JP2013237600A - Method for growing aluminum nitride crystal - Google Patents

Method for growing aluminum nitride crystal Download PDF

Info

Publication number
JP2013237600A
JP2013237600A JP2012113180A JP2012113180A JP2013237600A JP 2013237600 A JP2013237600 A JP 2013237600A JP 2012113180 A JP2012113180 A JP 2012113180A JP 2012113180 A JP2012113180 A JP 2012113180A JP 2013237600 A JP2013237600 A JP 2013237600A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
aluminum nitride
growth
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012113180A
Other languages
Japanese (ja)
Other versions
JP5792675B2 (en
Inventor
Yoshihiko Sho
義彦 正
Seishi Shimamura
清史 島村
Villora Encarnacion Antonia Garcia
ビジョラ エンカルナシオン アントニア ガルシア
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Original Assignee
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, National Institute for Materials Science filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012113180A priority Critical patent/JP5792675B2/en
Publication of JP2013237600A publication Critical patent/JP2013237600A/en
Application granted granted Critical
Publication of JP5792675B2 publication Critical patent/JP5792675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sublimating and growing an AlN crystal, by which a seed crystal can be held without using a holder or an adhesive, and falling of a grown aluminum nitride (AlN) crystal into a growth vessel and leakage of a raw material to the outside of the growth vessel can be prevented.SOLUTION: A method for growing an AlN crystal 24 includes: sublimating a raw material 25 filled on the high temperature part side in a growth vessel 21 constituted of a cylindrical vessel body 20, whose one end side is opened and the other end side is closed, and a cap body 22 for closing an opening part; and depositing the sublimated raw material 25 on a seed crystal 23 arranged on the low temperature part side in the growth vessel. The method is characterized by: using a seed crystal having such a size that the outer peripheral edge of the seed crystal protrudes to the outside from the opening edge part of the opening part of the cylindrical vessel body to cover the opening part of the cylindrical vessel body; at the same time, closing the opening part of the cylindrical vessel body by superposing a cap body having such a size that the cap body protrudes to the outside from the outer peripheral edge of the seed crystal on the rear surface side of the seed crystal; and sublimating the raw material to grow an AlN crystal on the surface side opposite to the rear surface side of the seed crystal.

Description

本発明は、成長容器内の高温部側に充填された原料を昇華させ、成長容器内の低温部側に配置された種結晶上に析出させて窒化アルミニウム結晶を成長させる窒化アルミニウム結晶の成長方法に係り、特に、特別な保持用部材や接着剤を用いることなく種結晶を簡便に保持でき、成長させた窒化アルミニウム結晶が種結晶と共に成長容器内に落下する現象も回避できると共に、成長容器の機密性(密閉性)が向上して成長容器外への原料漏洩も回避できる窒化アルミニウム結晶の成長方法に関するものである。   The present invention relates to a method for growing an aluminum nitride crystal by sublimating a raw material charged on a high temperature portion side in a growth vessel and depositing it on a seed crystal disposed on a low temperature portion side in the growth vessel to grow an aluminum nitride crystal. In particular, the seed crystal can be easily held without using any special holding member or adhesive, and the phenomenon that the grown aluminum nitride crystal falls into the growth vessel together with the seed crystal can be avoided. The present invention relates to a method for growing an aluminum nitride crystal that can improve confidentiality (sealing property) and avoid leakage of raw materials outside the growth vessel.

窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)およびこれ等の混晶はIII族窒化物半導体と呼ばれ、バンドギャップはInNの0.8eVからAlNの6.4eVと広範囲にわたり、赤外から可視、深紫外領域の発光デバイス用材料としての応用が可能である。特に、GaNおよびGaInN混晶が青色(白色)発光素子用材料として飛躍的な発展を遂げたことは周知の通りである。GaN系材料の発展の基盤となったのは、サファイア単結晶を基板材料とするエピタキシャル成長技術、p型ドーピングをはじめとするデバイス技術である。   Aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN) and mixed crystals thereof are called group III nitride semiconductors, and the band gap ranges from 0.8 eV for InN to 6.4 eV for AlN. It can be applied as a material for light emitting devices in the infrared, visible, and deep ultraviolet regions. In particular, it is well known that GaN and GaInN mixed crystals have made significant progress as blue (white) light emitting device materials. The basis for the development of GaN-based materials is an epitaxial growth technology using a sapphire single crystal as a substrate material, and a device technology such as p-type doping.

しかし、青色より波長が短い紫外、深紫外領域でより高効率な発光素子やレーザーダイオードを形成しようとすると、現在主流である上記サファイア単結晶基板を用いたのでは材料特性上、限界があり、ホモエピタキシャル成長、すなわちAlNやGaNといった同種材料を基板に用いる必要が出てくる。その理由として、半導体材料をデバイスとして用いる場合には、窒化物半導体に限らず薄膜構造を形成する必要があるが、薄膜の品質に大きな影響を与えるのがベースとなる基板材料の特性だからである。良質なデバイスを実現するには、良質な薄膜単結晶を成長させる必要があり、そのためには格子定数や熱膨張係数が同じである同種基板を用いるのが最良の方法である。   However, when trying to form more efficient light-emitting elements and laser diodes in the ultraviolet and deep ultraviolet regions where the wavelength is shorter than that of blue, using the sapphire single crystal substrate, which is currently mainstream, has limitations in terms of material properties, Homoepitaxial growth, that is, it is necessary to use the same kind of material as AlN or GaN for the substrate. The reason for this is that when a semiconductor material is used as a device, it is necessary to form a thin film structure as well as a nitride semiconductor, but it is the characteristics of the base substrate material that greatly affects the quality of the thin film. . In order to realize a high-quality device, it is necessary to grow a high-quality thin film single crystal. For this purpose, it is the best method to use the same type of substrate having the same lattice constant and thermal expansion coefficient.

また、作製するデバイスの種類により基板に要求される特性も異なってくる。発光デバイスの場合には光を効率的に外部に取り出すことができるように、基板材料自身がデバイス層で発光する光を吸収しない光透過特性を持つことが望ましい。また、高出力化によってデバイスの発熱が問題となる場合には、基板を通して効率的に放熱する必要があり、熱伝導率の高い基板材料が望ましい。実際に、青色レーザーダイオードの実用化のために、既にGaNの自立基板(気相成長法によってGaN厚膜の成長を行い、成長後に種基板と成長層を剥離することによって得られる基板)が開発、実用化されている。   Also, the characteristics required for the substrate vary depending on the type of device to be manufactured. In the case of a light-emitting device, it is desirable that the substrate material itself has a light transmission characteristic that does not absorb light emitted from the device layer so that light can be efficiently extracted outside. In addition, when heat generation of the device becomes a problem due to high output, it is necessary to efficiently dissipate heat through the substrate, and a substrate material having high thermal conductivity is desirable. In fact, a GaN free-standing substrate (a substrate obtained by growing a GaN thick film by vapor deposition and peeling the seed substrate and the growth layer after growth) has already been developed for the practical use of blue laser diodes. Has been put to practical use.

