JP2013235713A - Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith - Google Patents

Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith Download PDF

Info

Publication number
JP2013235713A
JP2013235713A JP2012107340A JP2012107340A JP2013235713A JP 2013235713 A JP2013235713 A JP 2013235713A JP 2012107340 A JP2012107340 A JP 2012107340A JP 2012107340 A JP2012107340 A JP 2012107340A JP 2013235713 A JP2013235713 A JP 2013235713A
Authority
JP
Japan
Prior art keywords
copper foil
lithium ion
secondary battery
ion secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012107340A
Other languages
Japanese (ja)
Inventor
Muneo Kodaira
宗男 小平
Kenichi Kato
賢一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2012107340A priority Critical patent/JP2013235713A/en
Priority to KR1020130016290A priority patent/KR102028055B1/en
Priority to CN2013100601850A priority patent/CN103390754A/en
Publication of JP2013235713A publication Critical patent/JP2013235713A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To reduce the deformation of a copper foil 162 for a negative electrode owing to the volume expansion and shrinkage of a negative-electrode active material layer 164 of a lithium ion secondary battery 100.SOLUTION: The current-collecting copper foil to solve the problem is used in a lithium ion secondary battery which has a laminate structure having a separator including an electrolyte, positive and negative electrodes opposed to each other through the separator, and a first cover having a first plane part and a second cover having a second plane part for sealing the laminate structure. The first and second plane parts are disposed to sandwich the laminate structure therebetween, and in which the distance between the first and second plane parts is changed depending on the change in thickness of the negative electrode. The product of 0.2%-proof stress and a thickness is larger than 2.4 N/mm. The lithium ion secondary battery is arranged by use of the current-collecting copper foil.

Description

本発明はリチウムイオン二次電池に使用される集電用銅箔およびそれを使用したリチウムイオン二次電池に関する。   The present invention relates to a copper foil for current collection used in a lithium ion secondary battery and a lithium ion secondary battery using the same.

本明細書ではリチウムイオン二次電池の作用をなす最小単位および最小単位を複数個接続して構成した電池の両方を含めて「電池」と記載する。   In this specification, the term “battery” includes both a minimum unit that functions as a lithium ion secondary battery and a battery that is formed by connecting a plurality of minimum units.

リチウムイオン二次電池は、携帯電話等の通信機器やノート型パソコン、電動工具等、エンジンと電動機の両方を使用して走行するハイブリッドカー、電動機のみで走行する純粋な電気自動車、さらに鉄道などを含む電動車両、大規模な電力貯蔵装置など、幅広い分野で使用され、その蓄電容量や出力電圧は用途に応じて定められる。   Lithium-ion rechargeable batteries can be used for communication equipment such as mobile phones, notebook computers, electric tools, hybrid cars that use both engine and electric motors, pure electric cars that use only electric motors, and railways. It is used in a wide range of fields, including electric vehicles and large-scale power storage devices, and its storage capacity and output voltage are determined according to the application.

リチウムイオン二次電池の代表的な構成は、正極と負極とで非水電解質を含有するセパレータを挟む積層構造を有し、上記負極は集電銅箔とその表面に設けられた活物質層を有している。また正極は正極集電板とその表面に設けられた活物質層を備えている。   A typical configuration of a lithium ion secondary battery has a laminated structure in which a separator containing a nonaqueous electrolyte is sandwiched between a positive electrode and a negative electrode, and the negative electrode includes a current collector copper foil and an active material layer provided on the surface thereof. Have. The positive electrode includes a positive electrode current collector plate and an active material layer provided on the surface thereof.

リチウムイオン二次電池の代表的な形状としては、その外観が円筒形状である円筒型リチウムイオン二次電池や、略角型形状を成す角型リチウムイオン二次電池、積層構造を成すラミネート型リチウムイオン二次電池がある。これらのリチウムイオン二次電池において、従来技術では、正極や負極、セパレータからなる積層構造体を保護するために、上記積層構造体は非常に頑丈な収納ケースに収納されていた。このためリチウムイオン二次電池の体積が大きくなる問題を有している。特に電動車両や電力貯蔵装置などでは、電池に蓄える電力量が大きいため、多数のリチウムイオン二次電池を使用することが必要で、上述のように頑丈なケースを備える構造では体積を増大する問題があった。   Typical shapes of the lithium ion secondary battery include a cylindrical lithium ion secondary battery having a cylindrical appearance, a rectangular lithium ion secondary battery having a substantially square shape, and a laminated lithium having a laminated structure. There are ion secondary batteries. In these lithium ion secondary batteries, in the prior art, in order to protect the laminated structure including the positive electrode, the negative electrode, and the separator, the laminated structure is accommodated in a very sturdy storage case. For this reason, there is a problem that the volume of the lithium ion secondary battery becomes large. Especially in electric vehicles and power storage devices, since the amount of power stored in the battery is large, it is necessary to use a large number of lithium ion secondary batteries, and the structure with a sturdy case as described above has a problem of increasing the volume. was there.

リチウムイオン二次電池に関する技術は、例えば特開2011−54339号公報(特許文献1)に記載されている。   The technique regarding a lithium ion secondary battery is described in Unexamined-Japanese-Patent No. 2011-54339 (patent document 1), for example.

特開2011−54339号公報JP 2011-54339 A

リチウムイオン二次電池はセパレータを挟んで配置された正極と負極を備えており、正極と負極には集電用金属箔に正極用活物質層あるいは負極用活物質層が設けられている。リチウムイオン二次電池に充電用電力が供給されることにより蓄電され、蓄電された電力は利用対象である電気負荷に供給される。このようにリチウムイオン二次電池は充電動作と放電動作を繰り返すことにより、電力を蓄電し利用対象に必要な電力を供給する。   The lithium ion secondary battery includes a positive electrode and a negative electrode arranged with a separator interposed therebetween, and a positive electrode active material layer or a negative electrode active material layer is provided on a current collecting metal foil for the positive electrode and the negative electrode. The lithium ion secondary battery is charged by supplying charging power, and the stored power is supplied to an electric load to be used. As described above, the lithium ion secondary battery repeats the charging operation and the discharging operation, thereby storing electric power and supplying necessary electric power to the usage target.

リチウムイオン二次電池の充電状態ではリチウムイオンが正極からセパレータに含有された電解質を介して負極に移動し、負極の活物質に保持される。一方放電状態では、負極の活物質層に保持されていたリチウムイオンが負極から電解質を介して正極に移動する。上記充電状態では負極の活物質層の体積が増大し、一方放電状態では負極の活物質層の体積が減少する現象が生じる。このような負極活物質層の膨張や収縮に起因して集電用銅箔に機械的な応力が加わり、しわが生じるなど、銅箔が変形する問題が生じる。このような集電用銅箔の変形はリチウムイオン二次電池の劣化などの要因となり、リチウムイオン二次電池の劣化を低減する観点から集電用銅箔の変形をできるだけ低減することが望ましい。   In the charged state of the lithium ion secondary battery, lithium ions move from the positive electrode to the negative electrode through the electrolyte contained in the separator, and are held by the negative electrode active material. On the other hand, in the discharge state, lithium ions held in the active material layer of the negative electrode move from the negative electrode to the positive electrode through the electrolyte. In the charged state, the volume of the active material layer of the negative electrode is increased, while in the discharged state, the volume of the active material layer of the negative electrode is decreased. Due to the expansion and contraction of the negative electrode active material layer, a mechanical stress is applied to the copper foil for current collection, causing a problem that the copper foil is deformed, such as wrinkles. Such deformation of the current collecting copper foil becomes a factor such as deterioration of the lithium ion secondary battery, and it is desirable to reduce the deformation of the current collecting copper foil as much as possible from the viewpoint of reducing deterioration of the lithium ion secondary battery.

上記特許文献1は、リチウムイオン二次電池の集電用銅箔にスリットを形成することにより、集電用銅箔のしわを低減することが記載されているが、低減が不十分である。   Although the said patent document 1 describes reducing wrinkles of the copper foil for current collection by forming a slit in the copper foil for current collection of a lithium ion secondary battery, the reduction is inadequate.

また発明者等の研究によれば、リチウムイオン二次電池の充放電により、負極の活物質層の体積が膨張収縮を繰り返すが、充放電動作が繰り返されると、負極活物質層の充電動作による体積膨張が放電動作により完全に元の体積に戻ることは無く、徐々に体積が増大する経年変化が生じることが分かった。   In addition, according to the study by the inventors, the volume of the active material layer of the negative electrode repeatedly expands and contracts due to charging and discharging of the lithium ion secondary battery. When the charging and discharging operation is repeated, the charging operation of the negative electrode active material layer is repeated. It was found that the volume expansion does not completely return to the original volume due to the discharge operation, and the secular change in which the volume gradually increases occurs.

電池の全体体積に対する電池の蓄電量を大きくするためには電池のケースが占める体積を少なくすることが望ましい。上記ケースの体積を少なくするとケースの厚さが薄くなり該ケースに収納される正極や負極、セパレータを備える積層構造体に対するケースの拘束力が弱くなり、充電状態や経年変化による負極活物質層の体積増加を抑制する力が非常に弱くなり、負極の集電用銅箔に加わる応力により集電用銅箔が変形し易くなる。   In order to increase the amount of electricity stored in the battery relative to the total volume of the battery, it is desirable to reduce the volume occupied by the battery case. When the volume of the case is reduced, the thickness of the case is reduced, and the binding force of the case to the laminated structure including the positive electrode, the negative electrode, and the separator stored in the case is weakened. The force to suppress the increase in volume becomes very weak, and the current collecting copper foil is easily deformed by the stress applied to the current collecting copper foil of the negative electrode.

本発明の目的の一つは、変形を抑制できる、リチウムイオン二次電池に使用するための集電用銅箔を提供することであり、さらにこれを使用したリチウムイオン二次電池用を提供することである。   One of the objects of the present invention is to provide a copper foil for current collection for use in a lithium ion secondary battery that can suppress deformation, and further provides for a lithium ion secondary battery using the same. That is.

なお、以下で説明する発明を実施するための形態の欄に記載の実施例では、本課題の解決にとどまることなく、色々な課題を解決することができる。これらについては、以下で説明する。   In addition, in the Example described in the column of the form for inventing demonstrated below, various problems can be solved without staying at the solution of this problem. These are described below.

以下の発明を実施するための形態の欄に記載する実施例は、上記課題を解決するための手段として少なくとも次に記載の特徴を有している。なお、以下に記載の実施例は上記課題に止まるものではなく色々な課題を解決する手段、すなわち特徴を備えている。これらについては以下の発明を実施するための形態の欄で説明する。   The embodiments described in the section for carrying out the invention below have at least the following features as means for solving the above problems. The embodiments described below are not limited to the above-described problems, and include means for solving various problems, that is, features. These will be described in the section of the embodiment for carrying out the invention below.

上記課題を解決するための第1の発明の集電用銅箔は、電解質を含有するセパレータを介して正極と負極を対向するように配置した積層構造体を少なくとも一組有し、上記負極は集電用銅箔と上記集電用銅箔の少なくとも一方の面に設けられたグラファイトからなる活物質層を備え、上記積層構造体を密閉するための第1平面部を備える第1カバーと第2平面部を備える第2カバーとを有し、上記第1平面部と上記第2平面部は上記積層構造体を挟むように配置され、上記負極の厚さの変化に基づき上記第1平面部と上記第2平面部の間隔が変化するリチウムイオン二次電池に、使用する上記集電用銅箔であって、上記集電用銅箔は、0.2%耐力と厚さとの積が2.4N/mmより大きいことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 1st invention for solving the said subject has at least 1 set of the laminated structure arrange | positioned so that a positive electrode and a negative electrode may be opposed through the separator containing electrolyte, The said negative electrode is A first cover including a copper foil for current collection and an active material layer made of graphite provided on at least one surface of the copper foil for current collection, and a first cover having a first flat portion for sealing the laminated structure; A second cover having two planar portions, wherein the first planar portion and the second planar portion are disposed so as to sandwich the laminated structure, and the first planar portion is based on a change in thickness of the negative electrode. And the current-collecting copper foil used for the lithium ion secondary battery in which the distance between the second plane portions changes, and the current-collecting copper foil has a product of 0.2% proof stress and thickness of 2 . Used for lithium ion secondary battery, characterized by being larger than 4 N / mm A copper foil current collector for that.

上記課題を解決するための第2の発明は、第1の発明の集電用銅箔であって、上記集電用銅箔は、0.2%耐力と厚さとの積が3.1N/mm以上であることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   2nd invention for solving the said subject is copper foil for current collection of 1st invention, Comprising: As for the said copper foil for current collection, the product of 0.2% yield strength and thickness is 3.1N / It is the copper foil for current collection used for a lithium ion secondary battery characterized by being mm or more.

上記課題を解決するための第3の発明は、第1の発明あるいは第2の発明の集電用銅箔であって、上記集電用銅箔は、0.2%耐力と厚さとの積が5.4N/mm以下であることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   3rd invention for solving the said subject is copper foil for current collection of 1st invention or 2nd invention, Comprising: The said copper foil for current collection is a product of 0.2% yield strength and thickness. Is a copper foil for current collection used for a lithium ion secondary battery, characterized by being 5.4 N / mm or less.

上記課題を解決するための第4の発明の集電用銅箔は、第1の発明乃至第3の発明の内の一の発明の集電用銅箔であって、上記集電用銅箔が用いられるリチウムイオン二次電池は、上記第1あるいは第2カバーの内の少なくとも1つにおいて該カバーの上記平面部の外側にダンパー部が形成され、上記負極の厚さの変化に基づき上記ダンパー部が変形し、これにより上記第1および第2カバーの上記第1平面と第2平面の間隔が変化する構造を備えている、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 4th invention for solving the said subject is copper foil for current collection of 1 invention among 1st invention thru | or 3rd invention, Comprising: Said copper foil for current collection In at least one of the first and second covers, a damper part is formed outside the flat part of the cover, and the damper is used based on a change in the thickness of the negative electrode. The current collector is used for a lithium ion secondary battery, characterized in that the portion is deformed, whereby the distance between the first plane and the second plane of the first and second covers changes. Copper foil.

上記課題を解決するための第5の発明の集電用銅箔は、第1の発明乃至第4の発明の内の一の発明の集電用銅箔であって、上記集電用銅箔が用いられるリチウムイオン二次電池は、上記第1あるいは第2カバーの内の少なくとも1つがアルミニウムを主成分とする金属板で形成されている、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 5th invention for solving the said subject is copper foil for current collection of one invention among 1st invention thru | or 4th invention, Comprising: The copper foil for said current collection A lithium-ion secondary battery using a lithium ion secondary battery is characterized in that at least one of the first and second covers is formed of a metal plate mainly composed of aluminum. It is the copper foil for current collection.

上記課題を解決するための第6の発明の集電用銅箔は、第1の発明乃至第5の発明の内の一の発明の集電用銅箔であって、上記集電用銅箔は150℃以上で30分以上加熱された後の0.2%耐力と厚さとの積が3.1N/mm以上で5.4N/mm以下の範囲にあることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 6th invention for solving the said subject is copper foil for current collection of one invention among 1st invention thru | or 5th invention, Comprising: Said copper foil for current collection Is characterized in that the product of 0.2% proof stress and thickness after being heated at 150 ° C. or more for 30 minutes or more is in the range of 3.1 N / mm to 5.4 N / mm. It is the copper foil for current collection used for a secondary battery.

上記課題を解決するための第7の発明の集電用銅箔は、第1の発明乃至第6の発明の内の一の発明の集電用銅箔であって、上記集電用銅箔は、銅を主金属とし、ジルコニウムを質量比で約0.02%含む、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 7th invention for solving the said subject is copper foil for current collection of one invention among 1st invention thru | or 6th invention, Comprising: Said copper foil for current collection Is a copper foil for current collection used for a lithium ion secondary battery, characterized in that it contains copper as a main metal and zirconium in a mass ratio of about 0.02%.

上記課題を解決するための第8の発明の集電用銅箔は、第1の発明乃至第7の発明の内の一の発明の集電用銅箔であって、上記集電用銅箔が用いられるリチウムイオン二次電池は、車両に搭載されるリチウムイオン二次電池である、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔である。   The copper foil for current collection of 8th invention for solving the said subject is copper foil for current collection of one invention among 1st invention thru | or 7th invention, Comprising: Said copper foil for current collection The lithium ion secondary battery used is a copper foil for current collection used in a lithium ion secondary battery, characterized in that it is a lithium ion secondary battery mounted on a vehicle.

