JP2013231824A - Electrophoretic display device and drive method of the same - Google Patents

Electrophoretic display device and drive method of the same Download PDF

Info

Publication number
JP2013231824A
JP2013231824A JP2012103311A JP2012103311A JP2013231824A JP 2013231824 A JP2013231824 A JP 2013231824A JP 2012103311 A JP2012103311 A JP 2012103311A JP 2012103311 A JP2012103311 A JP 2012103311A JP 2013231824 A JP2013231824 A JP 2013231824A
Authority
JP
Japan
Prior art keywords
gradation
pixel
voltage pulse
target
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012103311A
Other languages
Japanese (ja)
Inventor
Shinichi Yamada
山田  信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP2012103311A priority Critical patent/JP2013231824A/en
Priority to CN201380022310.7A priority patent/CN104272373A/en
Priority to PCT/JP2013/061793 priority patent/WO2013161763A1/en
Priority to KR20147029977A priority patent/KR20150005932A/en
Priority to US14/396,901 priority patent/US20150138256A1/en
Priority to TW102115143A priority patent/TW201351382A/en
Publication of JP2013231824A publication Critical patent/JP2013231824A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • G09G3/3446Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices with more than two electrodes controlling the modulating element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • G09G2310/063Waveforms for resetting the whole screen at once
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/068Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow for easy and precise gradation control of a target pixel.SOLUTION: A drive circuit of an electrophoretic display device includes the steps of: applying a first voltage pulse to a target pixel for only the number of times determined according to a target gradation of the pixel to thereby cause the pixel to transit to a first display state; and applying, for only the number of times according to a gradation distance to the target gradation, a second voltage pulse that has a reverse polarity to that of the first voltage pulse and a smaller amount of change in gradation per scan than the first voltage pulse if the direction of the target gradation is opposite to the direction of gradation changed by the first voltage pulse when viewed from the first display state. The drive circuit further includes a step of applying, for only the number of times according to the gradation distance to the target gradation, a third voltage pulse that has the same polarity as that of the first voltage pulse and a smaller amount of change in gradation per scan than the first voltage pulse if the direction of the target gradation is same as the direction of gradation changed by the first voltage pulse when viewed from the first display state.

Description

本発明は、電界等の作用により可逆的に視認状態を変化させる電気泳動表示装置およびその駆動方法に関する。   The present invention relates to an electrophoretic display device that reversibly changes a visual state by the action of an electric field or the like and a driving method thereof.

従来、電気泳動表示装置の階調を制御する方法として、駆動パルスのパルス長を制御しながら対象画素の電極間に電圧を印加する方法(例えば、特許文献1参照)と、パルス長は変化させずに、対象画素の電極間に駆動パルスを印加する回数(印加回数)のみを制御して階調表示を行う方法(例えば、特許文献2参照)とが提案されている。特許文献1に記載の駆動方法では、リセット期間Trにあっては、各画素電極にリセット電圧を書き込み、次に、書込期間にあっては、画像データの指示する階調値に応じた期間だけ、各画素電極に印加電圧を印加する。この後、各画素電極に共通電極電圧を書き込み、これにより、画素容量に蓄積された電荷を放電し、分散系に電界を作用させるようにする。この後、表示画像を保持する。また、特許文献2に記載の駆動方法では、相対的に移動度が大きくマイナスに帯電した複数の第1粒子と、相対的に移動度が小さくプラスに帯電した複数の第2粒子とを含有する電気泳動層を、対向配置された第1電極及び第2電極で挟んだ構造において、第1電極と第2電極の間に第1電極が第2電極よりも相対的に高電位となる第1電圧を印加し、次いで第1電極と第2電極の間に第1電極が第2電極よりも相対的に低電位となるパルス状の第2電圧を間欠的に複数回印加し、複数回印加される第2電圧の各々は略同一のパルス幅及び略同一の電圧値を有し、第2電圧の印加回数が階調に応じて設定される。   Conventionally, as a method of controlling the gradation of an electrophoretic display device, a method of applying a voltage between electrodes of a target pixel while controlling the pulse length of a driving pulse (see, for example, Patent Document 1), and changing the pulse length. Instead, a method of performing gradation display by controlling only the number of times of applying the drive pulse between the electrodes of the target pixel (number of times of application) has been proposed (for example, see Patent Document 2). In the driving method described in Patent Document 1, a reset voltage is written to each pixel electrode in the reset period Tr, and then in the write period, a period according to the gradation value indicated by the image data. Only an applied voltage is applied to each pixel electrode. Thereafter, a common electrode voltage is written to each pixel electrode, whereby electric charges accumulated in the pixel capacitor are discharged, and an electric field is applied to the dispersion system. Thereafter, the display image is held. In addition, the driving method described in Patent Document 2 includes a plurality of first particles that have relatively high mobility and are negatively charged, and a plurality of second particles that have relatively low mobility and are positively charged. In the structure in which the electrophoretic layer is sandwiched between the first electrode and the second electrode arranged to face each other, the first electrode has a relatively higher potential than the second electrode between the first electrode and the second electrode. A voltage is applied, and then a pulsed second voltage in which the first electrode is relatively lower in potential than the second electrode is intermittently applied a plurality of times between the first electrode and the second electrode. Each of the applied second voltages has substantially the same pulse width and substantially the same voltage value, and the number of times of application of the second voltage is set according to the gradation.