更に、短波長領域となる深紫外領域での次世代デバイス開発のため、AlGaN混晶のエピタキシャル成長技術やデバイス技術の開発が盛んであるが、これ等の実用化のためには良質な基板、すなわち同種基板であるAlN単結晶基板の開発が不可欠と考えられている。   Furthermore, for the development of next-generation devices in the deep ultraviolet region, which is a short wavelength region, the development of epitaxial growth technology and device technology for AlGaN mixed crystals has been actively conducted. Development of an AlN single crystal substrate, which is the same type of substrate, is considered indispensable.

ところで、AlN単結晶の成長方法には、昇華成長法、溶液成長法、塩化物気相成長法(HVPE法)、有機金属気相結晶成長法(MOVPE法)、分子ビームエピタキシャル法(MBE法)等があり、デバイス用基板の実用化に向けて様々な方法で検討が行なわれている。これに対し、GaN基板の場合は、バルク単結晶を得ることが困難なため、HVPE法等を用いた厚膜成長による自立基板技術に頼らざるを得ないのが現状で、GaAsやサファイアといった異種材料を種基板として使用せざるを得ないことから、クラックの発生や転位密度等の品質およびコストの点で限界を有する。他方、上記AlNは昇華成長法によって比較的速い成長速度を実現でき、バルク単結晶の育成が可能であるという大きな利点がある。昇華成長法はSiC単結晶の成長技術として実用化の段階にあり、AlN単結晶の成長についても、低転位密度を代表とする高品質化、コストの点で非常に有利な方法と考えられており、特許文献1や特許文献2に示されているように鋭意研究が進められている。   By the way, there are sublimation growth method, solution growth method, chloride vapor phase growth method (HVPE method), metalorganic vapor phase crystal growth method (MOVPE method), molecular beam epitaxial method (MBE method). Various methods have been studied for practical use of device substrates. On the other hand, in the case of a GaN substrate, since it is difficult to obtain a bulk single crystal, it is currently necessary to rely on a self-supporting substrate technology based on a thick film growth using the HVPE method or the like. Since the material must be used as a seed substrate, there is a limit in terms of quality and cost such as generation of cracks and dislocation density. On the other hand, AlN has a great advantage that a relatively fast growth rate can be realized by a sublimation growth method, and a bulk single crystal can be grown. The sublimation growth method is in the stage of practical application as a SiC single crystal growth technique, and AlN single crystal growth is also considered to be a very advantageous method in terms of high quality and cost, represented by low dislocation density. Therefore, as shown in Patent Document 1 and Patent Document 2, earnest research has been conducted.

但し、昇華法によるAlN単結晶成長では、種結晶となるAlN単結晶基板を得ること自体が困難なため、非特許文献1に示すように予めSiC基板上にAlN厚膜を成長させ、厚膜成長したAlN膜をSiCから分離させたものをAlN単結晶基板(シード)とし、更に厚いバルクAlN単結晶を得る方法が用いられている。すなわち、容器本体と蓋体とで構成される成長容器内において原料を昇華させ、AlN単結晶基板(シード)にAlN結晶を析出させる方法が用いられている。   However, in the AlN single crystal growth by the sublimation method, it is difficult to obtain an AlN single crystal substrate to be a seed crystal. Therefore, as shown in Non-Patent Document 1, an AlN thick film is grown on a SiC substrate in advance. A method of obtaining a thicker bulk AlN single crystal by using a grown AlN film separated from SiC as an AlN single crystal substrate (seed) is used. That is, a method is used in which a raw material is sublimated in a growth vessel composed of a vessel body and a lid, and AlN crystals are deposited on an AlN single crystal substrate (seed).

ここで、種結晶(シード)となるSiCやAlNは、成長容器内の高温側に配置された原料と対向する低温側に配置させる必要があるが、配置の方法としては低温側に配置する上記蓋体に接着剤を用いて種結晶(シード)を貼り付けるのが一般的である。そして、上述したSiCの昇華成長法では、上記蓋体を構成する黒鉛にSiC種結晶を確実に保持させるための接着剤について多くの検討がなされており(例えば特許文献3)、結晶成長後における結晶の落下防止はもちろん、結晶裏面側の昇華によるマイクロパイプ等の結晶欠陥発生の防止に対しても重要な技術となっている。   Here, SiC or AlN used as a seed crystal (seed) needs to be arranged on the low temperature side facing the raw material arranged on the high temperature side in the growth vessel. In general, a seed crystal (seed) is attached to the lid using an adhesive. And in the sublimation growth method of SiC mentioned above, many examinations are made about the adhesive agent for making the graphite which comprises the said lid hold | maintain a SiC seed crystal reliably (for example, patent document 3), and after crystal growth In addition to preventing the fall of crystals, it is an important technique for preventing the occurrence of crystal defects such as micropipes due to sublimation on the back side of the crystal.

ところで、AlN単結晶を昇華成長法により成長させる場合、成長容器を構成する黒鉛は、Alガスとの反応性並びにAlガスの透過性において適性を欠くため、炭化タンタルやタングステンといった高融点金属やその炭化物、窒化物等を用いて成長容器を構成する必要がある。そして、炭化タンタルやタングステンといった高融点金属等で構成された蓋体に種結晶となるSiCやAlNを接着させる必要があるが、適当な接着剤がないため接着強度が弱く、成長させたAlN単結晶が種結晶と共に成長容器内に落下し易い問題が存在した。また、上記蓋体、接着剤、種結晶の熱膨張係数の差異により、成長させる結晶の結晶性が悪化するという問題も存在した。   By the way, when an AlN single crystal is grown by a sublimation growth method, graphite constituting the growth vessel lacks suitability for Al gas reactivity and Al gas permeability. It is necessary to configure the growth vessel using carbide, nitride or the like. Then, it is necessary to bond SiC or AlN as a seed crystal to a lid made of a refractory metal such as tantalum carbide or tungsten, but since there is no appropriate adhesive, the bonding strength is weak and the grown AlN single unit is not suitable. There was a problem that the crystal easily dropped into the growth vessel together with the seed crystal. There is also a problem that the crystallinity of the crystal to be grown deteriorates due to the difference in thermal expansion coefficients of the lid, the adhesive, and the seed crystal.

