JP2010163302A - Growth container and method for growing aluminum nitride crystal - Google Patents

Growth container and method for growing aluminum nitride crystal Download PDF

Info

Publication number
JP2010163302A
JP2010163302A JP2009005530A JP2009005530A JP2010163302A JP 2010163302 A JP2010163302 A JP 2010163302A JP 2009005530 A JP2009005530 A JP 2009005530A JP 2009005530 A JP2009005530 A JP 2009005530A JP 2010163302 A JP2010163302 A JP 2010163302A
Authority
JP
Japan
Prior art keywords
growth
container
tantalum
aluminum nitride
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009005530A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sho
義彦 正
Seishi Shimamura
清史 島村
Villora Encarnacion Antonia Garcia
ビジョラ エンカルナシオン アントニア ガルシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Original Assignee
Sumitomo Metal Mining Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, National Institute for Materials Science filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009005530A priority Critical patent/JP2010163302A/en
Publication of JP2010163302A publication Critical patent/JP2010163302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a growth container which is made of tantalum and from which Al being a raw material component hardly leaks to outside at a growth temperature, and to provide a method for growing an aluminum nitride crystal by a sublimation growth method applying the container. <P>SOLUTION: The growth container 20 is used in the sublimation growth method in which a raw material 23 filled in the high temperature part side of the container is sublimed and deposited on the low temperature part side in the container, for growing an aluminum nitride crystal. The growth container 20 is constituted of: a container body (crucible) 22 whose one end side is opened, in which the raw material 23 is filled, and which is made of tantalum; and a cap body 21 which covers the opening part of the container body 22 and is made of tantalum. The edge part of the opening part of the container body 22 and a surface 24 being in contact with the cap body 21 are each made of tantalum, and the surface 25 of the inner wall of a space formed by the container body 22 and the cap body 21 covering the opening part is made of tantalum. In the method for growing an aluminum nitride crystal by a sublimation growth method, the growth container 20 is applied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、容器内の高温部側に充填された原料を昇華させ、容器内の低温部側に析出させて窒化アルミニウム(AlN)結晶を製造する昇華成長法に係り、特に、成長温度において原料成分のAlが容器外へ漏洩し難いタンタル製の成長容器とこの成長容器が適用された昇華成長法による窒化アルミニウム結晶の成長方法に関するものである。   The present invention relates to a sublimation growth method for producing an aluminum nitride (AlN) crystal by sublimating a raw material filled on a high temperature portion side in a container and depositing it on a low temperature portion side in the container. The present invention relates to a growth container made of tantalum in which Al as a component hardly leaks out of the container, and a method for growing aluminum nitride crystals by a sublimation growth method to which the growth container is applied.

窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)およびこれ等の混晶半導体結晶はIII族窒化物半導体と呼ばれ、バンドギャップはInNの0.8eVからAlNの6.4eVと広範囲にわたり、赤外から可視、深紫外領域の発光デバイス用材料としての応用が可能である。特に、GaNおよびGaInN混晶半導体結晶が青色や白色発光素子用材料として飛躍的な発展を遂げたことは周知の通りである。   Aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), and mixed crystal semiconductor crystals thereof are called group III nitride semiconductors, and the band gap ranges from 0.8 eV for InN to 6.4 eV for AlN. It can be applied as a material for light emitting devices in the infrared, visible, and deep ultraviolet regions over a wide range. In particular, it is well known that GaN and GaInN mixed crystal semiconductor crystals have made great progress as materials for blue and white light emitting elements.

また、絶縁破壊強度、熱伝導率、電子飽和速度が高いという特徴から、近年は、高周波デバイスや高パワーデバイス用の半導体材料としても注目されている。   In recent years, it has attracted attention as a semiconductor material for high-frequency devices and high-power devices because of its high dielectric breakdown strength, thermal conductivity, and electron saturation speed.

そして、上記III族窒化物半導体結晶は、基板形状に加工されたサファイア単結晶の基板上にエピタキシャル成長させることによって製造されている。   The group III nitride semiconductor crystal is manufactured by epitaxial growth on a sapphire single crystal substrate processed into a substrate shape.