特開2002−116733号公報JP 2002-116733 A 特開2009−237543号公報JP 2009-237543 A

しかしながら、上述した特許文献1記載の駆動方法は、純黒色表示から純白色表示までの範囲で直線的な階調変化を実現しようとすると、極めて短いパルスの長さを精密に制御する必要があり、多階調を表現することが困難であった。
また、上述した特許文献2記載の駆動方法では、多階調表示を実現するためには、パルスを高速で多回数印加する必要があり、そのような要求を満たすためにはドライバに高速動作の性能が要求された。
However, the drive method described in Patent Document 1 described above requires precise control of the length of an extremely short pulse in order to achieve a linear gradation change in a range from pure black display to pure white display. It was difficult to express multiple gradations.
Further, in the driving method described in Patent Document 2 described above, in order to realize multi-gradation display, it is necessary to apply a pulse many times at a high speed. Performance was required.

本発明は、このような問題点に鑑みてなされたものであり、画素電極に印加するパルス長又は印加タイミングを制御するスイッチング素子又はドライバに対する要求性能を上げることなく、多階調を実現でき、高品質の画像を表示可能な電気泳動表示装置およびその駆動方法を提供することを目的とする。   The present invention has been made in view of such problems, and can achieve multiple gradations without increasing the required performance for a switching element or driver that controls the pulse length or application timing applied to the pixel electrode, An object of the present invention is to provide an electrophoretic display device capable of displaying a high-quality image and a driving method thereof.

