JP2013233762A - Method of manufacturing minute spiny structure and sensor - Google Patents

Method of manufacturing minute spiny structure and sensor Download PDF

Info

Publication number
JP2013233762A
JP2013233762A JP2012108781A JP2012108781A JP2013233762A JP 2013233762 A JP2013233762 A JP 2013233762A JP 2012108781 A JP2012108781 A JP 2012108781A JP 2012108781 A JP2012108781 A JP 2012108781A JP 2013233762 A JP2013233762 A JP 2013233762A
Authority
JP
Japan
Prior art keywords
substrate
fine
polymer particles
polymer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012108781A
Other languages
Japanese (ja)
Inventor
Yoji Endo
洋史 遠藤
Takayuki Iijima
貴之 飯島
Takeshi Kawai
武司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2012108781A priority Critical patent/JP2013233762A/en
Publication of JP2013233762A publication Critical patent/JP2013233762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a minute spiny structure that can be used for detection of a hypersensitive molecular, and to provide a sensor using a minute spiny structure.SOLUTION: A minute spiny structure in which an interval between a tip and a tip of spine is controlled constant is manufactured by a method having a polymer arrangement step of arranging polymer particles at a recess of a substrate having a minute uneven structure; a deposition step of depositing metal on a surface of a substrate on which polymer particles are arranged; and a polymer removal step of removing the polymer particles. A big Raman amplification effect is obtained by the minute spiny structure.

Description

本発明は、微細棘状構造の作製方法及びセンサーに関する。   The present invention relates to a method for producing a fine spinous structure and a sensor.

従来、周期的な微細凹凸構造は種々の光学素子に使用されている。感光性物質を塗布した材料表面に露光してパターン形成するリソグラフィーは、半導体や液晶パネルの基板作製に広く用いられているが、大規模な装置が必要であったり、コストがかかったりするという問題がある。より簡便な方法として、座屈現象に基づいて微細凹凸構造を形成する方法が知られている。例えば、一軸方向に延伸した基板の上に硬い表層を形成し、次いで基板の延伸状態を解除することでストライプ状の周期的な凹凸構造を形成する方法がある(特許文献1を参照)。この方法では、基板と表層の材料の弾性率の関係に加え、延伸時の延伸方向の長さと非延伸時の延伸方向の長さの比によって、凹凸構造の周期とアスペクト比を制御することができる。あるいは、同様に基板を三次元方向に延伸し、表面に硬い薄膜を形成させ、次いで基板の延伸状態を解除することによっても、ストライプ、ジグザグ模様、しわ模様等を形成することができる(非特許文献1を参照)。   Conventionally, the periodic fine concavo-convex structure is used for various optical elements. Lithography that exposes the surface of a material coated with a photosensitive substance to form a pattern is widely used in the production of semiconductor and liquid crystal panel substrates, but it requires a large-scale device and is expensive. There is. As a simpler method, a method of forming a fine concavo-convex structure based on a buckling phenomenon is known. For example, there is a method in which a hard surface layer is formed on a uniaxially stretched substrate, and then the stretched state of the substrate is released to form a striped periodic uneven structure (see Patent Document 1). In this method, in addition to the relationship between the elastic modulus of the substrate and the surface layer material, the period and aspect ratio of the concavo-convex structure can be controlled by the ratio of the length in the stretching direction during stretching and the length in the stretching direction during non-stretching. it can. Alternatively, stripes, zigzag patterns, wrinkle patterns, etc. can also be formed by stretching the substrate in the three-dimensional direction, forming a hard thin film on the surface, and then releasing the stretched state of the substrate (non-patent document). Reference 1).

ところで、近年このような微細凹凸構造を超高感度の分子検出に利用することが検討されている。ある種の金属微小構造体に光を照射すると、表面の特定の点で、表面プラズモン共鳴効果と呼ばれる光による電子の集団振動を起こし、このプラズモン効果が近くの表面分子のラマン散乱信号を増幅することが知られている。更にこのラマン増幅効果は、金属ナノ粒子凝集体の間隙等で特に大きいことも知られている。この現象は、表面増強ラマン分光法(SERS)に利用されている。   By the way, in recent years, the use of such a fine concavo-convex structure for ultrasensitive molecular detection has been studied. When a certain type of metal microstructure is irradiated with light, it causes a collective oscillation of electrons due to light called a surface plasmon resonance effect at a specific point on the surface, and this plasmon effect amplifies the Raman scattering signal of nearby surface molecules. It is known. Furthermore, it is also known that this Raman amplification effect is particularly great due to the gaps between the metal nanoparticle aggregates. This phenomenon is used in surface enhanced Raman spectroscopy (SERS).

微細凹凸構造をSERSへ利用した例としては、例えば、三次元方向への延伸を利用して作製したしわ模様の微細凹凸構造に銀蒸着した表面を用いることが提案されている(非特許文献2を参照)。   As an example of using the fine concavo-convex structure for SERS, for example, it has been proposed to use a silver-deposited surface on a fine concavo-convex structure having a wrinkle pattern produced by using stretching in a three-dimensional direction (Non-Patent Document 2). See).

