JP2013239569A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2013239569A
JP2013239569A JP2012111458A JP2012111458A JP2013239569A JP 2013239569 A JP2013239569 A JP 2013239569A JP 2012111458 A JP2012111458 A JP 2012111458A JP 2012111458 A JP2012111458 A JP 2012111458A JP 2013239569 A JP2013239569 A JP 2013239569A
Authority
JP
Japan
Prior art keywords
film
insulating film
main surface
semiconductor device
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012111458A
Other languages
Japanese (ja)
Inventor
Takeo Tsukamoto
丈夫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2012111458A priority Critical patent/JP2013239569A/en
Publication of JP2013239569A publication Critical patent/JP2013239569A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a problem that a slit-like hole is formed on a surface when an insulation film is embedded in a groove of a high aspect ratio with good coverage, and a composition used in CMP (Chemical Mechanical Polishing), a polished and removed object and other residues are likely to remain in the hole when the surface is planarized by CMP and the residues contribute to dust emission in the subsequent process.SOLUTION: A semiconductor device manufacturing method comprises: forming a groove 2T in an annular shape when viewed from above on a first principal surface of a substrate 1; forming a polysilicon film 202 in the groove; forming a second insulation film 203 having a seam 204 and a recess 205 on a surface; converting an upper part of the polysilicon film 202 to a first insulation film 206 by oxidation to eliminate the seam 204 and make the recess 205 smaller; and subsequently planarizing the substrate 1 to a surface to form an insulating separation part 2 without a recess.

Description

本発明は、半導体装置及びその製造方法に関し、詳しくは、半導体基板を貫通する貫通電極を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a through electrode penetrating a semiconductor substrate and a manufacturing method thereof.

近年、半導体装置の高機能化、多様化に伴い、複数の半導体チップを縦方向に積層して集積化した半導体装置が提案されている。このような半導体装置では、各半導体チップの半導体基板を貫通する貫通電極(Through Silicon Via:TSVと称す)によって各半導体チップ間の電気的導通を図るように構成されている。   2. Description of the Related Art In recent years, semiconductor devices in which a plurality of semiconductor chips are stacked and integrated in the vertical direction have been proposed with the increasing functionality and diversification of semiconductor devices. In such a semiconductor device, each semiconductor chip is configured to be electrically connected by a through electrode (Through Silicon Via: TSV) penetrating the semiconductor substrate of each semiconductor chip.

一方、TSVは半導体基板を貫通して形成されるために、半導体基板とTSV間の絶縁を図る必要がある。そこで、TSVの周りに環状の絶縁分離部(絶縁リングという)を設け、素子形成領域の半導体層と分離することが提案されている(特許文献1)。   On the other hand, since the TSV is formed through the semiconductor substrate, it is necessary to provide insulation between the semiconductor substrate and the TSV. In view of this, it has been proposed to provide a ring-shaped insulating isolation portion (referred to as an insulating ring) around the TSV to isolate it from the semiconductor layer in the element formation region (Patent Document 1).

特許文献1では、全てのプロセスの最初の工程で、シリコン基板の素子形成面側から深さ方向に環状の溝(トレンチ)を掘り、このトレンチを絶縁膜で埋め込むことで絶縁リングを形成する。その後、基板表面への素子形成、配線層形成および表面電極形成工程などを経た後、シリコン基板を裏面側から研削して薄板化する。このとき絶縁リングの底部が基板裏面から露出するまで裏面研削することで、絶縁リングがシリコン基板を表面から裏面まで貫通した構造となる。そして、絶縁リングの内側に、シリコン基板を貫通するように、裏面側からTSVを形成する。   In Patent Document 1, in the first step of all the processes, an annular groove (trench) is dug in the depth direction from the element formation surface side of the silicon substrate, and the trench is filled with an insulating film to form an insulating ring. Thereafter, after the element formation on the substrate surface, the wiring layer formation, the surface electrode formation step, and the like, the silicon substrate is ground from the back side to be thinned. At this time, by grinding the back surface until the bottom of the insulating ring is exposed from the back surface of the substrate, the insulating ring penetrates the silicon substrate from the front surface to the back surface. Then, a TSV is formed from the back side so as to penetrate the silicon substrate inside the insulating ring.

また、絶縁リングを形成するための溝のアスペクト比の増加を抑えるために、幅広に形成したリング状の溝にポリシリコン膜を溝を埋設しない膜厚で形成し、内側を熱酸化する方法が提案されている(特許文献2)。特許文献2の形成方法によれば、シリコン基板にリング状の分離溝(溝幅約5μm)を形成した後、CVD法により約2μmの多結晶シリコン膜をコンフォーマルに形成する。そして、この多結晶シリコン膜を熱酸化して厚さ約0.8μm程度のシリコン熱酸化膜を形成する。その後、CVD法によりシリコン酸化膜を形成して、隙間を埋設する(以上、〔0021〕〜〔0025〕段落参照)。ここで、多結晶シリコン膜を約0.8μm程度のシリコン熱酸化膜を形成する工程では、溝内の両側壁で合わせて約1.6μm程度のシリコン熱酸化膜で埋設されたことになる。一般的な熱酸化では、約半分が元のシリコン側に形成され、残り半分は元のシリコンを膨張させる方向に形成される。従って、分離溝内に残る隙間は約200nm幅であり、これをCVDシリコン酸化膜で埋設することになる。   In order to suppress an increase in the aspect ratio of the groove for forming the insulating ring, there is a method in which a polysilicon film is formed in a wide ring-shaped groove with a film thickness that does not bury the groove, and the inside is thermally oxidized. It has been proposed (Patent Document 2). According to the formation method of Patent Document 2, after forming a ring-shaped separation groove (groove width of about 5 μm) on a silicon substrate, a polycrystalline silicon film of about 2 μm is conformally formed by a CVD method. The polycrystalline silicon film is thermally oxidized to form a silicon thermal oxide film having a thickness of about 0.8 μm. Thereafter, a silicon oxide film is formed by a CVD method to fill the gap (see the paragraphs [0021] to [0025] above). Here, in the step of forming the silicon thermal oxide film having a thickness of about 0.8 μm, the polycrystalline silicon film is buried with a silicon thermal oxide film having a thickness of about 1.6 μm in total on both side walls in the trench. In general thermal oxidation, about half is formed on the original silicon side, and the other half is formed in the direction of expanding the original silicon. Accordingly, the gap remaining in the separation groove has a width of about 200 nm and is buried with a CVD silicon oxide film.