しかし、青色より波長が短い紫外、深紫外領域でより高効率な発光素子を形成しようとすると、上記サファイア単結晶の基板上にエピタキシャル成長させたのでは材料特性上の限界があり、ホモエピタキシャル成長すなわちAlNやGaNといった同種材料を基板に用いる必要が出てくる。この理由は、半導体材料をデバイスとして用いる場合、窒化物半導体に限らず基板上にエピタキシャル成長させて薄膜構造を形成する必要があるが、薄膜の品質に大きな影響を与えるのがベースとなる基板材料の特性だからである。すなわち、良質なデバイスを実現するには、良質な薄膜単結晶を成長させる必要があり、そのためには格子定数や熱膨張係数が薄膜と同じである同種基板を用いるのが最良の方法だからである。   However, if an attempt is made to form a more efficient light-emitting element in the ultraviolet and deep ultraviolet region, which has a wavelength shorter than that of blue, there is a limit in material properties if epitaxial growth is performed on the sapphire single crystal substrate, and homoepitaxial growth, that is, AlN It is necessary to use the same kind of material such as GaN for the substrate. This is because when a semiconductor material is used as a device, it is necessary to form a thin film structure by epitaxial growth on a substrate as well as a nitride semiconductor. Because it is a characteristic. That is, in order to realize a high-quality device, it is necessary to grow a high-quality thin film single crystal. For that purpose, it is the best method to use the same type of substrate that has the same lattice constant and thermal expansion coefficient as the thin film. .

また、作製するデバイスの種類により基板に要求される特性も異なってくる。発光デバイスの場合には、光を効率的に外部に取り出すことができるように、デバイス層で発光する光を吸収しない光透過特性を基板材料自身が持つことが望ましい。また、高出力化によってデバイスの発熱が問題となる場合には、基板を通して効率的に放熱する必要があり、熱伝導率の高い基板材料が望ましい。実際に、青色レーザーダイオードの実用化のために、既にGaNの自立基板(GaAsやサファイア基板を種基板として用い、この種基板上に気相成長法によってGaN厚膜の成長を行い、成長後に上記種基板と成長層を剥離することによって得られる基板)が開発、市販されている。更に、短波長領域となる深紫外領域での次世代デバイス開発のため、AlGaN混晶半導体結晶のエピタキシャル成長技術やデバイス技術の開発が盛んであるが、これ等の実用化のためには良質なAlN単結晶基板の開発が不可欠と考えられている。   Also, the characteristics required for the substrate vary depending on the type of device to be manufactured. In the case of a light emitting device, it is desirable that the substrate material itself has a light transmission characteristic that does not absorb light emitted from the device layer so that light can be efficiently extracted outside. In addition, when heat generation of the device becomes a problem due to high output, it is necessary to efficiently dissipate heat through the substrate, and a substrate material having high thermal conductivity is desirable. Actually, for the practical use of blue laser diodes, a GaN free-standing substrate (GaAs or sapphire substrate is already used as a seed substrate, and a GaN thick film is grown on this seed substrate by vapor phase growth. A substrate obtained by peeling off the seed substrate and the growth layer) has been developed and marketed. Furthermore, for the development of next-generation devices in the deep ultraviolet region, which is a short wavelength region, the development of epitaxial growth technology and device technology for AlGaN mixed crystal semiconductor crystals is active. For practical application of these, high-quality AlN The development of single crystal substrates is considered essential.

ところで、上記AlN単結晶の成長方法には、昇華成長法、溶液成長法、ハイドライド気相成長法(HVPE法)、有機金属気相結晶成長法(MOVPE法)、分子ビームエピタキシャル法(MBE法)等があり、デバイス用基板の実用化に向けて様々な方法で検討が行なわれている。これに対し、上記GaN基板の場合は、バルク単結晶を得ることが困難なため、HVPE法等を用いた厚膜成長による上述の自立基板技術に頼らざるを得ないのが現状で、GaAsやサファイアといった異種を種基板として使用せざるを得ないことから、クラックの発生や転位密度等の品質およびコストの点で限界を有する。他方、上記AlNは昇華成長法によって比較的速い成長速度が実現でき、バルク単結晶の育成が可能であるという大きな利点がある。昇華成長法はSiC単結晶の成長技術として実用化の段階にあり、AlN単結晶の成長についても、低転位密度を代表とする高品質化、コストの点で非常に有利な方法と考えられており、特許文献1や特許文献2に示されているように鋭意研究が進められている。   The AlN single crystal growth method includes sublimation growth method, solution growth method, hydride vapor phase growth method (HVPE method), metalorganic vapor phase crystal growth method (MOVPE method), and molecular beam epitaxial method (MBE method). Various methods have been studied for practical use of device substrates. On the other hand, in the case of the GaN substrate, since it is difficult to obtain a bulk single crystal, it is currently necessary to rely on the above-mentioned free-standing substrate technology by thick film growth using the HVPE method or the like. Since different types such as sapphire must be used as a seed substrate, there is a limit in terms of quality and cost such as generation of cracks and dislocation density. On the other hand, AlN has a great advantage that a relatively fast growth rate can be realized by a sublimation growth method, and a bulk single crystal can be grown. The sublimation growth method is in the stage of practical application as a SiC single crystal growth technique, and AlN single crystal growth is also considered to be a very advantageous method in terms of high quality and cost, represented by low dislocation density. Therefore, as shown in Patent Document 1 and Patent Document 2, earnest research has been conducted.