上記課題を解決するための第9の発明のリチウムイオン二次電池は、正極と負極とを電解質を含有するセパレータを介して対向するように配置した積層構造体を少なくとも一組有し、上記負極は、集電用銅箔と上記集電用銅箔の少なくとも一方の面に設けられたグラファイトからなる活物質層とを備え、上記積層構造体を密閉するために、第1平面部を備える第1カバーと第2平面部を備える第2カバーとを有し、上記第1平面部と上記第2平面部は上記積層構造体を挟むように配置されて上記負極の厚さの変化に基づき上記第1平面部と上記第2平面部の間隔が変化する構造を成し、上記集電用銅箔は、0.2%耐力と厚さとの積が2.4N/mmより大きいことを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a ninth invention for solving the above-described problem has at least one set of a laminated structure in which a positive electrode and a negative electrode are arranged to face each other with a separator containing an electrolyte, and the negative electrode Comprises a copper foil for current collection and an active material layer made of graphite provided on at least one surface of the copper foil for current collection, and has a first plane portion for hermetically sealing the laminated structure. 1 cover and the 2nd cover provided with the 2nd plane part, the above-mentioned 1st plane part and the above-mentioned 2nd plane part are arranged so that the above-mentioned laminated structure may be inserted, and the above-mentioned A structure in which a distance between the first plane portion and the second plane portion is changed, and the copper foil for current collection is characterized in that a product of 0.2% proof stress and thickness is greater than 2.4 N / mm. It is a lithium ion secondary battery.

上記課題を解決するための第10の発明のリチウムイオン二次電池は、第9の発明のリチウムイオン二次電池であって、さらに集電用銅箔は、0.2%耐力と厚さとの積が3.1N/mm以上であることを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a tenth invention for solving the above-mentioned problems is the lithium ion secondary battery according to the ninth invention, and the copper foil for current collection has a 0.2% proof stress and a thickness. A lithium ion secondary battery having a product of 3.1 N / mm or more.

上記課題を解決するための第11の発明のリチウムイオン二次電池は、第9の発明あるいは第10の発明のリチウムイオン二次電池であって、さらに集電用銅箔は、0.2%耐力と厚さとの積が5.4N/mm以下であることを特徴とする、リチウムイオン二次電池である。   The lithium ion secondary battery of the eleventh invention for solving the above problems is the lithium ion secondary battery of the ninth invention or the tenth invention, and the copper foil for current collection is 0.2% A lithium ion secondary battery having a product of proof stress and thickness of 5.4 N / mm or less.

上記課題を解決するための第12の発明のリチウムイオン二次電池は、第9の発明乃至第11の発明の内の一の発明のリチウムイオン二次電池であって、さらに第1あるいは第2カバーの内の少なくとも上記第1カバーの上記第1平面の外側にダンパー部が形成され、上記負極の厚さの変化に基づき上記ダンパー部が変形し、これにより上記第1および第2カバーの上記第1平面と第2平面の間隔が変化することを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a twelfth aspect of the present invention for solving the above-mentioned problems is the lithium ion secondary battery according to one of the ninth to eleventh aspects, further comprising the first or second aspect. A damper portion is formed at least outside the first plane of the first cover in the cover, and the damper portion is deformed based on a change in the thickness of the negative electrode, whereby the first and second covers are The lithium ion secondary battery is characterized in that the distance between the first plane and the second plane changes.

上記課題を解決するための第13の発明のリチウムイオン二次電池は、第9の発明乃至第12の発明の内の一の発明のリチウムイオン二次電池であって、さらに第1カバーあるいは第2カバーの内の少なくとも1つがアルミニウムを主成分とする金属板で形成されていることを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a thirteenth aspect of the present invention for solving the above-mentioned problems is the lithium ion secondary battery according to one of the ninth to twelfth aspects of the invention, and further includes the first cover or the first The lithium ion secondary battery is characterized in that at least one of the two covers is formed of a metal plate mainly composed of aluminum.

上記課題を解決するための第14の発明のリチウムイオン二次電池は、第9の発明乃至第13の発明の内の一の発明のリチウムイオン二次電池であって、さらに上記集電用銅箔は150℃以上で30分以上加熱された後の0.2%耐力と厚さとの積が3.1N/mm以上で5.4N/mm以下の範囲にあることを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a fourteenth aspect of the present invention for solving the above problem is the lithium ion secondary battery according to one of the ninth to thirteenth aspects, further comprising the copper for current collection The foil has a product of 0.2% proof stress and thickness after being heated at 150 ° C. or higher for 30 minutes or longer in a range of 3.1 N / mm to 5.4 N / mm or less. It is a secondary battery.

上記課題を解決するための第15の発明のリチウムイオン二次電池は、第9の発明乃至第14の発明の内の一の発明のリチウムイオン二次電池であって、さらに上記集電用銅箔は、銅を主金属とし、ジルコニウムを質量比で約0.02%含むことを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a fifteenth aspect of the present invention for solving the above problems is the lithium ion secondary battery according to one of the ninth to fourteenth aspects of the invention, further comprising the copper for current collection The foil is a lithium ion secondary battery characterized in that copper is a main metal and zirconium is contained in an amount of about 0.02% by mass.

上記課題を解決するための第16の発明のリチウムイオン二次電池は、第9の発明乃至第7の発明の内の一の発明のリチウムイオン二次電池であって、さらにリチウムイオン二次電池は車両に搭載されるリチウムイオン二次電池であることを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a sixteenth aspect of the present invention for solving the above-mentioned problems is the lithium ion secondary battery according to one of the ninth to seventh aspects of the invention, further comprising a lithium ion secondary battery. Is a lithium ion secondary battery that is mounted on a vehicle.

上記課題を解決するための第17の発明のリチウムイオン二次電池は、第9の発明乃至第16の発明の内の一の発明のリチウムイオン二次電池であって、さらに第1カバーと第2カバーは略四角形状を成し、上記第1カバーと上記第2カバーの外周部に互いに密着固定されるための固定部が設けられ、上記第1カバーと上記第2カバーの外周部から突出する正極端子と負極端子とを有し、上記第1カバーと上記第2カバーの内、少なくとも第1カバーの固定部より中央側の部分にダンパー部が形成され、上記ダンパー部は上記固定部側より中央側の方が第2カバーから離れる形状を成し、上記第1カバーは第1平面を、また第2カバーは第2平面を備え、上記第1平面は上記第1カバーの上記ダンパー部より中央側に配置され、第2平面は上記第2カバーの上記第1平面に対向する位置に設けられ、上記第1平面と上記第2平面との間にはこれらに挟まれて複数の積層構造体が設けられ、各積層構造体が有する正極と負極は、上記第1カバーと第2カバーとのにより密閉された内部において、上記正極端子と上記負極端子とにそれぞれ電気的に接続されていることを特徴とする、リチウムイオン二次電池である。   A lithium ion secondary battery according to a seventeenth aspect of the present invention for solving the above problems is the lithium ion secondary battery according to one of the ninth to sixteenth aspects, further comprising a first cover and a first cover. The two covers have a substantially quadrangular shape, and are provided with fixing portions to be closely fixed to the outer peripheral portions of the first cover and the second cover, and project from the outer peripheral portions of the first cover and the second cover. A damper portion is formed in at least a central portion of the first cover and the second cover from a fixing portion of the first cover, and the damper portion is on the fixing portion side. The center side is further away from the second cover, the first cover has a first plane, the second cover has a second plane, and the first plane is the damper portion of the first cover. The second plane is on the upper side A second cover is provided at a position facing the first plane, and a plurality of laminated structures are provided between the first plane and the second plane, and each laminated structure has The lithium ion secondary battery, wherein the positive electrode and the negative electrode are electrically connected to the positive electrode terminal and the negative electrode terminal, respectively, in an interior sealed by the first cover and the second cover It is.

本発明によれば、変形を抑制できる効果を奏する集電用銅箔を提供することができ、また変形を抑制できる効果を奏する集電用銅箔を使用したリチウムイオン二次電池用を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper foil for current collection which has the effect which can suppress a deformation | transformation can be provided, and the object for lithium ion secondary batteries using the copper foil for current collection which has the effect which can suppress deformation | transformation is provided. be able to.

なお、以下に記載の発明を実施するための形態は、本効果に止まるものではなく色々な課題を解決すると共に色々な効果を奏する。これらの効果については、以下で説明する。   In addition, the form for implementing the invention described below does not stop at this effect, but has various effects as well as solving various problems. These effects will be described below.

本発明の実施例のリチウムイオン二次電池の平面図である。It is a top view of the lithium ion secondary battery of the Example of this invention. 図1のリチウムイオン二次電池の側面図である。It is a side view of the lithium ion secondary battery of FIG. 本発明の実施例の積層構造体の原理を説明する説明図である。It is explanatory drawing explaining the principle of the laminated structure of the Example of this invention. 図3の積層構造体の他の実施例を説明する説明図である。It is explanatory drawing explaining the other Example of the laminated structure of FIG. 本発明の実施例の負極集電板の応力−歪線図である。It is a stress-strain diagram of the negative electrode current collector plate of the example of the present invention. 本発明の実施例の負極集電板の耐力と塑性変形の関係を説明する説明図である。It is explanatory drawing explaining the relationship between the yield strength and plastic deformation of the negative electrode current collecting plate of the Example of this invention. 図4の積層構造体を複数個内蔵するリチウムイオン二次電池の断面を示す断面図である。FIG. 5 is a cross-sectional view showing a cross section of a lithium ion secondary battery incorporating a plurality of the laminated structures of FIG. 本発明の実施例のリチウムイオン二次電池の内部構造を説明する説明図である。It is explanatory drawing explaining the internal structure of the lithium ion secondary battery of the Example of this invention. 本発明の実施例のリチウムイオン二次電池の内部構造を説明する説明図である。It is explanatory drawing explaining the internal structure of the lithium ion secondary battery of the Example of this invention. サンプルNo.1とサンプルNo.3とサンプルNo.5を使用した本発明の実施例のリチウムイオン二次電池の充放電サイクル試験における電池厚さの変化量を示す試験結果のグラフである。It is a graph of the test result which shows the variation | change_quantity of the battery thickness in the charging / discharging cycle test of the lithium ion secondary battery of the Example of this invention using sample No.1, sample No.3, and sample No.5. 本発明の実施例のリチウムイオン二次電池における、500回の充放電サイクル試験後の負極集電用銅箔表面のレーザ顕微鏡の画像であり、図11(a)はサンプルNo.1の負極集電用銅箔表面のレーザ顕微鏡画像であり、図11(b)はサンプルNo.3の負極集電用銅箔表面のレーザ顕微鏡画像であり、図11(c)はサンプルNo.5の負極集電用銅箔表面のレーザ顕微鏡画像である。FIG. 11A is a laser microscope image of the surface of a negative electrode current collector copper foil after 500 charge / discharge cycle tests in a lithium ion secondary battery of an example of the present invention, and FIG. 11 (b) is a laser microscope image of the negative electrode current collector copper foil surface of sample No. 3, and FIG. 11 (c) is a negative electrode collector of sample No. 5. It is a laser microscope image of the surface of electrical copper foil. 0〜750回の充放電サイクル試験後の本発明の実施例のリチウムイオン二次電池の厚み変化を示すグラフである。It is a graph which shows the thickness change of the lithium ion secondary battery of the Example of this invention after 0-750 charge / discharge cycle tests. 本発明の実施例のリチウムイオン二次電池の製造工程を示す図である。It is a figure which shows the manufacturing process of the lithium ion secondary battery of the Example of this invention. 本発明の他の実施例を示すリチウムイオン二次電池の外観図である。It is an external view of the lithium ion secondary battery which shows the other Example of this invention. 図14に示すリチウムイオン二次電池のB−B断面図である。It is BB sectional drawing of the lithium ion secondary battery shown in FIG.

本発明を実施するための形態(以下実施例と記す)は、上述した発明が解決しようとする課題の欄に記載した内容だけでなく、それ以外に色々な課題を解決している。これらについて以下の実施例の中で具体的に説明する。また上述した発明効果の欄に記載した効果以外に色々な効果を奏している。これらについて以下の実施例の中で具体的に説明する。   The mode for carrying out the present invention (hereinafter referred to as an example) solves various problems other than the contents described in the column of problems to be solved by the above-described invention. These will be specifically described in the following examples. Moreover, there are various effects other than the effects described in the column of the above-described invention effect. These will be specifically described in the following examples.

次に図面を用いて本発明に係る実施例を説明する。図1は本発明の一実施例のリチウムイオン二次電池の平面図であり、図2は図1のリチウムイオン二次電池の側面図である。なお図1および図2に記載のリチウムイオン二次電池を複数個あるいは多数電気的に接続して、より容量の大きいリチウムイオン二次電池を作ることが可能である。このような大容量のリチウムイオン二次電池にも共通するリチウムイオン二次電池の基本構成を説明する。   Next, embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a lithium ion secondary battery according to an embodiment of the present invention, and FIG. 2 is a side view of the lithium ion secondary battery of FIG. Note that it is possible to make a lithium ion secondary battery having a larger capacity by electrically connecting a plurality or many of the lithium ion secondary batteries shown in FIGS. A basic configuration of a lithium ion secondary battery common to such a large capacity lithium ion secondary battery will be described.

本発明の一実施例のリチウムイオン二次電池100は、その内部に図3あるいは図4を用いて説明する積層構造体170あるいはこの変形例である積層構造体171を有している。積層構造体170あるいは積層構造体171は、正極140又は141と負極160又は161と電解質を含有するセパレータ150とを備え、正極140又は141と負極160又は161はセパレータ150を挟んで対向するように配置されている。図1、図2に示すように、第1カバー110と第2カバー120とで密閉空間が形成され、上記密閉空間内に図3、図4に示す積層構造体170あるいは積層構造体171が収納される。上記密閉空間内に収納される積層構造体170あるいは積層構造体171は、1個に限るものではなく、必要に応じ複数個収納することが望ましい。   The lithium ion secondary battery 100 of one embodiment of the present invention has a laminated structure 170 described with reference to FIG. 3 or FIG. 4 or a laminated structure 171 which is a modified example thereof. The laminated structure 170 or the laminated structure 171 includes a positive electrode 140 or 141, a negative electrode 160 or 161, and a separator 150 containing an electrolyte, and the positive electrode 140 or 141 and the negative electrode 160 or 161 face each other with the separator 150 interposed therebetween. Has been placed. As shown in FIGS. 1 and 2, a sealed space is formed by the first cover 110 and the second cover 120, and the laminated structure 170 or the laminated structure 171 shown in FIGS. 3 and 4 is stored in the sealed space. Is done. The number of laminated structures 170 or laminated structures 171 accommodated in the sealed space is not limited to one, and it is desirable to accommodate a plurality if necessary.

積層構造体170あるいは積層構造体171に電力を供給し、あるいは積層構造体170あるいは積層構造体171に蓄電されている電力を取り出すために、図1、図2に示すように正極端子146と負極端子166が設けられ、これらは第1カバー110や第2カバー120の両端から外部に突出し、正極端子146や負極端子166が他のリチウムイオン二次電池100と電気的に接続され、また外部電源や外部負荷に接続される。   In order to supply electric power to the laminated structure 170 or the laminated structure 171 or to extract electric power stored in the laminated structure 170 or the laminated structure 171, as shown in FIGS. 1 and 2, a positive electrode terminal 146 and a negative electrode Terminals 166 are provided, these protrude from the both ends of the first cover 110 and the second cover 120 to the outside, the positive terminal 146 and the negative terminal 166 are electrically connected to the other lithium ion secondary battery 100, and an external power source Or connected to an external load.