特開2009−96081号公報JP 2009-96081 A

遠藤他、日本化学会第91春季年会(2011年) 講演予稿集III 3D7−41Endo et al., The 91st Annual Meeting of the Chemical Society of Japan (2011) Preliminary Proceedings III 3D7-41 遠藤他、プラスチック成形加工学会第19回秋季大会(2011年) 講演予稿集 D−222Endo et al., 19th Autumn Meeting of the Japan Society for Plastic Processing (2011) Preliminary Lecture Collection D-222

上記の表面の場合、ラマン増強効果が得られたのは、しわ模様の狭い隙間(凹部)の存在によるものと考えられるが、その幅の大きさはランダムであるため、測定点によって感度にばらつきがあった。また、所望の幅の凹部をもつしわ模様を作製することは困難であった。   In the case of the above surface, the Raman enhancement effect was obtained due to the presence of narrow gaps (recesses) in the wrinkle pattern, but the width was random, so the sensitivity varied depending on the measurement point. was there. Moreover, it was difficult to produce a wrinkle pattern having a recess having a desired width.

そこで、ラマン増強効果をもたらす部位が特定の規則性を持って存在するような微細構造を用いれば、測定点による感度のばらつきを抑え、大きなラマン増幅効果を安定して得ることが期待されるが、そのような方法はなかった。   Therefore, if a fine structure is used in which the part that brings about the Raman enhancement effect has a specific regularity, it is expected to suppress the variation in sensitivity depending on the measurement point and stably obtain a large Raman amplification effect. There was no such way.

本発明は、SERS等の超高感度の分子検出に利用可能な微細棘状構造を、棘の先端と先端の間隔を一定に制御して作製する方法を提供することを目的とする。また、該作製方法によって形成された微細棘状構造を用いたセンサーを提供することを目的とする。   An object of the present invention is to provide a method for producing a fine spinous structure that can be used for ultrasensitive molecular detection such as SERS by controlling the tip-to-tip spacing to be constant. It is another object of the present invention to provide a sensor using a fine spiny structure formed by the manufacturing method.

本発明者らは、上記課題を解決するため鋭意研究を重ね、以下のような本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems, and have completed the present invention as described below.

(1)微細凹凸構造を有する基板の凹部にポリマー粒子を配列させるポリマー配列工程と、上記ポリマー粒子を配列させた上記基板の表面に金属を蒸着させる蒸着工程と、上記ポリマー粒子を除去するポリマー除去工程と、を有することを特徴とする微細棘状構造の作製方法。   (1) A polymer arranging step for arranging polymer particles in the concave portions of a substrate having a fine concavo-convex structure, a vapor deposition step for depositing metal on the surface of the substrate on which the polymer particles are arranged, and a polymer removing for removing the polymer particles And a process for producing a fine spinous structure comprising the steps of:

(2)上記微細凹凸構造の凹部がストライプ状又はジグザグ状に形成されている(1)記載の作製方法。   (2) The manufacturing method according to (1), wherein the concave portions of the fine concavo-convex structure are formed in a stripe shape or a zigzag shape.

(3)基材を延伸する工程と、上記基材の延伸状態を維持したまま上記基材上に上記基材よりも大きな弾性率を有する表層を形成する工程と、上記基材の延伸状態を解除することにより、上記微細凹凸構造を有する基板を得る工程と、を更に有する(1)又は(2)記載の作製方法。   (3) A step of stretching the base material, a step of forming a surface layer having a larger elastic modulus than the base material on the base material while maintaining the stretched state of the base material, and a stretched state of the base material (1) or (2) manufacturing method which further has the process of obtaining the board | substrate which has the said fine concavo-convex structure by cancelling | releasing.

(4)(1)〜(3)のいずれかで作製された微細棘状構造を用いたセンサー。   (4) A sensor using the fine spinous structure produced in any one of (1) to (3).

本発明によれば、SERS等の超高感度の分子検出に利用可能な微細棘状構造を、棘の先端と先端の間隔を一定に制御して作製することができ、この構造を利用した優れたセンサーを作製することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fine spinous structure which can be utilized for ultrasensitive molecular detections, such as SERS, can be produced by controlling the space | interval of the tip of a spine uniformly, and is excellent using this structure. Sensor can be made.

本発明の微細棘状構造の作製方法の一例を示す図である。It is a figure which shows an example of the preparation methods of the fine spiny structure of this invention. 微細凹凸構造にポリスチレン粒子をスピンコーティングし、ストライプ状に配列した状態のSEM観察画像を示す図である。It is a figure which shows the SEM observation image of the state which spin-coated polystyrene particle | grains to the fine concavo-convex structure, and was arranged in stripe form. 作製した微細棘状構造のSEM観察画像を示す図である。It is a figure which shows the SEM observation image of the produced fine spiny structure. 作製した微細棘状構造に4−メルカプトピリジンを吸収させて測定したラマン散乱分析結果を示す図である。It is a figure which shows the Raman scattering analysis result measured by making the produced fine spinous structure absorb 4-mercaptopyridine.