しかしながら、昇華成長法によるAlN単結晶成長は、成長温度として2000℃以上の高温が必要で、また、Alの反応性が強い等の理由から使用できる成長容器が限られており、これまで、AlN単結晶成長用の成長容器については、特許文献1や特許文献3に示されているように、Alの透過を防ぐため、タングステンを用いた密封構造の成長容器が利用されているが、タングステンは加工が難しい材料でかつ非常に高価な材料である。このため、非特許文献1に示されているように、タングステンと較べて加工も容易で安価な材料であるタンタルで予め坩堝を作成し、その表面に炭化タンタルを形成してAlとの反応を抑制する方法が試みられている。しかし、このような成長容器を用いたとしても、容器を完全に密閉するには、予め真空雰囲気中で電子ビーム溶接を行う等非常に手間がかかり、コストを押し上げる要因となっている。そこで、AlN原料を充填した後に、なるべく成長容器が密閉構造となるように、隙間を小さくする構造の蓋を取り付ける等の工夫が採られているが、完全な密閉構造とすることは困難なため、成長温度として適している2000℃以上の温度においてAlの蒸気が成長容器外へ漏洩してしまい、成長炉を汚染したり、成長の再現性を妨げてしまう等の問題が存在した。   However, AlN single crystal growth by the sublimation growth method requires a high temperature of 2000 ° C. or more as the growth temperature, and the growth containers that can be used are limited due to the strong reactivity of Al. As for the growth container for single crystal growth, as shown in Patent Document 1 and Patent Document 3, a growth container having a sealed structure using tungsten is used to prevent the permeation of Al. It is a material that is difficult to process and very expensive. For this reason, as shown in Non-Patent Document 1, a crucible is made in advance with tantalum, which is a material that is easier and cheaper to process than tungsten, and tantalum carbide is formed on the surface to react with Al. Attempts have been made to suppress it. However, even if such a growth vessel is used, it takes much time to completely seal the vessel, such as performing electron beam welding in a vacuum atmosphere in advance, and this increases costs. Thus, after filling with the AlN raw material, measures such as attaching a lid with a structure to reduce the gap are taken so that the growth vessel has a sealed structure as much as possible, but it is difficult to achieve a completely sealed structure. At a temperature of 2000 ° C. or more suitable as a growth temperature, Al vapor leaks out of the growth vessel, causing problems such as contamination of the growth furnace and hindering reproducibility of growth.

特表2006−511432号公報(第1頁)JP 2006-511432 A (1st page) 特開平10−53495号公報(第1頁)Japanese Patent Laid-Open No. 10-53495 (first page) 特表2005−519841(第1頁)Special table 2005-519841 (first page)

E.N.Mokhov et.al, Journal of Crystal Growth 281 (2005) 93E.N.Mokhov et.al, Journal of Crystal Growth 281 (2005) 93

本発明はこのような問題点に着目してなされたもので、その課題とするところは、成長温度において原料成分のAlが容器外へ漏洩し難いタンタル製の成長容器を提供し、合わせてこの成長容器が適用された昇華成長法による窒化アルミニウム結晶の成長方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is to provide a growth container made of tantalum, in which the raw material component Al hardly leaks out of the container at the growth temperature. An object of the present invention is to provide a method for growing an aluminum nitride crystal by a sublimation growth method to which a growth vessel is applied.

すなわち、請求項1に係る発明は、
容器内の高温部側に充填された原料を昇華させ、容器内の低温部側に析出させて窒化アルミニウム結晶を成長させる昇華成長法に用いられる成長容器において、
一端側が開放されていると共に上記原料が充填されるタンタル製の容器本体と、容器本体の上記開放部を覆うタンタル製の蓋体とで構成され、かつ、容器本体の開放縁部と蓋体との接触面がそれぞれタンタルで構成され、容器本体とこの開放部を覆う蓋体とで形成される空間の内壁表面が炭化タンタルで構成されていることを特徴とし、
請求項2に係る発明は、
窒化アルミニウム結晶の成長方法において、
請求項1に記載の成長容器が適用された昇華成長法により窒化アルミニウム結晶を製造することを特徴とするものである。
That is, the invention according to claim 1
In the growth container used for the sublimation growth method in which the raw material filled on the high temperature part side in the container is sublimated and precipitated on the low temperature part side in the container to grow an aluminum nitride crystal.
Consists of a tantalum container body that is open at one end and filled with the raw material, and a tantalum lid that covers the open part of the container body, and an open edge and a lid of the container body. The contact surfaces are each composed of tantalum, and the inner wall surface of the space formed by the container body and the lid covering the open portion is composed of tantalum carbide,
The invention according to claim 2
In the method of growing aluminum nitride crystals,
An aluminum nitride crystal is produced by a sublimation growth method to which the growth vessel according to claim 1 is applied.