本発明の電気泳動表示装置は、少なくとも一方が光透過性を有する一対の基板と、前記一対の基板のうち一方の基板の基板面に形成された複数の画素電極と、前記一対の基板のうち他方の基板の基板面に前記複数の画素電極に対向して形成された共通電極と、前記一対の基板間に形成されたスペースに封入された移動速度の異なる少なくとも2種類の帯電粒子を分散させてなる液状体と、前記画素電極と前記共通電極との間に前記帯電粒子を移動させる電位差を発生させる電圧パルスを生成すると共に、前記電圧パルスを印加すべき対象画素を選択する選択信号を生成する駆動回路と、を具備し、前記駆動回路は、対象画素対して当該画素の目標階調に応じて決まる回数だけ第1の電圧パルスを印加して第1の表示状態に遷移させ、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向とは逆方向であれば、第1の電圧パルスとは逆極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第2の電圧パルスを、目標階調までの階調距離に応じた回数だけ印加し、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向と同一方向であれば、第1の電圧パルスと同一極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第3の電圧パルスを目標階調までの階調距離に応じた回数だけ印加することを特徴とする。   An electrophoretic display device according to the present invention includes a pair of substrates, at least one of which has light transmissivity, a plurality of pixel electrodes formed on a substrate surface of one of the pair of substrates, and the pair of substrates. Disperse at least two kinds of charged particles having different moving speeds enclosed in a space formed between the pair of substrates and a common electrode formed on the surface of the other substrate facing the plurality of pixel electrodes. A voltage pulse that generates a potential difference for moving the charged particles between the liquid electrode and the pixel electrode and the common electrode, and a selection signal that selects a target pixel to which the voltage pulse is to be applied. A driving circuit that applies a first voltage pulse to the target pixel a number of times determined according to a target gradation of the pixel and makes a transition to the first display state. Table of If the target gradation is in the direction opposite to the gradation change direction by the first voltage pulse as seen from the state, the first voltage pulse has the opposite polarity and the gradation change amount per time is the first voltage. A second voltage pulse smaller than the pulse is applied the number of times corresponding to the gradation distance to the target gradation, and the target gradation is the same as the gradation change direction by the first voltage pulse as seen from the first display state. The third voltage pulse having the same polarity as the first voltage pulse and having a smaller gradation change amount per time than the first voltage pulse in accordance with the gradation distance to the target gradation. It is characterized by applying the number of times.

この構成により、第1の電圧パルスと、第1の電圧パルスとは逆極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第2の電圧パルスと、第1の電圧パルスと同一極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第3の電圧パルスとを組み合わせて階調制御するので、極めて短いパルスの長さを精密に制御し、又はパルスを高速で多回数印加する必要がなくなり、画素電極に印加するパルス長又は印加タイミングを制御するスイッチング素子又はドライバに対する要求性能を上げることなく、多階調を実現できる。   With this configuration, the first voltage pulse has a polarity opposite to that of the first voltage pulse, and the second voltage pulse whose gradation change amount per time is smaller than that of the first voltage pulse. Gradation control is performed in combination with a third voltage pulse that has the same polarity as the voltage pulse and the gradation change amount per time is smaller than that of the first voltage pulse, so the length of the extremely short pulse can be precisely controlled. Alternatively, it is not necessary to apply the pulse many times at high speed, and multiple gradations can be realized without increasing the required performance for the switching element or driver for controlling the pulse length or application timing applied to the pixel electrode.

上記電気泳動表示装置において、前記駆動回路は、前記第2及び第3の電圧パルスとして、前記第1の電圧パルスよりも画素選択時間が短い電圧パルスを生成することを特徴とする。これにより、第1の電圧パルスと、第1の電圧パルスよりも画素選択時間が短い電圧パルスとを組み合わせて、目標階調に徐々に近づけるので、極めて短いパルスの長さを精密に制御して目標階調に到達させる場合に比べて、スイッチング素子又はドライバに対する要求性能を緩和できる。   In the electrophoretic display device, the driving circuit generates a voltage pulse having a pixel selection time shorter than that of the first voltage pulse as the second and third voltage pulses. As a result, the first voltage pulse and the voltage pulse having a pixel selection time shorter than that of the first voltage pulse are combined and gradually approached to the target gradation. Therefore, the length of the extremely short pulse is precisely controlled. Compared to the case where the target gradation is reached, the required performance for the switching element or driver can be relaxed.

上記電気泳動表示装置において、前記第2及び第3の電圧パルスとして、前記第1の電圧パルスと画素選択時間が同じ電圧パルスを生成し、前記第2及び又は第3の電圧パルスを複数階印加する場合の繰り返し周期が、前記第1の電圧パルスの繰り返し周期よりも長いことを特徴とする。これにより、第2及び第3の電圧パルスとして、前記第1の電圧パルスと画素選択時間が同じ電圧パルスを用いるので、TFT等の種類や表示画像の画像データの転送速度の関係で、微小選択時間(例えば、10μ秒)による書き込みが実現困難な場合に適用可能である。   In the electrophoretic display device, a voltage pulse having the same pixel selection time as the first voltage pulse is generated as the second and third voltage pulses, and the second and / or third voltage pulses are applied in a plurality of levels. In this case, the repetition period is longer than the repetition period of the first voltage pulse. As a result, since the voltage pulse having the same pixel selection time as the first voltage pulse is used as the second and third voltage pulses, the minute selection is made depending on the type of TFT or the like and the transfer speed of the image data of the display image. The present invention can be applied when writing by time (for example, 10 μs) is difficult to realize.