以下、本発明の実施形態について詳細に説明するが、本発明は、以下の実施形態になんら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the object of the present invention. .

本発明の微細棘状構造の作製方法は、微細凹凸構造を有する基板の凹部にポリマー粒子を配列させるポリマー配列工程と、上記ポリマー粒子を配列させた上記基板の表面に金属を蒸着させる蒸着工程と、上記ポリマー粒子を除去するポリマー除去工程と、を有することを特徴とする。本発明の方法によれば、微細凹凸構造の凹部の幅にばらつきがあったとしても、凹部に配列させるポリマー粒子の大きさによって、微細棘状構造の棘の先端と先端の間隔を一定に制御することができる。微細棘状構造の棘の先端と先端の間の部位は、ラマン増幅効果をもたらす部位となりやすく、棘の先端と先端の間隔の大きさを制御することによって、感度を調整することができる。また、蒸着する金属種、金属蒸着条件等の組み合わせを変えることによっても、ラマン増幅効果を調整することができる。以下、本発明の微細棘状構造の作製方法の各工程について、図1を用いて詳細に説明する。   The method for producing a fine spiny structure of the present invention includes a polymer arranging step of arranging polymer particles in a concave portion of a substrate having a fine concavo-convex structure, and a vapor deposition step of depositing metal on the surface of the substrate on which the polymer particles are arranged. And a polymer removing step of removing the polymer particles. According to the method of the present invention, even if there is variation in the width of the concave portion of the fine concavo-convex structure, the distance between the tips of the spines of the fine spinous structure is controlled to be constant according to the size of the polymer particles arranged in the concave portion. can do. The part between the tips of the spines of the fine spine structure is likely to be a part that provides a Raman amplification effect, and the sensitivity can be adjusted by controlling the size of the distance between the tips of the spines. The Raman amplification effect can also be adjusted by changing the combination of the metal species to be deposited, metal deposition conditions, and the like. Hereafter, each process of the manufacturing method of the fine spiny structure of this invention is demonstrated in detail using FIG.

[ポリマー配列工程]
微細凹凸構造を有する基板10(図1(a))の凹部に棘状構造の型となるポリマー粒子40を配列させる工程である(図1(b))。微細凹凸構造の凹部に沿って隙間なくポリマー粒子40を一列に配列させることで、棘状構造が向かい合って並んだ構造を作製することができる。
[Polymer alignment process]
This is a step of arranging polymer particles 40, which form a spine-like structure, in the recesses of the substrate 10 (FIG. 1 (a)) having a fine relief structure (FIG. 1 (b)). By arranging the polymer particles 40 in a line along the recesses of the fine concavo-convex structure in a row, it is possible to produce a structure in which the spinous structures face each other.

ここで用いられる微細凹凸構造は、ポリマー粒子40を一定の周期を持って秩序良く配列できる構造を有するものであれば特に限定されないが、凹部がストライプ状又はジグザグ状に形成されているものが好ましい。より好ましくは、凹部がストライプ状に形成されているものがよい。   The fine concavo-convex structure used here is not particularly limited as long as it has a structure that allows the polymer particles 40 to be arranged in an orderly manner with a certain period, but preferably has concave portions formed in a stripe shape or a zigzag shape. . More preferably, the concave portions are formed in a stripe shape.

凹部がストライプ状又はジグザグ状を形成している微細凹凸構造は、公知の方法によって得ることができる。例えば、延伸可能な基材20を延伸し、延伸状態を維持したまま表層30を形成させ、次いで基材の延伸状態を解除することにより得ることができる。以下、この方法について詳細に説明する。   The fine concavo-convex structure in which the concave portion forms a stripe shape or a zigzag shape can be obtained by a known method. For example, it can be obtained by stretching the stretchable substrate 20, forming the surface layer 30 while maintaining the stretched state, and then releasing the stretched state of the substrate. Hereinafter, this method will be described in detail.

延伸可能な基材20の材料は、例えば、ポリジメチルシロキサン(PDMS)、ジフェニルシロキサン等のポリシロキサン系ポリマー、シリコーン樹脂、シリコーンゴム、天然ゴム、合成ゴム、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリカーボネート、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリウレタン、ポリスチレン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素化ポリマー、ポリ塩化ビニル、ポリメチルハイドロゲンシロキサン、これらのコポリマー、ブレンド等が挙げられる。基材20に用いる材料の弾性率は0.5〜10MPaが好ましい。   Examples of the stretchable base material 20 include polysiloxane polymers such as polydimethylsiloxane (PDMS) and diphenylsiloxane, silicone resin, silicone rubber, natural rubber, synthetic rubber, polyethylene terephthalate (PET), and polymethyl methacrylate ( PMMA), polyolefins such as polycarbonate, polyethylene and polypropylene, fluorinated polymers such as polyurethane, polystyrene, polytetrafluoroethylene and polyvinylidene fluoride, polyvinyl chloride, polymethylhydrogensiloxane, copolymers and blends thereof. The elastic modulus of the material used for the substrate 20 is preferably 0.5 to 10 MPa.