請求項1に記載の発明に係る成長容器は、一端側が開放されていると共に原料が充填されるタンタル製の容器本体と、容器本体の上記開放部を覆うタンタル製の蓋体とで構成され、かつ、容器本体の開放縁部と蓋体との接触面がそれぞれタンタルで構成され、容器本体とこの開放部を覆う蓋体とで形成される空間の内壁表面が炭化タンタルで構成されていることを特徴としている。   The growth container according to the invention of claim 1 is composed of a tantalum container body that is open at one end side and filled with a raw material, and a tantalum lid that covers the open part of the container body, And the contact surface of the open edge part of a container main body and a cover body is each comprised with tantalum, and the inner wall surface of the space formed with a container main body and the cover body which covers this open part is comprised with tantalum carbide. It is characterized by.

そして、容器本体の開放縁部と蓋体との接触面がそれぞれタンタルで構成されていることから、成長温度下において、上記開放縁部と蓋体とが接触する領域でタンタルと原料であるAl蒸気とが反応して開放縁部と蓋体が接着され、これにより開放縁部と蓋体との隙間が閉止されて容器本体と蓋体とで構成される成長容器が密閉構造となるため、Al蒸気の成長容器外への漏洩が防止された状態で窒化アルミニウム結晶の結晶成長を行うことが可能となり、更に、容器本体とこの開放部を覆う蓋体とで形成される空間の内壁表面が炭化タンタルで構成されていることから、成長容器とAlとの反応が抑制された状態で窒化アルミニウム結晶の結晶成長を行うことが可能となる。   And since the contact surface of the open edge part of a container main body and a cover body is each comprised with tantalum, under growth temperature, the area | region where the said open edge part and a cover body contact, and tantalum and Al which is a raw material Since the reaction with the steam causes the open edge and the lid to adhere, the gap between the open edge and the lid is closed, and the growth vessel composed of the vessel body and the lid has a sealed structure, Crystal growth of aluminum nitride crystals can be performed in a state in which leakage of Al vapor to the outside of the growth vessel is prevented, and the inner wall surface of the space formed by the vessel body and the lid that covers this open portion Since it is composed of tantalum carbide, it is possible to perform crystal growth of an aluminum nitride crystal in a state where the reaction between the growth vessel and Al is suppressed.

従って、成長容器外へのAlの漏洩に起因した組成ゆらぎ等の結晶成長の不安定さが防止されるため、高品質なAlN結晶を効率よく成長させることが可能となり、また、成長炉内へのAl蒸気の汚染も減らすことができるため、成長炉における温度環境の安定性が向上する等の効果を有する。   Therefore, instability of crystal growth such as composition fluctuation caused by leakage of Al to the outside of the growth vessel is prevented, so that high-quality AlN crystals can be efficiently grown, and into the growth furnace. Since the contamination of Al vapor can be reduced, the stability of the temperature environment in the growth furnace is improved.

窒化アルミニウム結晶の昇華成長法を示す説明図。Explanatory drawing which shows the sublimation growth method of an aluminum nitride crystal. 本発明に係る成長容器の概略構成を示す説明図。Explanatory drawing which shows schematic structure of the growth container which concerns on this invention.

以下、本発明の実施の形態についてより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

まず、本発明に係る窒化アルミニウムの育成には昇華成長法が用いられる。昇華成長法とは、図1に示すように、加熱装置2によって成長容器1内に高温部6と低温部7を持つような温度分布を設け、かつ、高温部6側に充填された原料5を昇華させて低温部7側に配置された種結晶3上に析出させることにより成長結晶4を製造する方法である。図1中、符号8は成長方位を示している。   First, a sublimation growth method is used for growing aluminum nitride according to the present invention. As shown in FIG. 1, the sublimation growth method provides a temperature distribution in which a high temperature portion 6 and a low temperature portion 7 are provided in the growth vessel 1 by the heating device 2, and the raw material 5 filled on the high temperature portion 6 side. Is grown on the seed crystal 3 disposed on the low temperature part 7 side to produce the grown crystal 4. In FIG. 1, reference numeral 8 indicates a growth direction.

そして、本発明に係る成長容器20は、図2に示すように一端側が開放されかつ原料23が充填されるタンタル製の容器本体22と、容器本体22の上記開放部を覆うタンタル製の蓋体21とで構成されており、蓋体21は成長炉の低温側に配置されて結晶を成長させる領域を有し、容器本体22は上記原料23を充填させる空間を有する。また、容器本体22の開放縁部と蓋体21との接触面24がそれぞれタンタルで構成され、容器本体22とこの開放部を覆う蓋体21とで形成される空間の内壁表面25が炭化タンタルで構成されている。   As shown in FIG. 2, the growth container 20 according to the present invention includes a tantalum container body 22 that is open at one end and filled with the raw material 23, and a tantalum lid that covers the open portion of the container body 22. 21, the lid body 21 is disposed on the low temperature side of the growth furnace and has a region for growing crystals, and the container body 22 has a space for filling the raw material 23. Further, the contact surface 24 between the open edge portion of the container body 22 and the lid body 21 is made of tantalum, and the inner wall surface 25 of the space formed by the container body 22 and the lid body 21 covering the open portion is tantalum carbide. It consists of

