solar panel installation position. And controlling the driving of the support unit driving means,
A solar panel gantry driving device for arranging the light receiving surface of the solar panel fixed to the main body so as to face the sun.
風速を計測し、風速値を生成する風速計測手段と、
前記風速計測手段が生成した前記風速値が、予め設定された閾値以上か否かを判定する風速判定手段と、を更に備え、
前記駆動制御手段は、前記風速判定手段により前記風速値が前記閾値以上であると判定された場合、前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、前記ソーラパネルの前記受光面を水平面又は仰角が10度の範囲に配置させる請求項3に記載のソーラパネル用架台駆動装置。
Wind speed measuring means for measuring wind speed and generating wind speed values;
Wind speed determination means for determining whether or not the wind speed value generated by the wind speed measurement means is greater than or equal to a preset threshold value,
The drive control means controls the drive of the main body drive means and the support drive means when the wind speed determination means determines that the wind speed value is equal to or greater than the threshold value, and controls the light receiving surface of the solar panel. The gantry driving device for a solar panel according to claim 3, wherein the horizontal surface or the elevation angle is arranged in a range of 10 degrees.
前記駆動制御手段は、予め設定された降雪期において、前記本体駆動手段及び前記支持部駆動手段の駆動を制御し、前記ソーラパネルの前記受光面を仰角が50度以上80度以下の範囲に配置させる請求項3又は4に記載のソーラパネル用架台駆動装置。   The drive control means controls the drive of the main body drive means and the support portion drive means in a preset snow season, and the light receiving surface of the solar panel is arranged in a range of an elevation angle of 50 degrees to 80 degrees. The solar panel mount driving device according to claim 3 or 4. 請求項3に記載のソーラパネル用架台駆動装置を制御するコンピュータを、
前記太陽位置情報に基づき、前記ソーラパネルの前記設置位置とある時における太陽とを結ぶ仮想日光線を算出する仮想日光線算出手段、
前記設置位置を含み、前記仮想日光線に対して直交する最大受光面を算出する最大受光面算出手段、
前記設置位置を基準点とした、架台における特定点の現状の座標である現状座標を取得する現状座標取得手段、
前記設置位置を基準点とした、前記特定点の可動範囲における経路と前記最大受光面算出手段が算出した前記最大受光面との交差点の座標である移動先座標を算出する移動先座標算出手段、
前記現状座標取得手段が取得した前記現状座標から前記移動先座標算出手段が算出した移動先座標に向かうベクトルのX成分とY成分を算出するベクトル成分算出手段、
前記ベクトル成分算出手段が算出した前記X成分の方向を前記本体の移動方向とし、前記X成分の長さを前記本体の移動量とし、前記本体駆動手段の駆動を制御するための前記駆動情報を生成する本体駆動情報生成手段、
前記ベクトル成分算出手段が算出した前記Y成分の方向を前記本体及び前記支持部の移動方向とし、前記Y成分の長さを前記本体及び前記支持部の移動量とし、前記支持部駆動手段の駆動を制御するための前記駆動情報を生成する支持部駆動情報生成手段、
として機能させることを特徴とするプログラム。
A computer for controlling the solar panel mount driving device according to claim 3,
Based on the sun position information, a virtual sun ray calculating means for calculating a virtual sun ray connecting the sun at a certain time with the installation position of the solar panel,
A maximum light receiving surface calculating means for calculating a maximum light receiving surface including the installation position and orthogonal to the virtual sunlight.
Current coordinate acquisition means for acquiring a current coordinate that is a current coordinate of a specific point on a gantry with the installation position as a reference point;
Destination coordinate calculating means for calculating a destination coordinate that is a coordinate of an intersection between a path in the movable range of the specific point and the maximum light receiving surface calculated by the maximum light receiving surface with the installation position as a reference point;
A vector component calculating means for calculating an X component and a Y component of a vector from the current coordinates acquired by the current coordinate acquisition means to the destination coordinates calculated by the destination coordinate calculating means;
The direction of the X component calculated by the vector component calculating means is the moving direction of the main body, the length of the X component is the moving amount of the main body, and the driving information for controlling the driving of the main body driving means is Body drive information generating means for generating,
The direction of the Y component calculated by the vector component calculation means is the movement direction of the main body and the support part, the length of the Y component is the movement amount of the main body and the support part, and the drive of the support part driving means is performed. Support unit drive information generating means for generating the drive information for controlling
A program characterized by functioning as
JP2012111598A 2012-05-15 2012-05-15 Solar panel mount, solar panel mount drive and program Active JP6156830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111598A JP6156830B2 (en) 2012-05-15 2012-05-15 Solar panel mount, solar panel mount drive and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111598A JP6156830B2 (en) 2012-05-15 2012-05-15 Solar panel mount, solar panel mount drive and program