上記電気泳動表示装置において、移動速度が遅い帯電粒子を、光透過性を有する基板側の電極に集結させても良い。これにより、初期状態から所望の階調表示への移行時間を短縮できる。   In the electrophoretic display device, charged particles having a low moving speed may be concentrated on an electrode on the substrate side having light permeability. Thereby, the transition time from the initial state to the desired gradation display can be shortened.

上記電気泳動表示装置において、制御対象エリアとなる全画素または所定エリアの画素の全体に対して、各画素の前記画素電極および前記共通電極間に、電圧の極性が交互に反転するシェイキングパルスを印加しても良い。これにより、シェイキングパルスを印加することにより長時間放置されて大きな塊となった帯電粒子をほぐすことができ、その後に印加される書込みパルスにより帯電粒子がより容易に移動可能となる。   In the electrophoretic display device, a shaking pulse in which the polarity of the voltage is alternately inverted is applied between the pixel electrode and the common electrode of each pixel to all the pixels to be controlled or all of the pixels in the predetermined area. You may do it. As a result, charged particles that have been left for a long time by applying a shaking pulse can be loosened, and the charged particles can be moved more easily by a write pulse applied thereafter.

本発明によれば、画素電極に印加するパルス長又は印加タイミングを制御するスイッチング素子又はドライバに対する要求性能を上げることなく、多階調を実現でき、高品質の画像を表示できる。   According to the present invention, multiple gradations can be realized and a high-quality image can be displayed without increasing the required performance for a switching element or driver that controls the pulse length or application timing applied to the pixel electrode.

本実施の形態に係る電気泳動表示装置の全体構成図である。1 is an overall configuration diagram of an electrophoretic display device according to an embodiment. 上記電気泳動表示装置における画素の電気的な構成を示す回路図である。It is a circuit diagram which shows the electrical structure of the pixel in the said electrophoretic display device. 上記電気泳動表示装置における表示部の部分断面図である。It is a fragmentary sectional view of the display part in the above-mentioned electrophoretic display device. 第1の実施の形態における階調制御を示すフロー図である。It is a flowchart which shows the gradation control in 1st Embodiment. 第1の実施の形態における階調変化の遷移状態を示す図である。It is a figure which shows the transition state of the gradation change in 1st Embodiment. 黒基準及び白基準での反射率変化の特性を示す図である。It is a figure which shows the characteristic of the reflectance change by a black reference | standard and a white reference | standard. 図5に示す階調変化を実現した電圧パルスの組み合わせを示す図である。It is a figure which shows the combination of the voltage pulse which implement | achieved the gradation change shown in FIG. 第2の実施の形態における階調制御を示すフロー図である。It is a flowchart which shows the gradation control in 2nd Embodiment. 第2の実施の形態における階調変化の遷移状態を示す図である。It is a figure which shows the transition state of the gradation change in 2nd Embodiment. 図9に示す階調変化を実現した電圧パルスの組み合わせを示す図である。It is a figure which shows the combination of the voltage pulse which implement | achieved the gradation change shown in FIG. 標準選択パルスを走査周期T及び走査周期T2で繰り返し印加した場合の電極間の電圧変化を示す図である。It is a figure which shows the voltage change between electrodes at the time of applying a standard selection pulse repeatedly by the scanning period T and the scanning period T2.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
図1は、本発明の第1の実施の形態に係る電気泳動表示装置の全体構成図である。この電気泳動表示装置1は、マトリクス状に画素配置された表示部2と、表示部2に画像信号を供給するデータ線駆動回路3と、表示部2に走査信号を供給する走査線駆動回路4と、表示部2の各画素に共通電位を与える共通電位供給回路5と、装置全体の動作を制御するコントローラ6と、を備えて構成される。このうち、データ線駆動回路3、走査線駆動回路4、共通電位供給回路5およびコントローラ6は、駆動回路を構成する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an overall configuration diagram of an electrophoretic display device according to a first embodiment of the present invention. The electrophoretic display device 1 includes a display unit 2 in which pixels are arranged in a matrix, a data line driving circuit 3 that supplies an image signal to the display unit 2, and a scanning line driving circuit 4 that supplies a scanning signal to the display unit 2. And a common potential supply circuit 5 that applies a common potential to each pixel of the display unit 2 and a controller 6 that controls the operation of the entire apparatus. Among these, the data line driving circuit 3, the scanning line driving circuit 4, the common potential supply circuit 5, and the controller 6 constitute a driving circuit.

