JP2013236475A - Electronic apparatus device - Google Patents

Electronic apparatus device Download PDF

Info

Publication number
JP2013236475A
JP2013236475A JP2012107448A JP2012107448A JP2013236475A JP 2013236475 A JP2013236475 A JP 2013236475A JP 2012107448 A JP2012107448 A JP 2012107448A JP 2012107448 A JP2012107448 A JP 2012107448A JP 2013236475 A JP2013236475 A JP 2013236475A
Authority
JP
Japan
Prior art keywords
capacitor
battery
charging
electronic device
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012107448A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Shikura
達之 四蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012107448A priority Critical patent/JP2013236475A/en
Publication of JP2013236475A publication Critical patent/JP2013236475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electronic apparatus device that can increase a lifetime of a battery used as a driving source for an electronic apparatus device body and highly accurately estimate a lifetime of the battery with a low-cost and simple method.SOLUTION: An electronic apparatus device includes: a capacitor storing driving energy for an electronic apparatus device body and supplying power to the electronic apparatus device body; a battery connected to the capacitor via a normally-opened (normally-OFF) type switch, for charging the capacitor when the switch is closed (ON); a power supply control unit controlling charging of the capacitor so that a terminal voltage of the capacitor is detected, and when the terminal voltage is reduced to a preset discharge management voltage, the switch is closed, and when a preset charging time has passed, the switch is opened; and battery lifetime estimating means for estimating a lifetime of the battery on the basis of the terminal voltage of the capacitor at a time point when a predetermined time has passed from the start of charging of the capacitor.

Description

本発明は、電子機器本体の駆動源として用いられる電池の長寿命化を図ると共に、前記電池の寿命を簡易に推定することのできる電子機器装置に関する。   The present invention relates to an electronic device apparatus capable of prolonging the life of a battery used as a drive source of an electronic device main body and easily estimating the life of the battery.

種々の観測地点に設置されて温度や圧力、振動等の物理量を計測するノードセンサ(電子機器装置)は、一般的には電池を駆動源として用い、情報センタとの間で無線により情報通信するように構成される(特許文献1を参照)。またこの種のノードセンサにおいては電池の消費電力を抑制し、また電池に対する保守コストの低減を図るべく、例えば間欠動作させることも行われている。   Node sensors (electronic devices) that are installed at various observation points and measure physical quantities such as temperature, pressure, and vibration generally use batteries as drive sources and communicate information wirelessly with an information center. (Refer patent document 1). Further, in this type of node sensor, for example, an intermittent operation is performed in order to suppress the power consumption of the battery and to reduce the maintenance cost for the battery.

ところで電池残量(電池容量)が低下したとき、電池の端子電圧が急激に低下すると言う電池特性に着目し、上述した電子機器装置(センサノード)に組み込まれた電池の寿命を判定することが行われている。また電池寿命を高精度に推定する手法として、例えば電池の電力依存性や環境温度を考慮して電池の端子電圧を判定したり、電子機器装置に組み込まれた電池と同じ特性(同一仕様)の電池を準備し、この電池を疑似負荷に接続して電流を流し、該電池の端子電圧を監視して電池寿命を推定することが提唱されている(例えば特許文献2を参照)。   By the way, when the remaining battery level (battery capacity) is reduced, it is possible to determine the lifetime of the battery incorporated in the electronic device (sensor node) described above by paying attention to the battery characteristic that the terminal voltage of the battery rapidly decreases. Has been done. In addition, as a method for estimating the battery life with high accuracy, for example, the terminal voltage of the battery is determined in consideration of the power dependency of the battery and the environmental temperature, or the same characteristics (same specifications) as the battery incorporated in the electronic device apparatus It has been proposed to prepare a battery, connect the battery to a pseudo load, pass a current, and monitor the terminal voltage of the battery to estimate the battery life (see, for example, Patent Document 2).

特開2011−55186号公報JP 2011-55186 A 特開2011−145986号公報JP 2011-145986 A

しかしながら特許文献2に紹介される電池寿命の推定手法においては、電池電圧および負荷電流をそれぞれ計測する手段が必要となる。しかも一般的には微弱な負荷電流の測定精度を高めるには高精度なハードウェア(AD変換器等)が必要となる。また前述したように疑似負荷を用いて電池寿命を推定する場合には、そのハードウェア構成が大掛かりになることが否めない。   However, the battery life estimation method introduced in Patent Document 2 requires means for measuring the battery voltage and the load current, respectively. Moreover, generally, high-precision hardware (such as an AD converter) is required to increase the measurement accuracy of a weak load current. Further, as described above, when the battery life is estimated using the pseudo load, it cannot be denied that the hardware configuration becomes large.

本発明はこのような事情を考慮してなされたもので、その目的は、電子機器装置本体の駆動源として用いられる電池の長寿命化を図ることのできる電子機器装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electronic device that can extend the life of a battery used as a drive source of the electronic device main body.

また本発明は低コストで簡便な手法で電池の寿命を高精度に推定することができる電池寿命推定機能を備えた電子機器装置を提供することを目的としている。   Another object of the present invention is to provide an electronic device apparatus having a battery life estimation function that can accurately estimate the battery life by a low-cost and simple method.

上述した目的を達成するべく本発明に係る電子機器装置は、例えば所定の周期で間欠運転されるセンサノード等の電子機器本体と、この電子機器本体の駆動エネルギーを蓄えて該電子機器本体に電力供給する電気二重層コンデンサ等のコンデンサと、常開(ノーマリー・オフ)型のスイッチを介して前記コンデンサに接続されて前記スイッチの閉成(オン)時に前記コンデンサを充電する電池と、前記コンデンサの端子電圧を検出して前記スイッチの開閉を制御して前記コンデンサの充電を制御する電源制御部とを備えることを特徴としている。   In order to achieve the above-described object, the electronic device apparatus according to the present invention includes, for example, an electronic device body such as a sensor node intermittently operated at a predetermined cycle, and stores the drive energy of the electronic device body to A capacitor such as an electric double layer capacitor to be supplied, a battery that is connected to the capacitor via a normally open switch and charges the capacitor when the switch is closed (on); and And a power supply control unit that controls the opening and closing of the switch to control the charging of the capacitor by detecting a terminal voltage.