特開2007−123857号公報JP 2007-123857 A 特開2008−251964号公報JP 2008-251964 A

上記の絶縁リングは、例えば、深さ40〜50μm、幅2〜3μm(アスペクト比13〜25)のトレンチ(以下、TSVトレンチと記載)をシリコン基板に形成し、そこに酸化シリコン膜などの絶縁膜を埋め込む。最後に、化学機械研磨法(Chemical Mechanical Polishing:CMP)によって基板表面に堆積した絶縁膜を除去して完成する。この工程では、上記のように、厚さ数μmという厚い酸化シリコン膜を、深さ数十μmという深いTSVトレンチ内に形成しなければならず、膜厚のばらつきが大きく、また、埋設性が低くなり得る。特にカバレッジ性の悪い方法で酸化シリコン膜を堆積すると、TSVトレンチの開口部が先に閉塞して大きな空隙(ボイド)が形成されてしまう。一方、カバレッジ性良く酸化シリコン膜を形成した場合であっても、TSVトレンチの両側壁から見た中間位置には、両側壁から成長した酸化シリコン膜の接合面(シーム)が形成される。シーム部では微視的には小さな空隙(ボイド)が含まれ得る。このようなシームの上部では、特許文献1の図9に示されているようにTSVトレンチ開口付近で広がってスリット状の空孔(凹部)を形成する。そして、CMPにて基板表面の酸化シリコン膜などの絶縁膜を研磨した後にも、絶縁リング表面部に環状のスリットとして残る。   In the insulating ring, for example, a trench (hereinafter referred to as a TSV trench) having a depth of 40 to 50 μm and a width of 2 to 3 μm (aspect ratio 13 to 25) is formed in a silicon substrate, and an insulating material such as a silicon oxide film is formed there. Embed the membrane. Finally, the insulating film deposited on the substrate surface is removed by chemical mechanical polishing (CMP) to complete the process. In this step, as described above, a thick silicon oxide film having a thickness of several μm must be formed in a deep TSV trench having a depth of several tens of μm, resulting in large variations in film thickness and embeddability. Can be low. In particular, when a silicon oxide film is deposited by a method having poor coverage, the opening of the TSV trench is closed first and a large void is formed. On the other hand, even when the silicon oxide film is formed with good coverage, a junction surface (seam) of the silicon oxide film grown from both side walls is formed at an intermediate position viewed from both side walls of the TSV trench. In the seam portion, microscopically small voids can be included. In the upper part of such a seam, as shown in FIG. 9 of Patent Document 1, a slit-like hole (concave portion) is formed in the vicinity of the TSV trench opening. Even after polishing an insulating film such as a silicon oxide film on the surface of the substrate by CMP, it remains as an annular slit on the surface of the insulating ring.

本発明者の検討によれば、上記のように絶縁リング表面部に残ったスリット内には、CMP工程で用いた組成物や、研磨された除去物、その他の残渣が残り易く、このような残渣は後の工程での発塵の一原因となり得るため、改善の余地がある。   According to the study of the present inventors, the composition used in the CMP process, the polished removed material, and other residues are likely to remain in the slit remaining on the surface of the insulating ring as described above. There is room for improvement because the residue can cause dust generation in a later process.

本発明の一実施形態によれば、
基板の第1の主面に、俯瞰形状が環状となる溝を形成する工程と、
前記溝に絶縁膜を埋設し、絶縁分離部を形成する工程と、
を備え、
前記絶縁膜は、ポリシリコン膜を成膜後に少なくとも一部を酸化して形成した第1の絶縁膜と、少なくとも成膜段階で前記溝中央部表面に凹部を有して形成される第2の絶縁膜を含み、
前記ポリシリコン膜を酸化することにより、前記第2の絶縁膜の成膜段階での凹部深さを低減若しくは凹部を消滅させることを特徴とする半導体装置の製造方法、が提供される。
According to one embodiment of the present invention,
Forming a groove having a bird's-eye shape in a ring shape on the first main surface of the substrate;
Burying an insulating film in the groove and forming an insulating separation part;
With
The insulating film includes a first insulating film formed by oxidizing at least a part after forming a polysilicon film, and a second insulating film formed with a recess on the surface of the groove central portion at least in the film forming stage. Including an insulating film,
By oxidizing the polysilicon film, a method for manufacturing a semiconductor device is provided, in which the depth of the concave portion in the step of forming the second insulating film is reduced or the concave portion is eliminated.

また、本発明の別の実施形態によれば、
半導体基板の第1の主面に形成された素子形成領域と、
前記半導体基板の第1の主面から対向する第2の主面に貫通し、俯瞰形状が環状である絶縁分離部と、
前記環状の絶縁分離部に囲まれた前記半導体基板の第1の主面から対向する第2の主面に貫通し、前記第1の主面及び第2の主面の外部に露出する端子を有する貫通電極と、
を備えた半導体装置であって、
前記環状の絶縁分離部は、前記第1の主面表面に、ポリシリコン膜を酸化して形成された第1の絶縁膜と前記第1の絶縁膜とは異なる第2の絶縁膜が少なくとも露出しており、前記第2の主面に前記第1の絶縁膜が存在しないことを特徴とする半導体装置、が提供される。
Also, according to another embodiment of the present invention,
An element formation region formed on the first main surface of the semiconductor substrate;
An insulating separation portion penetrating from the first main surface of the semiconductor substrate to the second main surface facing the semiconductor substrate, and the overhead shape is annular;
Terminals penetrating through the second main surface facing the first main surface of the semiconductor substrate surrounded by the annular insulating separation portion and exposed to the outside of the first main surface and the second main surface A through electrode having,
A semiconductor device comprising:
In the annular insulating isolation part, at least a first insulating film formed by oxidizing a polysilicon film and a second insulating film different from the first insulating film are exposed on the surface of the first main surface. Thus, a semiconductor device is provided in which the first insulating film is not present on the second main surface.

本発明では、ポリシリコンを酸化して第1の絶縁膜に変換することで、第2の絶縁膜に成膜段階で形成される凹部が平坦化後にはなくなるため、後の工程での発塵を低減できる。結果として、絶縁リングを備えたTSVを有する半導体装置の製造歩留まりを向上できる。   In the present invention, the polysilicon is oxidized and converted into the first insulating film, so that the concave portion formed in the second insulating film at the film formation stage disappears after the planarization. Can be reduced. As a result, the manufacturing yield of a semiconductor device having a TSV with an insulating ring can be improved.