基材20の膜厚は0.3〜20mmが好ましい。0.3mmより薄いと延伸時に破れやすく、20mmより厚いと延伸状態を解除したときに微細凹凸構造を形成しにくい。   The film thickness of the substrate 20 is preferably 0.3 to 20 mm. If it is thinner than 0.3 mm, it is easily broken during stretching, and if it is thicker than 20 mm, it is difficult to form a fine relief structure when the stretched state is released.

基材20の延伸方法は、例えば特許文献1のように、基材20の面に平行な一軸方向に応力を加えればよい。基材20の延伸率(延伸時の延伸方向の長さ/非延伸時の延伸方向の長さ)は1.1〜10が好ましく、より好ましくは、1.1〜1.8、更に好ましくは、1.2〜1.7である。あるいは、非特許文献1のように基材面に対して略垂直方向に応力を加えて延伸してもよい。   As for the stretching method of the base material 20, for example, as in Patent Document 1, stress may be applied in a uniaxial direction parallel to the surface of the base material 20. The stretching ratio of the base material 20 (length in the stretching direction during stretching / length in the stretching direction during non-stretching) is preferably 1.1 to 10, more preferably 1.1 to 1.8, still more preferably. 1.2-1.7. Alternatively, as in Non-Patent Document 1, the film may be stretched by applying stress in a direction substantially perpendicular to the substrate surface.

次に、延伸状態を維持したまま、基材20の上に表層30を形成させる。表層30の材料としては、上記基材20に用いた材料よりも大きな弾性率を有し、延伸の解除とともに微細凹凸構造を形成できる材料であれば特に限定されず、セラミック、カーボン、シリコーン樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、ポリアミド、ポリアミドイミド、ポリイミド、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂等が挙げられる。表層30に用いる材料の弾性率は0.5〜100GPaが好ましい。   Next, the surface layer 30 is formed on the base material 20 while maintaining the stretched state. The material of the surface layer 30 is not particularly limited as long as it is a material that has a larger elastic modulus than the material used for the base material 20 and can form a fine concavo-convex structure along with the cancellation of stretching. Ceramic, carbon, silicone resin, Examples thereof include thermosetting resins such as melamine resin and epoxy resin, polyamide, polyamideimide, polyimide, polyethylene terephthalate, polycarbonate, and acrylic resin. The elastic modulus of the material used for the surface layer 30 is preferably 0.5 to 100 GPa.

表層30の厚みは1〜50,000nmが好ましい。単層で形成しても、複数積層させてもよい。   The thickness of the surface layer 30 is preferably 1 to 50,000 nm. A single layer or a plurality of layers may be stacked.

表層30の形成方法は、上記の厚みの表層を形成できれば特に限定されないが、酸素プラズマ、蒸着等が挙げられる。例えば、基材20にPDMS等のポリシロキサン系ポリマーを用いれば、そのまま酸素プラズマ処理することにより、基材20の表面に新しい硬シリカ層を形成することができる。あるいは、基材20上にシリカ、酸化チタニウム、酸化亜鉛、フッ化マグネシウム等のセラミックを蒸着して表層30を形成してもよい。   Although the formation method of the surface layer 30 will not be specifically limited if the surface layer of said thickness can be formed, Oxygen plasma, vapor deposition, etc. are mentioned. For example, if a polysiloxane polymer such as PDMS is used for the base material 20, a new hard silica layer can be formed on the surface of the base material 20 by performing oxygen plasma treatment as it is. Alternatively, the surface layer 30 may be formed by vapor-depositing ceramic such as silica, titanium oxide, zinc oxide, and magnesium fluoride on the substrate 20.

表層30を形成した後、延伸状態を解除すると、微細凹凸構造が形成される。延伸状態の解除は、基材に対してかけていた応力を排除し、基材を初期状態に戻せばよい。これにより、内部応力が開放され、表面座屈現象が起こり、凹凸構造が形成される。基材面に対して平行な一軸方向に延伸を行った場合は、延伸状態の解除後、全体にストライプ状又はジグザグ状の凹部が形成しやすく、基板10として利用することができる。基材面に対して略垂直方向に延伸を行った場合は、延伸状態の解除後、中心部より離れた部分にストライプ状又はジグザグ状の凹部が形成しやすく、その部分を基板10として利用すればよい。   When the stretched state is released after the surface layer 30 is formed, a fine concavo-convex structure is formed. To release the stretched state, the stress applied to the base material may be eliminated and the base material may be returned to the initial state. Thereby, internal stress is released, surface buckling phenomenon occurs, and an uneven structure is formed. When stretching is performed in a uniaxial direction parallel to the base material surface, a striped or zigzag recess is easily formed on the whole after the stretched state is released, and can be used as the substrate 10. When stretching is performed in a direction substantially perpendicular to the substrate surface, a striped or zigzag recess is easily formed in a portion away from the central portion after the stretched state is released, and that portion is used as the substrate 10. That's fine.