これ等問題に対し、特許文献4では、種結晶基板の外径より小さな貫通開口を有する種結晶保持用部材を用い、接着剤を用いることなく種結晶を保持する方法を開示している。しかしながら、上記成長容器や保持用部材として用いる炭化タンタル等の高融点金属は形状精度が悪く、また、結晶成長中に変形を伴う場合がある。この場合、精度不良や変形に起因して成長容器の密閉性が損なわれ、原料の昇華漏洩による製造効率の低下や種結晶自体の昇華による消失、欠陥の導入等が起こり易い問題があった。更に、種結晶保持用部材を用いることにより成長容器のコストが高くなるといった問題も存在した。   To deal with these problems, Patent Document 4 discloses a method of holding a seed crystal without using an adhesive, using a seed crystal holding member having a through opening smaller than the outer diameter of the seed crystal substrate. However, refractory metals such as tantalum carbide used as the growth vessel and holding member have poor shape accuracy and may be deformed during crystal growth. In this case, due to inaccuracy and deformation, the sealing of the growth vessel is impaired, and there is a problem that production efficiency decreases due to sublimation leakage of the raw material, the seed crystal itself disappears due to sublimation, and defects are easily introduced. Furthermore, there has been a problem that the cost of the growth vessel is increased by using the seed crystal holding member.

特表2006−511432号公報(第1頁)JP 2006-511432 A (1st page) 特開平10−53495号公報(第1頁)Japanese Patent Laid-Open No. 10-53495 (first page) 特許第3680531号(第1〜3頁)Japanese Patent No. 3680531 (pages 1 to 3) 特開2011−132079号公報(第1頁)JP 2011-1332079 A (first page)

Yu.N.Makarov et.al,Journal of Crystal Growth 310 (2008) 881Yu.N.Makarov et.al, Journal of Crystal Growth 310 (2008) 881

本発明はこのような問題点に着目してなされたもので、その課題とするところは、特別な種結晶保持用部材や接着剤を用いることなく種結晶を簡便に保持でき、成長させた窒化アルミニウム結晶が種結晶と共に成長容器内に落下する現象も回避できると共に、成長容器の機密性(密閉性)が向上して成長容器外への原料漏洩も回避できる窒化アルミニウム結晶の昇華成長法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the seed crystal can be easily held without using a special seed crystal holding member or an adhesive, and has been grown. Providing a sublimation growth method for aluminum nitride crystals that can avoid the phenomenon of aluminum crystals falling into the growth vessel together with the seed crystal, and improve the confidentiality (sealing property) of the growth vessel and avoid leakage of raw materials outside the growth vessel. There is to do.

すなわち、請求項1に係る発明は、
一端側が開放され他端側が閉止された筒状容器本体と上記開放部を閉止する蓋体とで構成される成長容器内の高温部側に充填された原料を昇華させ、成長容器内の低温部側に配置された種結晶上に析出させて窒化アルミニウム結晶を成長させる窒化アルミニウム結晶の成長方法において、
上記筒状容器本体の開放部における開放縁部から外方へ外周縁が食み出る大きさを有する種結晶を用いて筒状容器本体の上記開放部を覆うと共に、種結晶の外周縁から外方へ食み出る大きさを有する蓋体を種結晶の裏面側に重ね合わせて筒状容器本体の開放部を閉止し、成長容器内の高温部側に充填された原料を昇華させて種結晶の上記裏面側とは反対の表面側に窒化アルミニウム結晶を成長させることを特徴とする。
That is, the invention according to claim 1
The raw material filled on the high temperature part side in the growth vessel composed of a cylindrical vessel body that is open at one end and closed at the other end and a lid that closes the open part is sublimated, and the low temperature part in the growth vessel In the method for growing an aluminum nitride crystal, the aluminum nitride crystal is grown by being deposited on a seed crystal arranged on the side,
Covering the open part of the cylindrical container body with a seed crystal having a size that the outer peripheral edge protrudes outward from the open edge of the open part of the cylindrical container body, and externally from the outer peripheral edge of the seed crystal. A lid with a size that protrudes toward the back is overlaid on the back side of the seed crystal, the open part of the cylindrical container body is closed, and the raw material filled on the high temperature part side in the growth container is sublimated to seed crystal An aluminum nitride crystal is grown on the surface side opposite to the back side.

次に、請求項2に係る発明は、
請求項1に記載の窒化アルミニウム結晶の成長方法において、
上記種結晶とその裏面側に重ね合わされた蓋体との間に充填層を形成することを特徴とし、
請求項3に係る発明は、
請求項1または2に記載の窒化アルミニウム結晶の成長方法において、
上記筒状容器本体と蓋体の材質が、炭化タンタルおよびタングステンから選ばれる少なくとも1種類であることを特徴とし、
請求項4に係る発明は、
請求項1または2に記載の窒化アルミニウム結晶の成長方法において、
上記種結晶が、炭化珪素、予め窒化アルミニウム単結晶層を表面に形成した炭化珪素、および、窒化アルミニウムから選ばれることを特徴とし、
また、請求項5に係る発明は、
請求項1〜4のいずれかに記載の窒化アルミニウム結晶の成長方法において、
上記種結晶の厚さが1mm以上であることを特徴とするものである。
Next, the invention according to claim 2
In the growth method of the aluminum nitride crystal of Claim 1,
A filling layer is formed between the seed crystal and the lid body overlapped on the back side thereof,
The invention according to claim 3
In the growth method of the aluminum nitride crystal of Claim 1 or 2,
The cylindrical container body and the lid are made of at least one material selected from tantalum carbide and tungsten,
The invention according to claim 4
In the growth method of the aluminum nitride crystal of Claim 1 or 2,
The seed crystal is selected from silicon carbide, silicon carbide having an aluminum nitride single crystal layer formed on the surface in advance, and aluminum nitride,
The invention according to claim 5
In the growth method of the aluminum nitride crystal in any one of Claims 1-4,
The seed crystal has a thickness of 1 mm or more.

本発明に係る窒化アルミニウム結晶の成長方法は、
筒状容器本体の開放部における開放縁部から外方へ外周縁が食み出る大きさを有する種結晶を用いて筒状容器本体の上記開放部を覆うと共に、種結晶の外周縁から外方へ食み出る大きさを有する蓋体を種結晶の裏面側に重ね合わせて筒状容器本体の開放部を閉止し、成長容器内の高温部側に充填された原料を昇華させて種結晶の上記裏面側とは反対の表面側に窒化アルミニウム結晶を成長させることを特徴としている。
The method for growing an aluminum nitride crystal according to the present invention includes:
Cover the open part of the cylindrical container body with a seed crystal having a size that the outer peripheral edge protrudes outward from the open edge of the open part of the cylindrical container body, and outward from the outer peripheral edge of the seed crystal. A lid with a size that protrudes to the back is overlaid on the back side of the seed crystal to close the open part of the cylindrical container body, and the raw material filled on the high temperature part side in the growth container is sublimated to An aluminum nitride crystal is grown on the surface side opposite to the back side.