好ましくは前記電源制御部は、前記コンデンサの端子電圧が予め設定した放電管理電圧まで低下したときに前記スイッチを閉成(オン)して前記コンデンサを充電し、該コンデンサの充電時に前記コンデンサの端子電圧が予め設定した充電管理電圧に達したとき、または予め設定した充電時間が経過したときに前記スイッチを開成(オフ)して前記コンデンサの充電を停止する。   Preferably, the power supply control unit closes (turns on) the switch to charge the capacitor when the terminal voltage of the capacitor drops to a preset discharge management voltage, and charges the capacitor when the capacitor is charged. When the voltage reaches a preset charge management voltage or when a preset charge time has elapsed, the switch is opened (turned off) to stop charging the capacitor.

また本発明に係る電子機器装置は、更に前記コンデンサの充電開始から所定の時間が経過した時点での前記コンデンサの端子電圧から前記電池の寿命を推定する電池寿命推定手段を備えることを特徴としている。   The electronic device according to the present invention further includes battery life estimation means for estimating the battery life from the terminal voltage of the capacitor when a predetermined time has elapsed from the start of charging of the capacitor. .

好ましくは前記コンデンサの充電は、抵抗を介して行われ、前記電池寿命推定手段は、前記コンデンサの充電開始から、前記コンデンサの容量と前記抵抗の抵抗値とによって定まる該コンデンサの充電時定数に応じて決定される時間が経過した時点で計測される前記コンデンサの端子電圧と、予め設定した電圧閾値とを比較して電池寿命を推定するように構成される。   Preferably, charging of the capacitor is performed via a resistor, and the battery life estimation means responds to a charging time constant of the capacitor determined by a capacity of the capacitor and a resistance value of the resistor from the start of charging of the capacitor. The battery life is estimated by comparing the terminal voltage of the capacitor measured at the time when the determined time elapses with a preset voltage threshold.

上記構成の電子機器装置によれば、電子機器装置本体の駆動エネルギー源としてコンデンサに蓄積された充電エネルギーを用い、このコンデンサの充電エネルギーが低下したときに常開型のスイッチを介して前記コンデンサに接続された電池により前記コンデンサを充電するので、電池を連続使用することがなくなる。従って電池に休止期間を与え、休止期間における電池の化学的な自己復帰作用を利用して電池性能を回復させることができるので、連続使用に起因する電池性能の劣化を低減して電池寿命を延ばすことができる。   According to the electronic device apparatus having the above configuration, the charging energy stored in the capacitor is used as a drive energy source of the electronic device body, and when the charging energy of the capacitor is reduced, the capacitor is connected to the capacitor via a normally open switch. Since the capacitor is charged by the connected battery, the battery is not used continuously. Therefore, the battery performance can be recovered by giving the battery a rest period and utilizing the chemical self-recovery action of the battery during the rest period, thereby reducing the deterioration of the battery performance due to continuous use and extending the battery life. be able to.

また充電時におけるコンデンサの端子電圧の変化に着目して該コンデンサを充電する電池の寿命を推定するので、電池寿命の推定手法自体が簡便であり、しかも低コストなハードウェアを用いて電池寿命を精度良く推定することができる。従って簡易に、且つ精度良く電池寿命を管理して電池の交換時期等を把握することが可能となる。   In addition, since the life of the battery that charges the capacitor is estimated by paying attention to the change in the terminal voltage of the capacitor during charging, the battery life estimation method itself is simple and the battery life can be reduced using low-cost hardware. It can be estimated with high accuracy. Therefore, it is possible to easily and accurately manage the battery life and grasp the replacement time of the battery.

本発明の一実施形態に係る電子機器装置の全体構成を示す図。The figure which shows the whole structure of the electronic device apparatus which concerns on one Embodiment of this invention. 図1に示す電子機器装置における電源制御部の概略構成を示す図。FIG. 2 is a diagram showing a schematic configuration of a power supply control unit in the electronic device apparatus shown in FIG. 1. 図1に示す電子機器装置の動作を説明するための動作波形図。FIG. 3 is an operation waveform diagram for explaining an operation of the electronic device apparatus shown in FIG. 1. 図1に示す電子機器装置におけるコンデンサの充電制御と電池寿命の判定処理の手順を示す図。The figure which shows the procedure of the charge control of the capacitor | condenser in the electronic device apparatus shown in FIG. 1, and the determination process of battery life. 電池性能(電池容量)に依存するコンデンサの充電特性を示す図。The figure which shows the charge characteristic of the capacitor | condenser depending on battery performance (battery capacity).

以下、図面を参照して本発明の一実施形態に係る電子機器装置について説明する。
この電子機器装置1は、例えば図1にその概略構成を示すように様々な環境下、特に日常的に無人状態となる地域・場所に設置されて電池を駆動源として動作し、気象情報や監視対象の状態情報等を収集するセンサノードからなる。このセンサノード(電子機器装置)1は、上記気象情報や監視対象の状態情報等の監視データを、無線通信により管理センタ(図示せず)に通知する役割を担う。
Hereinafter, an electronic device according to an embodiment of the present invention will be described with reference to the drawings.
The electronic device 1 is installed in various environments, for example, in areas and places that are unattended on a daily basis, as shown in FIG. 1, for example, and operates with a battery as a driving source. It consists of sensor nodes that collect state information of the target. This sensor node (electronic device apparatus) 1 plays a role of notifying the management center (not shown) of the monitoring data such as the weather information and the status information of the monitoring target by wireless communication.

前記センサノード1は、電池11を内蔵し、DC・DCコンバータ12を介して前記電池11の出力電圧を電圧変換した電力を駆動源として動作する。尚、図1において13は前記管理センタとの間で無線通信する無線回路であり、14は電子機器装置1の主体部をなす制御部である。前記電池11は、基本的には前記無線回路13および制御部14からなる電子機器本体10に電源(電力エネルギー)を供給して該電子機器本体10を動作させる駆動エネルギー源としての役割を担う。   The sensor node 1 incorporates a battery 11 and operates using power obtained by converting the output voltage of the battery 11 via a DC / DC converter 12 as a drive source. In FIG. 1, reference numeral 13 denotes a wireless circuit that wirelessly communicates with the management center, and reference numeral 14 denotes a control unit that forms a main part of the electronic device 1. The battery 11 basically serves as a drive energy source for supplying power (power energy) to the electronic device main body 10 including the wireless circuit 13 and the control unit 14 to operate the electronic device main body 10.