図1、図2に示すように、第1カバー110はその外周部に固定部112を有し、同様に第2カバー120はその外周部に固定部122を有し、第1カバー110の固定部112と第2カバー120の固定部122が互いに密着することにより密閉空間が作られる。ここで第1カバー110の固定部112と第2カバー120の固定部122が互いに直接固着されても良いし、間に他の部材を挟んで固着されても良い。なお、正極端子146や負極端子166と第1カバー110や第2カバー120との間には、以下の図7で述べるように電気的な絶縁部材158が配置されており、これらの部分では正極端子146や負極端子166と第1カバー110や第2カバー120とが電気的に絶縁させた状態で密閉されている。   As shown in FIGS. 1 and 2, the first cover 110 has a fixing portion 112 on its outer peripheral portion, and similarly, the second cover 120 has a fixing portion 122 on its outer peripheral portion, and the first cover 110 is fixed. When the portion 112 and the fixing portion 122 of the second cover 120 are in close contact with each other, a sealed space is created. Here, the fixing portion 112 of the first cover 110 and the fixing portion 122 of the second cover 120 may be directly fixed to each other, or may be fixed with another member interposed therebetween. Note that an electrical insulating member 158 is disposed between the positive electrode terminal 146 and the negative electrode terminal 166 and the first cover 110 and the second cover 120 as described below with reference to FIG. The terminal 146 and the negative electrode terminal 166 are sealed with the first cover 110 and the second cover 120 being electrically insulated.

第1カバー110や第2カバー120は、それぞれの固定部122の内側に、ダンパー部114あるいはダンパー部124をそれぞれ形成し、さらにその内側に平坦部116あるいは平坦部126をそれぞれ形成している。第1カバー110や第2カバー120は略長方形の形状をなし、ダンパー部114やダンパー部124の形状は図示の如く帯状の略四角形状を成している。   The first cover 110 and the second cover 120 have a damper portion 114 or a damper portion 124 formed inside each fixed portion 122, respectively, and a flat portion 116 or a flat portion 126 formed inside thereof. The first cover 110 and the second cover 120 have a substantially rectangular shape, and the shape of the damper portion 114 and the damper portion 124 is a belt-like substantially square shape as shown in the figure.

第1カバー110や第2カバー120で作られるリチウムイオン二次電池100の外観形状の厚み方向は、図2に示す如く、ダンパー部114やダンパー部124で厚み方向に膨らむ形状を成している。ダンパー部114やダンパー部124は厚み方向において傾斜しており、これらダンパーは、その外周側の部分に比べ内周側の部分が厚み方向において互いに離れるように、傾斜している。   As shown in FIG. 2, the thickness direction of the external shape of the lithium ion secondary battery 100 made of the first cover 110 and the second cover 120 has a shape that swells in the thickness direction at the damper portion 114 and the damper portion 124. . The damper portion 114 and the damper portion 124 are inclined in the thickness direction, and these dampers are inclined so that the inner peripheral portions are separated from each other in the thickness direction as compared with the outer peripheral portion.

第1カバー110や第2カバー120の中央部、すなわちダンパー部114やダンパー部124の内側部分に、平坦部116あるいは平坦部126が形成されている。平坦部116あるいは平坦部126は、積層構造体170や積層構造体171を挟む構造となっている。第1カバー110や第2カバー120は薄い金属で構成されており、またアルミニウムを主成分とする合金を使用しており、内蔵する負極の厚み方向の変化に対応してダンパー部114やダンパー部124が変形し易い形状となっている。このような構成により、平坦部に生じる厚み方向の応力を低減でき、さらに振動や衝撃を低減できる。積層構造体170や積層構造体171に加わる圧力を低減できると共に、積層構造体170や積層構造体171に伝わる振動や衝撃を低減できる。また積層構造体170や積層構造体171の動きや振動に対して、従来のリチウムイオン二次電池に見られる頑丈なケースの場合に生じる、過度に大きな力が積層構造体170や積層構造体171に加えるのを、上記構造では抑制できる効果がある。   A flat portion 116 or a flat portion 126 is formed at the center of the first cover 110 or the second cover 120, that is, the inner portion of the damper portion 114 or the damper portion 124. The flat portion 116 or the flat portion 126 has a structure in which the laminated structure 170 and the laminated structure 171 are sandwiched. The first cover 110 and the second cover 120 are made of a thin metal and use an alloy mainly composed of aluminum. The damper portion 114 and the damper portion correspond to changes in the thickness direction of the built-in negative electrode. 124 has a shape that is easily deformed. With such a configuration, the stress in the thickness direction generated in the flat portion can be reduced, and further, vibration and impact can be reduced. The pressure applied to the laminated structure 170 and the laminated structure 171 can be reduced, and vibration and impact transmitted to the laminated structure 170 and the laminated structure 171 can be reduced. In addition, an excessively large force generated in the case of a sturdy case found in a conventional lithium ion secondary battery with respect to the movement and vibration of the laminated structure 170 and the laminated structure 171 is caused by the laminated structure 170 and the laminated structure 171. The above structure has the effect of being able to be suppressed.

第1カバー110や第2カバー120が薄い金属で作られているため、平坦部116や平坦部126を完全に平坦な状態に維持することが困難かもしれないが、仮に長年の使用により平坦部116や平坦部126に少しうねりなどが生じたとしても、平坦部116や平坦部126が積層構造体170や積層構造体171を押圧する力を、ダンパー部114やダンパー部124で低減でき、異常に大きな圧力が加わるのを防止できる。このため長年使用しても、積層構造体170や積層構造体171に無理な応力や衝撃が加わるのを低減でき、リチウムイオン二次電池100の耐久性が向上し、リチウムイオン二次電池100の経年変化などの特性変化が低減される。   Since the first cover 110 and the second cover 120 are made of a thin metal, it may be difficult to maintain the flat portion 116 and the flat portion 126 in a completely flat state. 116 and the flat portion 126, even if a slight swell or the like occurs, the force that the flat portion 116 or the flat portion 126 presses the laminated structure 170 or the laminated structure 171 can be reduced by the damper portion 114 or the damper portion 124. It is possible to prevent a large pressure from being applied to the surface. For this reason, even if it is used for many years, it can reduce that an excessive stress and impact are added to the laminated structure 170 and the laminated structure 171, the durability of the lithium ion secondary battery 100 is improved, and the lithium ion secondary battery 100 Changes in characteristics such as aging are reduced.

特にリチウムイオン二次電池100を車両に搭載する場合、車両の停止状態から高速走行への走行速度の上昇に伴い、車体が発生する振動周波数が広範囲に変化し、車体からリチウムイオン二次電池100に、広範囲に変化する振動加わる可能性がある。このように広範囲に変化する周波数の振動がリチウムイオン二次電池100に加わると第1カバー110や第2カバー120あるいは収納されている積層構造体170や積層構造体171が共振する可能性が生じる。特にこれらは比較的長い形状を有しており、質量やバネ定数の関係で固有の共振点が比較的低周波領域に存在する可能性が高い。一方車両が発生する振動は低周波成分を多く含んでいる。従ってリチウムイオン二次電池100を構成する部品の共振現象を考慮することが望ましい。以下に記載の実施の形態では、平坦部116や平坦部126で積層構造体170あるいは積層構造体171を挟む構造を成しており、積層構造体170あるいは積層構造体171が互いに影響を及ぼし合うので上記共振現象を抑制できる。また平坦部116や平坦部126と積層構造体170あるいは積層構造体171が互いに適度の圧力で接触しあうことで実行長さが短縮され、共振周波数が高くなり、車体から加わる振動の影響を受け難くすることができる。従来技術の如く、第1カバー110や第2カバー120の代わりに頑丈なケースを用い、このケース内に積層構造体を収納した場合に、頑丈なケースが受ける振動や衝撃が吸収できないままでこの振動や衝撃が積層構造体に加えられてしまう恐れがある。さらに、頑丈なケースと積層構造体との間に仮に隙間が出来た場合に、内蔵する積層構造体は共振現象を引き起こす恐れがある。この場合は頑丈なケースや積層構造体が個別に振動し、積層構造体が振動により損傷する可能性がある。   In particular, when the lithium ion secondary battery 100 is mounted on a vehicle, the vibration frequency generated by the vehicle body changes in a wide range as the traveling speed increases from the stop state of the vehicle to the high speed traveling, and the lithium ion secondary battery 100 from the vehicle body changes. In addition, there is a possibility of applying vibrations that vary widely. When vibration with a frequency changing in a wide range is applied to the lithium ion secondary battery 100 in this manner, there is a possibility that the first cover 110, the second cover 120, or the stacked structure 170 or the stacked structure 171 housed therein will resonate. . In particular, they have a relatively long shape, and there is a high possibility that an inherent resonance point exists in a relatively low frequency region due to the relationship between mass and spring constant. On the other hand, the vibration generated by the vehicle contains a lot of low frequency components. Therefore, it is desirable to consider the resonance phenomenon of the components that make up the lithium ion secondary battery 100. In the embodiment described below, a structure in which the laminated structure 170 or the laminated structure 171 is sandwiched between the flat part 116 and the flat part 126 is formed, and the laminated structure 170 or the laminated structure 171 influence each other. Therefore, the resonance phenomenon can be suppressed. Further, when the flat portion 116 or the flat portion 126 and the laminated structure 170 or the laminated structure 171 contact each other with an appropriate pressure, the effective length is shortened, the resonance frequency is increased, and the influence of the vibration applied from the vehicle body is exerted. Can be difficult. If a sturdy case is used instead of the first cover 110 or the second cover 120 as in the prior art, and the laminated structure is housed in the case, the vibration and shock received by the sturdy case cannot be absorbed. There is a risk that vibration and impact may be applied to the laminated structure. Furthermore, if a gap is created between the sturdy case and the laminated structure, the built-in laminated structure may cause a resonance phenomenon. In this case, a sturdy case or laminated structure may vibrate individually, and the laminated structure may be damaged by vibration.

上述した色々な作用効果を奏するために、第1カバー110と第2カバー120がそれぞれダンパー部114やダンパー部124を有することが望ましいが、どちらか一方だけダンパー部を有していても上述の作用をなし、効果を奏する。   In order to achieve the various functions and effects described above, it is desirable that the first cover 110 and the second cover 120 have the damper portion 114 and the damper portion 124, respectively. It works and has an effect.

リチウムイオン二次電池100は蓄積電力が大きい特徴を有する反面、積層構造体170あるいは積層構造体171が損傷すると発火し易い課題を有している。特に非水電解質を使用するので注意を要する。車載用リチウムイオン二次電池100は車両事故を想定しておくことが必要である。本実施例ではダンパー部114やダンパー部124を有しているので、大きな衝撃を吸収できる効果がある。色々な方向からの衝撃に対応するにはダンパー部114とダンパー部124の両方を備えることが理想的であり、吸収効果も大きいが、どちらか一方のダンパー部のみでも効果がある。   The lithium ion secondary battery 100 has a feature that the stored power is large, but has a problem that it easily ignites when the laminated structure 170 or the laminated structure 171 is damaged. In particular, use a non-aqueous electrolyte. The in-vehicle lithium ion secondary battery 100 needs to assume a vehicle accident. In this embodiment, since the damper portion 114 and the damper portion 124 are provided, there is an effect that a large impact can be absorbed. In order to cope with impacts from various directions, it is ideal to provide both the damper portion 114 and the damper portion 124, and the absorption effect is great, but only one of the damper portions is effective.

第1カバー110や第2カバー120は、例えばアルミニウムを主成分とする合金からなる薄板材で構成されている。アルミニウムは軽いという特徴を備えており、アルミニウム合金を使用することにより、リチウムイオン二次電池100全体の重量増加を抑制できる。例えば車に搭載する場合、車の走行のために費やされる電力を出来るだけ抑制することが望ましく、このためには車の重量をできるだけ低減することが望ましい。アルミニウム合金を使用することで、車両走行に必要な電力を低減でき、効率向上を図ることができる。純アルミニウムは軟らかい金属である為、銅、マンガン、ケイ素、マグネシウム、亜鉛、ニッケルなどとの合金にすることで強度を増すことが可能であり、合金にすることで適度の強度を得ることができる。   The first cover 110 and the second cover 120 are made of, for example, a thin plate material made of an alloy containing aluminum as a main component. Aluminum has a feature that it is light. By using an aluminum alloy, an increase in the weight of the lithium ion secondary battery 100 as a whole can be suppressed. For example, when it is mounted on a car, it is desirable to suppress as much as possible the electric power consumed for running the car. For this purpose, it is desirable to reduce the weight of the car as much as possible. By using an aluminum alloy, it is possible to reduce the power required for vehicle travel and improve efficiency. Since pure aluminum is a soft metal, it is possible to increase the strength by making an alloy with copper, manganese, silicon, magnesium, zinc, nickel, etc., and an appropriate strength can be obtained by making an alloy. .

図3は積層構造体170の原理を説明する説明図であり、図4は積層構造体170の変形例である積層構造体171を説明する説明図である。図3と図4との違いは、積層構造体170を複数個積層した場合に、正極集電板142や負極用銅箔162を隣接する積層構造体と共有する構造とした点である。図4に示す積層構造体171では、正極集電板142はその両面に正極活物質層144や正極活物質層145を備えており、負極用銅箔162はその両面に負極活物質層164や負極活物質層165を備えている。   FIG. 3 is an explanatory diagram for explaining the principle of the multilayer structure 170, and FIG. 4 is an explanatory diagram for explaining a multilayer structure 171 which is a modification of the multilayer structure 170. The difference between FIG. 3 and FIG. 4 is that when a plurality of laminated structures 170 are laminated, the positive electrode current collector plate 142 and the negative electrode copper foil 162 are shared with the adjacent laminated structures. In the laminated structure 171 shown in FIG. 4, the positive electrode current collector plate 142 includes a positive electrode active material layer 144 and a positive electrode active material layer 145 on both surfaces thereof, and the negative electrode copper foil 162 includes a negative electrode active material layer 164 and a positive electrode active material layer 164 on both surfaces. A negative electrode active material layer 165 is provided.

積層構造体170は正極140と負極160およびセパレータ150を有しており、セパレータ150を介して正極140と負極160が対向するように配置されている。基本的には積層構造体171は積層構造体170と同様の構成であり、セパレータ150を介して正極141と負極161が対向するように配置されている。   The laminated structure 170 includes a positive electrode 140, a negative electrode 160, and a separator 150, and the positive electrode 140 and the negative electrode 160 are arranged to face each other with the separator 150 interposed therebetween. Basically, the laminated structure 171 has the same configuration as that of the laminated structure 170, and is arranged so that the positive electrode 141 and the negative electrode 161 face each other with the separator 150 interposed therebetween.

正極140は例えば集電アルミ箔からなる正極集電板142に正極活物質層144が設けられている。正極活物質層144の材料は、例えばコバルト酸リチウムあるいはコバルト酸リチウムのコバルト(Co)の一部をNiやMnに置き換えて容量や安全性を高めたものと、結着剤と導電助剤で構成される。結着剤としては例えばポリフッ化ビニリデン(PVdF)が使用され、導電助剤としてはカーボン粒子であるカーボンブラックなどが使用され、例えばカーボンブラックの一つであるアセチレンブラックが使用される。   In the positive electrode 140, a positive electrode active material layer 144 is provided on a positive electrode current collector plate 142 made of, for example, a current collector aluminum foil. The material of the positive electrode active material layer 144 includes, for example, lithium cobaltate or a part of cobalt (Co) of lithium cobaltate replaced with Ni or Mn to increase capacity and safety, and a binder and a conductive auxiliary agent. Composed. For example, polyvinylidene fluoride (PVdF) is used as the binder, and carbon black, which is carbon particles, is used as the conductive auxiliary agent. For example, acetylene black, which is one of the carbon blacks, is used.

図3に示す正極140と図4に示す正極141との相違は、正極141は隣接する積層構造体のための正極活物質層145を備えている点である。すなわち正極141は正極集電板142の両面に正極活物質層を有している点であり、一方面には正極活物質層144が設けられ、他方面には隣接用の正極活物質層145が設けられている。   The difference between the positive electrode 140 shown in FIG. 3 and the positive electrode 141 shown in FIG. 4 is that the positive electrode 141 includes a positive electrode active material layer 145 for an adjacent laminated structure. That is, the positive electrode 141 has positive electrode active material layers on both surfaces of the positive electrode current collector plate 142, the positive electrode active material layer 144 is provided on one surface, and the adjacent positive electrode active material layer 145 is provided on the other surface. Is provided.