そして、種結晶における外周縁を筒状容器本体の上記開放縁部から外方へ食み出させた状態で、上記種結晶における外周縁の内側近傍領域が筒状容器本体の上記開放縁部に係止されていることから、特別な種結晶保持用部材や接着剤を用いることなく種結晶を簡便に保持することが可能となる。   And in the state where the outer peripheral edge of the seed crystal protrudes outward from the open edge portion of the cylindrical container body, the inner vicinity region of the outer peripheral edge of the seed crystal is in the open edge portion of the cylindrical container body. Since it is locked, the seed crystal can be easily held without using a special seed crystal holding member or an adhesive.

また、蓋体における外周縁を種結晶の上記外周縁から外方へ食み出させた状態で、種結晶の裏面側に上記蓋体を重ね合わせていることから、種結晶の裏面側全体が蓋体により覆われるため種結晶裏面側の昇華消失を防止することが可能となる。従って、成長した窒化アルミニウム結晶が種結晶と共に成長容器内に落下することがなく、窒化アルミニウム結晶を破損させることなく回収することが可能となる。   In addition, since the lid is overlapped on the back side of the seed crystal with the outer periphery of the lid projecting outward from the outer periphery of the seed crystal, the entire back side of the seed crystal is Since it is covered with the lid, it is possible to prevent disappearance of sublimation on the back side of the seed crystal. Therefore, the grown aluminum nitride crystal does not fall into the growth vessel together with the seed crystal, and can be recovered without damaging the aluminum nitride crystal.

更に、上記種結晶における外周縁の内側近傍領域が筒状容器本体の開放縁部に係止されており、筒状容器本体の開放縁部と接する種結晶外周縁の上記内側近傍領域は筒状容器本体の開放縁部からの伝熱により加熱されて温度が高くなり、その分、他の領域より昇華による消失が多くなるため、上記開放縁部と接する種結晶の上記内側近傍領域に筒状容器本体の開放縁部形状に沿った凹部が形成される。そして、この凹部に筒状容器本体の開放縁部が嵌合して筒状容器本体と種結晶との間に生じる隙間を閉止することになるため、成長容器の機密性(密閉性)が向上して成長容器外への原料の昇華漏洩が低減し、窒化アルミニウム結晶の結晶性と成長効率を向上させることが可能となる。   Further, the inner vicinity region of the outer periphery of the seed crystal is locked to the open edge of the cylindrical container body, and the inner vicinity region of the outer periphery of the seed crystal in contact with the open edge of the cylindrical container body is cylindrical. Heated by heat transfer from the open edge of the container body, the temperature becomes high, and disappearance due to sublimation is more than that in other areas, so a cylindrical shape is formed in the area near the inside of the seed crystal in contact with the open edge. A recess is formed along the open edge shape of the container body. And since the open edge part of a cylindrical container main body fits into this recessed part and the clearance gap produced between a cylindrical container main body and a seed crystal will be closed, the confidentiality (sealing property) of a growth container improves. Thus, sublimation leakage of the raw material to the outside of the growth vessel is reduced, and the crystallinity and growth efficiency of the aluminum nitride crystal can be improved.

接着剤を用いて種結晶が成長容器の蓋体に保持される従来の昇華成長法による窒化アルミニウム結晶の成長方法を示す説明図。Explanatory drawing which shows the growth method of the aluminum nitride crystal by the conventional sublimation growth method by which a seed crystal is hold | maintained at the cover body of a growth container using an adhesive agent. 本発明に係る窒化アルミニウム結晶の成長方法を示す説明図。Explanatory drawing which shows the growth method of the aluminum nitride crystal concerning this invention. 本発明の変形例に係る窒化アルミニウム結晶の成長方法を示す説明図。Explanatory drawing which shows the growth method of the aluminum nitride crystal which concerns on the modification of this invention. 本発明の他の変形例に係る窒化アルミニウム結晶の成長方法を示す説明図。Explanatory drawing which shows the growth method of the aluminum nitride crystal which concerns on the other modification of this invention.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、図1は接着剤を用いて種結晶が成長容器の蓋体に保持される従来例に係る窒化アルミニウム結晶の成長方法を示す説明図である。   First, FIG. 1 is an explanatory view showing a growth method of an aluminum nitride crystal according to a conventional example in which a seed crystal is held on a lid of a growth vessel using an adhesive.

成長容器1は、図1に示すように一端側が開放され他端側が閉止された炭化タンタル等から成る筒状容器本体10と、この容器本体10の上記開放部を閉止する炭化タンタル等から成る蓋体12とで構成されており、成長容器1の外周近傍に配設された加熱装置9によって成長容器1内に高温部7と低温部8の温度分布が形成されている。また、成長容器1の高温部7側には原料6が充填されると共に、成長容器1の低温部8側には種結晶4が配置されている。尚、種結晶4は、上述したように接着剤3を用いて上記蓋体12に接着し保持されている。そして、成長容器1の高温部7側に充填された上記原料6を昇華させ、成長容器1の低温部8側に配置した種結晶4上にAlNを析出させて成長結晶5を成長させるものである。   As shown in FIG. 1, the growth vessel 1 has a cylindrical vessel body 10 made of tantalum carbide or the like whose one end is opened and the other end is closed, and a lid made of tantalum carbide or the like for closing the open portion of the vessel body 10. The temperature distribution of the high temperature part 7 and the low temperature part 8 is formed in the growth container 1 by the heating device 9 arranged in the vicinity of the outer periphery of the growth container 1. Further, the raw material 6 is filled on the high temperature portion 7 side of the growth vessel 1, and the seed crystal 4 is disposed on the low temperature portion 8 side of the growth vessel 1. The seed crystal 4 is held by being bonded to the lid 12 using the adhesive 3 as described above. And the said raw material 6 with which the high temperature part 7 side of the growth container 1 was sublimated, AlN was deposited on the seed crystal 4 arrange | positioned at the low temperature part 8 side of the growth container 1, and the growth crystal 5 is made to grow. is there.

次に、図2は本発明に係る窒化アルミニウム結晶の成長方法を示す説明図である。   Next, FIG. 2 is an explanatory view showing a method for growing an aluminum nitride crystal according to the present invention.

尚、本発明の成長容器21も、図2に示すように一端側が開放され他端側が閉止された炭化タンタル等から成る筒状容器本体20と、この容器本体20の上記開放部を閉止する炭化タンタル等から成る蓋体22とで構成されている。   The growth vessel 21 of the present invention also has a cylindrical vessel body 20 made of tantalum carbide having one end opened and the other end closed, as shown in FIG. 2, and a carbonized vessel that closes the open portion of the vessel body 20. And a lid 22 made of tantalum or the like.