凹凸の周期としては、50nm〜500μmの幅が好ましく、0.5〜3μmの幅がより好ましい。凸部の高さとしては、20nm〜200μmが好ましく、0.2〜1μmがより好ましい。   As an uneven | corrugated period, the width | variety of 50 nm-500 micrometers is preferable, and the width | variety of 0.5-3 micrometers is more preferable. As a height of a convex part, 20 nm-200 micrometers are preferable, and 0.2-1 micrometer is more preferable.

上記の他に、凹部がストライプ状又はジグザグ状に形成された微細凹凸構造を作製する方法として、高分子弾性体の基材の上に相対的に硬い表層を形成し、そこに側方応力を加える方法や、加熱収縮性の基材の上に樹脂表層を形成させた後、加熱して変形させる方法等も挙げることができる。   In addition to the above, as a method for producing a fine concavo-convex structure in which the concave portions are formed in a stripe shape or zigzag shape, a relatively hard surface layer is formed on the base material of the polymer elastic body, and lateral stress is applied thereto. Examples thereof include a method of adding, a method of forming a resin surface layer on a heat-shrinkable base material, and then deforming by heating.

上記のように形成させた微細凹凸構造を有する基板10の凹部に、ポリマー粒子40を配列させる方法は、ポリマー粒子分散液をスピンコート処理することによって行えばよい。ポリマー粒子分散液を、微細凹凸構造を有する基板10の上に滴下し、1000〜3000rpm、20〜60秒でスピンコートすることが好ましい。   The method of arranging the polymer particles 40 in the concave portions of the substrate 10 having the fine concavo-convex structure formed as described above may be performed by spin coating the polymer particle dispersion. It is preferable that the polymer particle dispersion is dropped on the substrate 10 having a fine concavo-convex structure and spin-coated at 1000 to 3000 rpm for 20 to 60 seconds.

ポリマー粒子40は、微細凹凸構造の凹部に一列に配列するように、直径50〜1000nmの粒子であることが好ましい。より好ましくは、直径200〜800nmの粒子を用いるのがよい。直径の小さいポリマー粒子40を用いると、微細棘状構造の棘の先端と先端の間隔を狭くすることができる。   The polymer particles 40 are preferably particles having a diameter of 50 to 1000 nm so as to be arranged in a row in the concave portions of the fine concavo-convex structure. More preferably, particles having a diameter of 200 to 800 nm are used. When the polymer particle 40 having a small diameter is used, the distance between the tips of the spines having a fine spinous structure can be reduced.

ポリマー粒子40の材料は、後工程で容易に除去でき、上記の大きさの粒子を形成できるものであれば特に限定されないが、ポリスチレン、ポリメチルメタクリレート、シリカ等を用いることができる。中でもポリスチレン粒子が好ましく、水分散液としてスピンコートに用いることができる。ポリスチレン粒子であれば、クロロホルム、塩化メチレン等の塩素系炭化水素、トルエン、キシレン等の芳香族炭化水素、グリコールエーテル、グリコールエステル、柑橘系植物油等に浸漬することで、溶解させ除去することができる。   The material of the polymer particles 40 is not particularly limited as long as it can be easily removed in a later step and can form particles having the above-mentioned size, but polystyrene, polymethyl methacrylate, silica, and the like can be used. Among these, polystyrene particles are preferable, and can be used for spin coating as an aqueous dispersion. If it is a polystyrene particle, it can be dissolved and removed by immersing it in chlorine-based hydrocarbons such as chloroform and methylene chloride, aromatic hydrocarbons such as toluene and xylene, glycol ethers, glycol esters and citrus vegetable oils. .

[蒸着工程]
微細凹凸構造を有する基板10の凹部にポリマー粒子40を配列させた後、ポリマー粒子を配列させた表面に金属を真空蒸着させる(図1(c))。蒸着させる金属としては、金、銀、アルミニウム、クロム、亜鉛、白金、ニッケル等が挙げられ、金、銀、白金が好ましく、金、銀が特に好ましい。金属蒸着膜50の膜厚は、10〜150nmが好ましく、20〜100nmがより好ましい。膜厚が厚い方が、ラマン効果の増強が大きい優れたセンサーを作製できる。
[Vapor deposition process]
After the polymer particles 40 are arranged in the recesses of the substrate 10 having a fine uneven structure, a metal is vacuum-deposited on the surface on which the polymer particles are arranged (FIG. 1C). Examples of the metal to be deposited include gold, silver, aluminum, chromium, zinc, platinum, nickel, and the like. Gold, silver, and platinum are preferable, and gold and silver are particularly preferable. 10-150 nm is preferable and, as for the film thickness of the metal vapor deposition film 50, 20-100 nm is more preferable. A thicker film can produce an excellent sensor with a greater enhancement of the Raman effect.