負極160は集電銅箔からなる負極用銅箔162に負極活物質層164が設けられている。負極活物質層164の材料は、例えばグラファイトからなる活物質と、ポリビニリデンフロライドPVdFやスチレンブタジエンゴムSBRなどの結着剤と、必要に応じて導電助剤であるアセチレンブラックなどが配合されて、構成される。活物質は、合材スラリーとして集電銅箔上に塗工される。合材スラリーは結着剤がPVdFの場合はNMP(N一メチル1,2一ピロリドン)が、SBRの場合は、水がそれぞれ用いられる。水を溶媒とする場合、スラリー粘度を調整するために増粘剤(カルボキシメチルセルロース(CMC))が配合されることがある。   In the negative electrode 160, a negative electrode active material layer 164 is provided on a negative electrode copper foil 162 made of a collector copper foil. The negative electrode active material layer 164 is made of, for example, an active material made of graphite, a binder such as polyvinylidene fluoride PVdF or styrene butadiene rubber SBR, and acetylene black, which is a conductive auxiliary agent, if necessary. Configured. The active material is coated on the current collector copper foil as a composite slurry. When the binder is PVdF, NMP (N 1-methyl 1,2 1-pyrrolidone) is used for the mixture slurry, and water is used for SBR. When water is used as a solvent, a thickener (carboxymethyl cellulose (CMC)) may be blended to adjust the slurry viscosity.

正極140は、負極用銅箔162として使用する長尺の銅箔に合材スラリーを連続塗工したのち、同一ラインにおいて80〜120℃で乾燥する。次に、裏返して反対面を同様に塗工・乾燥する。最近では、両面同時に塗工・乾燥する装置も導入されている。次に、プレスロールで加圧して、活物質層密度を所望の値まで高める。次に真空加熱で水分を除去する。上記活物質は上記結着剤等の結着剤により負極用銅箔162に固定されると共に、活物質同士が互い結着され、活物質層内に導電ネットワークが形成される。   The positive electrode 140 is dried at 80 to 120 ° C. in the same line after continuously applying the mixture slurry to a long copper foil used as the negative electrode copper foil 162. Next, turn over and apply and dry the opposite side in the same way. Recently, an apparatus for coating and drying both sides simultaneously has also been introduced. Next, it pressurizes with a press roll and raises an active material layer density to a desired value. Next, moisture is removed by vacuum heating. The active material is fixed to the negative electrode copper foil 162 by a binder such as the binder, and the active materials are bound together to form a conductive network in the active material layer.

図3および図4を用いて積層構造体170およびその変形である積層構造体171の基本動作を説明する。正極140の正極活物質層144に使用されているリチウムを含む酸化物と負極160の負極活物質層164とがセパレータ150を介して対向するように配置されている。正極140の正極活物質層144を構成するリチウムを含む酸化物と負極160の負極活物質層164との間には電解質が満たされている。電解質を介して正極活物質層144と負極活物質層164との間をリチウムイオン152が移動することにより、電池としての反応が行われる。   The basic operation of the laminated structure 170 and its modified laminated structure 171 will be described with reference to FIGS. 3 and 4. The oxide containing lithium used for the positive electrode active material layer 144 of the positive electrode 140 and the negative electrode active material layer 164 of the negative electrode 160 are arranged to face each other with the separator 150 interposed therebetween. An electrolyte is filled between the oxide containing lithium constituting the positive electrode active material layer 144 of the positive electrode 140 and the negative electrode active material layer 164 of the negative electrode 160. When the lithium ions 152 move between the positive electrode active material layer 144 and the negative electrode active material layer 164 through the electrolyte, a reaction as a battery is performed.

リチウムイオン二次電池100の充電状態では、正極集電板142と負極用銅箔162間に電力が供給され、リチウムイオン152は矢印176の方向である正極活物質層144から負極活物質層164の方向に移動する。この作用により、リチウムイオン二次電池100を構成する積層構造体170や積層構造体171に供給された電力が蓄積される。一方リチウムイオン二次電池100の放電状態では、矢印178で示す、負極活物質層164から正極活物質層144の方向にリチウムイオン152が移動する。この作用により、正極集電板142と負極用銅箔162から蓄積されていた電力が外部に供給される。   In the charged state of the lithium ion secondary battery 100, electric power is supplied between the positive electrode current collector 142 and the negative electrode copper foil 162, and the lithium ions 152 pass from the positive electrode active material layer 144 in the direction of the arrow 176 to the negative electrode active material layer 164. Move in the direction of. By this action, the electric power supplied to the laminated structure 170 and the laminated structure 171 constituting the lithium ion secondary battery 100 is accumulated. On the other hand, in the discharge state of the lithium ion secondary battery 100, the lithium ions 152 move from the negative electrode active material layer 164 to the positive electrode active material layer 144 as indicated by an arrow 178. By this action, the electric power accumulated from the positive electrode current collector 142 and the negative electrode copper foil 162 is supplied to the outside.

図3や図4に示す積層構造体170や積層構造体171の充電状態では、リチウムイオン152が負極活物質層164に向って移動し、負極活物質層164に蓄えられる。この充電動作では、負極活物質層164を構成する例えばグラファイトは、その体積が膨張する。一方放電状態では負極活物質層164の体積は逆に収縮する。従ってリチウムイオン二次電池100が充放電を繰り返すとこの充放電に伴って、負極活物質層164は膨張と収縮を繰り返す。また、負極活物質層164は放電状態で収縮しても完全に元の体積に戻るのではなく、負極活物質層164の体積が徐々に増え、結果としてリチウムイオン二次電池100の厚みが徐々に増加する現象が見られる。リチウムイオン二次電池100の厚みは、充放電に応じて増減を繰り返すが、さらにこれとは別に使用期間の増大に伴い次第にリチウムイオン二次電池100の厚みが増加する。   In the charged state of the stacked structure 170 and the stacked structure 171 shown in FIGS. 3 and 4, the lithium ions 152 move toward the negative electrode active material layer 164 and are stored in the negative electrode active material layer 164. In this charging operation, for example, graphite constituting the negative electrode active material layer 164 expands in volume. On the other hand, in the discharged state, the volume of the negative electrode active material layer 164 contracts conversely. Therefore, when the lithium ion secondary battery 100 repeats charging and discharging, the negative electrode active material layer 164 repeatedly expands and contracts with the charging and discharging. Further, the negative electrode active material layer 164 does not completely return to its original volume even when contracted in a discharged state, but the volume of the negative electrode active material layer 164 gradually increases, and as a result, the thickness of the lithium ion secondary battery 100 gradually increases. An increasing phenomenon is observed. Although the thickness of the lithium ion secondary battery 100 repeatedly increases and decreases according to charge and discharge, the thickness of the lithium ion secondary battery 100 gradually increases as the service period increases.

上述のリチウムイオン二次電池100の充放電による負極活物質層164の膨張および収縮は、負極活物質層164を構成する負極活物質の結晶に対する、リチウムイオンのインターカレーション(Intercalation)およびデインターカレーション(Dintercalation)が関係している。リチウムイオン二次電池100の充電状態で、リチウムイオンが負極活物質の結晶構造の中に入り込み(Intercalation)、この現象により負極活物質の結晶の積層方向において負極活物質が膨張する。またリチウムイオン二次電池100の放電状態では、負極活物質の結晶に入り込んだリチウムイオンが負極活物質の結晶から出る状態(Dintercalation)となり、負極活物質の結晶の積層方向において負極活物質が収縮する。   The expansion and contraction of the negative electrode active material layer 164 due to the charging / discharging of the lithium ion secondary battery 100 described above are caused by lithium ion intercalation and deintercalation with respect to crystals of the negative electrode active material constituting the negative electrode active material layer 164. Dintercalation is involved. When the lithium ion secondary battery 100 is charged, lithium ions enter the crystal structure of the negative electrode active material (intercalation), and this phenomenon causes the negative electrode active material to expand in the stacking direction of the negative electrode active material crystals. Further, in the discharge state of the lithium ion secondary battery 100, lithium ions that have entered the negative electrode active material crystal are in a state of being released from the negative electrode active material crystal (Dintercalation), and the negative electrode active material contracts in the stacking direction of the negative electrode active material crystal. To do.

リチウムイオン二次電池100が充放電動作を繰り返すことにより、次第に図3や図4に矢印182で示す方向である電極の厚さ方向に、積層構造体170や171が次第に増大し、上述したように元の厚さに戻らない現象が生じる。矢印182の方向における厚さの増大の要因には、負極用銅箔162が変形することに起因する部分がある。矢印182の方向の電極全体の厚さを計測することで、負極活物質層164あるいは負極活物質層165の体積増加だけでなく、負極用銅箔162の変形の程度を知ることができる。   As the lithium ion secondary battery 100 repeats the charge / discharge operation, the stacked structures 170 and 171 gradually increase in the electrode thickness direction, which is the direction indicated by the arrow 182 in FIGS. 3 and 4, as described above. The phenomenon that does not return to the original thickness occurs. The increase in thickness in the direction of the arrow 182 is due to the deformation of the negative electrode copper foil 162. By measuring the thickness of the entire electrode in the direction of the arrow 182, not only the volume increase of the negative electrode active material layer 164 or the negative electrode active material layer 165 but also the degree of deformation of the negative electrode copper foil 162 can be known.

上述のように例えば、図3や図4で、負極活物質層164や165が膨張や収縮を繰り返すと、負極用銅箔162に不均一な応力が作用し、この応力に基づいて負極用銅箔162の応力−歪み特性に従って負極用銅箔162に歪が生じると考えることができる。例えばリチウムイオン二次電池100の充電状態で、負極活物質層164あるいは165が膨張すると負極用銅箔162に応力が加わり、負極用銅箔162に歪が生じ、負極用銅箔162が変形する。リチウムイオン二次電池100が充放電を繰り返すことで、負極用銅箔162に弾性変形域を越える応力が繰り返し作用し、うねりやしわが生じ、充放電の繰り返しに伴いこのようなうねりやしわが次第に増大する。負極用銅箔162のうねりやしわなどの変形は、矢印182の方向の厚みとなって現れるので、リチウムイオン二次電池100の厚さの増大を計測することで、負極用銅箔162の変形状態を知ることができる。   As described above, for example, in FIGS. 3 and 4, when the negative electrode active material layers 164 and 165 repeatedly expand and contract, non-uniform stress acts on the negative electrode copper foil 162, and the negative electrode copper is based on this stress. It can be considered that the negative electrode copper foil 162 is distorted according to the stress-strain characteristics of the foil 162. For example, when the negative electrode active material layer 164 or 165 expands in the charged state of the lithium ion secondary battery 100, stress is applied to the negative electrode copper foil 162, distortion occurs in the negative electrode copper foil 162, and the negative electrode copper foil 162 is deformed. . When the lithium ion secondary battery 100 is repeatedly charged and discharged, stress exceeding the elastic deformation region is repeatedly applied to the negative electrode copper foil 162 to generate swells and wrinkles. Such swells and wrinkles are caused by repeated charge and discharge. Increasing gradually. The deformation of the negative electrode copper foil 162 such as waviness or wrinkle appears as a thickness in the direction of the arrow 182, and therefore, by measuring the increase in the thickness of the lithium ion secondary battery 100, the negative electrode copper foil 162 is deformed. You can know the state.

図5は金属材料(鋼は除く)に応力が加わった場合の応力−歪線図を示す。金属材料に加わる応力を少しずつ増大させると、応力が小さい状態では金属材料の歪量は応力に比例する。すなわち特性Aは略直線形状を示す。この領域では加わっている応力がなくなると金属材料は元の状態に戻る。この領域は弾性変形域であり、図5で弾性変形域をERとして示す。加わる応力が大きくなると、加わっている応力がなくなっても元の状態に戻ることがなく、歪が残る状態となる。この領域は図で塑性変形域PRとして示す。塑性変形域PRでは加わっている応力がなくなると矢印Pで示すように金属材料は変形し、歪が残る。   FIG. 5 shows a stress-strain diagram when stress is applied to a metal material (excluding steel). When the stress applied to the metal material is increased little by little, the strain amount of the metal material is proportional to the stress when the stress is small. That is, the characteristic A shows a substantially linear shape. In this region, when the applied stress disappears, the metal material returns to its original state. This region is an elastic deformation region, and the elastic deformation region is shown as ER in FIG. When the applied stress increases, even if the applied stress is lost, the original state is not restored and the strain remains. This region is shown as a plastic deformation region PR in the figure. When the applied stress disappears in the plastic deformation region PR, the metal material is deformed as indicated by the arrow P, and strain remains.

負極用銅箔162に加わる応力が無くなった場合に0.2%の歪が残る応力を負極用銅箔162の0.2%耐力と定義する。応力零から0.2%耐力に至るまでの領域では応力がなくなると負極用銅箔162は略元の形状に戻るので、塑性変形域と定義する。   The stress in which 0.2% strain remains when the stress applied to the negative electrode copper foil 162 disappears is defined as the 0.2% proof stress of the negative electrode copper foil 162. In the region from zero stress to 0.2% proof stress, when the stress disappears, the negative electrode copper foil 162 returns to a substantially original shape, and is defined as a plastic deformation region.

図6は、負極用銅箔162の耐力と厚さの積の大小関係と塑性変形の関係を説明する。ここで応力に対抗できる力は負極用銅箔162の厚さが厚くなればなるほど増大し、単位厚さの耐力(本明細書では0.2%耐力と記す)と負極用銅箔162の厚さの積が負極用銅箔162の応力に対抗する力となる。図6の負極集電板Aでは0.2%耐力と厚さとの積が点P1に位置し、負極集電板Bでは0.2%耐力と厚さとの積が点P2に位置し、負極集電板Cでは0.2%耐力と厚さとの積が点P3に位置すると仮定する。負極活物質層164が膨張し、負極集電板Aと負極集電板Bと負極集電板Cに対して斜線で示す応力Sが加わった場合、負極集電板Aの特性に対しては弾性変形域であるが、負極集電板Bと負極集電板Cに関しては弾性変形域を超えてしまうので、負極集電板Bと負極集電板Cは塑性変形してしまう。負極活物質層164が収縮した場合に負極集電板Bと負極集電板Cは伸びたままの状態が残り、負極活物質層164の収縮に追随するために負極集電板Bと負極集電板Cにはうねりやしわが生じる。従って負極活物質層164が負極用銅箔162に与える力に対し、0.2%耐力と厚さとの積が大きな値を持ち、出来るだけ負極活物質層164におけるうねりやしわの発生を低減することが望ましい。   FIG. 6 illustrates the relationship between the product of the yield strength and thickness of the copper foil 162 for negative electrode and the relationship between plastic deformation. Here, the force capable of resisting stress increases as the thickness of the negative electrode copper foil 162 increases, and the unit thickness proof stress (referred to as 0.2% proof stress in this specification) and the negative electrode copper foil 162 thickness. The product of the length is a force that opposes the stress of the negative electrode copper foil 162. In the negative electrode current collector plate A of FIG. 6, the product of 0.2% proof stress and thickness is located at the point P1, and in the negative electrode current collector plate B, the product of 0.2% proof stress and thickness is located at the point P2. In the current collector plate C, it is assumed that the product of 0.2% proof stress and thickness is located at the point P3. When the negative electrode active material layer 164 expands and stress S shown by oblique lines is applied to the negative electrode current collector plate A, the negative electrode current collector plate B, and the negative electrode current collector plate C, the characteristics of the negative electrode current collector plate A are as follows. Although it is an elastic deformation region, since the negative electrode current collector plate B and the negative electrode current collector plate C exceed the elastic deformation region, the negative electrode current collector plate B and the negative electrode current collector plate C are plastically deformed. When the negative electrode active material layer 164 contracts, the negative electrode current collector plate B and the negative electrode current collector plate C remain in an expanded state, and the negative electrode current collector plate B and the negative electrode current collector Waves and wrinkles occur on the electric plate C. Therefore, the product of the 0.2% proof stress and the thickness has a large value with respect to the force that the negative electrode active material layer 164 gives to the negative electrode copper foil 162, and the occurrence of undulation and wrinkles in the negative electrode active material layer 164 is reduced as much as possible. It is desirable.