本発明の一実施形態に係る半導体チップ50の概略断面図(a)、第1の主面側平面図(b)、第2の主面側平面図(c)を示す。A schematic sectional view (a), a first main surface side plan view (b), and a second main surface side plan view (c) of a semiconductor chip 50 according to an embodiment of the present invention are shown. (a)〜(c)は本発明の一実施形態に係る絶縁リングの製造工程を説明する工程断面図を示す。(A)-(c) shows process sectional drawing explaining the manufacturing process of the insulating ring which concerns on one Embodiment of this invention. (a)〜(c)は本発明の別の実施形態に係る絶縁リングの製造工程を説明する工程断面図を示す。(A)-(c) shows process sectional drawing explaining the manufacturing process of the insulating ring which concerns on another embodiment of this invention. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50の製造工程を説明する工程断面図を示す。Process sectional drawing explaining the manufacturing process of the semiconductor chip 50 which concerns on one Embodiment of this invention is shown. 本発明の一実施形態に係る半導体チップ50を用いた半導体モジュール100の概略断面図(a)及びその部分拡大図(b)を示す。The schematic sectional drawing (a) of the semiconductor module 100 using the semiconductor chip 50 which concerns on one Embodiment of this invention, and its partial enlarged view (b) are shown. 本発明の一実施形態例で製造された絶縁リングと貫通電極との配置を説明するもので、(a)は第1の主面からの俯瞰平面図、(b)は第2の主面からの俯瞰平面図を示す。The arrangement | positioning of the insulating ring and penetration electrode which were manufactured in the example of 1 embodiment of this invention is demonstrated, (a) is an overhead plan view from the 1st main surface, (b) is from the 2nd main surface. An overhead view of FIG. 本発明の別の実施形態例で製造された絶縁リングと貫通電極との配置を説明するもので、(a)は第1の主面からの俯瞰平面図、(b)は第2の主面からの俯瞰平面図を示す。The arrangement | positioning of the insulating ring and penetration electrode which were manufactured in another example of this invention is demonstrated, (a) is an overhead plan view from the 1st main surface, (b) is the 2nd main surface. An overhead view from above is shown.

以下、図面を参照して本発明の実施の形態について説明するが、本発明はこれらの実施の形態にのみ限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these embodiments.

図1は、本発明が適用されるTSV構造を備えた半導体装置(半導体チップ50)の一例を示すもので、(a)はTSV構造部分を示す概略断面図、(b)、(c)は半導体チップ50の第1の主面側と第2の主面側の概略平面図をそれぞれ示す。図1(a)は(b)、(c)のA1−A1での断面図に相当する。   1A and 1B show an example of a semiconductor device (semiconductor chip 50) having a TSV structure to which the present invention is applied. FIG. 1A is a schematic cross-sectional view showing a TSV structure portion, and FIGS. Schematic plan views of the first main surface side and the second main surface side of the semiconductor chip 50 are respectively shown. FIG. 1A corresponds to a cross-sectional view taken along line A1-A1 in FIGS.

半導体基板1には、TSVを素子領域(DA)から絶縁する俯瞰形状が環状の絶縁分離部(絶縁リングと称す)2が設けられており、絶縁リング2で囲まれたTSV形成領域にシード層18とCuプラグ20からなるTSV22が形成される。この例では、TSV22は外部端子(バンプ部)と一体に形成される例を示しているが、別体に形成されていても良い。TSV22のバンプ部表面には半田膜(Sn−Ag合金層)21が形成される。   The semiconductor substrate 1 is provided with an insulating isolation portion (referred to as an insulating ring) 2 having an annular overhead shape for insulating the TSV from the element region (DA), and a seed layer is formed in the TSV formation region surrounded by the insulating ring 2. A TSV 22 composed of 18 and a Cu plug 20 is formed. In this example, although TSV22 shows the example formed integrally with an external terminal (bump part), you may form separately. A solder film (Sn—Ag alloy layer) 21 is formed on the surface of the bump portion of the TSV 22.

一方、半導体素子5の形成される第1の主面側には、層間絶縁膜6中に導体配線及びプラグからなる配線構造7が形成される。層間絶縁膜6は酸化シリコン等で形成する。配線構造7の最下層は、TSV22と接続するパッド電極であり、例えば、タングステンなどの金属で形成される。上層の配線層はアルミニウムなどの導電体で形成することができる。配線構造7の最上部は表面保護膜(窒化シリコン膜8a及びパッシベーション膜8b)8で覆われている。表面保護膜8には配線構造6の最上部を露出する開口が形成されており、開口内にバンプ電極12が形成されている。バンプ電極12は、シード層8,主体となるCu層10、Ni層11で構成されている。ここで、裏面のTSV22から第1の主面側のバンプ電極12までをTSV構造23とする。   On the other hand, on the first main surface side where the semiconductor element 5 is formed, a wiring structure 7 including a conductor wiring and a plug is formed in the interlayer insulating film 6. The interlayer insulating film 6 is formed of silicon oxide or the like. The lowermost layer of the wiring structure 7 is a pad electrode connected to the TSV 22 and is formed of a metal such as tungsten, for example. The upper wiring layer can be formed of a conductor such as aluminum. The uppermost part of the wiring structure 7 is covered with a surface protective film (silicon nitride film 8a and passivation film 8b) 8. An opening exposing the uppermost portion of the wiring structure 6 is formed in the surface protective film 8, and a bump electrode 12 is formed in the opening. The bump electrode 12 includes a seed layer 8, a main Cu layer 10, and a Ni layer 11. Here, the TSV structure 23 extends from the TSV 22 on the back surface to the bump electrode 12 on the first main surface side.

図1に示す例では、半導体チップ50の中央部に2列にTSV構造23を複数配列した構造を示しているが、これに限定されるものではない。   In the example shown in FIG. 1, a structure in which a plurality of TSV structures 23 are arranged in two rows at the center of the semiconductor chip 50 is shown, but the present invention is not limited to this.

(実施形態例1)
次に本発明の一実施形態に係る絶縁リング2の製造方法について、図2を参照して説明する。本実施形態に係る絶縁リング2は、半導体基板1に形成した環状の溝2T内にライナー窒化シリコン膜201を成膜した後、ポリシリコン膜202を成膜する。その後、溝2T内及び周辺部以外のポリシリコン膜202は除去しておく。続いて、全面に酸化シリコン膜(NSG膜:第2の絶縁膜)203を成膜する。NSG膜203は、TEOSを原料とする低圧CVD法など、カバレッジ性の良好な成膜法で形成する。この成膜段階では、従来と同様、溝2Tの幅の中央部にシーム204が形成され、シーム204に繋がって表面に窪んだ凹部205を形成している(図2(a))。
(Example 1)
Next, the manufacturing method of the insulating ring 2 which concerns on one Embodiment of this invention is demonstrated with reference to FIG. In the insulating ring 2 according to the present embodiment, the liner silicon nitride film 201 is formed in the annular groove 2T formed in the semiconductor substrate 1, and then the polysilicon film 202 is formed. Thereafter, the polysilicon film 202 other than in the trench 2T and the peripheral portion is removed. Subsequently, a silicon oxide film (NSG film: second insulating film) 203 is formed on the entire surface. The NSG film 203 is formed by a film formation method with good coverage such as a low pressure CVD method using TEOS as a raw material. In this film formation stage, as in the conventional case, a seam 204 is formed at the center of the width of the groove 2T, and a concave portion 205 that is connected to the seam 204 and is depressed on the surface is formed (FIG. 2A).