ここで電子機器本体10の一部をなす前記制御部14は、例えばマイクロプロセッサに組み込まれたソフトウェア機能として実現される無線通信部15、通信制御部16、および後述する電源制御部17を備えると共に、上記マイクロプロセッサに電源を供給する内部電源部18を備える。前記制御部14は、前記通信制御部16の制御・管理の下で各種のセンサ19を用いて、例えば温度や湿度、その他の情報を検出(監視)し、その検出(監視)データを前記通信制御部16から前記無線回路13を介して前記管理センタに通知する役割を担う。   Here, the control unit 14 forming a part of the electronic device main body 10 includes a wireless communication unit 15, a communication control unit 16, and a power supply control unit 17 described later, which are realized as software functions incorporated in a microprocessor, for example. And an internal power supply unit 18 for supplying power to the microprocessor. The control unit 14 detects (monitors), for example, temperature, humidity, and other information using various sensors 19 under the control and management of the communication control unit 16, and transmits the detected (monitored) data to the communication. It plays a role of notifying the management center from the control unit 16 via the wireless circuit 13.

基本的には上述した如く構成されるセンサノード1において本発明が特徴とするところは、前記無線回路13および前記制御部14からなる電子機器本体10と、前記電池11および前記DC・DCコンバータ12からなる電池側との間に電源部20を介装し、前記電池11に代わって前記電源部20から前記電子機器本体10に対して駆動エネルギーを供給するように構成した点にある。換言すれは前記電子機器本体10の駆動エネルギー源として、前記電池11に代わる電源部20を設けたことを特徴としている。   The sensor node 1 basically configured as described above is characterized in that the present invention is characterized by an electronic device body 10 including the wireless circuit 13 and the control unit 14, the battery 11, and the DC / DC converter 12. The power source unit 20 is interposed between the battery unit and the battery 11, and driving energy is supplied from the power source unit 20 to the electronic device main body 10 instead of the battery 11. In other words, a power source unit 20 that replaces the battery 11 is provided as a drive energy source for the electronic device main body 10.

この電源部20は、常開(ノーマリーオープン)型のスイッチ21と、このスイッチ21に直列に接続された抵抗22と、この抵抗22を介して前記スイッチ21に接続されたコンデンサ23とからなる。このコンデンサ23は、例えば電気二重層コンデンサ等の大容量のものからなり、前記スイッチ21および抵抗22を直列に介して前記電池側の前記DC・DCコンバータ12の出力端に接続される共に、前記電子機器本体10の電源端子に接続される。尚、前記常開(ノーマリーオープン)型のスイッチ21は電磁式のリレーであっても良いが、MOS−FETやIGBT等の半導体スイッチング素子であっても良い。   The power supply unit 20 includes a normally open type switch 21, a resistor 22 connected in series to the switch 21, and a capacitor 23 connected to the switch 21 via the resistor 22. . The capacitor 23 is made of a large-capacity capacitor such as an electric double layer capacitor, and is connected to the output terminal of the DC / DC converter 12 on the battery side through the switch 21 and the resistor 22 in series. It is connected to the power supply terminal of the electronic device body 10. The normally open switch 21 may be an electromagnetic relay, but may be a semiconductor switching element such as a MOS-FET or IGBT.

前記コンデンサ23は、常時は前記スイッチ21により電池側の前記DC・DCコンバータ12から切り離されているが、前記スイッチ21の閉成(オン;導通)時には前記電池側に接続されて前記DC・DCコンバータ12からの出力電圧を受けて充電される。そして前記コンデンサ23に充電された電力エネルギーは、前述した無線回路13および制御部14からなる電子機器本体10に対して、その駆動エネルギーとして供給される。   The capacitor 23 is normally disconnected from the DC / DC converter 12 on the battery side by the switch 21, but is connected to the battery side when the switch 21 is closed (ON) and is connected to the DC / DC. The battery is charged by receiving the output voltage from the converter 12. The power energy charged in the capacitor 23 is supplied as drive energy to the electronic device main body 10 including the wireless circuit 13 and the control unit 14 described above.

換言すれば前記電子機器本体10は、前記電源部20によって前記DC・DCコンバータ12から切り離されており、前記DC・DCコンバータ12を介して得られる前記電池11の出力を直接的な駆動エネルギー源として用いることに代えて、前記電池11の出力(DC・DCコンバータ12の出力)を受けて充電される前記電源部20のコンデンサ23に蓄積された電力エネルギーを、該電源部20から得られる駆動エネルギーとして用いて動作するように位置付けられている。   In other words, the electronic device main body 10 is disconnected from the DC / DC converter 12 by the power supply unit 20, and the output of the battery 11 obtained via the DC / DC converter 12 is used as a direct drive energy source. Instead of using as a drive, the power energy stored in the capacitor 23 of the power supply unit 20 charged by receiving the output of the battery 11 (output of the DC / DC converter 12) is obtained from the power supply unit 20 It is positioned to operate using energy.

ところで前記スイッチ21、抵抗22、およびコンデンサ23からなる電源部20は、前述した電源制御部17の制御を受けて前記スイッチ21を閉成(オン;導通)駆動し、前記抵抗22を介して前記コンデンサ23を充電して前記電池11からの電力エネルギーを蓄える。前記電源制御部17は、例えば図2に示すように前記コンデンサ23の端子電圧(充放電電圧)Vcを検出するAD変換器24と、前記スイッチ21を閉成(オン;導通)駆動するスイッチ駆動回路25と、前記AD変換器24を介して検出された前記コンデンサ23の端子電圧Vcに従って前記スイッチ駆動回路25を作動させる制御プログラム26を備える。   By the way, the power supply unit 20 composed of the switch 21, the resistor 22, and the capacitor 23 receives the control of the power supply control unit 17 to drive the switch 21 to be closed (ON) and to drive the switch 21 via the resistor 22. The capacitor 23 is charged to store the power energy from the battery 11. For example, as shown in FIG. 2, the power supply controller 17 includes an AD converter 24 that detects a terminal voltage (charge / discharge voltage) Vc of the capacitor 23 and a switch drive that drives the switch 21 to be closed (ON). A circuit 25 and a control program 26 for operating the switch drive circuit 25 according to the terminal voltage Vc of the capacitor 23 detected through the AD converter 24 are provided.

この制御プログラム26は、前述したマイクロプロセッサに設定されるもので、基本的には前記コンデンサ23の端子電圧Vcに応じて前記スイッチ21を閉成(オン;導通)駆動する。具体的には前記制御プログラム26は、前記コンデンサ23の端子電圧Vcが予め設定した放電管理電圧Voまで低下したときに前記スイッチ21を閉成駆動して前記コンデンサ23を充電し、また該コンデンサ23の充電時に前記端子電圧Vcが予め設定した充電管理電圧Vhに達したときに前記スイッチ21を開成(閉成駆動を解除)して前記コンデンサ23の充電を停止する役割を担う。尚、予め設定した充電所要時間Tonが経過したとき、前記スイッチ21を開成して前記コンデンサ23の充電を停止するようにしても良い。   This control program 26 is set in the above-described microprocessor, and basically closes (turns on; conducts) the switch 21 in accordance with the terminal voltage Vc of the capacitor 23. Specifically, the control program 26 closes and drives the switch 21 to charge the capacitor 23 when the terminal voltage Vc of the capacitor 23 drops to a preset discharge management voltage Vo. When the terminal voltage Vc reaches a preset charge management voltage Vh during charging, the switch 21 is opened (closed drive is released) and charging of the capacitor 23 is stopped. Note that when the preset charging time Ton has elapsed, the switch 21 may be opened to stop the charging of the capacitor 23.