本発明に係るAlN結晶の成長方法では、図2に示すように筒状容器本体20開放部の開放縁部から、その外周縁が外方へ食み出る大きさを有する種結晶23を用いると共に、この種結晶23における外周縁を図2に示すように筒状容器本体20の上記開放縁部から外方へ食み出させた状態で種結晶23における外周縁の内側近傍領域を筒状容器本体20の上記開放縁部に係止させている。更に、図2に示すように種結晶23の外周縁から、その外周縁が外方へ食み出る大きさを有する蓋体22を用い、かつ、蓋体22における外周縁を図2に示すように種結晶23の外周縁から外方へ食み出させた状態で種結晶23の裏面側(背面側)に蓋体22を重ね合わせると共に、上記種結晶23を介して容器本体20の開放部が蓋体22により閉止されている。   In the AlN crystal growth method according to the present invention, as shown in FIG. 2, a seed crystal 23 having such a size that the outer peripheral edge protrudes outward from the open edge of the open portion of the cylindrical container body 20 is used. In the state where the outer peripheral edge of the seed crystal 23 is protruded outward from the open edge of the cylindrical container body 20 as shown in FIG. The main body 20 is locked to the open edge. Further, as shown in FIG. 2, a lid body 22 having a size that the outer circumferential edge protrudes outward from the outer circumferential edge of the seed crystal 23 is used, and the outer circumferential edge of the lid body 22 is shown in FIG. In addition, the lid 22 is overlaid on the back side (back side) of the seed crystal 23 in a state where the seed crystal 23 protrudes outward from the outer peripheral edge of the seed crystal 23, and the open portion of the container body 20 is interposed via the seed crystal 23. Is closed by the lid 22.

そして、本発明に係るAlN結晶の成長方法では、成長容器21の高温部側に充填された原料25を昇華させ、成長容器21の低温部側に配置した種結晶23の上記裏面側(背面側)とは反対の表面側(成長容器21の内側に面した側)にAlNを析出させて成長結晶24を成長させるものである。   And in the growth method of the AlN crystal which concerns on this invention, the raw material 25 with which the high temperature part side of the growth container 21 was sublimated, the said back side (back side) of the seed crystal 23 arrange | positioned at the low temperature part side of the growth container 21 is carried out. The growth crystal 24 is grown by depositing AlN on the opposite surface side (the side facing the inside of the growth vessel 21).

上記筒状容器本体20の筒形状については、断面が円形状(すなわち円筒形)であっても、断面が矩形状であってもよく任意である。また、上記蓋体22における平面形状は筒状容器本体20の筒形状に合わせて、例えば、円形状、矩形状等任意である。更に、蓋体22における断面形状についても特に限定されるものではなく、例えば、図3の符号22Bで示すように蓋体の外周部にその外周縁に沿って下方へ伸びる凸状片を設け、蓋体の下面側に配置される種結晶23側面を保護するような構造であってもよい。   About the cylindrical shape of the said cylindrical container main body 20, even if a cross section is circular shape (namely, cylindrical shape), a cross section may be a rectangular shape, and is arbitrary. Further, the planar shape of the lid body 22 is arbitrary, for example, a circular shape or a rectangular shape according to the cylindrical shape of the cylindrical container body 20. Further, the cross-sectional shape of the lid body 22 is not particularly limited. For example, as shown by a reference numeral 22B in FIG. 3, a convex piece extending downward along the outer peripheral edge of the lid body is provided. The structure may be such that the side surface of the seed crystal 23 disposed on the lower surface side of the lid body is protected.

また、図4に示すように、上記蓋体22と種結晶23との間の隙間をできる限り小さくして種結晶23裏面側の昇華を防止するため、例えば炭素系化合物等からなる充填層26を設けることも好適である。尚、上記充填層26については、例えば、平均粒径1μmの黒鉛微粒子がフェノール樹脂に分散された樹脂組成物を用い、これを80℃〜200℃で熱処理して形成することができる。   Also, as shown in FIG. 4, in order to prevent the sublimation on the back side of the seed crystal 23 by making the gap between the lid 22 and the seed crystal 23 as small as possible, a packed layer 26 made of, for example, a carbon-based compound or the like is used. It is also suitable to provide. The packed layer 26 can be formed by, for example, using a resin composition in which graphite fine particles having an average particle diameter of 1 μm are dispersed in a phenol resin and heat-treating the resin composition at 80 ° C. to 200 ° C.

次に、図2〜4に示す本発明に係る窒化アルミニウム結晶の成長方法において、筒状容器本体と蓋体の材質は、炭化タンタルおよびタングステンから選ばれる少なくとも1種類から形成することが好適である。この場合、炭化タンタルは、タンタルの表面を炭化したものでも、全体が炭化タンタルでもよく、また、これ等筒状容器本体や蓋体の製法、寸法によって本発明の効果が制限されるものではない。   Next, in the method for growing an aluminum nitride crystal according to the present invention shown in FIGS. 2 to 4, it is preferable that the cylindrical container body and the lid are made of at least one material selected from tantalum carbide and tungsten. . In this case, the tantalum carbide may be carbonized on the surface of tantalum or may be entirely made of tantalum carbide, and the effect of the present invention is not limited by the manufacturing method and dimensions of the cylindrical container body and lid. .

また、図2〜4に示す本発明に係る窒化アルミニウム結晶の成長方法において、上記種結晶として、炭化珪素、予め窒化アルミニウム単結晶層を表面に形成した窒化珪素、窒化アルミニウムであることが好適である。上記種結晶の製法や方位、寸法、表面状態等は目的とするAlN結晶の寸法、成長に合わせて適宜選択すればよく、本発明の効果はこれ等によって制限されるものではない。   In the method for growing an aluminum nitride crystal according to the present invention shown in FIGS. 2 to 4, the seed crystal is preferably silicon carbide, silicon nitride having an aluminum nitride single crystal layer previously formed on the surface, or aluminum nitride. is there. The seed crystal production method, orientation, dimensions, surface state, and the like may be appropriately selected according to the dimensions and growth of the target AlN crystal, and the effects of the present invention are not limited thereto.

更に、図2〜4に示す本発明に係る窒化アルミニウム結晶の成長方法において、用いる種結晶の厚さは1mm以上であることが好適である。その理由は、1mm未満の薄い種結晶を用いた場合、種結晶自体の昇華消失が進むことにより、種結晶および成長したAlN結晶を保持できなくなる可能性があるからである。   Furthermore, in the method for growing an aluminum nitride crystal according to the present invention shown in FIGS. 2 to 4, the thickness of the seed crystal used is preferably 1 mm or more. The reason is that when a thin seed crystal of less than 1 mm is used, the seed crystal itself may not be able to hold the seed crystal and the grown AlN crystal due to the disappearance of sublimation of the seed crystal itself.