次に、酸化雰囲気中で熱処理を行い、ポリシリコン膜202の一部を酸化して、酸化シリコン膜(第1の絶縁膜)206に変換する。ポリシリコンから酸化シリコンへの変換に伴い、体積が膨張するため、その上のNSG膜203を押し上げ、酸化シリコン膜206間のシーム204は消滅し、凹部205も小さくなる(図2(b))。熱処理は、通常、NSG膜203の緻密化のために実施される熱処理と同等の条件で実施することができ、工程として増加するものではないが、処理時間等は適宜調整される。半導体基板1表面はライナー窒化シリコン膜201で保護されているため、酸化されない。   Next, heat treatment is performed in an oxidizing atmosphere to oxidize part of the polysilicon film 202 and convert it into a silicon oxide film (first insulating film) 206. Since the volume expands with the conversion from polysilicon to silicon oxide, the NSG film 203 thereon is pushed up, the seam 204 between the silicon oxide films 206 disappears, and the recesses 205 also become smaller (FIG. 2B). . The heat treatment can be performed under the same conditions as the heat treatment performed for densification of the NSG film 203 and does not increase as a process, but the processing time and the like are appropriately adjusted. Since the surface of the semiconductor substrate 1 is protected by the liner silicon nitride film 201, it is not oxidized.

その後、CMPにより平坦化する。図2(a)でポリシリコン膜202を溝2T周辺部以外除去したのは、ポリシリコン膜202から熱酸化により形成された酸化シリコン膜(第1の絶縁膜)206は、NSG膜203よりもCMP負荷が大きいため、必要部分以外を除去することで、CMP負荷の上昇を抑制するためである。この結果、図2(c)に示すように、絶縁リング2の表面は凹部205がなく、研磨残渣が残らず、後工程での発塵を防止することができる。また、基板表面近傍のシーム204も消滅しており、TSV領域が陥没或いは隆起するという問題も改善することができる。   Thereafter, planarization is performed by CMP. In FIG. 2A, the polysilicon film 202 is removed except for the periphery of the trench 2T because the silicon oxide film (first insulating film) 206 formed by thermal oxidation from the polysilicon film 202 is more than the NSG film 203. This is because the CMP load is large, and by removing the parts other than the necessary portion, the increase in the CMP load is suppressed. As a result, as shown in FIG. 2 (c), the surface of the insulating ring 2 has no recess 205, no polishing residue remains, and dust generation in the subsequent process can be prevented. In addition, the seam 204 near the substrate surface has also disappeared, and the problem that the TSV region is depressed or raised can be improved.

(実施形態例2)
図3に本発明の別の実施形態例に係る絶縁リング2の製造方法を示す。本実施形態例では、半導体基板1に形成した環状の溝2T内にライナー窒化シリコン膜201、NSG膜(第2の絶縁膜)203を従来同様に成膜する。その後、ポリシリコン膜202を成膜し、溝2T上及び周辺部以外のポリシリコン膜202は除去しておく。ポリシリコン膜202はNSG膜203の凹部205を埋設するように形成される(図3(a))。
Embodiment 2
FIG. 3 shows a method for manufacturing an insulating ring 2 according to another embodiment of the present invention. In this embodiment, the liner silicon nitride film 201 and the NSG film (second insulating film) 203 are formed in the annular groove 2T formed in the semiconductor substrate 1 as in the conventional case. Thereafter, a polysilicon film 202 is formed, and the polysilicon film 202 other than on the trench 2T and the peripheral portion is removed. The polysilicon film 202 is formed so as to fill the recess 205 of the NSG film 203 (FIG. 3A).

次に、酸化雰囲気中で熱処理を行い、ポリシリコン膜202を酸化して、酸化シリコン膜206に変換する。ポリシリコンから酸化シリコンへの変換に伴い、体積が膨張するため、NSG膜203と酸化シリコン膜(第1の絶縁膜)206が強固に接合される(図3(b))。   Next, heat treatment is performed in an oxidizing atmosphere to oxidize the polysilicon film 202 and convert it into a silicon oxide film 206. Since the volume expands with the conversion from polysilicon to silicon oxide, the NSG film 203 and the silicon oxide film (first insulating film) 206 are firmly bonded (FIG. 3B).

その後、CMPにより平坦化する。この結果、図3(c)に示すように、絶縁リング2の表面は凹部205がなく、研磨残渣が残らず、後工程での発塵を防止することができる。また、シーム204の上部の基板表面近傍はポリシリコンから変換された酸化シリコン膜206で強固に接合されており、TSV領域が陥没或いは隆起するという問題も改善することができる。   Thereafter, planarization is performed by CMP. As a result, as shown in FIG. 3C, the surface of the insulating ring 2 has no recess 205 and no polishing residue remains, and dust generation in the subsequent process can be prevented. Further, the vicinity of the substrate surface above the seam 204 is firmly bonded by a silicon oxide film 206 converted from polysilicon, and the problem that the TSV region is depressed or raised can be improved.

(適用例)
半導体チップ50の製造方法及びこの半導体チップ50を複数積層した半導体モジュール100の製造方法について説明する。図4〜9は、図1に示す半導体チップ50の製造工程を示す工程断面図であり、図10は複数の半導体チップ(50a〜50h)を積層接続し、パッケージ化した半導体モジュール100の概略断面図(a)及びその部分拡大図(b)を示す。
(Application example)
A manufacturing method of the semiconductor chip 50 and a manufacturing method of the semiconductor module 100 in which a plurality of the semiconductor chips 50 are stacked will be described. 4 to 9 are process cross-sectional views illustrating the manufacturing process of the semiconductor chip 50 shown in FIG. 1, and FIG. 10 is a schematic cross-sectional view of the packaged semiconductor module 100 in which a plurality of semiconductor chips (50a to 50h) are stacked and connected. The figure (a) and its partial enlarged view (b) are shown.