このように制御される前記スイッチ21により、前述したように前記電子機器本体10は、定常的には前記電源部20によって前記DC・DCコンバータ12から切り離されている。そして前記コンデンサ23を充電するときにだけ、前記DC・DCコンバータ12が前記電源部20に接続される。従って前記電池11は、前記コンデンサ23の充電に供される期間以外は休止状態に保たれ、その連続使用から解放されている。   By the switch 21 controlled in this way, the electronic device main body 10 is regularly disconnected from the DC / DC converter 12 by the power supply unit 20 as described above. The DC / DC converter 12 is connected to the power supply unit 20 only when the capacitor 23 is charged. Therefore, the battery 11 is kept in a rest state except for a period during which the capacitor 23 is charged, and is released from its continuous use.

また更に前記制御プログラム26は、前記コンデンサ23の充電時における該コンデンサ23の端子電圧Vcから前記電池11の寿命を判定する電池寿命判定機能(電池寿命推定手段)を備える。この電池寿命判定機能は、前記コンデンサ23の充電開始から所定の時間が経過した時点での前記コンデンサ23の端子電圧Vcから、前記電池11の性能が劣化して電池寿命に達したか否かを判定する。   Furthermore, the control program 26 includes a battery life determination function (battery life estimation means) for determining the life of the battery 11 from the terminal voltage Vc of the capacitor 23 when the capacitor 23 is charged. This battery life determination function determines whether the performance of the battery 11 has deteriorated and the battery life has been reached from the terminal voltage Vc of the capacitor 23 when a predetermined time has elapsed since the start of charging of the capacitor 23. judge.

具体的には前記電池寿命判定機能は、該コンデンサ23の充電開始から予め設定した時間T1が経過した時点での前記コンデンサ23の端子電圧Vc1と、予め設定した電圧閾値Vthとを比較して電池寿命を推定する。前記充電開始からの経過時間T1は、例えば前記コンデンサ23の静電容量Cと前記抵抗22の抵抗値Rとによって定まる前記コンデンサ23の充電時定数τ(=R・C)に相当する時間として設定される。そしてこの電池寿命判定機能により前記電池11の寿命が尽きたと推定された場合、或いは前記電池11の残された寿命期間が短いと推定された場合には警報が発せられると共に、その電池寿命情報が前記管理センタに通知される。   Specifically, the battery life determination function compares the terminal voltage Vc1 of the capacitor 23 when a preset time T1 has elapsed from the start of charging of the capacitor 23 with a preset voltage threshold Vth. Estimate life. The elapsed time T1 from the start of charging is set as a time corresponding to a charging time constant τ (= R · C) of the capacitor 23 determined by, for example, the capacitance C of the capacitor 23 and the resistance value R of the resistor 22. Is done. When it is estimated that the life of the battery 11 is exhausted by this battery life determination function, or when it is estimated that the remaining life period of the battery 11 is short, an alarm is issued and the battery life information is displayed. The management center is notified.

ここで前記電源制御部17による制御の下での前記電源部20の動作と、該電源部20の前記スイッチ21の閉成動作に伴う前記コンデンサ23の端子電圧Vcの変化について図3を参照して説明する。   Here, the operation of the power supply unit 20 under the control of the power supply control unit 17 and the change in the terminal voltage Vc of the capacitor 23 accompanying the closing operation of the switch 21 of the power supply unit 20 will be described with reference to FIG. I will explain.

前記無線回路13および前記制御部14からなる電子機器本体10は、例えば所定の周期Ts毎に一定時間Tcずつ間欠運転され、前記コンデンサ23から電力エネルギーを得て動作する。上記周期Tsは前記センサノード1の監視対象によっても異なるが、例えば1時間として設定され、また前記間欠運転時間Tcは、例えば1分として設定される。従って前記センサノード1での消費電力(消費電流)は、図3に示すように電子機器本体10の短時間(1分間)の間欠運転時にだけ、その動作に必要な駆動電力(消費電流It)となり、残りの休止期間は前記電子機器本体10の微弱な待機電力(待機電流Is)だけとなる。   The electronic device main body 10 including the wireless circuit 13 and the control unit 14 is intermittently operated for a predetermined time Tc every predetermined cycle Ts, for example, and operates by obtaining power energy from the capacitor 23. The period Ts differs depending on the monitoring target of the sensor node 1, but is set as 1 hour, for example, and the intermittent operation time Tc is set as 1 minute, for example. Therefore, the power consumption (current consumption) at the sensor node 1 is the drive power (current consumption It) required for the operation only during the short-term (one minute) intermittent operation of the electronic device body 10 as shown in FIG. Thus, the rest period is only the weak standby power (standby current Is) of the electronic device body 10.

この電子機器本体10での消費電力(消費電流)は、前述したように前記コンデンサ23に蓄積された(充電された)電力エネルギーによって賄われる。従って前記コンデンサ23の端子電圧Vcは前記電子機器本体10での電力消費に伴って、図3に示すように前記間欠運転時間Tc毎に所定量ずつ低下する。前記電源制御部17における制御プログラム26は、前記電子機器本体10の間欠運転に伴って上述したように変化する前記コンデンサ23の端子電圧Vcを監視(検出)して前記スイッチ21を閉成(オン)駆動して前記コンデンサ23を充電すると共に、前記電池11の寿命を判定する。   The power consumption (current consumption) in the electronic device main body 10 is covered by the power energy accumulated (charged) in the capacitor 23 as described above. Accordingly, the terminal voltage Vc of the capacitor 23 decreases by a predetermined amount every the intermittent operation time Tc as shown in FIG. The control program 26 in the power supply control unit 17 monitors (detects) the terminal voltage Vc of the capacitor 23 that changes as described above with the intermittent operation of the electronic device body 10 and closes the switch 21 (ON). ) Drive to charge the capacitor 23 and determine the life of the battery 11.