Publications (2)

Publication Number Publication Date
JP2013239582A true JP2013239582A (en) 2013-11-28
JP6156830B2 JP6156830B2 (en) 2017-07-05

Family

ID=49764368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111598A Active JP6156830B2 (en) 2012-05-15 2012-05-15 Solar panel mount, solar panel mount drive and program

Country Status (1)

Country Link
JP (1) JP6156830B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026876U (en) * 1996-01-17 1996-07-23 ソーラーシステム株式会社 Solar panel support stand
JP2010010543A (en) * 2008-06-30 2010-01-14 Fuji Pureamu Kk Tracking system of solar power generating apparatus
US20100059043A1 (en) * 2008-09-10 2010-03-11 Paru Co., Ltd. Solar Tracking Device and Method for High-Effective Concentration Photovoltaic
US20100102201A1 (en) * 2008-10-24 2010-04-29 Emcore Solar Power, Inc. Solar Tracking for Terrestrial Solar Arrays
JP2011512017A (en) * 2007-09-03 2011-04-14 柱 平 尹 SOUND TRACKING SENSOR UNIT AND SOUND TRACKING DEVICE EQUIPPED WITH THE SUN TRACKING SENSORUNITY

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026876U (en) * 1996-01-17 1996-07-23 ソーラーシステム株式会社 Solar panel support stand
JP2011512017A (en) * 2007-09-03 2011-04-14 柱 平 尹 SOUND TRACKING SENSOR UNIT AND SOUND TRACKING DEVICE EQUIPPED WITH THE SUN TRACKING SENSORUNITY
JP2010010543A (en) * 2008-06-30 2010-01-14 Fuji Pureamu Kk Tracking system of solar power generating apparatus
US20100059043A1 (en) * 2008-09-10 2010-03-11 Paru Co., Ltd. Solar Tracking Device and Method for High-Effective Concentration Photovoltaic
US20100102201A1 (en) * 2008-10-24 2010-04-29 Emcore Solar Power, Inc. Solar Tracking for Terrestrial Solar Arrays

Also Published As

Publication number Publication date
JP6156830B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
US20190107598A1 (en) Dual axis tracking method
US20230223890A1 (en) Articulating joint solar panel array
KR101195740B1 (en) Solar generating apparatus and tracking method thereof
CN201417782Y (en) Mechanism for improving power generation efficiency of solar energy photovoltaic battery components
US20090301467A1 (en) Control Method and Device for Quasi-Uniaxial Sun Chase of Solar Panels
US20130000632A1 (en) Sun tracking solar power collection system
CN101764166A (en) Solar photovoltaic tracking astronomic control system
JP2012246651A (en) Frame of panel assembly, tracking type photovoltaic power generation device and tracking type photovoltaic power generation system
KR20110136935A (en) Photovoltaic power generation device and solar cell board adjusting method
CN101825904B (en) Tracking control method for installing bracket of solar cell module
KR20110000895A (en) Solar generating apparatus and tracking method thereof
KR102061577B1 (en) High Efficiency Solar Power Generating Apparatus Considering Users Convenience
JP2010010543A (en) Tracking system of solar power generating apparatus
JP3177911U (en) Single-axis fixed tracking solar power generator with angle adjustment function
Zulkafli et al. Dual axis solar tracking system in Perlis, Malaysia
JP3156066U (en) Movable cage
JP6156830B2 (en) Solar panel mount, solar panel mount drive and program
Basnayake et al. Smart solar tracking and on-site photovoltic efficiency measurement system
JP5576839B2 (en) Solar tracking device
JP6554248B1 (en) Mount with solar tracking function and solar power generator
Adrian et al. Autonomous dual axis solar tracking system using optical sensor and sun trajectory
KR102316939B1 (en) Solar power generation system that controls solar tracking based on big data
Katrandzhiev et al. Influence of the angle of fall of light on the photovoltaic panel and its optimization-literature review
CN2828986Y (en) Anniversary morning and night instrument
CN102749932A (en) Sun-tracking control system and method for solar streetlamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6156830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250