このように準備された容器本体22と蓋体21を用い、かつ、AlNの原料23が充填された容器本体22の開放部に蓋体21を載置し、それぞれタンタルで構成された容器本体22の開放縁部と蓋体21との上記接触面24が互いに接するように位置調整した後、成長炉の加熱装置(図1における符号2参照)において成長温度まで昇温してAlNの結晶成長を行う。このとき、昇温の過程では容器本体22と蓋体21との間に隙間があるためAl蒸気が漏洩するが、タンタルが露出する領域(接触面24)ではタンタルとAl蒸気との反応が徐々に進行し、最終的に、成長温度に達するときには、上記領域(接触面24)を介し容器本体22の開放縁部と蓋体21とがタンタルとAl蒸気の反応により接着されて、成長容器20は密閉構造となる。   Using the container body 22 and the lid body 21 thus prepared, the lid body 21 is placed on the open portion of the container body 22 filled with the AlN raw material 23, and each container body 22 is made of tantalum. After adjusting the position so that the contact surface 24 of the open edge of the lid and the lid 21 are in contact with each other, the temperature is raised to the growth temperature in a heating apparatus of the growth furnace (see reference numeral 2 in FIG. 1) to grow AlN crystals. Do. At this time, Al vapor leaks because there is a gap between the container body 22 and the lid body 21 in the temperature rising process, but in the region where the tantalum is exposed (contact surface 24), the reaction between tantalum and the Al vapor gradually occurs. When the growth temperature is finally reached, the open edge of the container body 22 and the lid 21 are bonded by the reaction of tantalum and Al vapor via the region (contact surface 24), and the growth container 20 is reached. Has a sealed structure.

そして、成長容器20が一旦密閉構造になると、成長中のAl蒸気が成長容器20の外部に漏洩することはなく、また、成長容器20の上記内壁表面25はAl蒸気と反応しない炭化タンタルで構成されているため、AlNの結晶成長を阻害するような反応物の形成が抑制された状態でAlNの昇華成長を行うことが可能となる。   Once the growth vessel 20 has a sealed structure, the growing Al vapor does not leak to the outside of the growth vessel 20, and the inner wall surface 25 of the growth vessel 20 is composed of tantalum carbide that does not react with Al vapor. Therefore, the sublimation growth of AlN can be performed in a state where the formation of reactants that inhibit the crystal growth of AlN is suppressed.

従って、成長容器20外へのAlの漏洩に起因した組成ゆらぎ等の結晶成長の不安定さが防止されるため、高品質なAlN結晶を効率よく成長させることが可能となり、更に、成長炉内へのAl蒸気の汚染も減らすことができるため、成長炉における温度環境の安定性を向上させることも可能となる。   Accordingly, since instability of crystal growth such as composition fluctuation caused by leakage of Al to the outside of the growth vessel 20 is prevented, it becomes possible to efficiently grow high quality AlN crystals, and further, in the growth furnace. Therefore, the stability of the temperature environment in the growth furnace can be improved.

尚、図1と図2を用いて昇華成長法について説明したが、タンタルから成る成長容器の形状、容器本体と蓋体とで形成される空間の内壁表面に炭化タンタルを形成させる方法や条件、炭化タンタルを形成させる領域と形成させない領域(すなわち、タンタルが露出する容器本体の開放縁部と蓋体との接触面)を設ける方法や条件、昇華成長法における加熱方法、原料、種結晶使用の有無、雰囲気ガスの種類や圧力、温度、時間等の各種成長条件等において、本発明の効果が制限されるものでないことは明らかである。   In addition, although the sublimation growth method was demonstrated using FIG. 1 and FIG. 2, the shape and shape of the growth container which consists of a tantalum, the method and conditions of forming a tantalum carbide in the inner wall surface of the space formed with a container main body and a cover body, Methods and conditions for providing a region where tantalum carbide is formed and a region where tantalum carbide is not formed (that is, the contact surface between the open edge of the container body where tantalum is exposed and the lid), heating method in sublimation growth method, raw material It is clear that the effects of the present invention are not limited by the presence or absence, the type of atmospheric gas, pressure, temperature, various growth conditions such as time, and the like.

以下、実施例により本発明を具体的に説明するが、本発明の技術的内容が以下の実施例によって何ら限定されるものでは無い。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the technical content of this invention is not limited at all by the following Examples.

この実施例は、図2に示す形状の成長容器を用いた一例である。   This embodiment is an example using a growth vessel having the shape shown in FIG.