図4は前記電源制御部17における制御プログラム26での前記コンデンサ23の充電制御と電池寿命の判定処理の手順を示している。この判定処理について説明すると、前記電子機器本体10の間欠運転時には、先ず前記AD変換器24を介して前記コンデンサ23の端子電圧Vcが検出される<ステップS1>。そして前記端子電圧Vcが前述した放電管理電圧Voまで低下したか否か(Vc≦Vo)の判定が行われる<ステップS2>。   FIG. 4 shows the procedure of the charging control of the capacitor 23 and the battery life determination process in the control program 26 in the power supply control unit 17. The determination process will be described. When the electronic apparatus body 10 is intermittently operated, first, the terminal voltage Vc of the capacitor 23 is detected via the AD converter 24 <step S1>. Then, it is determined whether or not the terminal voltage Vc has decreased to the above-described discharge management voltage Vo (Vc ≦ Vo) <step S2>.

この判定処理によって前記端子電圧Vcが前記放電管理電圧Voまで低下していないことが確認された場合には、前記電子機器本体10を駆動するに十分な電力エネルギーが前記コンデンサ23に残されていると判断して前記スイッチ21の閉成(オン;導通)は行われず、従って前記コンデンサ23の充電も行われない。このようなスイッチ21の閉成制御の処理ルーチンにより、前記電池11は前述した電子機器本体10の間欠運転とは関係なく、定常的には該電子機器本体10から切り離されて休止状態におかれる。   When it is confirmed that the terminal voltage Vc has not decreased to the discharge management voltage Vo by this determination process, sufficient electric energy for driving the electronic device main body 10 is left in the capacitor 23. Therefore, the switch 21 is not closed (ON; conduction), and the capacitor 23 is not charged. By such a processing routine for closing control of the switch 21, the battery 11 is constantly disconnected from the electronic device main body 10 and put into a resting state regardless of the intermittent operation of the electronic device main body 10 described above. .

これに対して前記電子機器本体10の間欠運転時に前記端子電圧Vcが前記放電管理電圧Voまで低下したときには、前記制御プログラム26の制御の下で前記スイッチ駆動回路25が駆動されて前記スイッチ21が閉成(オン;導通)され、前記コンデンサ23の充電が開始される<ステップS3>。このコンデンサ23の充電は、例えば前記端子電圧Vcが前記充電管理電圧Vhに達するまで、或いは予め設定された前記コンデンサ23の充電所要時間Tonが経過するまで連続して行われる。   On the other hand, when the terminal voltage Vc decreases to the discharge management voltage Vo during the intermittent operation of the electronic device body 10, the switch drive circuit 25 is driven under the control of the control program 26, and the switch 21 is turned on. It is closed (ON; conducting), and charging of the capacitor 23 is started <step S3>. The capacitor 23 is continuously charged until, for example, the terminal voltage Vc reaches the charge management voltage Vh, or until a preset charge required time Ton of the capacitor 23 elapses.

このようにして実行される前記コンデンサ23の充電が開始されると、前記制御プログラム26は図示しないタイマーを作動させて<ステップS4>、前記コンデンサ23の充電時間(充電開始からの経過時間)を監視する<ステップS5>。そして予め設定した所定時間が経過した時点(経過時間T1)において前記コンデンサ23の端子電圧Vc1を検出し、この所定時間T1の経過後における前記端子電圧Vc1を内部メモリ27に記憶する<ステップS6>。   When the charging of the capacitor 23 executed in this way is started, the control program 26 activates a timer (not shown) <Step S4> and sets the charging time of the capacitor 23 (elapsed time from the start of charging). Monitor <Step S5>. Then, the terminal voltage Vc1 of the capacitor 23 is detected when a predetermined time set in advance (elapsed time T1), and the terminal voltage Vc1 after the elapse of the predetermined time T1 is stored in the internal memory 27 <Step S6>. .

その後、前記充電開始からの経過時間が前記コンデンサ23の充電所要時間Tonに達したか否かを判定し<ステップS7>、充電所要時間Tonに達した場合には前記コンデンサ23が十分に充電されたと判断して前記スイッチ駆動回路25による前記スイッチ21の閉成(オン;導通)駆動を解除する<ステップS8>。この結果、常開型の前記スイッチ21は開成状態に復帰し、これに伴って前記コンデンサ23の充電が終了する。   Thereafter, it is determined whether or not the elapsed time from the start of charging has reached the required charging time Ton of the capacitor 23 <Step S7>. When the required charging time Ton is reached, the capacitor 23 is sufficiently charged. It is determined that the switch 21 is closed (ON; conduction) by the switch drive circuit 25 (step S8). As a result, the normally open switch 21 returns to the open state, and the charging of the capacitor 23 is completed accordingly.

しかる後、前記制御プログラム26は、前述した如く内部メモリ27に記憶した前記充電開始から所定時間が経過した時点(経過時間T1)での前記コンデンサ23の端子電圧Vc1と予め設定した前記電圧閾値Vthと比較し<ステップS9>、該端子電圧Vc1が前記電圧閾値Vthに満たないとき(Vc1<Vth)、これを前記電池11の特性が劣化した、つまり電池寿命であるとして判定して警報(アラーム)を発する<ステップS10>。尚、前記コンデンサ23の端子電圧Vc1が前記電圧閾値Vthを上回る場合には、前記電池11の性能劣化は認められない、つまり電池11の残容量に十分な余裕があると判断して元の処理ルーチンに復帰する。   Thereafter, the control program 26 stores the terminal voltage Vc1 of the capacitor 23 and the preset voltage threshold value Vth when a predetermined time has elapsed from the start of charging stored in the internal memory 27 as described above (elapsed time T1). <Step S9>, when the terminal voltage Vc1 is less than the voltage threshold Vth (Vc1 <Vth), it is determined that the characteristic of the battery 11 has deteriorated, that is, the battery life is reached, and an alarm (alarm) ) <Step S10>. When the terminal voltage Vc1 of the capacitor 23 exceeds the voltage threshold value Vth, it is determined that the battery 11 has no performance deterioration, that is, the remaining capacity of the battery 11 has a sufficient margin. Return to routine.