尚、図1〜4を用いて昇華法について説明したが、本発明に係る窒化アルミニウム結晶の成長方法(昇華成長法)における加熱方法、原料、雰囲気ガスの種類や圧力、温度、時間等の各種成長条件等においてその効果が制限されるものでないことは明らかである。   In addition, although the sublimation method was demonstrated using FIGS. 1-4, various kinds, such as the heating method in the growth method (sublimation growth method) of the aluminum nitride crystal concerning this invention, a raw material, atmospheric gas kind, pressure, temperature, time, etc. It is clear that the effect is not limited by the growth conditions.

以下、実施例により本発明を具体的に説明するが、本発明の技術的内容が以下の実施例によって何ら限定されるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the technical content of this invention is not limited at all by the following Examples.

この実施例に係る窒化アルミニウム結晶の成長方法は、蓋体と種結晶との間に充填層が設けられた図4の構成物を用いた例である。   The aluminum nitride crystal growth method according to this embodiment is an example using the structure of FIG. 4 in which a filling layer is provided between the lid and the seed crystal.

筒状容器本体20として、一端側が開放され他端側が閉止された直径47mmφ、高さ80mm、厚さ1mmの円筒状炭化タンタルを用いた。また、種結晶23として、成長面側(窒化アルミニウム結晶が析出する側)が機械化学研磨による鏡面、成長面側とは反対の裏面側をラップ面とした厚さ2mm、直径50mmのc面6H−SiC基板を用いた。更に、蓋体22として、厚さ2mm、直径60mmの炭化タンタル板を用い、かつ、炭化タンタル製蓋体の平面精度により種結晶23との間に僅かな隙間が生じてしまうため、蓋体22と種結晶23との間に炭素化合物からなる充填層26を形成した。   As the cylindrical container body 20, a cylindrical tantalum carbide having a diameter of 47 mmφ, a height of 80 mm, and a thickness of 1 mm with one end opened and the other end closed was used. Further, as the seed crystal 23, the growth surface side (side on which the aluminum nitride crystal is deposited) is a mirror surface by mechanical chemical polishing, and the c-plane 6H having a thickness of 2 mm and a diameter of 50 mm with the back surface opposite to the growth surface side as a lapping surface. -A SiC substrate was used. Further, a tantalum carbide plate having a thickness of 2 mm and a diameter of 60 mm is used as the lid body 22, and a slight gap is generated between the lid body 22 and the seed crystal 23 due to the planar accuracy of the tantalum carbide lid body. A filling layer 26 made of a carbon compound was formed between the seed crystal 23 and the seed crystal 23.

尚、充填層26は、平均粒径1μmの黒鉛微粒子が熱硬化型フェノール樹脂に分散された樹脂組成物を80℃〜200℃で熱処理して形成されている。また、原料25として、AlN多結晶粉末を用いた。   The packed layer 26 is formed by heat-treating a resin composition in which graphite fine particles having an average particle diameter of 1 μm are dispersed in a thermosetting phenol resin at 80 ° C. to 200 ° C. Further, AlN polycrystalline powder was used as the raw material 25.

窒化アルミニウム(AlN)結晶の昇華成長では、加熱方法として高周波誘導加熱を用い、真空排気および高純度窒素ガスの供給が可能な石英製の容器中にセットされたグラファイトサセプターの内部に上記説明した寸法、材質の構成物(図4に示す構成物)を充填した。   In the sublimation growth of an aluminum nitride (AlN) crystal, the above-described dimensions are set inside a graphite susceptor set in a quartz container that can be evacuated and supplied with high-purity nitrogen gas using high-frequency induction heating as a heating method. The material composition (the composition shown in FIG. 4) was filled.

窒化アルミニウム(AlN)結晶の成長雰囲気は、高純度窒素101kPaとし、高周波誘導加熱によってグラファイトサセプターを加熱し、種結晶23が配置された成長容器21の上部を低温側として1700℃〜1800℃、原料25が配置された成長容器21の部分を高温側として1850℃〜1950℃とし、10〜50時間AlN結晶の成長を行った。   The growth atmosphere of the aluminum nitride (AlN) crystal is high-purity nitrogen 101 kPa, the graphite susceptor is heated by high-frequency induction heating, and the upper part of the growth vessel 21 in which the seed crystal 23 is arranged is 1700 ° C. to 1800 ° C. The portion of the growth vessel 21 in which 25 was disposed was set to 1850 ° C. to 1950 ° C. on the high temperature side, and AlN crystals were grown for 10 to 50 hours.

得られたAlN結晶(成長結晶24)は、種結晶23であるSiC基板の中心部分に、直径約30mm、厚さ約1〜5mmに単結晶成長しており、成長中や成長後に割れ等で成長容器21内に落下することなく回収することができた。   The obtained AlN crystal (growth crystal 24) is grown as a single crystal with a diameter of about 30 mm and a thickness of about 1 to 5 mm on the center portion of the SiC substrate which is the seed crystal 23. It could be recovered without falling into the growth vessel 21.

また、成長したAlN単結晶(成長結晶24)は比較的透明で、X線ロッキングカーブの半値幅で100秒程度であり、結晶性も良好であった。   Further, the grown AlN single crystal (growth crystal 24) was relatively transparent, the half-value width of the X-ray rocking curve was about 100 seconds, and the crystallinity was also good.

また、筒状容器本体20の開放縁部と接する種結晶23の内側近傍領域は、上記開放縁部と接していない領域より昇華消失によって厚さが0.5〜1mm程度減じており、種結晶23の内側近傍領域には、上記筒状容器本体20の開放縁部形状に沿った凹部が形成されているのが観察された。この現象は、筒状容器本体20の開放縁部に接触していた種結晶23の内側近傍領域が、成長容器21高温部側に位置した上記筒状容器本体20の開放縁部からの伝熱により加熱されて他の領域より温度が高くなり、昇華消失によって筒状容器本体20の上記開放縁部形状に沿った凹部が形成されたものである。そして、この凹部に筒状容器本体20の開放縁部が嵌合して筒状容器本体20と種結晶23との間に生じる隙間を閉止することになるため、成長容器21の機密性(密閉性)が向上して成長容器21外への原料の昇華漏洩が低減し、窒化アルミニウム結晶の結晶性と成長効率が向上することを示している。   In addition, a region near the inside of the seed crystal 23 in contact with the open edge of the cylindrical container body 20 has a thickness reduced by about 0.5 to 1 mm due to disappearance of sublimation from a region not in contact with the open edge. It was observed that a recess along the open edge shape of the cylindrical container body 20 was formed in a region near the inner side of 23. This phenomenon is caused by the heat transfer from the open edge of the cylindrical container body 20 in which the region near the inside of the seed crystal 23 that has been in contact with the open edge of the cylindrical container body 20 is located on the high temperature portion side of the growth container 21. As a result of the heating, the temperature becomes higher than the other region, and the concave portion along the open edge shape of the cylindrical container body 20 is formed by sublimation disappearance. And since the open edge part of the cylindrical container main body 20 fits into this recessed part, and the clearance gap produced between the cylindrical container main body 20 and the seed crystal 23 will be closed, the confidentiality (sealing of the growth container 21). This improves the sublimation leakage of the raw material to the outside of the growth vessel 21 and improves the crystallinity and growth efficiency of the aluminum nitride crystal.