まず、図4に示すように、半導体基板1の第1の主面側から絶縁リング2を形成するための第1の溝2Tを形成する。第1の溝2Tの形状としては、例えば、幅2μm、深さ50μmとすることができる。第1の溝2Tの形成に先立って、半導体基板1の表面を熱酸化してハードマスクとなる酸化シリコン膜3を形成する。酸化シリコン膜3のパターニングは、不図示のフォトレジストを用いて第1の溝2Tのパターンをフォトリソグラフィーにより形成し、ドライエッチングにより、酸化シリコン膜3をパターン化した後、引き続いてドライエッチングにより半導体基板1をエッチングして所望の深さの第1の溝2Tを形成する。   First, as shown in FIG. 4, a first groove 2 </ b> T for forming the insulating ring 2 from the first main surface side of the semiconductor substrate 1 is formed. The shape of the first groove 2T can be, for example, a width of 2 μm and a depth of 50 μm. Prior to the formation of the first trench 2T, the surface of the semiconductor substrate 1 is thermally oxidized to form a silicon oxide film 3 serving as a hard mask. The patterning of the silicon oxide film 3 is performed by forming a pattern of the first groove 2T by photolithography using a photoresist (not shown), patterning the silicon oxide film 3 by dry etching, and subsequently performing semiconductor etching by dry etching. The substrate 1 is etched to form a first groove 2T having a desired depth.

次に、図5に示すように、実施形態例1又は2で示した方法で第1の溝2T内に絶縁膜を埋設して絶縁リング2を形成する。   Next, as shown in FIG. 5, the insulating ring 2 is formed by embedding an insulating film in the first groove 2T by the method shown in the first or second embodiment.

続いて、図6に示すように、半導体基板1の第1の主面上に常法に従って半導体素子5を形成し、層間絶縁膜6中に配線構造7を形成する。さらに、DRAMを含む半導体装置ではキャパシタも形成する。表面保護膜8として窒化シリコン膜8aとポリイミド膜(パッシベーション膜)8bを形成した後、バンプ電極用の開口部を形成する。開口部の形成は、まず、ポリイミド膜8bをパターニングし、さらに、フォトレジストを用いたフォトリソグラフィ工程により窒化シリコン膜8aをエッチングする。その後、第1の主面側全面に金属シード層9(Cu/Ti)をスパッタ法で形成する。   Subsequently, as shown in FIG. 6, the semiconductor element 5 is formed on the first main surface of the semiconductor substrate 1 according to a conventional method, and the wiring structure 7 is formed in the interlayer insulating film 6. Further, a capacitor is also formed in a semiconductor device including a DRAM. After forming a silicon nitride film 8a and a polyimide film (passivation film) 8b as the surface protective film 8, an opening for a bump electrode is formed. The opening is formed by first patterning the polyimide film 8b and further etching the silicon nitride film 8a by a photolithography process using a photoresist. Thereafter, a metal seed layer 9 (Cu / Ti) is formed on the entire surface of the first main surface by sputtering.

次に、図7に示すように、バンプ電極形成用のレジストパターン10を形成した後、Cu膜11を電解メッキにより形成する。さらに、導電性保護膜としてNi/Au膜12を電解メッキ法により形成する。   Next, as shown in FIG. 7, after forming a resist pattern 10 for forming a bump electrode, a Cu film 11 is formed by electrolytic plating. Further, a Ni / Au film 12 is formed as an electroconductive protective film by an electrolytic plating method.

バンプ電極形成用のレジストパターン10を除去し、さらに、表面に露出する金属シード層9を除去することでバンプ電極13が形成される。半導体基板の第1の主面側全面に接着剤層14を塗布し、さらに光熱変換層(Light To Heat Converter; LTHC)15を介して基板サポートシステム(Wafer Support System: WSS)16に貼り付ける。WSS16としては、透明なガラス板や硬質樹脂板を使用できる。この後に、半導体基板1の第1の主面に対向する第2の主面(裏面)側を所定の厚さ(40〜100μm程度)となるまで研削(バックグラインド)して薄肉化すると共に、先に形成しておいた絶縁リング2の裏面側の端部を露出させる。研削は、荒削り、精削り、CMPの順で行った。   The bump electrode 13 is formed by removing the resist pattern 10 for forming the bump electrode and further removing the metal seed layer 9 exposed on the surface. An adhesive layer 14 is applied to the entire first main surface side of the semiconductor substrate, and further attached to a substrate support system (WSS) 16 via a light-to-heat converter (LTHC) 15. As WSS16, a transparent glass plate or a hard resin plate can be used. After this, the second main surface (back surface) side facing the first main surface of the semiconductor substrate 1 is ground (back grind) to a predetermined thickness (about 40 to 100 μm) and thinned, The end portion on the back surface side of the insulating ring 2 previously formed is exposed. Grinding was performed in the order of rough cutting, fine cutting, and CMP.

次に、WSS16に保持したまま、裏面側に裏面保護膜17を例えば、窒化シリコン膜で形成する。さらに、TSVのための開口を、絶縁リング2で囲まれた領域内にフォトリソグラフィ技術及びドライエッチング技術により形成する。この時、配線構造7の最下層のタングステンパッドがエッチングストッパとなる。開口形成後、第2の主面全面に金属シード層(Cu/Ti)18をスパッタ法で形成する(図8)。   Next, the back surface protection film 17 is formed of, for example, a silicon nitride film on the back surface side while being held by the WSS 16. Further, an opening for TSV is formed in a region surrounded by the insulating ring 2 by a photolithography technique and a dry etching technique. At this time, the lowermost tungsten pad of the wiring structure 7 serves as an etching stopper. After the opening is formed, a metal seed layer (Cu / Ti) 18 is formed over the entire second main surface by sputtering (FIG. 8).

次に、TSV形成用のフォトレジスト膜19を金属シード層18上に形成し、形成した開口部内及び開口部周囲のフォトレジスト膜19を除去する。開口部周囲のフォトレジスト膜19は、TSVと一体に形成するバンプ部の形状に合わせて適宜調整される。電解メッキ法によりCuプラグ20を形成し、続いて、半田膜(Sn−Ag合金層)21を電解メッキ法により形成する(図9)。   Next, a photoresist film 19 for forming TSV is formed on the metal seed layer 18, and the photoresist film 19 in and around the formed opening is removed. The photoresist film 19 around the opening is appropriately adjusted according to the shape of the bump formed integrally with the TSV. A Cu plug 20 is formed by electrolytic plating, and then a solder film (Sn—Ag alloy layer) 21 is formed by electrolytic plating (FIG. 9).