すなわち、この成長容器20は、図2に示すように一端側に円形状開放部を有する外径50mmφ、高さ75mm、肉厚3mmのタンタル製の容器本体(坩堝)22と、上記開放部に嵌入される円形状凸状面を有する厚さ3mm、直径50mmφのタンタル製の蓋体21とで構成されている。尚、容器本体(坩堝)22の開放縁部に接する蓋体21のリング形状接触面24は、幅3mm、厚さ2mmである。   That is, as shown in FIG. 2, the growth vessel 20 has a tantalum vessel body (crucible) 22 having an outer diameter of 50 mmφ, a height of 75 mm, and a thickness of 3 mm having a circular open portion on one end side, and the open portion. It is composed of a lid 21 made of tantalum having a circular convex surface to be inserted and having a thickness of 3 mm and a diameter of 50 mmφ. In addition, the ring-shaped contact surface 24 of the lid 21 in contact with the open edge of the container body (crucible) 22 has a width of 3 mm and a thickness of 2 mm.

そして、容器本体(坩堝)22内にグラファイトを充填し、かつ、容器本体(坩堝)22の開放部に蓋体21の上記凸状面が嵌入されるように蓋体21を載置した後、容器本体(坩堝)22と蓋体21から成る成長容器20をグラファイト製容器の内部に充填した。   Then, after filling the container body (crucible) 22 with graphite and placing the lid body 21 so that the convex surface of the lid body 21 is fitted into the open part of the container body (crucible) 22, A growth vessel 20 composed of a vessel body (crucible) 22 and a lid 21 was filled into a graphite vessel.

このようにセットされた成長容器20とこの容器内に充填されたグラファイトをアルゴンガス7kPaの雰囲気中、高周波誘導加熱によって2200℃まで加熱し、6時間保持した後、冷却することにより、容器本体(坩堝)22と蓋体21との上記接触面24を除く領域、すなわち容器本体(坩堝)22とこの開放部を覆う蓋体21とで形成される空間の内壁表面25に炭化タンタル層を形成させた。尚、炭化タンタル層が形成されない蓋体21の領域(リング形状接触面24)は、外周幅3mm、厚さ2mmであり、また、炭化タンタル層が形成されない容器本体(坩堝)22の開放縁部幅も3mmである。   The growth vessel 20 set in this way and the graphite filled in the vessel are heated to 2200 ° C. by high frequency induction heating in an atmosphere of 7 kPa of argon gas, held for 6 hours, and then cooled, thereby cooling the vessel body ( A tantalum carbide layer is formed on the inner wall surface 25 of the space formed by the container body (crucible) 22 and the lid body 21 covering the open portion except for the contact surface 24 between the crucible) 22 and the lid body 21. It was. In addition, the area | region (ring-shaped contact surface 24) of the cover body 21 in which a tantalum carbide layer is not formed is 3 mm in outer periphery width, 2 mm in thickness, and the open edge part of the container main body (crucible) 22 in which a tantalum carbide layer is not formed. The width is also 3 mm.

次に、AlN結晶の昇華成長では、加熱方法として高周波誘導加熱を用い、真空排気および高純度窒素ガスの供給が可能な石英容器中にセットされたグラファイトサセプターの内部に、上述した方法により予め炭化タンタル層を形成した成長容器を配置してAlN単結晶の成長を行った。原料23にはAlN多結晶粉末を用い、容器本体(坩堝)22に充填した。また、蓋体21の内側には、主面方位がc面でかつ表面を化学研磨によって鏡面状に加工した、厚さ1mm、直径25mmのAlN単結晶基板(種結晶)をセットした。   Next, in sublimation growth of AlN crystals, high-frequency induction heating is used as a heating method, and carbonization is performed beforehand in the graphite susceptor set in a quartz container capable of evacuation and supply of high-purity nitrogen gas by the above-described method. An AlN single crystal was grown by arranging a growth vessel in which a tantalum layer was formed. An AlN polycrystalline powder was used as the raw material 23 and filled in a container body (crucible) 22. In addition, an AlN single crystal substrate (seed crystal) having a thickness of 1 mm and a diameter of 25 mm was set on the inner side of the lid 21 and the main surface orientation was c-plane and the surface was processed into a mirror surface by chemical polishing.

AlN結晶の成長雰囲気は、高純度窒素101kPaとし、高周波誘導加熱によってグラファイトサセプターを加熱し、上記蓋体21の種結晶が配置された部分を低温側として2100℃に保持し、容器本体(坩堝)22の原料23が配置された部分を高温側として2200℃に保持し、80時間AlN結晶の成長を行った。   The growth atmosphere of the AlN crystal is high-purity nitrogen 101 kPa, the graphite susceptor is heated by high-frequency induction heating, the portion where the seed crystal of the lid 21 is placed is kept at 2100 ° C. as the low temperature side, and the container body (crucible) The portion where 22 raw materials 23 were arranged was held at 2200 ° C. on the high temperature side, and AlN crystals were grown for 80 hours.