[ポリマー除去工程]
金属蒸着後、ポリマー粒子40を除去すると、そこに空隙60ができ、空隙60の近傍に、蒸着金属部分が棘状になって向かい合った微細棘状構造70を作製することができる(図1(d))。ポリマー粒子40の除去方法は、除去残りが発生しないような方法であれば特に限定されないが、有機溶剤に浸漬してポリマー粒子を溶解させる方法が好ましい。用いる有機溶剤は、基板10を溶解させることなく、ポリマー粒子40を溶解する有機溶剤であれば特に指定されないが、例えばポリマー粒子40にポリスチレンを用いた場合は、クロロホルムに浸漬するとよい。浸漬時間は0.5〜1分が好ましい。有機溶剤への浸漬は、通常室温で行えばよい。
[Polymer removal process]
When the polymer particles 40 are removed after the metal deposition, a void 60 is formed in the polymer particle 40, and in the vicinity of the void 60, a fine spine structure 70 in which the deposited metal portions are formed in a spine shape and face each other can be produced (FIG. d)). The method for removing the polymer particles 40 is not particularly limited as long as no removal residue is generated, but a method in which the polymer particles are dissolved by immersion in an organic solvent is preferable. The organic solvent to be used is not particularly specified as long as it dissolves the polymer particles 40 without dissolving the substrate 10. For example, when polystyrene is used for the polymer particles 40, the organic solvent may be immersed in chloroform. The immersion time is preferably 0.5 to 1 minute. The immersion in the organic solvent may be usually performed at room temperature.

[微細棘状構造の利用]
上記の方法によって得られた微細棘状構造70は、SERS等で超高感度で検体を検出するために用いることができ、また、従来の周期的な凹凸構造と同様に、無反射基板を作製したり、溝部分に粒子を並べて転写することにより半導体回路作製に応用したり、あるいは、更に表面修飾を行って超撥水性基板やタンパク質検体界面の構築等にも利用することができる。
[Use of fine spiny structure]
The fine spiny structure 70 obtained by the above method can be used for detecting a specimen with ultra-high sensitivity by SERS or the like, and a non-reflective substrate is produced in the same manner as a conventional periodic uneven structure. In addition, it can be applied to semiconductor circuit fabrication by arranging and transferring particles in a groove portion, or can be used for construction of a super-water-repellent substrate or protein sample interface by further surface modification.

[SERSにおいて検体の多様化への対応]
上記の方法によって得られた微細棘状構造70は、基材10に延伸可能な材料を用いている場合、伸張させて空隙60の大きさを変化させることができる。検体の種類によって、ラマン増幅効果が変化した場合、空隙60の大きさを変化させて調整することができる。
[Response to sample diversification at SERS]
The fine spiny structure 70 obtained by the above method can be expanded to change the size of the gap 60 when a stretchable material is used for the base material 10. When the Raman amplification effect changes depending on the type of specimen, the size of the gap 60 can be changed and adjusted.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.

[試験例1]
厚さ5mmのPDMS基材の両端を固定し、基材に平行な方向に延伸率1.15となるように延伸した。この状態のまま酸素プラズマ処理時間5分で処理した。延伸状態を解除したところ、凹凸の周期が1.37μm、凸部の高さが0.27μmのストライプ状の凹凸構造が得られた。これにポリスチレン粒子分散水溶液(ポリスチレン粒子径500nm、4.7wt%)を滴下し、2000rpm、30秒のスピンコーティングで塗布し、SEMで観察したところ、図2に示すように、ポリスチレン粒子が凹凸構造の凹部に沿って配列する様子が見られた。この表面に銀を厚さ70nmとなるように真空蒸着した。その後、基板をクロロホルムに30秒浸漬し、ポリスチレン粒子を除去したところ、図3に示すように、ポリスチレン粒子が配列していたところが空隙となり、蒸着した銀による微細棘状構造が作製された。
[Test Example 1]
Both ends of a PDMS substrate having a thickness of 5 mm were fixed, and stretched to a stretching ratio of 1.15 in a direction parallel to the substrate. The oxygen plasma treatment time was 5 minutes in this state. When the stretched state was released, a striped uneven structure having an uneven period of 1.37 μm and a convex part height of 0.27 μm was obtained. A polystyrene particle-dispersed aqueous solution (polystyrene particle diameter of 500 nm, 4.7 wt%) was dropped into this, and it was applied by spin coating at 2000 rpm for 30 seconds. When observed by SEM, the polystyrene particles had an uneven structure as shown in FIG. A state of arrangement along the concave portions of the was observed. Silver was vacuum-deposited on this surface to a thickness of 70 nm. Thereafter, the substrate was immersed in chloroform for 30 seconds to remove the polystyrene particles. As shown in FIG. 3, the place where the polystyrene particles were arranged became voids, and a fine spiny structure was formed from the deposited silver.