図7は、図4に示す積層構造体171を複数個重ねた構造のリチウムイオン二次電池100の断面を示す概念図である。第1カバー110と第2カバー120による作られる密閉空間内に積層構造体171が複数個積層された状態で収納されている。第1カバー110および第2カバー120にはそれぞれダンパー部114やダンパー部124が形成されており、ダンパー部114やダンパー部124の内側に平坦部116や平坦部126が形成されている。平坦部116と平坦部126に挟まれて複数個の積層構造体171が配置されている。   FIG. 7 is a conceptual diagram showing a cross section of the lithium ion secondary battery 100 having a structure in which a plurality of the laminated structures 171 shown in FIG. 4 are stacked. A plurality of laminated structures 171 are stored in a sealed space formed by the first cover 110 and the second cover 120 in a stacked state. The first cover 110 and the second cover 120 are respectively provided with a damper part 114 and a damper part 124, and a flat part 116 and a flat part 126 are formed inside the damper part 114 and the damper part 124. A plurality of laminated structures 171 are disposed between the flat portion 116 and the flat portion 126.

第1カバー110や第2カバー120の固定部112や固定部122から正極端子146や負極端子166が外部に突出し、正極端子146や負極端子166が外部電源や外部電気負荷に電気的に接続される。第1カバー110や第2カバー120はアルミニウムを主成分とする金属薄板で作られており、正極端子146や負極端子166との電気的に絶縁するために、絶縁部材158が固定部112や固定部122と正極端子146や負極端子166との間に設けられている。   The positive terminal 146 and the negative terminal 166 protrude to the outside from the fixing part 112 and the fixing part 122 of the first cover 110 and the second cover 120, and the positive terminal 146 and the negative terminal 166 are electrically connected to an external power source and an external electrical load. The The first cover 110 and the second cover 120 are made of a thin metal plate containing aluminum as a main component, and the insulating member 158 is fixed to the fixing portion 112 or the fixing member in order to be electrically insulated from the positive electrode terminal 146 and the negative electrode terminal 166. The portion 122 is provided between the positive electrode terminal 146 and the negative electrode terminal 166.

積層構造体171の複数個の積層構造において、各正極集電板142はそれぞれタブ143を介して正極端子146に接続され、各負極用銅箔162はそれぞれタブ163を介して負極端子166に接続されている。なお煩雑さを避けるため、図7では複数の正極集電板142やタブ143、負極用銅箔162、タブ163の内、代表してそれぞれ1個のみ符号を付している。   In a plurality of laminated structures of the laminated structure 171, each positive current collector plate 142 is connected to the positive terminal 146 through the tab 143, and each negative electrode copper foil 162 is connected to the negative terminal 166 through the tab 163. Has been. In FIG. 7, only one representative of each of the plurality of positive electrode current collector plates 142, tabs 143, negative electrode copper foil 162, and tabs 163 is given a reference symbol in FIG. 7.

車体に図7に記載のリチウムイオン二次電池100が搭載された状態では、車体の振動が正極端子146や負極端子166から第1カバー110の固定部112や第2カバー120の固定部122に加わったとしても、ダンパー部114やダンパー部124で振動が低減されて平坦部116や平坦部126に伝わり、収納されている複数個の積層構造体171への影響が大幅に低減される。また従来の収納ケースと異なり、平坦部116や平坦部126が収納されている複数個の積層構造体171に加える圧力が小さく、仮にリチウムイオン二次電池100に大きな衝撃が加わってもその衝撃はダンパー部114やダンパー部124だけでなく平坦部116や平坦部126と収納されている複数個の積層構造体171との間でも、低減される。   When the lithium ion secondary battery 100 shown in FIG. 7 is mounted on the vehicle body, vibrations of the vehicle body are transferred from the positive terminal 146 and the negative terminal 166 to the fixing portion 112 of the first cover 110 and the fixing portion 122 of the second cover 120. Even if added, the vibration is reduced by the damper portion 114 and the damper portion 124 and transmitted to the flat portion 116 and the flat portion 126, and the influence on the plurality of stacked structures 171 stored therein is greatly reduced. Unlike the conventional storage case, the pressure applied to the plurality of laminated structures 171 in which the flat portions 116 and the flat portions 126 are stored is small, and even if a large impact is applied to the lithium ion secondary battery 100, the impact is Not only the damper portion 114 and the damper portion 124 but also the flat portion 116 and the flat portion 126 and the plurality of stacked structural bodies 171 housed are reduced.

一方平坦部116や平坦部126と収納されている複数個の積層構造体171への拘束力が小さく、収納されている積層構造体171の負極活物質層164の膨張により、平坦部116や平坦部126は変形する。このような構造により、複数個の積層構造体171に過度の力が加わるのを防止できる。   On the other hand, the restraining force on the plurality of stacked structures 171 accommodated with the flat portion 116 and the flat portion 126 is small, and the flat portion 116 and the flatness are expanded by the expansion of the negative electrode active material layer 164 of the accommodated stacked structure 171. The part 126 is deformed. With such a structure, it is possible to prevent an excessive force from being applied to the plurality of laminated structures 171.

図8は、図7に示すリチウムイオン二次電池100の内部構造を説明するために、第1カバー110と、第1カバー110の内側に設けられ複数個の積層構造体171と第1カバー110とを電気的に絶縁するために設けられた最も外側のセパレータ150と、正極端子146や負極端子166と第1カバー110の固定部122との間に設けられた絶縁部材158と、を取除いた状態示す。負極活物質層164を備えた負極用銅箔162が設けられており、負極用銅箔162には電気的接続を図るためのタブ163が設けられ、タブ163と負極端子166とは接続部168で電気的に接続されている。   FIG. 8 illustrates a first cover 110, a plurality of laminated structures 171 provided inside the first cover 110, and the first cover 110 to explain the internal structure of the lithium ion secondary battery 100 illustrated in FIG. And the outermost separator 150 provided to electrically insulate them from each other and the insulating member 158 provided between the positive electrode terminal 146 and the negative electrode terminal 166 and the fixing portion 122 of the first cover 110 are removed. The state is shown. The negative electrode copper foil 162 provided with the negative electrode active material layer 164 is provided, and the negative electrode copper foil 162 is provided with a tab 163 for electrical connection. The tab 163 and the negative electrode terminal 166 are connected to each other. Are electrically connected.

正極集電板142はセパレータ150を介して負極用銅箔162と対向するように配置されており、セパレータ150は負極活物質層164や正極活物質層144より大きい形状を成している。このため正極集電板142に設けられた正極活物質層144はセパレータ150の裏側に位置し、図8では見えない。正極集電板142と正極端子146とはタブ143を介して行われ、正極端子146とタブ143との電気的に接続は接続部148により行われる。正極端子146は絶縁部材158により第2カバー120の固定部122と電気的に絶縁されている。同様に負極端子166は絶縁部材158により第2カバー120の固定部122とは電気的に絶縁されている。   The positive electrode current collector plate 142 is disposed so as to face the negative electrode copper foil 162 through the separator 150, and the separator 150 has a shape larger than that of the negative electrode active material layer 164 and the positive electrode active material layer 144. Therefore, the positive electrode active material layer 144 provided on the positive electrode current collector plate 142 is located on the back side of the separator 150 and is not visible in FIG. The positive electrode current collector plate 142 and the positive electrode terminal 146 are connected via the tab 143, and the positive electrode terminal 146 and the tab 143 are electrically connected by the connecting portion 148. The positive terminal 146 is electrically insulated from the fixed portion 122 of the second cover 120 by an insulating member 158. Similarly, the negative electrode terminal 166 is electrically insulated from the fixed portion 122 of the second cover 120 by the insulating member 158.

図9は正極140の構造を説明するための説明図である。図8においてさらに負極用銅箔162とセパレータ150とを取除いた状態の構造を示している。正極集電板142には正極活物質層144が設けられており、正極集電板142は正極端子146と接続部148で電気的に接続されている。正極活物質層144に対してセパレータ150を挟んで対向するように負極用銅箔162が設けられている。負極用銅箔162は上述したとおり、負極端子166と接続部168で電気的に接続されている。また正極端子146と負極端子166はそれぞれ絶縁部材158により第2カバー120の固定部122に対して電気的に絶縁されている。   FIG. 9 is an explanatory diagram for explaining the structure of the positive electrode 140. FIG. 8 shows a structure in which the negative electrode copper foil 162 and the separator 150 are further removed. A positive electrode active material layer 144 is provided on the positive electrode current collector plate 142, and the positive electrode current collector plate 142 is electrically connected to the positive electrode terminal 146 through a connection portion 148. A negative electrode copper foil 162 is provided so as to face the positive electrode active material layer 144 with the separator 150 interposed therebetween. As described above, the negative electrode copper foil 162 is electrically connected to the negative electrode terminal 166 through the connection portion 168. The positive electrode terminal 146 and the negative electrode terminal 166 are electrically insulated from the fixing portion 122 of the second cover 120 by an insulating member 158, respectively.

図8や図9に示す如く、正極集電板142や負極用銅箔162はセパレータ150より小さく作られており、振動や衝撃が加わっても、正極集電板142や負極用銅箔162が短絡することが無く、安全性が維持される。   As shown in FIGS. 8 and 9, the positive electrode current collector plate 142 and the negative electrode copper foil 162 are made smaller than the separator 150, and the positive electrode current collector plate 142 and the negative electrode copper foil 162 are not affected by vibration or impact. There is no short circuit and safety is maintained.

図3や図4の積層構造体170や171を用いて説明した如く、充放電動作による負極活物質層164の膨張収縮に起因して生じる負極用銅箔162のしわやうねりなどの変形を出来るだけ低減することが望ましい。以下実際の実験例を説明する。   As described with reference to the laminated structures 170 and 171 in FIGS. 3 and 4, the negative electrode copper foil 162 can be deformed such as wrinkles and undulations caused by the expansion and contraction of the negative electrode active material layer 164 due to the charge / discharge operation. It is desirable to reduce only. An actual experimental example will be described below.

試験したリチウムイオン二次電池100の仕様は表1のとおりである。特に表2にNo.5として示すサンプルは、日立電線株式会社の無酸素銅鋳造量産設備を用いて、無酸素銅にZrを0.02wt%(実測値0.021wt%)を固溶させた銅合金HCL02Zを鋳造し、一般的な純銅の圧延工程や、焼鈍工程や、洗浄工程を経て、以下に説明のサンプルNo.5である厚さ10μmの銅箔やサンプルNo.4である厚さ8μmの銅箔を作成した。他の析出型銅合金(HCL64T、HCL305など)と異なり、HCL02Zならば純銅と同様に圧延可能なので、製造コストの増大を抑制できる効果がある。   The specifications of the tested lithium ion secondary battery 100 are shown in Table 1. In particular, the sample shown as No. 5 in Table 2 was obtained by dissolving 0.02 wt% (actually measured 0.021 wt%) of Zr in oxygen-free copper using an oxygen-free copper casting mass production facility of Hitachi Cable, Ltd. The copper alloy HCL02Z is cast and subjected to a general pure copper rolling process, an annealing process, and a cleaning process, and then a thickness of 10 μm thick copper foil or sample No. 4 as sample No. 5 described below. An 8 μm copper foil was prepared. Unlike other precipitation-type copper alloys (such as HCL64T and HCL305), HCL02Z can be rolled in the same manner as pure copper, so that an increase in manufacturing cost can be suppressed.

以下のサンプルNo.1からNo.8を使用したリチウムイオン二次電池100は、負極用銅箔162の厚さおよびその材質以外は、表1の仕様のとおりであり、内部構造も基本的には上述した構造と同じである。   The lithium ion secondary battery 100 using the following samples No. 1 to No. 8 is as shown in Table 1 except for the thickness of the negative electrode copper foil 162 and its material, and the internal structure is basically also. Is the same as the structure described above.

Figure 2013235713
Figure 2013235713

表1に記載の仕様によるリチウムイオン二次電池100は、外観形状が図1や図2に記載の形状に基本的には類似しており、横160mmおよび縦80mmの略長方形の形状で、厚みが3mmである。内部構造は基本的に図7に類似しており、負極用銅箔162が8枚、正極集電板142が7枚で構成されている。   The lithium ion secondary battery 100 according to the specifications shown in Table 1 is basically similar in appearance to the shapes shown in FIG. 1 and FIG. 2 and has a substantially rectangular shape with a width of 160 mm and a height of 80 mm. Is 3 mm. The internal structure is basically similar to that shown in FIG. 7, and is composed of eight negative electrode copper foils 162 and seven positive electrode current collector plates 142.

負極160は、銅箔が使用され、負極活物質層164が塗布されている領域の長さが123mm、その幅が70mmである。それぞれのサンプルである負極用銅箔162用の銅箔には、その両面に負極活物質層として厚さ50μmのグラファイトの層が形成されている。具体時にはグラファイトはJFEスチール株式会社製の人造黒鉛にバインダと導電助剤としてカーボンブラックが配合されており、黒鉛90%、PVdF8%、カーボンブラック2%で構成されている。   The negative electrode 160 is made of copper foil, the length of the region where the negative electrode active material layer 164 is applied is 123 mm, and the width is 70 mm. The copper foil for negative electrode copper foil 162 which is each sample is formed with a graphite layer having a thickness of 50 μm as a negative electrode active material layer on both surfaces thereof. Specifically, graphite is made of artificial graphite manufactured by JFE Steel Co., Ltd. and carbon black as a binder and a conductive additive, and is composed of 90% graphite, 8% PVdF, and 2% carbon black.

正極140はアルミ箔で構成され、厚さ20μm、正極活物質層144が塗布されている領域の長さが120mm、その幅が60mmである。負極160の負極活物質層164より面積が小さく構成されている。正極活物質層144の厚さが50μmで、活物質はコバルト酸リチウムにバインダと導電助剤としてカーボンブラックが配合されており、黒鉛92%、PVdF3%、カーボンブラック5%で構成されている。   The positive electrode 140 is made of an aluminum foil, has a thickness of 20 μm, a length of a region where the positive electrode active material layer 144 is applied is 120 mm, and a width of 60 mm. The area of the negative electrode 160 is smaller than that of the negative electrode active material layer 164. The thickness of the positive electrode active material layer 144 is 50 μm, and the active material is composed of lithium cobaltate and carbon black as a binder and a conductive additive, and is composed of 92% graphite, 3% PVdF, and 5% carbon black.

セパレータはセルガード製で、厚さ25μm、大きさが128mm×73mmである。電解液は1M LiPF6/EC+DECである。   The separator is made of Celgard and has a thickness of 25 μm and a size of 128 mm × 73 mm. The electrolyte is 1M LiPF6 / EC + DEC.

正極集電板142や負極用銅箔162はそれぞれタブ143、163を介して正極端子146や負極端子166に接続されており、正極集電板142に設けられているタブ143はアルミ板で、厚さ0.2m、大きさ40mm×30mmである。また負極用銅箔162に設けられているタブ163はNiメッキされた銅板で、厚さ0.2mm、大きさ40mm×30mmである。   The positive electrode current collector plate 142 and the negative electrode copper foil 162 are connected to the positive electrode terminal 146 and the negative electrode terminal 166 via tabs 143 and 163, respectively. The tab 143 provided on the positive electrode current collector plate 142 is an aluminum plate, The thickness is 0.2 m, and the size is 40 mm × 30 mm. A tab 163 provided on the negative electrode copper foil 162 is a Ni-plated copper plate, and has a thickness of 0.2 mm and a size of 40 mm × 30 mm.

上記積層構造体は、活物質の塗工後、80℃から120℃の状態で3分間乾燥され、その後約130℃で約8時間真空乾燥が行われた。   After the application of the active material, the laminated structure was dried at 80 ° C. to 120 ° C. for 3 minutes, and then vacuum dried at about 130 ° C. for about 8 hours.

上記表1に示す項目で、負極集電板として使用する銅箔を次の表2のように変え、他の項目は表1のとおりとして、リチウムイオン二次電池100を作り、試験を行った。試験を行った銅箔の種類は、次の表2に示すNo.1からNo.8に示す8種類である。   In the items shown in Table 1 above, the copper foil used as the negative electrode current collector plate was changed as shown in Table 2 below, and the other items were as shown in Table 1. A lithium ion secondary battery 100 was made and tested. . The types of copper foils tested were 8 types shown in No. 1 to No. 8 shown in Table 2 below.