表示部2には、データ線駆動回路3から列方向(Y方向)に並列に伸びるn本のデータ線X1からXnが延在するとともに、これらのデータ線と交差して走査線駆動回路4から行方向(X方向)に並列に伸びるm本の走査線Y1からYmが延在している。表示部2において、データ線(X1,X2,…Xn)と、走査線(Y1,Y2,…Ym)とが交差する各交差部に画素20がそれぞれ形成されている。このように、表示部2には、n行m列のマトリクス状に複数の画素20が配置されている。   In the display unit 2, n data lines X 1 to Xn extending in parallel in the column direction (Y direction) extend from the data line driving circuit 3, and intersect with these data lines from the scanning line driving circuit 4. The m scanning lines Y1 to Ym extend in parallel in the row direction (X direction). In the display unit 2, pixels 20 are formed at each intersection where the data lines (X1, X2,... Xn) and the scanning lines (Y1, Y2,... Ym) intersect. Thus, the display unit 2 has a plurality of pixels 20 arranged in a matrix of n rows and m columns.

データ線駆動回路3は、コントローラ6から供給されるタイミング信号に基づいて、各データ線(X1,X2,…Xn)に画像信号を供給する。画像信号は、高電位VH(例えば、30V)または低電位VL(例えば、0V)の電位をとる。   The data line driving circuit 3 supplies an image signal to each data line (X1, X2,... Xn) based on the timing signal supplied from the controller 6. The image signal takes a high potential VH (for example, 30 V) or a low potential VL (for example, 0 V).

走査線駆動回路4は、コントローラ6から供給されるタイミング信号に基づいて、各走査線(Y1,Y2,…Ym)に固定パルス幅の走査信号を順次供給する。これにより、駆動対象となる画素20に対して、走査信号が供給される。走査信号によって階調制御対象となる画素を選択するので、走査信号のことを選択信号と呼ぶこともできる。   The scanning line driving circuit 4 sequentially supplies a scanning signal having a fixed pulse width to each scanning line (Y1, Y2,... Ym) based on the timing signal supplied from the controller 6. Thereby, a scanning signal is supplied to the pixel 20 to be driven. Since a pixel to be subjected to gradation control is selected by the scanning signal, the scanning signal can also be called a selection signal.

表示部2を構成する各画素20には、共通電位供給回路5から共通電位線11を介して共通電位Vcomが印加される。共通電位Vcomは、高電位VH(例えば、40V)又は低電位VL(例えば、0V)である。   A common potential Vcom is applied from the common potential supply circuit 5 through the common potential line 11 to each pixel 20 constituting the display unit 2. The common potential Vcom is a high potential VH (for example, 40 V) or a low potential VL (for example, 0 V).