成長温度に達した直後には、Al蒸気の漏洩に起因した飛散物の発生が観察されたが、数時間で飛散物の発生はなくなった。そして、成長終了後に室温まで冷却を行った。   Immediately after reaching the growth temperature, the occurrence of scattered matter due to the leakage of Al vapor was observed, but the occurrence of the scattered matter disappeared within a few hours. And it cooled to room temperature after completion | finish of growth.

AlN結晶の成長後における容器本体(坩堝)22と蓋体21のタンタルが表面に露出していた部分(すなわち、接触面24)はAl蒸気との反応により完全に溶接され、成長容器は密閉構造になっていたため、成長容器を切断することによりAlN結晶を得た。   The container body (crucible) 22 after the growth of the AlN crystal and the portion of the lid 21 where the tantalum is exposed on the surface (that is, the contact surface 24) are completely welded by reaction with the Al vapor, and the growth container is sealed. Therefore, an AlN crystal was obtained by cutting the growth vessel.

得られたAlN結晶は、直径約30mm、厚さ約10mmの円柱状であり、結晶の外周部に一部多結晶化している部分があるが、それ以外の部分は単結晶であり、着色の少ない良質のバルクAlN単結晶であった。   The obtained AlN crystal has a cylindrical shape with a diameter of about 30 mm and a thickness of about 10 mm, and there is a part of the crystal around the outer periphery of the crystal, but the other part is a single crystal and is colored. There were few good quality bulk AlN single crystals.

[比較例1]
容器本体(坩堝)22と蓋体21のタンタルが表面に露出する部分(すなわち、接触面24)にも炭化タンタル層が形成された成長容器を適用した以外は実施例1と同一の条件によりAlN結晶の昇華成長を行った。
[Comparative Example 1]
AlN was formed under the same conditions as in Example 1 except that a growth vessel in which a tantalum carbide layer was formed on the vessel body (crucible) 22 and the portion of the lid 21 where tantalum was exposed on the surface (that is, the contact surface 24) was applied. Crystal sublimation growth was performed.

そして、この比較例1においては、成長温度に達してから成長中を通してAl蒸気の漏洩に起因した飛散物の発生が連続して観察された。   And in this comparative example 1, generation | occurrence | production of the scattering material resulting from the leakage of Al vapor | steam was continuously observed through the growth after reaching growth temperature.

AlN結晶の成長後における容器本体(坩堝)22と蓋体21の状態は成長前とほとんど変化はなく、容器本体(坩堝)22と蓋体21は容易に取り外すことが出来た。   The state of the container body (crucible) 22 and the lid 21 after the growth of the AlN crystal was almost the same as that before the growth, and the container body (crucible) 22 and the lid 21 could be easily removed.

得られたAlN結晶は、直径約20mm、厚さ約5mmの円柱状であり、成長量は実施例1と比較して少なく、また、外周部の多結晶化も顕著で黄色の着色が観察された。   The obtained AlN crystal has a columnar shape with a diameter of about 20 mm and a thickness of about 5 mm. The growth amount is smaller than that of Example 1, and the outer peripheral portion is also polycrystallized and yellow coloring is observed. It was.

本発明によれば、AlGaN系半導体デバイス用基板として好適な特性を持つ高品質なAlN基板を効率的かつ低コストで製造することが可能となる。そして、得られたAlN基板は、深紫外領域での発光素子や高周波高出力電子素子等のデバイス製造に利用される産業上の利用可能性を有している。   According to the present invention, a high-quality AlN substrate having characteristics suitable as an AlGaN-based semiconductor device substrate can be manufactured efficiently and at low cost. The obtained AlN substrate has industrial applicability for use in manufacturing devices such as light-emitting elements and high-frequency high-power electronic elements in the deep ultraviolet region.

1 成長用容器
2 加熱装置
3 種結晶
4 成長結晶
5 原料
6 高温部
7 低温部
8 成長方位
20 成長用容器
21 蓋体
22 容器本体(坩堝)
23 原料
24 接触面
25 内壁表面
DESCRIPTION OF SYMBOLS 1 Growth container 2 Heating device 3 Seed crystal 4 Growth crystal 5 Raw material 6 High temperature part 7 Low temperature part 8 Growth direction 20 Growth container 21 Lid 22 Container body (crucible)
23 Raw material 24 Contact surface 25 Inner wall surface

Claims (2)