[比較例]
この比較例に係る窒化アルミニウム結晶の成長方法は、接着剤を用いて蓋体の裏面側に種結晶を保持する図1の構成物を用いた例である。
[Comparative example]
The aluminum nitride crystal growth method according to this comparative example is an example using the structure of FIG. 1 that holds a seed crystal on the back side of the lid using an adhesive.

すなわち、種結晶4の直径を40mmとし、接着剤3として炭素系化合物からなる接着剤(実施例の充填層26と同様、平均粒径1μmの黒鉛微粒子が熱硬化型フェノール樹脂に分散された樹脂組成物)を用いて蓋体12に貼り付けている点を除き、実施例と同様の構成および成長条件で窒化アルミニウム結晶の成長を行なっている。   That is, the diameter of the seed crystal 4 is 40 mm, and an adhesive made of a carbon-based compound as the adhesive 3 (a resin in which graphite fine particles having an average particle diameter of 1 μm are dispersed in a thermosetting phenol resin as in the filling layer 26 of the example. The aluminum nitride crystal is grown under the same configuration and growth conditions as in the example except that the composition is affixed to the lid body 12.

そして、比較例では、種結晶4と蓋体12との接着力不足に起因し、成長中や成長後において、50%程度の割合で種結晶4および成長したAlN結晶が成長容器1内部の高温側に落下してしまい、この結果、落下物が原料6と固着し、また、昇華消失してしまい、AlN単結晶を得ることができなかった。   In the comparative example, due to insufficient adhesion between the seed crystal 4 and the lid 12, the seed crystal 4 and the grown AlN crystal are grown at a high temperature inside the growth vessel 1 at a rate of about 50% during or after the growth. As a result, the fallen object stuck to the raw material 6 and sublimated and disappeared, and an AlN single crystal could not be obtained.

また、落下することなく成長後において種結晶4および成長したAlN結晶を回収できた場合、得られたAlN結晶は、種結晶であるSiC基板の中心部分に、直径約25mm、厚さ約0.5〜3mmに単結晶成長しており、実施例と比較した場合、成長するAlN単結晶の厚さに関して薄くなる傾向が確認された。また、実施例と比較した場合、結晶性や透明度に関し多少劣る傾向も見られたが、これは成長膜厚が薄いことによるものと考えられる。   Further, when the seed crystal 4 and the grown AlN crystal can be recovered after the growth without dropping, the obtained AlN crystal is about 25 mm in diameter and about 0.00 mm in thickness at the center portion of the SiC substrate as the seed crystal. A single crystal was grown to 5 to 3 mm, and when compared with the example, a tendency to be thin with respect to the thickness of the growing AlN single crystal was confirmed. Moreover, when compared with the Examples, there was a tendency to be somewhat inferior in terms of crystallinity and transparency, which is considered to be due to the thin growth film thickness.

本発明によれば、特別な種結晶保持用部材や接着剤を用いることなく種結晶を簡便に保持でき、成長させた窒化アルミニウム結晶が種結晶と共に成長容器内に落下する現象も回避できると共に、成長容器の機密性(密閉性)が向上して成長容器外への原料漏洩も回避できるため、AlGaN系半導体デバイス用基板として好適な特性を有する高品質なAlN基板を歩留まりよく低コストで製造することが可能となる。そして、得られたAlN基板は、深紫外領域での発光素子や高周波高出力電子素子等のデバイス製造に利用される産業上の利用可能性を有している。   According to the present invention, the seed crystal can be easily held without using a special seed crystal holding member or adhesive, and the phenomenon that the grown aluminum nitride crystal falls into the growth vessel together with the seed crystal can be avoided. Since the confidentiality (sealing property) of the growth vessel is improved and leakage of the raw material to the outside of the growth vessel can be avoided, a high-quality AlN substrate having characteristics suitable as an AlGaN-based semiconductor device substrate is manufactured at a high yield and at a low cost. It becomes possible. The obtained AlN substrate has industrial applicability for use in manufacturing devices such as light-emitting elements and high-frequency high-power electronic elements in the deep ultraviolet region.

1 成長容器
3 接着剤
4 種結晶
5 成長結晶(AlN結晶)
6 原料
7 高温部
8 低温部
9 加熱装置
10 筒状容器本体
12 蓋体
20 筒状容器本体
21 成長容器
22 蓋体
22B 蓋体
23 種結晶
24 成長結晶(AlN結晶)
25 原料
26 充填層
DESCRIPTION OF SYMBOLS 1 Growth container 3 Adhesive 4 Seed crystal 5 Growth crystal (AlN crystal)
6 Raw material 7 High temperature part 8 Low temperature part 9 Heating device 10 Tubular container body 12 Lid body 20 Tubular container body 21 Growth container 22 Lid 22B Lid 23 Seed crystal 24 Growth crystal (AlN crystal)
25 Raw material 26 Packed bed

Claims (5)