ところでコンデンサ23の充電開始から所定時間(T1,T2)経過後における該コンデンサ23の端子電圧(充電電圧)Vc1,Vc2は、前記電池11の残容量(電池性能)に依存し、前記電池11の残容量(電池性能)の低下(劣化)に伴って低下する。図5は前記電池11の性能劣化に伴って変化する、前記コンデンサ23の充電開始から間もない第1の時間T1が経過した時点での該コンデンサ23の端子電圧(相対値)Vc1の変化と、前記コンデンサ23を十分に充電し得ると見込まれる充電開始時から第2の時間T2(充電所要時間Ton)が経過した時点での前記コンデンサ23の端子電圧(相対値)Vc2の変化と対比して示している。   By the way, the terminal voltage (charge voltage) Vc1, Vc2 of the capacitor 23 after a predetermined time (T1, T2) has elapsed from the start of charging of the capacitor 23 depends on the remaining capacity (battery performance) of the battery 11, and It decreases as the remaining capacity (battery performance) decreases (deteriorates). FIG. 5 shows changes in the terminal voltage (relative value) Vc1 of the capacitor 23 when the first time T1 has passed since the start of charging of the capacitor 23. Contrast with the change in the terminal voltage (relative value) Vc2 of the capacitor 23 when the second time T2 (required charging time Ton) elapses from the start of charging when the capacitor 23 is expected to be sufficiently charged. It shows.

具体的には図5の横軸は、新品の電池11によりコンデンサ23を充電したときの充電量(充電完了時の端子電圧)を100%とし、電池性能の劣化(電池残容量の低下)に伴って変化する前記コンデンサ23の充電完了時の端子電圧の相対値を示している。また図5の縦軸は前記新品の電池11によるコンデンサ23の充電完了時の端子電圧を100%として、前記充電開始時から所定時間経過後における前記コンデンサ23の端子電圧(相対値)の変化の割合を示している。尚、図5において特性Aは充電開始時から第1の時間(T1=τ)経過後の端子電圧V1(相対値)の変化の割合(比率)を、また特性Bは充電開始時から第2の時間(Tc2=3τ)経過後の端子電圧V2(相対値)の変化の割合(比率)をそれぞれ示している。   Specifically, the horizontal axis of FIG. 5 indicates that the charge amount (terminal voltage at the completion of charging) when the capacitor 23 is charged with a new battery 11 is 100%, and the battery performance deteriorates (remaining battery capacity decreases). The relative value of the terminal voltage at the completion of charging of the capacitor 23 that varies with the change is shown. Further, the vertical axis of FIG. 5 shows the change in the terminal voltage (relative value) of the capacitor 23 after a predetermined time has elapsed since the charging start, assuming that the terminal voltage when the capacitor 23 is completely charged by the new battery 11 is 100%. Shows the percentage. In FIG. 5, the characteristic A is the change rate (ratio) of the terminal voltage V1 (relative value) after the first time (T1 = τ) has elapsed from the start of charging, and the characteristic B is the second change from the start of charging. The ratio (ratio) of change in the terminal voltage V2 (relative value) after elapse of time (Tc2 = 3τ) is shown.

この図5に示されるように、充電開始から間もない第1の時間(T1=τ)経過後における、前記電池特性に依存する前記コンデンサ23の端子電圧Vc1の変化の割合は、該コンデンサ23が十分に充電されたと看做し得る充電開始から第2の時間(T2=3τ)経過後における、前記電池特性に依存する前記コンデンサ23の端子電圧Vc2の変化の割合よりも顕著である。   As shown in FIG. 5, the change rate of the terminal voltage Vc1 of the capacitor 23 depending on the battery characteristics after the elapse of the first time (T1 = τ) shortly after the start of charging is expressed as follows. Is more remarkable than the rate of change of the terminal voltage Vc2 of the capacitor 23 depending on the battery characteristics after the second time (T2 = 3τ) has elapsed since the start of charging when it can be considered that the battery has been fully charged.

特にこの図5に示す例においては、電池特性の劣化に起因してコンデンサ23の充電量が100%から20%まで低下したとき、第2の時間(T2=3τ)経過後のコンデンサ23の端子電圧Vc2の変化の割合が高々1%程度であるのに比べ、充電開始時から間もない前記第1の時間(T1=τ)経過後のコンデンサ23の端子電圧Vc1の前記電池特性に依存する変化の割合は5%にも及ぶ。   In particular, in the example shown in FIG. 5, when the charge amount of the capacitor 23 decreases from 100% to 20% due to the deterioration of the battery characteristics, the terminal of the capacitor 23 after the second time (T2 = 3τ) has elapsed. Compared with the rate of change of the voltage Vc2 being about 1% at most, it depends on the battery characteristics of the terminal voltage Vc1 of the capacitor 23 after the first time (T1 = τ) has passed since the start of charging. The rate of change is as much as 5%.

従って前述したようにコンデンサ23の充電開始時から間もない前記第1の時間(T1=τ)経過後における前記コンデンサ23の端子電圧(充電電圧)に着目することで、該コンデンサ23の充電に供される前記電池11の性能劣化を精度良く捉えて該電池11の寿命を高精度に推定することができる。しかも充電開始時から前記第1の時間(T1=τ)経過後の端子電圧Vc1の電池性能に依存する変化の割合が大きいので、ビット数の少ない安価で簡易な構成のAD変換器24を用いた場合であっても、上記端子電圧Vcの変化を確実に捉えることができる。   Therefore, as described above, by paying attention to the terminal voltage (charge voltage) of the capacitor 23 after the first time (T1 = τ) has passed since the start of charging of the capacitor 23, the capacitor 23 is charged. It is possible to accurately estimate the performance deterioration of the battery 11 provided and to estimate the life of the battery 11 with high accuracy. In addition, since the rate of change depending on the battery performance of the terminal voltage Vc1 after the first time (T1 = τ) has elapsed since the start of charging is large, an inexpensive and simple AD converter 24 with a small number of bits is used. Even in such a case, the change in the terminal voltage Vc can be reliably captured.

以上のように本電子機器装置1においては、定常的には前記電池11から切り離され、充電エネルギーが少なくなったときにスイッチ21を介して前記電池11からの電力エネルギーを受けて充電されるコンデンサ23の充電時における端子電圧(充電電圧)Vcを検出して前記電池11の性能劣化(電池寿命)を推定する。従って上述した電池寿命推定機能を備えた本電子機器装置1によれば、前記電池11から前記無線回路13および制御部14からなる電子機器本体10に流れる微弱な負荷電流を検出する必要がなく、また充電開始から比較的短時間が経過した時点で前記コンデンサ23の端子電圧Vcの電池特性に依存する大きな変化を検出するので、簡易なハードウェア構成の下で高精度に電池寿命を推定することができる。   As described above, in the electronic apparatus device 1, the capacitor that is regularly disconnected from the battery 11 and charged by receiving the power energy from the battery 11 via the switch 21 when the charging energy decreases. The terminal voltage (charging voltage) Vc at the time of charging 23 is detected, and the performance deterioration (battery life) of the battery 11 is estimated. Therefore, according to the electronic apparatus device 1 having the battery life estimation function described above, it is not necessary to detect a weak load current flowing from the battery 11 to the electronic apparatus main body 10 including the wireless circuit 13 and the control unit 14. In addition, since a large change depending on the battery characteristics of the terminal voltage Vc of the capacitor 23 is detected when a relatively short time has elapsed since the start of charging, the battery life can be estimated with high accuracy under a simple hardware configuration. Can do.