その後、TSV形成用のフォトレジスト膜20を除去し、基板裏面に露出する金属シード層18を除去する。これにより、半田膜21を表面に有するTSV22が形成される。次に、半田膜21がTSV22のバンプ部中央で盛り上がる(凸状)ようにアニールを行う(バンプリフロー)。バンプリフローでのアニール温度は、半田が溶融する温度以上であればよく、通常は、300℃以下で実施される。さらに、LTHC層15にレーザーを照射してWSS16を剥離し、接着剤層14を除去する。最後に、ダイシングを行い、個々の半導体チップ50に切り分ける。   Thereafter, the photoresist film 20 for forming TSV is removed, and the metal seed layer 18 exposed on the back surface of the substrate is removed. Thereby, the TSV 22 having the solder film 21 on the surface is formed. Next, annealing is performed (bump reflow) so that the solder film 21 rises (convex) in the center of the bump portion of the TSV 22. The annealing temperature in the bump reflow may be equal to or higher than the temperature at which the solder melts, and is usually performed at 300 ° C. or lower. Further, the LTHC layer 15 is irradiated with a laser to peel off the WSS 16 and the adhesive layer 14 is removed. Finally, dicing is performed to divide the semiconductor chips 50 into individual pieces.

個々の半導体チップ(50a〜50h)は図10に示すように積層し、加圧状態で半田膜21をリフローする。ここでは、上記で説明した方法で製造し、同じ構造のTSV構造を備えた半導体チップを接合した状態を示す。   The individual semiconductor chips (50a to 50h) are stacked as shown in FIG. 10, and the solder film 21 is reflowed in a pressurized state. Here, a state in which semiconductor chips manufactured by the method described above and having a TSV structure having the same structure are joined is shown.

各半導体チップの第1の主面側のバンプ電極13(Ni/Au膜12)と、裏面側のTSV22のバンプ部(半田膜21)との位置合わせを行い、一定の圧力で押し付けながら、半田の融点以上で300℃程度までの温度を加えて、半田膜21をリフローさせる。以上により、TSV構造同士が接合される。接合時に加える圧力(荷重)は、TSV構造、特に配線構造7に対して影響しない範囲で実施する。例えば、1つのバンプ電極あたり10〜150g程度となるように設定すればよい。また、加熱の手段は、リフロー炉やオーブンの使用、ハロゲンランプの熱輻射、加熱体の接触等から選択すればよく、特に限定されない。   The bump electrode 13 (Ni / Au film 12) on the first main surface side of each semiconductor chip and the bump portion (solder film 21) of the TSV 22 on the back surface side are aligned and soldered while pressing with a constant pressure. The solder film 21 is reflowed by applying a temperature equal to or higher than the melting point and up to about 300 ° C. As described above, the TSV structures are joined to each other. The pressure (load) applied at the time of joining is performed within a range that does not affect the TSV structure, particularly the wiring structure 7. For example, what is necessary is just to set so that it may become about 10-150g per bump electrode. The heating means may be selected from the use of a reflow oven or oven, the heat radiation of a halogen lamp, the contact of a heating body, etc., and is not particularly limited.

最後に、各半導体チップ間にアンダーフィル樹脂24を充てんする。続いて、最下層の半導体チップ50aのTSV23の外部端子をパッケージ基板26に接続し、モールド樹脂25、ソルダーボールからなるボールグリッドアレイ(BGA)27を形成することで、図11に示す半導体モジュール100が完成する。図10(a)は、半導体チップ50a〜50hの8個のチップを積層した場合を示しており、図10(b)は一部分の拡大図を示している。   Finally, underfill resin 24 is filled between the semiconductor chips. Subsequently, the external terminal of the TSV 23 of the lowermost semiconductor chip 50a is connected to the package substrate 26, and a ball grid array (BGA) 27 made of a mold resin 25 and solder balls is formed, whereby the semiconductor module 100 shown in FIG. Is completed. FIG. 10A shows a case where eight chips of the semiconductor chips 50a to 50h are stacked, and FIG. 10B shows a partially enlarged view.

図11及び図12を用いて、実施形態例1及び2の方法で製造された絶縁リングと貫通電極との配置を説明する。これらの図において、(a)は第1の主面(素子形成面)から見た俯瞰平面図、(b)は第2の主面(裏面)から見た俯瞰平面図を示す。実施形態例1で形成した絶縁リング2(図11)では、第1の主面側はライナー窒化シリコン膜201,酸化シリコン膜206で囲まれたNSG膜203となり、NSG膜203表面のシーム204はほぼ消滅している。第2の主面側は、ライナー窒化シリコン膜201,ポリシリコン膜202で囲まれたNSG膜203となり、シーム204も観測される。実施形態例2で形成した絶縁リング2(図12)では、第1の主面側は外側からライナー窒化シリコン膜201,NSG膜203、酸化シリコン膜206となり、シーム204は観測されない。第2の主面側はライナー窒化シリコン膜201で囲まれたNSG膜203となり、シーム204も観測される。いずれの場合も、第2の主面側には熱酸化により形成した酸化シリコン膜206は存在しない。但し、図11(b)の場合、ポリシリコン膜202の表面には自然酸化膜が形成されていてもよい。   The arrangement of the insulating ring and the through electrode manufactured by the methods of Embodiments 1 and 2 will be described with reference to FIGS. 11 and 12. In these drawings, (a) is an overhead plan view viewed from the first main surface (element forming surface), and (b) is an overhead plan view viewed from the second main surface (back surface). In the insulating ring 2 (FIG. 11) formed in the first embodiment, the first main surface side is the NSG film 203 surrounded by the liner silicon nitride film 201 and the silicon oxide film 206, and the seam 204 on the surface of the NSG film 203 is Almost disappeared. The second main surface side becomes the NSG film 203 surrounded by the liner silicon nitride film 201 and the polysilicon film 202, and the seam 204 is also observed. In the insulating ring 2 (FIG. 12) formed in Embodiment 2, the first main surface side becomes the liner silicon nitride film 201, the NSG film 203, and the silicon oxide film 206 from the outside, and the seam 204 is not observed. The second main surface side becomes the NSG film 203 surrounded by the liner silicon nitride film 201, and the seam 204 is also observed. In any case, the silicon oxide film 206 formed by thermal oxidation does not exist on the second main surface side. However, in the case of FIG. 11B, a natural oxide film may be formed on the surface of the polysilicon film 202.