[試験例2]
真空蒸着工程で銀の厚さを50nmとした以外は、試験例1と同様に行い、微細棘状構造を作製した。
[Test Example 2]
A fine spiny structure was produced in the same manner as in Test Example 1 except that the thickness of silver was changed to 50 nm in the vacuum deposition process.

[試験例3]
真空蒸着工程で銀の厚さを30nmとした以外は、試験例1と同様に行い、微細棘状構造を作製した。
[Test Example 3]
A fine spiny structure was produced in the same manner as in Test Example 1 except that the thickness of silver was changed to 30 nm in the vacuum deposition process.

[試験例4]
試験例1で作製した微細棘状構造を有する基板を4−メルカプトピリジン水溶液(1mM)に1.5時間浸漬し、自己組織化単分子膜を形成させた。蒸留水に30分浸漬して洗浄し、ラマンスペクトルを測定した。励起波長532nm、1.5W、積算回数1回、測定時間30秒の条件で測定したところ、図4の(a)のようなラマンスペクトルが得られた。図4(b)は、試験例1でストライプ状の凹凸構造となった状態に、直接銀を厚さ70nmとなるように真空蒸着させた後、上記のように4−メルカプトピリジン水溶液に浸漬して、自己組織化単分子膜を形成させた場合のラマンスペクトルである。また、図4(c)は、試験例1で用いたPDMS基材そのものに、直接銀70nmを真空蒸着させ、同様に4−メルカプトピリジン水溶液で処理した後、測定したラマンスペクトルの結果である。図4からわかるように、(a)の微細棘状構造を利用したラマンスペクトルは、他の構造のラマンスペクトルに比べ、大きなラマン増強効果が見られた。1072cm−1のピーク強度を比較すると(a):(b):(c)=432:8:1であった。
[Test Example 4]
The substrate having a fine spine structure prepared in Test Example 1 was immersed in an aqueous 4-mercaptopyridine solution (1 mM) for 1.5 hours to form a self-assembled monolayer. The sample was immersed in distilled water for 30 minutes for washing, and a Raman spectrum was measured. When measured under conditions of an excitation wavelength of 532 nm, 1.5 W, an integration count of 1 and a measurement time of 30 seconds, a Raman spectrum as shown in FIG. 4A was obtained. FIG. 4B shows a state in which the striped uneven structure in Test Example 1 was formed, and then silver was directly vacuum-deposited to a thickness of 70 nm, and then immersed in an aqueous 4-mercaptopyridine solution as described above. And a Raman spectrum when a self-assembled monolayer is formed. FIG. 4C shows the results of Raman spectra measured after directly depositing 70 nm of silver on the PDMS substrate itself used in Test Example 1 and treating it with a 4-mercaptopyridine aqueous solution in the same manner. As can be seen from FIG. 4, the Raman spectrum using the fine spiny structure of (a) showed a large Raman enhancement effect as compared with the Raman spectrum of other structures. When the peak intensity at 1072 cm −1 was compared, it was (a) :( b) :( c) = 432: 8: 1.

[試験例5]
試験例4で作製した試料について、ラマンスペクトル測定の条件を励起波長785nmとした以外は、試験例4と同様にラマンスペクトルを測定した。励起波長532nmのときに比べピーク強度は4倍になった。
試験例2及び3で作製した微細棘状構造を有する基板を、試験例4と同様に4−メルカプトピリジン水溶液で処理した後、励起波長785nmでラマンスペクトルを測定した。1093cm−1のピーク強度を比較すると、真空蒸着の銀の厚さが70nm、50nm、30nmとなるにしたがって、ピーク強度が小さくなっており、蒸着した金属の膜厚が厚い方が大きな強度を示していた。
[Test Example 5]
For the sample produced in Test Example 4, the Raman spectrum was measured in the same manner as in Test Example 4 except that the conditions for Raman spectrum measurement were excitation wavelength 785 nm. The peak intensity was quadrupled compared to the excitation wavelength of 532 nm.
The substrate having the fine spine structure prepared in Test Examples 2 and 3 was treated with a 4-mercaptopyridine aqueous solution in the same manner as in Test Example 4, and then the Raman spectrum was measured at an excitation wavelength of 785 nm. Comparing the peak intensity of 1093 cm −1, the peak intensity decreases as the vacuum deposited silver thickness becomes 70 nm, 50 nm, and 30 nm. The thicker the deposited metal film, the greater the intensity. It was.