コントローラ6は、クロック信号、スタートパルス等のタイミング信号を、データ線駆動回路3、走査線駆動回路4および共通電位供給回路5に供給して各回路を制御する。コントローラ6は、対象画素の階調データをデータ線駆動回路3または共通電位供給回路5に供給する。データ線駆動回路3または共通電位供給回路5は、階調データに応じて書込みパルスの印加回数および電圧値を決定し、走査線駆動回路4の画素行選択動作に同期して対象画素に画像信号または共通電位を供給する。   The controller 6 supplies timing signals such as a clock signal and a start pulse to the data line driving circuit 3, the scanning line driving circuit 4, and the common potential supply circuit 5 to control each circuit. The controller 6 supplies the gradation data of the target pixel to the data line driving circuit 3 or the common potential supply circuit 5. The data line driving circuit 3 or the common potential supply circuit 5 determines the number of application of the write pulse and the voltage value according to the gradation data, and outputs an image signal to the target pixel in synchronization with the pixel row selection operation of the scanning line driving circuit 4. Alternatively, a common potential is supplied.

図2は、画素20の電気的な構成を示す等価回路図である。表示部2にマトリクス状に配置された各画素20は同一構成であるので、画素20を構成する各部には共通の符号を付して説明する。   FIG. 2 is an equivalent circuit diagram illustrating an electrical configuration of the pixel 20. Since each pixel 20 arranged in a matrix on the display unit 2 has the same configuration, each unit constituting the pixel 20 will be described with a common reference numeral.

画素20は、画素電極21と、共通電極22と、電気泳動素子23と、画素スイッチング用トランジスタ24と、保持容量25と、を備えている。画素スイッチング用トランジスタ24は、例えば、N型トランジスタで構成される。画素スイッチング用トランジスタ24は、TFT(Thin Film Transistor)で構成することが望ましい。画素スイッチング用トランジスタ24のゲートは、対応する行の走査線(Y1,Y2,…Ym)に電気的に接続されている。画素スイッチング用トランジスタ24のソースは、対応する列のデータ線(X1,X2,…Xn)に電気的に接続されている。また、画素スイッチング用トランジスタ24のドレインは、画素電極21および保持容量25に電気的に接続されている。画素スイッチング用トランジスタ24は、データ線駆動回路3からデータ線(X1,X2,…Xn)を介して供給される画像信号を、走査線駆動回路4から対応する行の走査線(Y1,Y2,…Ym)を介してパルス的に供給される走査信号に応じたタイミングで、画素電極21および保持容量25に出力する。   The pixel 20 includes a pixel electrode 21, a common electrode 22, an electrophoretic element 23, a pixel switching transistor 24, and a storage capacitor 25. The pixel switching transistor 24 is composed of, for example, an N-type transistor. The pixel switching transistor 24 is preferably composed of a TFT (Thin Film Transistor). The gate of the pixel switching transistor 24 is electrically connected to the scanning line (Y1, Y2,... Ym) of the corresponding row. The source of the pixel switching transistor 24 is electrically connected to the data line (X1, X2,... Xn) of the corresponding column. The drain of the pixel switching transistor 24 is electrically connected to the pixel electrode 21 and the storage capacitor 25. The pixel switching transistor 24 receives the image signal supplied from the data line driving circuit 3 via the data lines (X1, X2,... Xn) and the scanning line (Y1, Y2, Y2) of the corresponding row from the scanning line driving circuit 4. ... Are outputted to the pixel electrode 21 and the storage capacitor 25 at a timing according to the scanning signal supplied in a pulse manner via Ym).

画素電極21には、データ線駆動回路3からデータ線(X1,X2,…Xn)および画素スイッチング用トランジスタ24を介して、画像信号が供給される。画素電極21は、電気泳動素子23を介して共通電極22と互いに対向して配置されている。共通電極22は、共通電位Vcomが供給される共通電位線11に電気的に接続されている。   An image signal is supplied to the pixel electrode 21 from the data line driving circuit 3 through the data lines (X1, X2,... Xn) and the pixel switching transistor 24. The pixel electrode 21 is disposed opposite to the common electrode 22 with the electrophoretic element 23 interposed therebetween. The common electrode 22 is electrically connected to the common potential line 11 to which the common potential Vcom is supplied.