1 半導体基板
2 絶縁リング
2T トレンチ
201 ライナー窒化シリコン膜
202 ポリシリコン膜
203 NSG膜
204 シーム
205 凹部
206 酸化シリコン膜
3 ハードマスク層
4 保護膜
5 半導体素子
6 層間絶縁膜
7 配線構造
8 表面保護膜
8a 窒化シリコン膜
8b パッシベーション膜(ポリイミド膜)
9 金属シード層
10 レジストパターン
11 Cu膜
12 Ni/Au膜
13 バンプ電極
14 接着剤層
15 光熱変換層
16 基板サポートシステム
17 裏面保護膜
18 金属シード層
19 フォトレジスト膜
20 Cuプラグ
21 半田膜
22 TSV
23 貫通電極
24 アンダーフィル樹脂
25 モールド樹脂
26 パッケージ基板
27 BGA
50 半導体チップ
100 半導体モジュール
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Insulation ring 2T Trench 201 Liner silicon nitride film 202 Polysilicon film 203 NSG film 204 Seam 205 Recess 206 Silicon oxide film 3 Hard mask layer 4 Protection film 5 Semiconductor element 6 Interlayer insulation film 7 Wiring structure 8 Surface protection film 8a Silicon nitride film 8b Passivation film (polyimide film)
9 Metal seed layer 10 Resist pattern 11 Cu film 12 Ni / Au film 13 Bump electrode 14 Adhesive layer 15 Photothermal conversion layer 16 Substrate support system 17 Back surface protective film 18 Metal seed layer 19 Photoresist film 20 Cu plug 21 Solder film 22 TSV
23 Through-electrode 24 Underfill resin 25 Mold resin 26 Package substrate 27 BGA
50 Semiconductor chip 100 Semiconductor module

Claims (19)

基板の第1の主面に、俯瞰形状が環状となる溝を形成する工程と、
前記溝に絶縁膜を埋設し、絶縁分離部を形成する工程と、
を備え、
前記絶縁膜は、ポリシリコン膜を成膜後に少なくとも一部を酸化して形成した第1の絶縁膜と、少なくとも成膜段階で前記溝中央部表面に凹部を有して形成される第2の絶縁膜を含み、
前記ポリシリコン膜を酸化することにより、前記第2の絶縁膜の成膜段階での凹部深さを低減若しくは凹部を消滅させることを特徴とする半導体装置の製造方法。
Forming a groove having a bird's-eye shape in a ring shape on the first main surface of the substrate;
Burying an insulating film in the groove and forming an insulating separation part;
With
The insulating film includes a first insulating film formed by oxidizing at least a part after forming a polysilicon film, and a second insulating film formed with a recess on the surface of the groove central portion at least in the film forming stage. Including an insulating film,
A method of manufacturing a semiconductor device, comprising: oxidizing the polysilicon film to reduce a depth of a concave portion in a film formation step of the second insulating film or to eliminate the concave portion.
前記基板の第1の主面上及び前記溝内に前記溝を閉塞しない膜厚でポリシリコン膜を形成する工程と、
前記ポリシリコン膜上に前記第2の絶縁膜を形成する工程と、
前記溝上部の前記ポリシリコン膜を酸化して前記第1の絶縁膜に変換する工程と、
前記基板上の前記第2の絶縁膜及び第1の絶縁膜を除去し、平坦化する工程と
を含む請求項1に記載の半導体装置の製造方法。
Forming a polysilicon film on the first main surface of the substrate and in the groove so as not to close the groove;
Forming the second insulating film on the polysilicon film;
Oxidizing the polysilicon film in the upper part of the groove to convert it into the first insulating film;
The method for manufacturing a semiconductor device according to claim 1, further comprising: removing the second insulating film and the first insulating film on the substrate and planarizing the substrate.
前記第2の絶縁膜を形成する前に、前記溝内及び溝周辺部以外の前記ポリシリコン膜を除去する工程を有する請求項2に記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 2, further comprising a step of removing the polysilicon film other than the inside of the groove and the periphery of the groove before forming the second insulating film. 前記基板の第1の主面上及び前記溝内に前記溝を充填して前記第2の絶縁膜を形成する工程と、
前記第2の絶縁膜の溝中央部の凹部に該凹部を充填してポリシリコン膜を形成する工程と、
前記ポリシリコン膜を酸化して前記第1の絶縁膜に変換する工程と、
前記基板上の前記第2の絶縁膜及び第1の絶縁膜を除去し、平坦化する工程と
を含む請求項1に記載の半導体装置の製造方法。
Forming the second insulating film by filling the groove on the first main surface of the substrate and in the groove;
Forming a polysilicon film by filling the concave portion in the central portion of the groove of the second insulating film with the concave portion;
Oxidizing the polysilicon film to convert it to the first insulating film;
The method for manufacturing a semiconductor device according to claim 1, further comprising: removing the second insulating film and the first insulating film on the substrate and planarizing the substrate.
前記溝上及び溝周辺部以外の前記ポリシリコン膜を除去する工程を有する請求項4に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 4, further comprising a step of removing the polysilicon film other than on the groove and the periphery of the groove. 前記第2の絶縁膜はノンドープ酸化シリコンを主体とする請求項1乃至5のいずれか1項に記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 1, wherein the second insulating film is mainly composed of non-doped silicon oxide. 前記溝内に最初に窒化シリコンを主体とする第3の絶縁膜を形成する工程を有する請求項1乃至6のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, further comprising a step of forming a third insulating film mainly composed of silicon nitride in the trench. 前記基板の第1の主面に対向する第2の主面を研削して、前記絶縁分離部底面を露出させる工程を有する請求項1乃至7のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, further comprising a step of grinding a second main surface opposite to the first main surface of the substrate to expose the bottom surface of the insulating separation portion. . 前記環状の絶縁分離部で囲まれた領域に、前記第2の主面を研削した前記基板を前記第1の主面から前記第2の主面に貫通する貫通電極を形成する工程を有する請求項8に記載の半導体装置の製造方法。   And forming a through electrode penetrating from the first main surface to the second main surface in the region surrounded by the annular insulating separation portion. Item 9. A method for manufacturing a semiconductor device according to Item 8. 半導体基板の第1の主面に形成された素子形成領域と、
前記半導体基板の第1の主面から対向する第2の主面に貫通し、俯瞰形状が環状である絶縁分離部と、
前記環状の絶縁分離部に囲まれた前記半導体基板の第1の主面から対向する第2の主面に貫通し、前記第1の主面及び第2の主面の外部に露出する端子を有する貫通電極と、
を備えた半導体装置であって、
前記環状の絶縁分離部は、前記第1の主面表面に、ポリシリコン膜を酸化して形成された第1の絶縁膜と前記第1の絶縁膜とは異なる第2の絶縁膜が少なくとも露出しており、前記第2の主面に前記第1の絶縁膜が存在しないことを特徴とする半導体装置。
An element formation region formed on the first main surface of the semiconductor substrate;
An insulating separation portion penetrating from the first main surface of the semiconductor substrate to the second main surface facing the semiconductor substrate, and the overhead shape is annular;
Terminals penetrating through the second main surface facing the first main surface of the semiconductor substrate surrounded by the annular insulating separation portion and exposed to the outside of the first main surface and the second main surface A through electrode having,
A semiconductor device comprising:
In the annular insulating isolation part, at least a first insulating film formed by oxidizing a polysilicon film and a second insulating film different from the first insulating film are exposed on the surface of the first main surface. The semiconductor device is characterized in that the first insulating film does not exist on the second main surface.
前記第1の絶縁膜は前記環状の絶縁分離部の内周及び外周側に形成される請求項10に記載の半導体装置。   The semiconductor device according to claim 10, wherein the first insulating film is formed on an inner periphery and an outer periphery side of the annular insulating separation portion. 前記第1の絶縁膜の下部にポリシリコン膜を有し、前記第2の絶縁膜は前記ポリシリコン膜で囲まれている請求項11に記載の半導体装置。   The semiconductor device according to claim 11, further comprising a polysilicon film below the first insulating film, wherein the second insulating film is surrounded by the polysilicon film. 前記絶縁分離部の前記第2の主面が、前記環状の絶縁分離部の内周側及び外周側に形成される前記ポリシリコン膜と該ポリシリコン膜で挟まれた前記第2の絶縁膜を含む請求項12に記載の半導体装置。   The second main surface of the insulating isolation portion includes the polysilicon film formed on the inner peripheral side and the outer peripheral side of the annular insulating isolation portion and the second insulating film sandwiched between the polysilicon films. The semiconductor device of Claim 12 containing. 前記第1の絶縁膜は前記環状の絶縁分離部の幅の中央部に環状に形成される請求項10に記載の半導体装置。   The semiconductor device according to claim 10, wherein the first insulating film is formed in an annular shape at a central portion of a width of the annular insulating separation portion. 前記第2の絶縁膜は、ノンドープ酸化シリコンを主体とする絶縁膜であることを特徴とする請求項10乃至14のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 10, wherein the second insulating film is an insulating film mainly composed of non-doped silicon oxide. 前記絶縁分離部の外周端及び内周端に窒化シリコンを主体とする第3の絶縁膜を更に有することを特徴とする請求項10乃至15のいずれか1項に記載の半導体装置。   16. The semiconductor device according to claim 10, further comprising a third insulating film mainly composed of silicon nitride at an outer peripheral end and an inner peripheral end of the insulating isolation part. 前記貫通電極は、前記半導体基板を前記第2の主面から第1の主面に貫通する銅を主体とするプラグを有する請求項1乃至16のいずれか1項に記載の半導体装置。   The semiconductor device according to claim 1, wherein the through electrode has a plug mainly composed of copper that penetrates the semiconductor substrate from the second main surface to the first main surface. 前記貫通電極の前記第1の主面及び第2の主面のいずれか一方の外部に露出する端子は表面に導電性の保護膜を有し、他方に露出する端子は表面に半田膜を有する請求項17に記載の半導体装置。   The terminal exposed to the outside of one of the first main surface and the second main surface of the through electrode has a conductive protective film on the surface, and the terminal exposed on the other has a solder film on the surface. The semiconductor device according to claim 17. 請求項10乃至18のいずれか1項に記載の半導体装置の複数を積層し、前記貫通電極により相互に接続した半導体装置。   A semiconductor device in which a plurality of the semiconductor devices according to claim 10 are stacked and connected to each other through the through electrodes.
JP2012111458A 2012-05-15 2012-05-15 Semiconductor device and manufacturing method of the same Pending JP2013239569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111458A JP2013239569A (en) 2012-05-15 2012-05-15 Semiconductor device and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111458A JP2013239569A (en) 2012-05-15 2012-05-15 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2013239569A true JP2013239569A (en) 2013-11-28