Figure 2013235713
Figure 2013235713

サンプルNo.1とサンプルNo.2に示す銅箔は、圧延により形成されたタフピッチ銅(TPC:Tough−Pitch Copper)であり、銅の純度が99.9%より大である。サンプルNo.1とサンプルNo.2は、表2のとおり、銅箔の厚さtを異にしている。サンプルNo.3とサンプルNo.6は電解銅箔である。サンプルNo.4とサンプルNo.5は質量比で約0.02%のジルコニウムを含んだ銅を圧延加工して形成した銅箔であり、サンプルNo.4とサンプルNo.5で厚さを異にしている。サンプルNo.7とサンプルNo.8は表に示す組成を含有する銅であり、圧延加工により銅箔に形成している。サンプルNo.7とサンプルNo.8は組成を異にするので、0.2%耐力が異なっており、また銅箔の厚さが異なっている。   The copper foils shown in Sample No. 1 and Sample No. 2 are tough pitch copper (TPC) formed by rolling, and the purity of the copper is higher than 99.9%. As shown in Table 2, sample No. 1 and sample No. 2 have different copper foil thicknesses t. Sample No. 3 and Sample No. 6 are electrolytic copper foils. Sample No. 4 and Sample No. 5 are copper foils formed by rolling copper containing about 0.02% zirconium by mass. Sample No. 4 and sample No. 5 have different thicknesses. I have to. Sample No. 7 and Sample No. 8 are copper containing the composition shown in the table, and are formed on a copper foil by rolling. Since sample No. 7 and sample No. 8 have different compositions, the 0.2% proof stress is different and the thickness of the copper foil is different.

Figure 2013235713
Figure 2013235713

次に試験の内容を説明する。作成したリチウムイオン二次電池100のサンプルを表3の内容に沿ってサイクル試験を行った。充放電レートは3Cである。すなわち作成したサンプルは何れも定格容量が表1に示すとおり2Ahである。2Aの電流で充電や放電を行うと1時間で充電や放電が完了する容量である。従って2Aの電流で充電や放電を行うレートが1Cである。これに対して、その3倍の電流である6Aの電流値で充放電を行った。理論的には充放電が20分で完了する。   Next, the contents of the test will be described. A cycle test was performed on the prepared sample of the lithium ion secondary battery 100 in accordance with the contents of Table 3. The charge / discharge rate is 3C. That is, all the prepared samples have a rated capacity of 2 Ah as shown in Table 1. When charging and discharging are performed at a current of 2 A, the capacity is such that charging and discharging are completed in one hour. Therefore, the rate of charging and discharging with a current of 2A is 1C. On the other hand, charging / discharging was performed at a current value of 6A, which is three times the current. Theoretically, charging / discharging is completed in 20 minutes.

充電試験では正極端子146と負極端子166に6Aの一定電流を充電電流として供給した。正極端子146と負極端子166間の端子電圧は充電率の増加と共に増大し、4.2Vになったときに充電満了と判断した。また放電試験では、正極端子146と負極端子166を介して6Aの一定電流で放電し、放電に従って端子電圧が減少し、端子電圧が2.7Vになった時点で、放電満了と判断した。満了時の充電や放電の終了から次の充放電動作開始までの間に10分間の休止期間を設けた。   In the charging test, a constant current of 6 A was supplied to the positive terminal 146 and the negative terminal 166 as a charging current. The terminal voltage between the positive electrode terminal 146 and the negative electrode terminal 166 increased with an increase in the charging rate, and when the voltage reached 4.2 V, it was determined that the charging was completed. In the discharge test, the battery was discharged at a constant current of 6 A through the positive electrode terminal 146 and the negative electrode terminal 166, and when the terminal voltage decreased according to the discharge and the terminal voltage became 2.7 V, it was determined that the discharge was completed. A 10-minute rest period was provided between the end of charging and discharging at the end of the period and the start of the next charge / discharge operation.

銅箔のサンプルNo.1とサンプルNo.3とサンプルNo.5を用いたリチウムイオン二次電池100について、500サイクルの充放電試験を行い、100サイクル毎にマイクロメータでリチウムイオン二次電池100の厚みを測定した。放電満了後の負極活物質層164が最も体積が小さくなるので、放電満了時の端子電圧2.7Vの状態で上記リチウムイオン二次電池100の厚みを測定した。   The lithium ion secondary battery 100 using the copper foil sample No. 1, sample No. 3 and sample No. 5 was subjected to a 500-cycle charge / discharge test, and the lithium ion secondary battery 100 was measured with a micrometer every 100 cycles. The thickness of was measured. Since the negative electrode active material layer 164 has the smallest volume after the discharge is completed, the thickness of the lithium ion secondary battery 100 was measured at a terminal voltage of 2.7 V when the discharge was completed.

これらサンプルNo.1とサンプルNo.3とサンプルNo.5を用いたリチウムイオン二次電池100についてさらに750サイクル充放電試験を行い、試験開始前と試験後のセル厚みを測定した。なおサンプルNo.1とサンプルNo.3とサンプルNo.5では、負極用銅箔162である銅箔の厚さは何れも10μmである。0〜750回の充放電サイクル試験の結果を図10に示す。充放電のサイクル数の増大とともに、電池厚みが増加している。しかし電池厚みの増加量は、サンプルNo.1よりサンプルNo.3が少なく、さらにこれらのサンプルに比べ、サンプルNo.5を用いた電池がその厚み増加量が少ない。なおサンプルNo.5はHCL02Zであり、Zr(ジルコニウム)を0.02%(mass%)含む銅合金で、0.2%耐力が大きく390MPaである。   The lithium ion secondary battery 100 using Sample No. 1, Sample No. 3 and Sample No. 5 was further subjected to a 750 cycle charge / discharge test, and the cell thickness before and after the test was measured. In Sample No. 1, Sample No. 3 and Sample No. 5, the thickness of the copper foil which is the negative electrode copper foil 162 is 10 μm. The results of 0 to 750 charge / discharge cycle tests are shown in FIG. As the number of charge / discharge cycles increases, the battery thickness increases. However, the amount of increase in battery thickness is less in sample No. 3 than in sample No. 1, and the battery using sample No. 5 has a smaller increase in thickness than these samples. Sample No. 5 is HCL02Z, which is a copper alloy containing 0.02% (mass%) of Zr (zirconium) and has a large 0.2% proof stress and is 390 MPa.

上記サンプルNo.1とサンプルNo.3とサンプルNo.5の試験における500サイクル放電後のリチウムイオン二次電池を解体して負極用銅箔162の表面状態をレーザ顕微鏡で観察した。図11はサンプルNo.1とNo.3とNo.5の500サイクル放電後の負極用銅箔162の表面状態を示すレーザ顕微鏡の画像であり、図11(a)はサンプルNo1のレーザ顕微鏡画像であり、図11(b)はサンプルNo3のレーザ顕微鏡画像、図11(c)はサンプルNo5のレーザ顕微鏡画像である。リチウムイオン二次電池100の厚み変化の大きい、サンプルNo.1とNo.3では、図11(a)や図11(b)に示す如く、負極用銅箔162に顕著な凹凸を生じていることがわかる。一方、サンプルNo.5では負極用銅箔162表面に顕著な凹凸がみられず、負極用銅箔162は平坦な初期状態を略維持していることがわかる。サンプルNo1及びNo3のリチウムイオン二次電池100の厚みの増加は、負極活物質層164の体積増加も要因の一つかもしれないが、少なくとも負極用銅箔162の変形が要因となっていることがわかる。サンプルNo.5においてもリチウムイオン二次電池100の厚みは増加しているが、これは負極活物質層の膨張が主な要因であり、負極用銅箔162の変形の問題とは切り離して考える必要がある。   The lithium ion secondary battery after 500 cycles of discharge in the tests of Sample No. 1, Sample No. 3 and Sample No. 5 was disassembled, and the surface state of the negative electrode copper foil 162 was observed with a laser microscope. FIG. 11 is an image of a laser microscope showing the surface state of the negative electrode copper foil 162 after 500 cycles of discharge of samples No. 1, No. 3 and No. 5, and FIG. 11 (a) is a laser microscope image of sample No. 1. 11B is a laser microscope image of sample No. 3, and FIG. 11C is a laser microscope image of sample No. 5. In samples No. 1 and No. 3 where the thickness change of the lithium ion secondary battery 100 is large, as shown in FIG. 11A and FIG. 11B, significant unevenness is generated in the negative electrode copper foil 162. I understand that. On the other hand, in sample No. 5, there is no significant unevenness on the surface of the negative electrode copper foil 162, indicating that the negative electrode copper foil 162 substantially maintains the flat initial state. Although the increase in the thickness of the lithium ion secondary batteries 100 of samples No. 1 and No. 3 may be one of the factors, an increase in the volume of the negative electrode active material layer 164 may be a factor, but at least the deformation of the negative electrode copper foil 162 may be a factor. Recognize. Also in sample No. 5, the thickness of the lithium ion secondary battery 100 is increased, but this is mainly due to the expansion of the negative electrode active material layer, and is considered separately from the problem of deformation of the negative electrode copper foil 162. There is a need.

Figure 2013235713
Figure 2013235713

次に、表1に示すリチウムイオン二次電池100の仕様に基づき、その負極用銅箔162の銅箔の厚さおよび0.2%耐力を変えたサンプルNo.1からNo.8を使用して作られたリチウムイオン二次電池100について充放電試験を行った。充放電を750回繰り返した後のリチウムイオン二次電池100の厚さの変化に関する試験結果を表4に示す。負極活物質層164の体積増加に起因する応力に対する変形抑止力は、銅箔の0.2%耐力と厚さの積(以下銅箔耐力と記す)で表わすことができ、銅箔耐力が以下で説明の値より大きいと図5や図6を使用して説明した如く負極用銅箔162は塑性変形し難いと考えられる。   Next, based on the specifications of the lithium ion secondary battery 100 shown in Table 1, samples No. 1 to No. 8 in which the copper foil thickness and 0.2% proof stress of the negative electrode copper foil 162 were changed were used. A charge / discharge test was performed on the lithium ion secondary battery 100 made in this manner. Table 4 shows the test results regarding the change in the thickness of the lithium ion secondary battery 100 after the charge and discharge are repeated 750 times. The deformation inhibiting force against the stress caused by the increase in the volume of the negative electrode active material layer 164 can be expressed by the product of the 0.2% proof stress and the thickness of the copper foil (hereinafter referred to as the copper foil proof strength). If it is larger than the value described in FIG. 5, it is considered that the copper foil for negative electrode 162 is difficult to be plastically deformed as described with reference to FIGS.

この試験結果に基づく銅箔耐力とリチウムイオン二次電池100の厚さの変化との関係を表4および図12に示す。サンプルNo.1乃至No.3では、リチウムイオン二次電池100の厚さが大きく増大していることが分かる。このように負極用銅箔162の0.2%耐力と厚さの積(銅箔耐力)が2.4N/mm以下では電池の厚みが大きく増大することが分かった。上述したように負極活物質層164の体積増加だけではなく、図11に示す顕微鏡写真から分かるように負極用銅箔162の変形が大きな要因と考えられる。   Table 4 and FIG. 12 show the relationship between the copper foil yield strength and the change in the thickness of the lithium ion secondary battery 100 based on the test results. In samples No. 1 to No. 3, it can be seen that the thickness of the lithium ion secondary battery 100 is greatly increased. Thus, it was found that when the product of 0.2% proof stress and thickness (copper foil proof stress) of the negative electrode copper foil 162 is 2.4 N / mm or less, the thickness of the battery is greatly increased. As described above, not only the volume increase of the negative electrode active material layer 164 but also the deformation of the negative electrode copper foil 162 is considered to be a major factor as can be seen from the micrograph shown in FIG.

サンプルNo.4乃至No.8では、リチウムイオン二次電池100の厚さの増加が60μm程度でほぼ一定となった。上述の図11に示す顕微鏡写真から分かるように、あるいは負極用銅箔162の0.2%耐力と厚さの積(銅箔耐力)が3.0N/mmから7.0N/mmに増加しても、リチウムイオン二次電池100の厚さの増加が60μm程度でほぼ一定である点から、この厚み増加は、負極用銅箔162の変形に起因するものではなく、負極活物質層164の膨張分に基づくものと考えられる。すなわち、負極用銅箔162の変形は抑制され、負極活物質層164の膨張が一定の量で抑えられていると考えられる。   In samples No. 4 to No. 8, the increase in the thickness of the lithium ion secondary battery 100 was almost constant at about 60 μm. As can be seen from the micrograph shown in FIG. 11 above, the product of 0.2% proof stress and thickness (copper foil proof stress) of the negative electrode copper foil 162 increased from 3.0 N / mm to 7.0 N / mm. However, since the increase in the thickness of the lithium ion secondary battery 100 is almost constant at about 60 μm, this increase in thickness is not caused by the deformation of the negative electrode copper foil 162, and the negative electrode active material layer 164 It is thought to be based on the expansion. That is, it is considered that the deformation of the negative electrode copper foil 162 is suppressed, and the expansion of the negative electrode active material layer 164 is suppressed by a certain amount.

さらに、負極用銅箔162の銅箔耐力を5.4N/mmや7.0N/mmに増大してもリチウムイオン二次電池100の厚さの増加が60μm程度でほぼ一定であることから、これらのサンプルでは、厚さ増大に対する抑止効果が飽和していると考えられる。すなわち不必要な負極用銅箔162の銅箔耐力の増大であると考えられる。このことから0.2%耐力と厚さの積(銅箔耐力)が5.4N/mm未満が望ましく、3.0N/mmから4.94N/mmの範囲が特に望ましい。   Furthermore, even if the copper foil yield strength of the negative electrode copper foil 162 is increased to 5.4 N / mm or 7.0 N / mm, the increase in the thickness of the lithium ion secondary battery 100 is approximately constant at about 60 μm, In these samples, it is considered that the deterrent effect against the increase in thickness is saturated. That is, it is considered that the copper foil yield strength of the negative electrode copper foil 162 is unnecessary. Therefore, the product of 0.2% proof stress and thickness (copper foil proof strength) is preferably less than 5.4 N / mm, and particularly preferably in the range of 3.0 N / mm to 4.94 N / mm.

また0.2%耐力が540MPaや700MPaでは圧延加工時の圧延加工効率が著しく低下し、コストの大幅な増大につながる。生産性の点から負極用銅箔162の0.2%耐力540MPa未満であることが望ましく、約390MPa以下の方が最適である。   Further, when the 0.2% proof stress is 540 MPa or 700 MPa, the rolling efficiency at the time of rolling significantly decreases, leading to a significant increase in cost. From the viewpoint of productivity, the negative electrode copper foil 162 desirably has a 0.2% yield strength of less than 540 MPa, and is most preferably about 390 MPa or less.

表4で上述した如く、負極用銅箔162の変形抑止の観点から電池の厚みが99μm以上増大したサンプルNo.1(比較例1)乃至No.3(比較例3)では負極用銅箔162が著しく変形しており、総合評価は不可(×)と判断した。サンプルNo.7(実施例4)とNo.8(実施例5)は、負極用銅箔162の変形抑止の観点では問題が解決されているが、生産性にやや問題があり、総合評価は使用可能であるが最適ではない(〇)と判断した。またサンプルNo.4(実施例1)からNo.6(実施例3)は負極用銅箔162の変形抑止の観点で問題を解決しているのに加え、生産性にも優れているので最適(◎)と判断した。中でも特にサンプルNo.4(実施例1)とNo.5(実施例2)は銅箔を薄くでき、特に優れている。   As described above in Table 4, from the viewpoint of suppressing deformation of the negative electrode copper foil 162, the sample No. 1 (Comparative Example 1) to No. 3 (Comparative Example 3) in which the thickness of the battery increased by 99 μm or more was used. Was significantly deformed, and comprehensive evaluation was judged to be impossible (x). In Sample No. 7 (Example 4) and No. 8 (Example 5), the problem has been solved in terms of inhibiting deformation of the negative electrode copper foil 162, but there is a slight problem in productivity, and overall evaluation is It was judged that it was usable but not optimal (◯). Samples No. 4 (Example 1) to No. 6 (Example 3) not only solve the problem from the viewpoint of suppressing deformation of the negative electrode copper foil 162, but also have excellent productivity. (◎). Among them, samples No. 4 (Example 1) and No. 5 (Example 2) are particularly excellent because they can make the copper foil thin.