また上述した如く推定した前記電池11の寿命の情報を、例えば前記無線回路13を用いて管理センタに通知するようにすれば、本電子機器装置1から離れた管理センタにおいて該電子機器装置1に組み込まれた前記電池11の性能を的確に把握することができる。更には前記管理センタにおいて性能の劣化した(寿命が尽きる)電池11の交換を的確に指示することが可能となる等の効果が奏せられる。この場合、前記電子機器装置1のID情報、または電子機器装置1の設置位置に関する情報を前記電池11の寿命情報と共に前記管理センタに通知することが望ましい。   Further, if the information on the life of the battery 11 estimated as described above is notified to the management center using, for example, the wireless circuit 13, the electronic device apparatus 1 is transmitted to the electronic apparatus apparatus 1 at a management center remote from the electronic apparatus device 1. The performance of the built-in battery 11 can be accurately grasped. Furthermore, the management center can provide an effect that it is possible to accurately instruct the replacement of the battery 11 whose performance has deteriorated (life is exhausted). In this case, it is desirable to notify the management center of the ID information of the electronic device apparatus 1 or the information regarding the installation position of the electronic device apparatus 1 together with the life information of the battery 11.

尚、本発明は上述した実施形態に限定されるものではない。例えば前述した如く検出した充電開始から所定時間経過後の前記コンデンサ23の端子電圧を前記管理センタに通知し、管理センタ側において前記電子機器装置(センサノード)1に組み込まれた電池11の寿命を判定するようにシステム構成することも可能である。この場合、電子機器装置1の構成の更なる簡略化を図り、或いは電子機器装置1での処理負担を軽減することが可能となる。   The present invention is not limited to the embodiment described above. For example, the terminal voltage of the capacitor 23 after the elapse of a predetermined time from the start of charging detected as described above is notified to the management center, and the life of the battery 11 incorporated in the electronic device (sensor node) 1 on the management center side is notified. It is also possible to configure the system to make the determination. In this case, the configuration of the electronic device apparatus 1 can be further simplified, or the processing load on the electronic device apparatus 1 can be reduced.

またコンデンサ23の充電開始からの互いに異なる経過時間(T1,T2〜Tn)における端子電圧(Vc1,Vc2〜Vcn)をそれぞれ検出し、これらの端子電圧を総合的に判定して前記電池11の寿命を判定することも勿論可能である。更には電池寿命を推定する上での前述した端子電圧の判定基準となる電圧閾値Vthについては、前記電池11の仕様(構成や種類等)や、前述したDC・DCコンバータ12の入出力電圧仕様、更には前記無線回路13および前記制御部14からなる前記電子機器本体の負荷仕様(動作周期や消費電力等)に応じて予め設定しおけば十分である。   Further, terminal voltages (Vc1, Vc2 to Vcn) at different elapsed times (T1, T2 to Tn) from the start of charging of the capacitor 23 are detected, and these terminal voltages are comprehensively determined to determine the life of the battery 11. Of course, it is also possible to determine. Further, regarding the voltage threshold value Vth that is the above-described terminal voltage determination criterion in estimating the battery life, the specifications (configuration, type, etc.) of the battery 11 and the input / output voltage specifications of the DC / DC converter 12 described above. Furthermore, it is sufficient to set in advance according to the load specifications (operation cycle, power consumption, etc.) of the electronic device main body comprising the radio circuit 13 and the control unit 14.

また電池寿命を推定する上での前記コンデンサ23の端子電圧を検出するタイミング、つまり充電開始から経過時間についても、例えば前記電池11の性能のみならず、前記コンデンサ23の充電特性等を考慮して決定することも勿論可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Further, the timing for detecting the terminal voltage of the capacitor 23 in estimating the battery life, that is, the elapsed time from the start of charging, for example, considers not only the performance of the battery 11 but also the charging characteristics of the capacitor 23 and the like. Of course, it is possible to decide. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

1 電子機器装置(センサノード)
10 電子機器本体
11 電池
12 DC・DCコンバータ
13 無線回路
14 制御部
15 無線通信部
16 通信制御部
17 電源制御部
18 内部電源部
19 センサ
20 電源部
21 スイッチ
22 抵抗
23 コンデンサ
24 AD変換器
25 スイッチ駆動回路
26 制御プログラム
27 内部メモリ
1 Electronic equipment (sensor node)
DESCRIPTION OF SYMBOLS 10 Electronic device main body 11 Battery 12 DC / DC converter 13 Wireless circuit 14 Control part 15 Wireless communication part 16 Communication control part 17 Power supply control part 18 Internal power supply part 19 Sensor 20 Power supply part 21 Switch 22 Resistance 23 Capacitor 24 AD converter 25 Switch Drive circuit 26 Control program 27 Internal memory

Claims (5)