Family

ID=49764358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111458A Pending JP2013239569A (en) 2012-05-15 2012-05-15 Semiconductor device and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2013239569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062581B2 (en) 2015-07-09 2018-08-28 Samsung Electronics Co., Ltd. Methods of forming an isolation structure and methods of manufacturing a semiconductor device including the same
US10096637B2 (en) 2014-09-22 2018-10-09 Samsung Electronics Co., Ltd. Pixel for CMOS image sensor and image sensor including the same
CN112928084A (en) * 2021-01-29 2021-06-08 西安微电子技术研究所 Through silicon via adapter plate for system-in-package

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096637B2 (en) 2014-09-22 2018-10-09 Samsung Electronics Co., Ltd. Pixel for CMOS image sensor and image sensor including the same
US10062581B2 (en) 2015-07-09 2018-08-28 Samsung Electronics Co., Ltd. Methods of forming an isolation structure and methods of manufacturing a semiconductor device including the same
CN112928084A (en) * 2021-01-29 2021-06-08 西安微电子技术研究所 Through silicon via adapter plate for system-in-package

Similar Documents

Publication Publication Date Title
JP5972537B2 (en) Semiconductor device and manufacturing method thereof
US7863189B2 (en) Methods for fabricating silicon carriers with conductive through-vias with low stress and low defect density
US9190539B2 (en) Vertical conductive connections in semiconductor substrates
JP5591780B2 (en) Method for manufacturing self-aligned wafer or chip structure
JP5330863B2 (en) Manufacturing method of semiconductor device
CN102214624B (en) Semiconductor structure with through holes and manufacturing method thereof
JP5021992B2 (en) Semiconductor device and manufacturing method thereof
CN101740484B (en) Method of forming through-silicon vias
US20130015504A1 (en) Tsv structure and method for forming the same
TW201023331A (en) Semiconductor device and method for forming the same
US20100224965A1 (en) Through-silicon via structure and method for making the same
JP2007180529A (en) Semiconductor device and method of manufacturing the same
JP2011054637A (en) Semiconductor device and method of manufacturing the same
TW201027698A (en) Semiconductor device and method for forming the same
TW200414455A (en) Semiconductor device and method for manufacturing the same
TW201110294A (en) Chip package and fabrication method thereof
KR101828490B1 (en) Semiconductor devices having through electrodes and method for fabricating the same
JP6485897B2 (en) Manufacturing method of semiconductor device
JP2010080750A (en) Semiconductor device, and method of manufacturing the same
CN108172562A (en) Semiconductor device, the manufacturing method of semiconductor device and electronic equipment
JP2018129412A (en) Semiconductor device and manufacturing method thereof
JP2016157832A (en) Semiconductor device and manufacturing method of the same
JP4851163B2 (en) Manufacturing method of semiconductor device
JP2013030537A (en) Method of manufacturing semiconductor device
JP2013247139A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140414