一端側が開放され他端側が閉止された筒状容器本体と上記開放部を閉止する蓋体とで構成される成長容器内の高温部側に充填された原料を昇華させ、成長容器内の低温部側に配置された種結晶上に析出させて窒化アルミニウム結晶を成長させる窒化アルミニウム結晶の成長方法において、
上記筒状容器本体の開放部における開放縁部から外方へ外周縁が食み出る大きさを有する種結晶を用いて筒状容器本体の上記開放部を覆うと共に、種結晶の外周縁から外方へ食み出る大きさを有する蓋体を種結晶の裏面側に重ね合わせて筒状容器本体の開放部を閉止し、成長容器内の高温部側に充填された原料を昇華させて種結晶の上記裏面側とは反対の表面側に窒化アルミニウム結晶を成長させることを特徴とする窒化アルミニウム結晶の成長方法。
The raw material filled on the high temperature part side in the growth vessel composed of a cylindrical vessel body that is open at one end and closed at the other end and a lid that closes the open part is sublimated, and the low temperature part in the growth vessel In the method for growing an aluminum nitride crystal, the aluminum nitride crystal is grown by being deposited on a seed crystal arranged on the side,
Covering the open part of the cylindrical container body with a seed crystal having a size that the outer peripheral edge protrudes outward from the open edge of the open part of the cylindrical container body, and externally from the outer peripheral edge of the seed crystal. A lid with a size that protrudes toward the back is overlaid on the back side of the seed crystal, the open part of the cylindrical container body is closed, and the raw material filled on the high temperature part side in the growth container is sublimated to seed crystal A method for growing an aluminum nitride crystal, comprising growing an aluminum nitride crystal on a surface side opposite to the back surface side of the above.
上記種結晶とその裏面側に重ね合わされた蓋体との間に充填層を形成することを特徴とする請求項1に記載の窒化アルミニウム結晶の成長方法。   The method for growing an aluminum nitride crystal according to claim 1, wherein a filling layer is formed between the seed crystal and the lid body overlapped on the back side thereof. 上記筒状容器本体と蓋体の材質が、炭化タンタルおよびタングステンから選ばれる少なくとも1種類であることを特徴とする請求項1または2に記載の窒化アルミニウム結晶の成長方法。   The method for growing an aluminum nitride crystal according to claim 1 or 2, wherein the material of the cylindrical container body and the lid is at least one selected from tantalum carbide and tungsten. 上記種結晶が、炭化珪素、予め窒化アルミニウム単結晶層を表面に形成した炭化珪素、および、窒化アルミニウムから選ばれることを特徴とする請求項1または2に記載の窒化アルミニウム結晶の成長方法。   The method for growing an aluminum nitride crystal according to claim 1 or 2, wherein the seed crystal is selected from silicon carbide, silicon carbide having an aluminum nitride single crystal layer formed on the surface in advance, and aluminum nitride. 上記種結晶の厚さが1mm以上であることを特徴とする請求項1〜4のいずれかに記載の窒化アルミニウム結晶の成長方法。   The method for growing an aluminum nitride crystal according to any one of claims 1 to 4, wherein the seed crystal has a thickness of 1 mm or more.
JP2012113180A 2012-05-17 2012-05-17 Method for growing aluminum nitride crystal Active JP5792675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113180A JP5792675B2 (en) 2012-05-17 2012-05-17 Method for growing aluminum nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113180A JP5792675B2 (en) 2012-05-17 2012-05-17 Method for growing aluminum nitride crystal

Publications (2)

Publication Number Publication Date
JP2013237600A true JP2013237600A (en) 2013-11-28
JP5792675B2 JP5792675B2 (en) 2015-10-14

Family

ID=49762975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113180A Active JP5792675B2 (en) 2012-05-17 2012-05-17 Method for growing aluminum nitride crystal

Country Status (1)

Country Link
JP (1) JP5792675B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017021A1 (en) * 2014-11-19 2016-05-19 Forschungsverbund Berlin E.V. Seed holder of a single crystal growing apparatus, single crystal growing apparatus and composite material
CN108396384A (en) * 2018-05-25 2018-08-14 深圳大学 A kind of device and method preparing aluminum nitride crystal
CN109487335A (en) * 2019-01-08 2019-03-19 山东大学 A kind of seed crystal adhering method for aluminum-nitride single crystal growth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139394A (en) * 1999-11-10 2001-05-22 Toyota Central Res & Dev Lab Inc Seed crystal fixing agent, method of fixing seed crystal and method of producing single crystal using them
JP2006021964A (en) * 2004-07-08 2006-01-26 Sumitomo Electric Ind Ltd Ain single crystal and its growth method
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139394A (en) * 1999-11-10 2001-05-22 Toyota Central Res & Dev Lab Inc Seed crystal fixing agent, method of fixing seed crystal and method of producing single crystal using them
JP2006021964A (en) * 2004-07-08 2006-01-26 Sumitomo Electric Ind Ltd Ain single crystal and its growth method
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017021A1 (en) * 2014-11-19 2016-05-19 Forschungsverbund Berlin E.V. Seed holder of a single crystal growing apparatus, single crystal growing apparatus and composite material
DE102014017021B4 (en) * 2014-11-19 2021-02-11 Forschungsverbund Berlin E.V. Seed holder of a single crystal growing device and single crystal growing device
CN108396384A (en) * 2018-05-25 2018-08-14 深圳大学 A kind of device and method preparing aluminum nitride crystal
CN109487335A (en) * 2019-01-08 2019-03-19 山东大学 A kind of seed crystal adhering method for aluminum-nitride single crystal growth
CN109487335B (en) * 2019-01-08 2021-03-02 山东大学 Seed crystal bonding method for aluminum nitride single crystal growth

Also Published As

Publication number Publication date
JP5792675B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP4901145B2 (en) Compound semiconductor device and manufacturing method thereof
JP5328931B2 (en) Low defect density free-standing gallium nitride substrate manufacturing method and device manufactured thereby
JP5444460B2 (en) Epitaxial film forming method, vacuum processing apparatus, semiconductor light emitting element manufacturing method, semiconductor light emitting element, and illumination device
WO2010025153A1 (en) Nitride crystal with removable surface layer and methods of manufacture
JP2009519202A (en) Group III nitride product and method for producing the same
TWI404122B (en) Method for enhancing growth of semi-polar (a1,in,ga,b)n via metalorganic chemical vapor deposition
US10030318B2 (en) Composite substrate, method for fabricating same, function element, and seed crystal substrate
JP6344987B2 (en) Group 13 element nitride crystal layer and functional device
JP2015018960A (en) Semiconductor device manufacturing method
JP5792675B2 (en) Method for growing aluminum nitride crystal
JP6526811B2 (en) Method of processing a group III nitride crystal
GB2510248A (en) High thermal conductivity heat dissipating synthetic diamond wafers for gallium nitride based semiconductor devices
JP2009143778A (en) Method for growing aluminum nitride crystal, aluminum nitride substrate and semiconductor device
US20080157282A1 (en) Nitride semiconductor substrate and method of making same
WO2006011361A1 (en) Iii group nitride single crystal and method for preparation thereof, and semiconductor device
US8728235B2 (en) Manufacturing method for three-dimensional GaN epitaxial structure
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2009179505A (en) Method for producing nitride material
JP2013006739A (en) Method for producing single crystal
JP2010163302A (en) Growth container and method for growing aluminum nitride crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2009249201A (en) Apparatus for producing aluminum nitride single crystal
JP2007066975A (en) Semiconductor light emitting device
JP2009249199A (en) Apparatus for producing aluminum nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250