10:微細凹凸構造を有する基板
20:基材
30:表層
40:ポリマー粒子
50:金属蒸着膜
60:空隙
70:微細棘状構造
10: Substrate having a fine uneven structure 20: Base material 30: Surface layer 40: Polymer particles 50: Metal deposition film 60: Void 70: Fine spiny structure

Claims (4)

微細凹凸構造を有する基板の凹部にポリマー粒子を配列させるポリマー配列工程と、
前記ポリマー粒子を配列させた前記基板の表面に金属を蒸着させる蒸着工程と、
前記ポリマー粒子を除去するポリマー除去工程と、を有することを特徴とする微細棘状構造の作製方法。
A polymer alignment step of aligning polymer particles in the recesses of the substrate having a fine relief structure;
A deposition step of depositing a metal on the surface of the substrate on which the polymer particles are arranged;
And a polymer removing step of removing the polymer particles.
前記微細凹凸構造の凹部がストライプ状又はジグザグ状に形成されている請求項1記載の作製方法。   The manufacturing method according to claim 1, wherein the concave portion of the fine concavo-convex structure is formed in a stripe shape or a zigzag shape. 基材を延伸する工程と、
前記基材の延伸状態を維持したまま前記基材上に前記基材よりも大きな弾性率を有する表層を形成する工程と、
前記基材の延伸状態を解除することにより、前記微細凹凸構造を有する基板を得る工程と、を更に有する請求項1又は2記載の作製方法。
Stretching the substrate;
Forming a surface layer having a larger elastic modulus on the base material while maintaining the stretched state of the base material;
The method according to claim 1, further comprising: obtaining a substrate having the fine concavo-convex structure by releasing the stretched state of the base material.
請求項1から3のいずれかで作製された微細棘状構造を用いたセンサー。   The sensor using the fine spinous structure produced in any one of Claim 1 to 3.
JP2012108781A 2012-05-10 2012-05-10 Method of manufacturing minute spiny structure and sensor Pending JP2013233762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012108781A JP2013233762A (en) 2012-05-10 2012-05-10 Method of manufacturing minute spiny structure and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012108781A JP2013233762A (en) 2012-05-10 2012-05-10 Method of manufacturing minute spiny structure and sensor

Publications (1)

Publication Number Publication Date
JP2013233762A true JP2013233762A (en) 2013-11-21

Family

ID=49760268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012108781A Pending JP2013233762A (en) 2012-05-10 2012-05-10 Method of manufacturing minute spiny structure and sensor

Country Status (1)

Country Link
JP (1) JP2013233762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019109414A (en) * 2017-12-20 2019-07-04 凸版印刷株式会社 Coloring structure, display body and manufacturing method of coloring structure
US11592605B2 (en) 2017-06-28 2023-02-28 Toppan Printing Co., Ltd. Color developing structure having concave-convex layer, method for producing such structure, and display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11592605B2 (en) 2017-06-28 2023-02-28 Toppan Printing Co., Ltd. Color developing structure having concave-convex layer, method for producing such structure, and display
JP2019109414A (en) * 2017-12-20 2019-07-04 凸版印刷株式会社 Coloring structure, display body and manufacturing method of coloring structure

Similar Documents

Publication Publication Date Title
Fang et al. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography
JP6252053B2 (en) Surface-enhanced Raman scattering measurement substrate and manufacturing method thereof
JP5933077B2 (en) Array fabrication method and mold
US10422752B2 (en) Substrate for surfaced enhanced raman scattering, fabrication method for the same and analyzing method using the same
US8547549B2 (en) Substrate for surface enhanced Raman scattering (SERS)
JP7267624B2 (en) Patterning of complex metal oxide structures
Jeon et al. Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high‐fidelity sensing platform
US10103357B2 (en) Fabrication of multilayer nanograting structures
US20140374268A1 (en) Method for forming a composite film
CN106442468A (en) Raman spectrum imaging resolution target and preparation method thereof
Zhang et al. Arrayed nanopore silver thin films for surface-enhanced Raman scattering
Wu et al. Ultrawideband surface enhanced Raman scattering in hybrid graphene fragmented‐gold substrates via cold‐etching
Zhu et al. Sensitive, reusable, surface-enhanced Raman scattering sensors constructed with a 3D graphene/Si hybrid
Wang et al. Flexible and superhydrophobic silver nanoparticles decorated aligned silver nanowires films as surface-enhanced raman scattering substrates
JP2013233762A (en) Method of manufacturing minute spiny structure and sensor
JP2020516887A (en) Nanoplasmonic instrumentation, materials, methods, and system integration
Long et al. Surface-enhanced Raman scattering from graphene covered gold nanocap arrays
Hu et al. H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth
JP4872373B2 (en) Site-selectively modified microstructure and manufacturing method thereof
Jung et al. Preparation of Anodic Aluminum Oxide Masks with Size‐Controlled Pores for 2D Plasmonic Nanodot Arrays
CN207051200U (en) A kind of Raman spectrum imaging resolving power test target
JP5822192B2 (en) Fabrication method of geometric fine relief structure
KR101909368B1 (en) Method for producing graphene
KR101356794B1 (en) Optical fiber having meshed nanowire on end with nanogap spacing and method of fabricating the same
US11434131B2 (en) Methods for manufacturing micromechanical components and method for manufacturing a mould insert component