容器内の高温部側に充填された原料を昇華させ、容器内の低温部側に析出させて窒化アルミニウム結晶を成長させる昇華成長法に用いられる成長容器において、
一端側が開放されていると共に上記原料が充填されるタンタル製の容器本体と、容器本体の上記開放部を覆うタンタル製の蓋体とで構成され、かつ、容器本体の開放縁部と蓋体との接触面がそれぞれタンタルで構成され、容器本体とこの開放部を覆う蓋体とで形成される空間の内壁表面が炭化タンタルで構成されていることを特徴とする成長容器。
In the growth container used for the sublimation growth method in which the raw material filled on the high temperature part side in the container is sublimated and precipitated on the low temperature part side in the container to grow an aluminum nitride crystal.
Consists of a tantalum container body that is open at one end and filled with the raw material, and a tantalum lid that covers the open part of the container body, and an open edge and a lid of the container body. A growth vessel characterized in that each contact surface is made of tantalum, and an inner wall surface of a space formed by the vessel body and a lid covering the open portion is made of tantalum carbide.
請求項1に記載の成長容器が適用された昇華成長法により窒化アルミニウム結晶を製造することを特徴とする窒化アルミニウム結晶の成長方法。   A method for growing an aluminum nitride crystal, comprising producing an aluminum nitride crystal by a sublimation growth method to which the growth vessel according to claim 1 is applied.
JP2009005530A 2009-01-14 2009-01-14 Growth container and method for growing aluminum nitride crystal Pending JP2010163302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009005530A JP2010163302A (en) 2009-01-14 2009-01-14 Growth container and method for growing aluminum nitride crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009005530A JP2010163302A (en) 2009-01-14 2009-01-14 Growth container and method for growing aluminum nitride crystal

Publications (1)

Publication Number Publication Date
JP2010163302A true JP2010163302A (en) 2010-07-29

Family

ID=42579789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009005530A Pending JP2010163302A (en) 2009-01-14 2009-01-14 Growth container and method for growing aluminum nitride crystal

Country Status (1)

Country Link
JP (1) JP2010163302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073547A1 (en) * 2010-11-30 2012-06-07 東洋炭素株式会社 Method for carburizing tantalum container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012073547A1 (en) * 2010-11-30 2012-06-07 東洋炭素株式会社 Method for carburizing tantalum container
JP2012117096A (en) * 2010-11-30 2012-06-21 Toyo Tanso Kk Method for carburizing tantalum container
CN103261467A (en) * 2010-11-30 2013-08-21 东洋炭素株式会社 Method for carburizing tantalum container
KR20130121852A (en) * 2010-11-30 2013-11-06 도요탄소 가부시키가이샤 Method for carburizing tantalum container
TWI503450B (en) * 2010-11-30 2015-10-11 Toyo Tanso Co Carburization treating method of tantalum container
US9435018B2 (en) 2010-11-30 2016-09-06 Toyo Tanso Co., Ltd. Method for carburizing tantalum container
KR101708969B1 (en) 2010-11-30 2017-02-21 도요탄소 가부시키가이샤 Method for carburizing tantalum container

Similar Documents

Publication Publication Date Title
US8786052B2 (en) Nitride semiconductor crystal producing method, nitride semiconductor epitaxial wafer, and nitride semiconductor freestanding substrate
US20070138505A1 (en) Low defect group III nitride films useful for electronic and optoelectronic devices and methods for making the same
CA2646139A1 (en) Method for growing group iii nitride semiconductor crystal and growing device for group iii nitride semiconductor crystal
KR101672213B1 (en) Method for manufacturing semiconductor device
US6648966B2 (en) Wafer produced thereby, and associated methods and devices using the wafer
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
JP4431647B2 (en) Method for improving surface of single crystal silicon carbide substrate and method for growing single crystal silicon carbide
JP2017536325A (en) Group III nitride crystals, methods for their production, and methods for producing bulk Group III nitride crystals in supercritical ammonia
US20130239878A1 (en) Apparatus and method for production of aluminum nitride single crystal
US9396936B2 (en) Method for growing aluminum indium nitride films on silicon substrate
JP2004269313A (en) Method for manufacturing gallium nitride crystal substrate
JP5792675B2 (en) Method for growing aluminum nitride crystal
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2010163302A (en) Growth container and method for growing aluminum nitride crystal
US10329687B2 (en) Method for producing Group III nitride semiconductor including growing Group III nitride semiconductor through flux method
JP3615081B2 (en) Method for producing GaN single crystal
US6291318B1 (en) Growth of GaN on sapphire with MSE grown buffer layer
JP2009249202A (en) Method for producing aluminum nitride single crystal
JP2009221056A (en) Crystal growth method, crystal growth apparatus, and semiconductor device
JP2013006739A (en) Method for producing single crystal
TW202143303A (en) Method for producing semiconductor substrate, semiconductor substrate, and method for preventing crack occurrence in growth layer
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP4418879B2 (en) Heat treatment apparatus and heat treatment method
JP2009249201A (en) Apparatus for producing aluminum nitride single crystal
JP2004099405A (en) Nitride semiconductor multilayer material and method of growing the same