図12は、0.2%耐力と厚さの積(銅箔耐力)とリチウムイオン二次電池100の厚みの増加量との関係を示すグラフであり、0.2%耐力と厚さの積(銅箔耐力)が2.4N/mmより大きくなるとリチウムイオン二次電池100の厚みの増加量は特性Aに示す如く急激に低下する。これは負極用銅箔162の変形が急激に現象していることを表している。0.2%耐力と厚さの積(銅箔耐力)が3.1N/mmより大きくなってもリチウムイオン二次電池100の厚みの増加量は特性Bに示す如く略横ばいである。これは厚みの増加量が負極活物質層164の体積の増加に起因しており、負極用銅箔162の変形以外の要因に起因していることを示している。従って0.2%耐力と厚さの積(銅箔耐力)が3.1N/mmから4.9N/mmの範囲が最適であり、それ以上の値は無駄となっていることを示している。   FIG. 12 is a graph showing the relationship between the product of 0.2% yield strength and thickness (copper foil yield strength) and the amount of increase in the thickness of the lithium ion secondary battery 100. The product of 0.2% yield strength and thickness. When the (copper foil yield strength) is greater than 2.4 N / mm, the amount of increase in the thickness of the lithium ion secondary battery 100 decreases rapidly as shown by the characteristic A. This indicates that the deformation of the negative electrode copper foil 162 is abrupt. Even if the product of 0.2% proof stress and thickness (copper foil proof stress) is greater than 3.1 N / mm, the increase in thickness of the lithium ion secondary battery 100 is substantially flat as shown in characteristic B. This indicates that the increase in thickness is due to the increase in volume of the negative electrode active material layer 164 and due to factors other than the deformation of the negative electrode copper foil 162. Accordingly, the product of 0.2% proof stress and thickness (copper foil proof stress) is optimally in the range of 3.1 N / mm to 4.9 N / mm, and a value higher than that is wasted. .

次にリチウムイオン二次電池100の製造工程について説明する。図13はリチウムイオン二次電池100の製造工程の概要を示す図である。工程S102で負極用銅箔162として使用する銅箔が製造される。この銅箔は表4の条件に基づいており、例えば表2のサンプル5に示す銅箔である。   Next, the manufacturing process of the lithium ion secondary battery 100 will be described. FIG. 13 is a diagram showing an outline of the manufacturing process of the lithium ion secondary battery 100. A copper foil used as the negative electrode copper foil 162 in step S102 is manufactured. This copper foil is based on the conditions of Table 4, for example, the copper foil shown in Sample 5 of Table 2.

工程S102とは別に工程S104で合材スラリーが生産される。合材スラリーは、例えばグラファイトからなる活物質と、ポリビニリデンフロライドPVdFやスチレンブタジエンゴムSBRなどの結着剤と、必要に応じて導電助剤であるアセチレンブラック(カーボンブラック)などが配合されて、構成される。合材スラリーは結着剤がPVdFの場合はNMP(N−メチル1,2−ピロリドン)が、SBRの場合は、水がそれぞれ用いられる。水を溶媒とする場合、スラリー粘度を調整するために増粘剤(カルボキシメチルセルロース(CMC))が配合されることがある。   Separately from step S102, a mixture slurry is produced in step S104. For example, an active material made of graphite, a binder such as polyvinylidene fluoride PVdF and styrene butadiene rubber SBR, and acetylene black (carbon black) which is a conductive auxiliary agent are blended as necessary. Configured. When the binder is PVdF, NMP (N-methyl 1,2-pyrrolidone) is used for the mixture slurry, and water is used for SBR. When water is used as a solvent, a thickener (carboxymethyl cellulose (CMC)) may be blended in order to adjust the slurry viscosity.

工程S106で合材スラリーが上記銅箔の両面に塗工される。乾燥のため、80℃から120℃の状態で3分間乾燥される。   In step S106, the mixture slurry is applied to both sides of the copper foil. For drying, it is dried at 80 ° C. to 120 ° C. for 3 minutes.

工程S108でスリット加工やプレス加工など、負極の形状形成のためのおおまかな加工が施される。負極用銅箔162の両面に負極活物質層164を設けてから機械加工を行うと負極活物質層164に損傷を与える恐れがあり、負極160を形成するためのある程度の機械加工を施す。しかし負極用銅箔162をバラバラに切り離すとその後の生産工程の効率が低下するので、負極用銅箔162がつながった状態で次の工程に進む。   In step S108, rough processing such as slit processing and press processing for forming the shape of the negative electrode is performed. If machining is performed after the negative electrode active material layer 164 is provided on both surfaces of the negative electrode copper foil 162, the negative electrode active material layer 164 may be damaged, and some degree of machining is performed to form the negative electrode 160. However, if the copper foil for negative electrode 162 is cut apart, the efficiency of the subsequent production process is lowered, and the process proceeds to the next step with the copper foil for negative electrode 162 connected.

工程S112において130℃で約8時間真空乾燥が行われ、水分を除去するなどして、負極用銅箔162の両面の負極活物質層164が略完成する。工程S114でスリット加工や打抜き加工を行い、工程S116で負極160の必要な検査や試験を行い、負極160が完成する。   In step S112, vacuum drying is performed at 130 ° C. for about 8 hours to remove moisture, and the negative electrode active material layers 164 on both sides of the negative electrode copper foil 162 are substantially completed. In step S114, slitting or punching is performed, and in step S116, necessary inspection or testing of the negative electrode 160 is performed, and the negative electrode 160 is completed.

負極160の生産と平行して、正極140やセパレータ150の生産が行われる。正極140の生産は、工程S132で正極集電板142として使用されるアルミ箔が生産される。工程S134の正極活物質層144の塗布や乾燥など、必要な工程を経て、工程S136で正極140の検査を行い、正極140が完成する。また平行して工程S120でセパレータが生産される。   In parallel with the production of the negative electrode 160, the production of the positive electrode 140 and the separator 150 is performed. In the production of the positive electrode 140, an aluminum foil used as the positive electrode current collector plate 142 in step S132 is produced. After necessary steps such as application and drying of the positive electrode active material layer 144 in step S134, the positive electrode 140 is inspected in step S136, and the positive electrode 140 is completed. In parallel, a separator is produced in step S120.

工程S142で正極140と負極160とセパレータ150とを積層する。正極140の正極集電板142には正極活物質層144が設けられていると共に、図9に示す如くタブ143が形成されている。負極160の負極用銅箔162には負極活物質層164が設けられていると共に、図8に示すタブ163が設けられている。工程S144で正極集電板142のタブ143がそれぞれ正極端子146に溶接される。同様に工程S144で負極用銅箔162のタブ163がそれぞれ負極端子166に溶接される。   In step S142, the positive electrode 140, the negative electrode 160, and the separator 150 are stacked. A positive electrode active material layer 144 is provided on the positive electrode current collector plate 142 of the positive electrode 140, and a tab 143 is formed as shown in FIG. The negative electrode copper foil 162 of the negative electrode 160 is provided with a negative electrode active material layer 164 and a tab 163 shown in FIG. In step S144, the tabs 143 of the positive electrode current collector plate 142 are welded to the positive electrode terminals 146, respectively. Similarly, the tabs 163 of the negative electrode copper foil 162 are welded to the negative electrode terminal 166 in step S144.

工程S146で、工程S142で作られた積層構造体の両面に図1に示す第1カバー110と第2カバー120とを設け、4方の内の3方を互いに固着することにより、袋状のカバー内に上記積層構造体を配置して構造を完成する。   In step S146, the first cover 110 and the second cover 120 shown in FIG. 1 are provided on both surfaces of the laminated structure formed in step S142, and three of the four sides are fixed to each other, thereby forming a bag-like shape. The laminated structure is placed in the cover to complete the structure.

工程S148で、袋状のカバー内を真空にすると共に電解液を注入し、工程S152で袋状のカバーを閉じ、密閉状態とする(シールする)。工程S154で必要な検査と試験を行い、図1に示すリチウムイオン二次電池100が完成する。   In step S148, the bag-shaped cover is evacuated and an electrolyte is injected, and in step S152, the bag-shaped cover is closed and sealed (sealed). In step S154, necessary inspections and tests are performed, and the lithium ion secondary battery 100 shown in FIG. 1 is completed.

工程S106や工程S112では、合材スラリーの乾燥のため、負極用銅箔162が熱せられる。通常は120℃から130℃に保持されるが、局部的に高温に熱せられても負極用銅箔162が充分耐えられるように、またマージンを確保することも必要であり、負極用銅箔162として使用する銅箔は、150℃の温度に30分加熱保持された後であっても0.2%耐力が減少しないで維持されることが望ましく、0.2%耐力×銅箔厚さの積(銅箔耐力)が3.1N/mm以上であることが望ましい。なお先に説明のとおり、上記銅箔耐力は5.4N/mmまでは必ずしも必要なく、これ未満で充分な効果が得られる。銅箔耐力3.1N/mm以上で4.9N/mm以下が最も望ましい。   In Step S106 and Step S112, the negative electrode copper foil 162 is heated to dry the mixture slurry. Usually, the temperature is maintained at 120 ° C. to 130 ° C., but it is necessary to ensure a sufficient margin so that the negative electrode copper foil 162 can sufficiently withstand even when locally heated to a high temperature. It is desirable that the copper foil used as is maintained at a temperature of 150 ° C. for 30 minutes without being reduced by 0.2% proof stress, and 0.2% proof stress × copper foil thickness. It is desirable that the product (copper foil yield strength) is 3.1 N / mm or more. As described above, the copper foil yield strength is not necessarily required up to 5.4 N / mm, and if it is less than this, a sufficient effect can be obtained. Copper foil yield strength is most preferably 3.1 N / mm or more and 4.9 N / mm or less.

図14と図15は、図1乃至図4および図7乃至図9を用いて説明した本発明の実施例のリチウムイオン二次電池100の構造の代案であり、代案の外観形状は図1乃至図2と略同じである。すなわち図14と図15に記載の代案のリチウムイオン二次電池100は、上述のリチウムイオン二次電池100と基本的に同様の構造を有しており、第1カバー110と第2カバー120とにより気密に保持された空間内に非水電解質に満たされた積層構造体173が収納されている。図14のA−A断面は上述の図7に記載の構造と略同じであり、省略する。図14のB−B断面は図15に示す構造である。   14 and 15 show alternative structures of the lithium ion secondary battery 100 according to the embodiment of the present invention described with reference to FIGS. 1 to 4 and FIGS. 7 to 9, and the external shape of the alternative is shown in FIGS. It is substantially the same as FIG. That is, the alternative lithium ion secondary battery 100 shown in FIG. 14 and FIG. 15 has basically the same structure as the above-described lithium ion secondary battery 100, and the first cover 110, the second cover 120, Thus, the laminated structure 173 filled with the nonaqueous electrolyte is accommodated in the space that is kept airtight. The AA cross section of FIG. 14 is substantially the same as the structure shown in FIG. 14 is a structure shown in FIG.

図14と図15において、第1カバー110は固定部112とダンパー部114と平坦部116とを備えており、また第2カバー120は固定部122とダンパー部124とを備えている。第1カバー110の固定部112と第2カバー120の固定部122とが互いに密着し、密閉空間が作られ、密閉空間に後述する構造の積層構造体が非水電解質に満たされて設けられている。積層構造体173は、セパレータ150を介して対向するように配置された正極140と負極160とが巻回された構造になっている。   14 and 15, the first cover 110 includes a fixed portion 112, a damper portion 114, and a flat portion 116, and the second cover 120 includes a fixed portion 122 and a damper portion 124. The fixing portion 112 of the first cover 110 and the fixing portion 122 of the second cover 120 are in close contact with each other to create a sealed space, and a laminated structure having a structure described later is provided in the sealed space filled with a nonaqueous electrolyte. Yes. The laminated structure 173 has a structure in which a positive electrode 140 and a negative electrode 160 disposed so as to face each other with the separator 150 interposed therebetween are wound.

積層構造体173は第1カバー110の平坦部116と第2カバー120の平坦部126との間に挟まれて配置されており、積層構造体173の厚みの変化に応じでダンパー部114やダンパー部124が変形し、リチウムイオン二次電池100の厚さが変化する。第1カバー110や第2カバー120から正極端子146や負極端子166が外部に突出しており、正極端子146や負極端子166と第1カバー110や第2カバー120は図示しない絶縁物により、絶縁されている。図14のA−A断面は図7と略同様の構造であり、図7に示す如く絶縁部材158が配置されている。上述の通り図14では絶縁部材158の記載を省略している。   The laminated structure 173 is disposed between the flat part 116 of the first cover 110 and the flat part 126 of the second cover 120, and the damper part 114 and the damper are changed according to the change in the thickness of the laminated structure 173. The portion 124 is deformed, and the thickness of the lithium ion secondary battery 100 is changed. The positive electrode terminal 146 and the negative electrode terminal 166 protrude from the first cover 110 and the second cover 120 to the outside, and the positive electrode terminal 146 and the negative electrode terminal 166 and the first cover 110 and the second cover 120 are insulated by an insulator (not shown). ing. The AA cross section of FIG. 14 has substantially the same structure as FIG. 7, and an insulating member 158 is arranged as shown in FIG. As described above, the illustration of the insulating member 158 is omitted in FIG.

図15は、上述の通り、図14のA−A断面の構造を示しており、正極140と負極160との間にはそれぞれセパレータ150が配置される積層構造を成しており、この積層構造が渦巻状に巻回されて積層構造体173が作られる。図1乃至図4および図7乃至図9で説明した第1の実施例では、正極140やセパレータ150、負極160からなる積層構造は、巻回されることなく、重ねられている。一方図14や図15に示す正極140やセパレータ150、負極160からなる積層構造は、各層毎に分離されるのではなく、連続して巻回された構造となっている。各層毎に正極140や負極160にそれぞれタブが形成され、図7に示す如く、各正極140のタブが正極端子146に溶接により電気的に接続され、また各負極160のタブが負極160に溶接により電気的に接続される。図15では正極140やセパレータ150、負極160について一部のみ参照符号を付し、他は参照符号の図示を省略している。   FIG. 15 shows the structure of the AA cross section of FIG. 14 as described above, and has a laminated structure in which separators 150 are arranged between the positive electrode 140 and the negative electrode 160, respectively. Are wound in a spiral shape to form a laminated structure 173. In the first embodiment described with reference to FIGS. 1 to 4 and FIGS. 7 to 9, the laminated structure including the positive electrode 140, the separator 150, and the negative electrode 160 is stacked without being wound. On the other hand, the laminated structure composed of the positive electrode 140, the separator 150, and the negative electrode 160 shown in FIG. 14 and FIG. 15 is not separated for each layer but is continuously wound. A tab is formed on each of the positive electrode 140 and the negative electrode 160 for each layer. As shown in FIG. 7, the tab of each positive electrode 140 is electrically connected to the positive electrode terminal 146 by welding, and the tab of each negative electrode 160 is welded to the negative electrode 160. Are electrically connected. In FIG. 15, only a part of the positive electrode 140, the separator 150, and the negative electrode 160 is provided with reference numerals, and the other reference numerals are omitted.

図14や図15に示すように、正極140やセパレータ150や負極160を巻回構造とすることで、積層構造体の生産性が向上する。また内蔵された積層構造体173がバラバラに分離されるのではなく、つながっていることで機械的な強度が増す。車載用に使用される電池では、交通事故などにより発生する衝撃により強くなる。また図15に示すように、積層構造体173の端部においても正極140や負極160がセパレータ150に挟まれた構造となっており、短絡し難い構造となっており、安全性が向上する。   As shown in FIGS. 14 and 15, the positive electrode 140, the separator 150, and the negative electrode 160 are wound to improve the productivity of the laminated structure. Further, the built-in laminated structure 173 is not separated apart, but is connected to increase mechanical strength. A battery used for in-vehicle use becomes stronger due to an impact caused by a traffic accident or the like. As shown in FIG. 15, the positive electrode 140 and the negative electrode 160 are also sandwiched between the separators 150 at the end of the laminated structure 173, and are not easily short-circuited, thereby improving safety.

本発明および実施の形態で説明した技術思想は、リチウムイオン二次電池の負極に使用する負極集電板に適用できる。さらに本発明および実施の形態で説明した技術思想は、リチウムイオン二次電池に適用できる。さらに上述した技術思想は一般の電池にも適用できる。   The technical idea described in the present invention and the embodiment can be applied to a negative electrode current collector plate used for a negative electrode of a lithium ion secondary battery. Furthermore, the technical idea described in the present invention and the embodiment can be applied to a lithium ion secondary battery. Further, the above technical idea can be applied to general batteries.