電子機器本体と、
この電子機器本体の駆動エネルギーを蓄えるコンデンサと、
常開型のスイッチを介して前記コンデンサに接続されて前記スイッチの閉成時に前記コンデンサを充電する電池と、
前記コンデンサの端子電圧を検出して前記スイッチの開閉を制御して前記コンデンサの充電を制御する電源制御部と
を具備したことを特徴とする電子機器装置。
An electronic device body,
A capacitor for storing the drive energy of the electronic device body,
A battery connected to the capacitor via a normally open switch to charge the capacitor when the switch is closed;
An electronic device apparatus comprising: a power supply control unit that detects a terminal voltage of the capacitor and controls opening and closing of the switch to control charging of the capacitor.
前記電子機器本体は、所定の周期で間欠運転されて前記コンデンサの充電エネルギーを駆動源として動作するセンサノードであって、
前記コンデンサは、電気二重層コンデンサからなる請求項1に記載の電子機器装置。
The electronic device main body is a sensor node that is intermittently operated at a predetermined cycle and operates using the charging energy of the capacitor as a drive source,
The electronic device according to claim 1, wherein the capacitor is an electric double layer capacitor.
前記電源制御部は、前記コンデンサの端子電圧が予め設定した放電管理電圧まで低下したときに前記スイッチを閉成して前記コンデンサを充電し、該コンデンサの充電時に前記コンデンサの端子電圧が予め設定した充電管理電圧に達したとき、または予め設定した充電時間が経過したときに前記スイッチを開成して前記コンデンサの充電を停止するものである請求項1に記載の電子機器装置。   The power control unit closes the switch to charge the capacitor when the terminal voltage of the capacitor drops to a preset discharge management voltage, and the capacitor terminal voltage is preset when the capacitor is charged. The electronic device apparatus according to claim 1, wherein when the charging management voltage is reached or when a preset charging time has elapsed, the switch is opened to stop charging the capacitor. 請求項1〜3のいずれかに記載の電子機器装置において、
更に前記コンデンサの充電開始から所定の時間が経過した時点での前記コンデンサの端子電圧から前記電池の寿命を推定する電池寿命推定手段を備えることを特徴とする電子機器装置。
In the electronic device device according to any one of claims 1 to 3,
The electronic apparatus apparatus further comprises battery life estimation means for estimating a life of the battery from a terminal voltage of the capacitor when a predetermined time has elapsed from the start of charging of the capacitor.
前記コンデンサの充電は、抵抗を介して行われるものであって、
前記電池寿命推定手段は、前記コンデンサの充電開始から、前記コンデンサの容量と前記抵抗の抵抗値とによって定まる該コンデンサの充電時定数に応じて決定される時間が経過した時点での前記コンデンサの端子電圧と、予め設定した電圧閾値とを比較して電池寿命を推定するものである請求項4に記載の電子機器装置。
The capacitor is charged through a resistor,
The battery life estimating means is a terminal of the capacitor at a time when a time determined according to a charging time constant of the capacitor determined by a capacity of the capacitor and a resistance value of the resistor has elapsed from the start of charging of the capacitor. The electronic device apparatus according to claim 4, wherein the battery life is estimated by comparing the voltage with a preset voltage threshold value.
JP2012107448A 2012-05-09 2012-05-09 Electronic apparatus device Pending JP2013236475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107448A JP2013236475A (en) 2012-05-09 2012-05-09 Electronic apparatus device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107448A JP2013236475A (en) 2012-05-09 2012-05-09 Electronic apparatus device

Publications (1)

Publication Number Publication Date
JP2013236475A true JP2013236475A (en) 2013-11-21

Family

ID=49762144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107448A Pending JP2013236475A (en) 2012-05-09 2012-05-09 Electronic apparatus device

Country Status (1)

Country Link
JP (1) JP2013236475A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230036A (en) * 2016-07-25 2016-12-14 宇能电气有限公司 Battery discharging machine
JP2020529584A (en) * 2017-07-28 2020-10-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Medical device with battery test
KR20210083332A (en) * 2018-11-30 2021-07-06 에프. 호프만-라 로슈 아게 Medical devices with power-up routines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292683A (en) * 1992-04-03 1993-11-05 Jeol Ltd Charge storage power device for motive power
JP2006204024A (en) * 2005-01-21 2006-08-03 Hitachi Ltd Power supply control method, electronic device, and system using the same
JP2006325331A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Discharging circuit for secondary battery and secondary battery pack equipped with the same, and electronic equipment
JP2007188345A (en) * 2006-01-13 2007-07-26 Matsushita Electric Works Ltd Emergency guidance system
JP2008189010A (en) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd Power source apparatus for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292683A (en) * 1992-04-03 1993-11-05 Jeol Ltd Charge storage power device for motive power
JP2006204024A (en) * 2005-01-21 2006-08-03 Hitachi Ltd Power supply control method, electronic device, and system using the same
JP2006325331A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Discharging circuit for secondary battery and secondary battery pack equipped with the same, and electronic equipment
JP2007188345A (en) * 2006-01-13 2007-07-26 Matsushita Electric Works Ltd Emergency guidance system
JP2008189010A (en) * 2007-01-31 2008-08-21 Sanyo Electric Co Ltd Power source apparatus for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230036A (en) * 2016-07-25 2016-12-14 宇能电气有限公司 Battery discharging machine
JP2020529584A (en) * 2017-07-28 2020-10-08 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Medical device with battery test
JP7245458B2 (en) 2017-07-28 2023-03-24 エフ. ホフマン-ラ ロシュ アーゲー Medical device with battery test
US11686774B2 (en) 2017-07-28 2023-06-27 Roche Diabetes Care, Inc. Medical device with battery testing
KR20210083332A (en) * 2018-11-30 2021-07-06 에프. 호프만-라 로슈 아게 Medical devices with power-up routines
JP2022509250A (en) * 2018-11-30 2022-01-20 エフ.ホフマン-ラ ロシュ アーゲー Medical device with power-on routine
JP7308266B2 (en) 2018-11-30 2023-07-13 エフ. ホフマン-ラ ロシュ アーゲー MEDICAL DEVICE HAVING POWER-ON ROUTINES
KR102558627B1 (en) * 2018-11-30 2023-07-24 에프. 호프만-라 로슈 아게 Medical device with power-up routine

Similar Documents

Publication Publication Date Title
JP5806413B2 (en) Power supply control device and control method for power supply control device
US7477038B2 (en) Vehicle-mounted power supply system
JP5225559B2 (en) Battery pack abnormality determination method and battery pack
US9404667B2 (en) Determining power stealing capability of a climate control system controller
US10338141B2 (en) Power supply protective device, power supply device and switch failure diagnosing method
JP6141678B2 (en) Electric equipment
JP4845613B2 (en) Battery charger with power capacitor life diagnosis function
US10236704B2 (en) Charge collection device and power collection method
WO2016183418A1 (en) An instrumented super-cell
EP2887085B1 (en) Method and apparatus for indicating a low battery level
CN105722728A (en) Power supply control system
JP6696311B2 (en) Charging rate estimation device
JP5390981B2 (en) Power backup device
JP2013236475A (en) Electronic apparatus device
JP5138871B2 (en) Actuator for operating the roll shutter
JP4812368B2 (en) Charger with life diagnosis function for power capacitors
JP4627489B2 (en) Uninterruptible power supply system and battery charging method
JP6815884B2 (en) Battery level alarm device, numerical control device and machine tool system
US9793737B2 (en) Electronic device including a very low voltage generator powering a battery
US20110054818A1 (en) Charge-transfer sensor with low power consumption
JP2004194481A (en) Battery charging controlling device and battery charging device
CN111742438B (en) Sensor device and method for the operation thereof
JP5130247B2 (en) Battery life judgment device
JP2018096832A (en) Monitoring device
JP2013246026A (en) Electrostatic capacity measurement system, electrostatic capacity measurement method, deterioration state estimation system and deterioration state estimation method of capacitor cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160607