100…リチウムイオン二次電池、110…第1カバー、114…ダンパー部、120…第2カバー、124…ダンパー部、140…正極、142…正極集電板、143…タブ、144…正極活物質層、146…正極端子、150…セパレータ、152…リチウムイオン、158…絶縁部材、160…負極、162…負極用銅箔、163…タブ、164…負極活物質層、166…負極端子。 DESCRIPTION OF SYMBOLS 100 ... Lithium ion secondary battery, 110 ... 1st cover, 114 ... Damper part, 120 ... 2nd cover, 124 ... Damper part, 140 ... Positive electrode, 142 ... Positive electrode current collecting plate, 143 ... Tab, 144 ... Positive electrode active material Layer, 146 ... positive electrode terminal, 150 ... separator, 152 ... lithium ion, 158 ... insulating member, 160 ... negative electrode, 162 ... copper foil for negative electrode, 163 ... tab, 164 ... negative electrode active material layer, 166 ... negative electrode terminal.

Claims (17)

電解質を含有するセパレータを介して正極と負極を対向するように配置した積層構造体を少なくとも一組有し、上記負極は集電用銅箔と上記集電用銅箔の少なくとも一方の面に設けられたグラファイトからなる活物質層を備え、上記積層構造体を密閉するための第1平面部を備える第1カバーと第2平面部を備える第2カバーとを有し、上記第1平面部と上記第2平面部は上記積層構造体を挟むように配置され、上記負極の厚さの変化に基づき上記第1平面部と上記第2平面部の間隔が変化するリチウムイオン二次電池に、使用する上記集電用銅箔であって、
上記集電用銅箔は、0.2%耐力と厚さとの積が2.4N/mmより大きいことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。
At least one set of laminated structures in which a positive electrode and a negative electrode are arranged to face each other through a separator containing an electrolyte, and the negative electrode is provided on at least one surface of the current collector copper foil and the current collector copper foil An active material layer made of graphite, and having a first cover having a first plane part for sealing the laminated structure and a second cover having a second plane part, and the first plane part, The second planar portion is disposed so as to sandwich the laminated structure, and is used for a lithium ion secondary battery in which the distance between the first planar portion and the second planar portion changes based on a change in the thickness of the negative electrode. The copper foil for current collection,
The copper foil for current collection is a copper foil for current collection used for a lithium ion secondary battery, wherein the product of 0.2% proof stress and thickness is greater than 2.4 N / mm.
請求項1に記載の集電用銅箔であって、上記集電用銅箔は、0.2%耐力と厚さとの積が3.1N/mm以上であることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   The copper foil for current collection according to claim 1, wherein the current collector copper foil has a product of 0.2% proof stress and thickness of 3.1 N / mm or more. Copper foil for current collection used for secondary batteries. 請求項1あるいは請求項2に記載の集電用銅箔であって、上記集電用銅箔は、0.2%耐力と厚さとの積が5.4N/mm以下であることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   The copper foil for current collection according to claim 1 or 2, wherein the current collector copper foil has a product of 0.2% proof stress and thickness of 5.4 N / mm or less. The copper foil for current collection used for a lithium ion secondary battery. 請求項1乃至3の内の一に記載の集電用銅箔であって、
上記集電用銅箔が用いられるリチウムイオン二次電池は、上記第1あるいは第2カバーの内の少なくとも1つにおいて該カバーの上記平面部の外側にダンパー部が形成され、上記負極の厚さの変化に基づき上記ダンパー部が変形し、これにより上記第1および第2カバーの上記第1平面と第2平面の間隔が変化する構造を備えている、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。
The copper foil for current collection according to one of claims 1 to 3,
In the lithium ion secondary battery in which the copper foil for current collection is used, a damper portion is formed outside the flat portion of the cover in at least one of the first or second cover, and the thickness of the negative electrode The lithium ion secondary is characterized in that the damper portion is deformed on the basis of the change of the first and second covers, thereby changing the distance between the first plane and the second plane of the first and second covers. Copper foil for current collection used in batteries.
請求項1乃至4の内の一に記載の集電用銅箔であって、上記集電用銅箔が用いられるリチウムイオン二次電池は、上記第1あるいは第2カバーの内の少なくとも1つがアルミニウムを主成分とする金属板で形成されている、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   5. The copper foil for current collection according to claim 1, wherein at least one of the first and second covers is used for the lithium ion secondary battery in which the copper foil for current collection is used. The copper foil for current collection used for a lithium ion secondary battery characterized by being formed with the metal plate which has aluminum as a main component. 請求項1乃至請求項5の内の一に記載の集電用銅箔であって、上記集電用銅箔は150℃以上で30分以上加熱された後の0.2%耐力と厚さとの積が3.1N/mm以上で5.4N/mm以下の範囲にあることを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   The copper foil for current collection according to one of claims 1 to 5, wherein the copper foil for current collection has a 0.2% proof stress and a thickness after being heated at 150 ° C or higher for 30 minutes or more. The copper foil for current collection used for a lithium ion secondary battery characterized by being in the range of 3.1 N / mm or more and 5.4 N / mm or less. 請求項1乃至請求項6の内の一に記載された集電用銅箔であって、上記集電用銅箔は、銅を主金属とし、ジルコニウムを質量比で約0.02%含む、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   It is the copper foil for current collection described in one of Claims 1 thru | or 6, Comprising: The said copper foil for current collection uses copper as a main metal and contains about 0.02% of zirconium by mass ratio. The copper foil for current collection used for the lithium ion secondary battery characterized by the above-mentioned. 請求項1乃至7の内の一に記載の集電用銅箔であって、上記集電用銅箔が用いられるリチウムイオン二次電池は、車両に搭載されるリチウムイオン二次電池である、ことを特徴とする、リチウムイオン二次電池に使用する集電用銅箔。   The copper foil for current collection according to one of claims 1 to 7, wherein the lithium ion secondary battery using the copper foil for current collection is a lithium ion secondary battery mounted on a vehicle. The copper foil for current collection used for a lithium ion secondary battery characterized by the above-mentioned. 正極と負極とを電解質を含有するセパレータを介して対向するように配置した積層構造体を少なくとも一組有し、
上記負極は、集電用銅箔と上記集電用銅箔の少なくとも一方の面に設けられたグラファイトからなる活物質層とを備え、
上記積層構造体を密閉するために、第1平面部を備える第1カバーと第2平面部を備える第2カバーとを有し、上記第1平面部と上記第2平面部は上記積層構造体を挟むように配置されて上記負極の厚さの変化に基づき上記第1平面部と上記第2平面部の間隔が変化する構造を成し、
上記集電用銅箔は、0.2%耐力と厚さとの積が2.4N/mmより大きいこと、を特徴とするリチウムイオン二次電池。
Having at least one set of laminated structures in which the positive electrode and the negative electrode are arranged to face each other via a separator containing an electrolyte,
The negative electrode comprises a current collector copper foil and an active material layer made of graphite provided on at least one surface of the current collector copper foil,
In order to seal the laminated structure, the laminated structure includes a first cover having a first planar part and a second cover having a second planar part, and the first planar part and the second planar part are the laminated structure. And a structure in which the distance between the first plane portion and the second plane portion is changed based on a change in the thickness of the negative electrode.
The current-collecting copper foil has a product of 0.2% proof stress and thickness greater than 2.4 N / mm.
請求項9に記載のリチウムイオン二次電池であって、上記集電用銅箔は、0.2%耐力と厚さとの積が3.1N/mm以上である、ことを特徴とするリチウムイオン二次電池。   10. The lithium ion secondary battery according to claim 9, wherein the current collector copper foil has a product of 0.2% proof stress and thickness of 3.1 N / mm or more. Secondary battery. 請求項9あるいは請求項10に記載のリチウムイオン二次電池であって、上記集電用銅箔は、0.2%耐力と厚さとの積が5.4N/mm以下である、ことを特徴とするリチウムイオン二次電池。   The lithium ion secondary battery according to claim 9 or 10, wherein the copper foil for current collection has a product of 0.2% proof stress and thickness of 5.4 N / mm or less. Lithium ion secondary battery. 請求項9乃至11の内の一に記載のリチウムイオン二次電池であって、
上記第1あるいは第2カバーの内の少なくとも上記第1カバーの上記第1平面の外側にダンパー部が形成され、上記負極の厚さの変化に基づき上記ダンパー部が変形し、これにより上記第1および第2カバーの上記第1平面と第2平面の間隔が変化する、ことを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 9 to 11,
A damper portion is formed at least outside the first plane of the first cover in the first or second cover, and the damper portion is deformed based on a change in the thickness of the negative electrode. And the space | interval of the said 1st plane and 2nd plane of a 2nd cover changes, The lithium ion secondary battery characterized by the above-mentioned.
請求項9乃至12の内の一に記載のリチウムイオン二次電池であって、上記第1あるいは第2カバーの内の少なくとも1つがアルミニウムを主成分とする金属板で形成されている、ことを特徴とする集電用銅箔。   13. The lithium ion secondary battery according to claim 9, wherein at least one of the first and second covers is formed of a metal plate mainly composed of aluminum. Characteristic copper foil for current collection. 請求項9乃至請求項13の内の一に記載されたリチウムイオン二次電池であって、上記集電用銅箔は150℃以上で30分以上加熱された後の0.2%耐力と厚さとの積が3.1N/mm以上で5.4N/mm以下の範囲にあること、を特徴とするリチウムイオン二次電池。   14. The lithium ion secondary battery according to claim 9, wherein the copper foil for current collection has a 0.2% proof stress and a thickness after being heated at 150 ° C. or more for 30 minutes or more. The lithium ion secondary battery is characterized in that the product is 3.1 N / mm or more and 5.4 N / mm or less. 請求項9乃至請求項14の内の一に記載されたリチウムイオン二次電池であって、上記集電用銅箔は、銅を主金属とし、ジルコニウムを質量比で約0.02%含む、ことを特徴とするリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 9 to 14, wherein the copper foil for current collection contains copper as a main metal and zirconium in a mass ratio of about 0.02%. The lithium ion secondary battery characterized by the above-mentioned. 請求項9乃至15の内の一に記載のリチウムイオン二次電池であって、リチウムイオン二次電池は車両に搭載されるリチウムイオン二次電池である、ことを特徴とするリチウムイオン二次電池。   The lithium ion secondary battery according to any one of claims 9 to 15, wherein the lithium ion secondary battery is a lithium ion secondary battery mounted on a vehicle. . 請求項9乃至16の内の一に記載のリチウムイオン二次電池であって、
上記第1カバーと上記第2カバーは略四角形状を成し、
上記第1カバーと上記第2カバーの外周部に互いに密着固定されるための固定部が設けられ、
上記第1カバーと上記第2カバーの外周部から突出する正極端子と負極端子とを有し、
上記第1カバーと上記第2カバーの内、少なくとも第1カバーの固定部より中央側の部分にダンパー部が形成され、上記ダンパー部は上記固定部側より中央側の方が第2カバーから離れる形状を成し、
上記第1カバーは第1平面を、また第2カバーは第2平面を備え、上記第1平面は上記第1カバーの上記ダンパー部より中央側に配置され、第2平面は上記第2カバーの上記第1平面に対向する位置に設けられ、
上記第1平面と上記第2平面との間にはこれらに挟まれて複数の積層構造体が設けられ、
各積層構造体が有する正極と負極は、上記第1カバーと第2カバーとのにより密閉された内部において、上記正極端子と上記負極端子とにそれぞれ電気的に接続されている、ことを特徴とするリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 9 to 16,
The first cover and the second cover have a substantially rectangular shape,
A fixing portion is provided for tightly fixing to the outer periphery of the first cover and the second cover,
Having a positive terminal and a negative terminal protruding from the outer periphery of the first cover and the second cover;
Of the first cover and the second cover, a damper portion is formed at least on the center side of the fixing portion of the first cover, and the damper portion is further away from the second cover on the center side than the fixing portion side. Shape,
The first cover includes a first plane, and the second cover includes a second plane. The first plane is disposed closer to the center than the damper portion of the first cover, and the second plane is the second cover. Provided at a position facing the first plane;
A plurality of laminated structures are provided between the first plane and the second plane, sandwiched between them.
The positive electrode and the negative electrode included in each laminated structure are electrically connected to the positive electrode terminal and the negative electrode terminal, respectively, in an interior sealed by the first cover and the second cover. Lithium ion secondary battery.
JP2012107340A 2012-05-09 2012-05-09 Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith Pending JP2013235713A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012107340A JP2013235713A (en) 2012-05-09 2012-05-09 Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith
KR1020130016290A KR102028055B1 (en) 2012-05-09 2013-02-15 Copper foil for current collector of lithium secondary battery and lithium secondary battery using the same
CN2013100601850A CN103390754A (en) 2012-05-09 2013-02-26 Current collecting copper foil for lithium ion secondary battery and lithium ion secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107340A JP2013235713A (en) 2012-05-09 2012-05-09 Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith

Publications (1)

Publication Number Publication Date
JP2013235713A true JP2013235713A (en) 2013-11-21

Family

ID=49534961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107340A Pending JP2013235713A (en) 2012-05-09 2012-05-09 Current-collecting copper foil used in lithium ion secondary battery, and lithium ion secondary battery arranged therewith

Country Status (3)

Country Link
JP (1) JP2013235713A (en)
KR (1) KR102028055B1 (en)
CN (1) CN103390754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196996A (en) * 2021-11-30 2022-03-18 淄博火炬能源有限责任公司 LiCu/graphite composite pole piece and method for preparing LiCu/graphite composite pole piece through ionic liquid electrodeposition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044265A1 (en) * 2017-08-30 2019-03-07 三洋電機株式会社 Sealed cell and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4426861B2 (en) * 2004-02-04 2010-03-03 エナックス株式会社 Thin secondary battery cell, method for manufacturing the same, and secondary battery module
JP5463803B2 (en) 2009-08-31 2014-04-09 日産自動車株式会社 Thin film electrode and laminated battery
JP5512332B2 (en) * 2010-03-05 2014-06-04 株式会社Shカッパープロダクツ Method for designing negative electrode for secondary battery, method for producing negative electrode for secondary battery, negative electrode for secondary battery, and negative electrode copper foil for secondary battery
JP5985137B2 (en) * 2010-03-16 2016-09-06 日立マクセル株式会社 Manufacturing method of non-aqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196996A (en) * 2021-11-30 2022-03-18 淄博火炬能源有限责任公司 LiCu/graphite composite pole piece and method for preparing LiCu/graphite composite pole piece through ionic liquid electrodeposition
CN114196996B (en) * 2021-11-30 2023-09-15 淄博火炬能源有限责任公司 LiCu/graphite composite pole piece and method for preparing LiCu/graphite composite pole piece by ionic liquid electrodeposition

Also Published As

Publication number Publication date
KR20130125709A (en) 2013-11-19
CN103390754A (en) 2013-11-13
KR102028055B1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP4524713B2 (en) Lithium secondary battery and its use
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
JP6202347B2 (en) Non-aqueous electrolyte secondary battery
JP5257700B2 (en) Lithium secondary battery
EP2680361B1 (en) Jelly roll-type electrode assembly with active material pattern-coated thereon, and secondary battery having same
JP2008300692A (en) Power storage device
WO2014162532A1 (en) All-solid-state battery, and method for producing all-solid-state battery
KR20200027999A (en) Coin-type battery and its manufacturing method
CN114583097A (en) Pole piece, winding battery cell and battery
JP6814391B2 (en) Battery module
WO2014024525A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and method for manufacturing nonaqueous electrolyte secondary battery
JP2019160587A (en) Nonaqueous electrolyte secondary battery and battery pack including the same
JP6394928B2 (en) Power storage device
JP2013073670A (en) Lithium secondary battery and manufacturing method thereof
KR102028055B1 (en) Copper foil for current collector of lithium secondary battery and lithium secondary battery using the same
CN110021781B (en) Non-aqueous electrolyte secondary battery
US20160049651A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2015029084A1 (en) Electrode structure and secondary battery
JP6850419B2 (en) Lithium ion secondary battery
JP5821913B2 (en) Negative electrode, lithium ion secondary battery, and vehicle
JP2013143262A (en) Lithium ion secondary battery
JP7116890B2 (en) secondary battery
JP7045644B2 (en) Sealed batteries and assembled batteries
JP6477197B2 (en) Power storage device
JP2024042132A (en) Wound electrode body, secondary battery, and manufacturing method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150929