電気泳動素子23は、複数の電気泳動粒子を含んでなる液体であり、電極間に図示しない封止材にて漏れ出さないように保持されている。   The electrophoretic element 23 is a liquid containing a plurality of electrophoretic particles, and is held between electrodes so as not to leak with a sealing material (not shown).

保持容量25は、誘電体膜を介して対向配置された一対の電極からなり、一方の電極が画素電極21および画素スイッチング用トランジスタ24に電気的に接続され、他方の電極が共通電位線11に電気的に接続されている。保持容量25によって、画像信号を一定期間維持することができる。   The storage capacitor 25 is composed of a pair of electrodes that are arranged to face each other with a dielectric film therebetween, one electrode is electrically connected to the pixel electrode 21 and the pixel switching transistor 24, and the other electrode is connected to the common potential line 11. Electrically connected. The storage capacitor 25 can maintain the image signal for a certain period.

次に、電気泳動表示装置1の表示部2の具体的な構成について、図3に基づいて説明する。図3は、電気泳動表示装置1における表示部2の部分断面図である。表示部2は、素子基板28と、対向基板29とが、図示しないスペーサを介して対向配置され、基板間に電気泳動素子23が封入された構成となっている。なお、本実施の形態では、対向基板29側に画像を表示することを前提として説明する。   Next, a specific configuration of the display unit 2 of the electrophoretic display device 1 will be described with reference to FIG. FIG. 3 is a partial cross-sectional view of the display unit 2 in the electrophoretic display device 1. The display unit 2 has a configuration in which an element substrate 28 and a counter substrate 29 are arranged to face each other via a spacer (not shown), and an electrophoretic element 23 is sealed between the substrates. In the present embodiment, description will be made on the assumption that an image is displayed on the counter substrate 29 side.

素子基板28は、例えば、ガラスやプラスチック等からなる基板である。素子基板28上には、ここでは図示を省略するが、図2を参照して上述した画素スイッチング用トランジスタ24、保持容量25、走査線(Y1,Y2,…Ym)、データ線(X1,X2,…Xn)、共通電位線11などが作り込まれた積層構造が形成されている。この積層構造の上層側に、複数の画素電極21がマトリクス状に設けられている。   The element substrate 28 is a substrate made of, for example, glass or plastic. Although not shown here on the element substrate 28, the pixel switching transistor 24, the storage capacitor 25, the scanning lines (Y1, Y2,... Ym), and the data lines (X1, X2) described above with reference to FIG. ,... Xn), and a laminated structure in which the common potential line 11 is formed. A plurality of pixel electrodes 21 are provided in a matrix on the upper layer side of the stacked structure.

対向基板29は、例えば、ガラスやプラスチック等からなる光透過性の基板である。対向基板29における素子基板28との対向面上には、共通電極22が、複数の画素電極21と対向して形成されている。共通電極22は、例えば、マグネシウム銀(MgAg)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)などの透明導電材料から形成されている。   The counter substrate 29 is a light transmissive substrate made of, for example, glass or plastic. On the surface of the counter substrate 29 facing the element substrate 28, the common electrode 22 is formed so as to face the plurality of pixel electrodes 21. The common electrode 22 is formed of a transparent conductive material such as magnesium silver (MgAg), indium tin oxide (ITO), indium zinc oxide (IZO), for example.

電気泳動素子23は、正に帯電した黒色粒子83と、負に帯電した白色粒子82と、これらの黒色粒子83および白色粒子82を分散させる分散媒81と、からなる電気泳動表示用液であり、素子基板28と対向基板29との間に封入されている。また、素子基板28と対向基板29との間には、基板間の間隙を規定値に保つための図示しないスペーサが設けられ、基板の端面には間隙を封止するための図示しない封止材が設けられている。   The electrophoretic element 23 is an electrophoretic display liquid composed of positively charged black particles 83, negatively charged white particles 82, and a dispersion medium 81 that disperses the black particles 83 and the white particles 82. The element substrate 28 and the counter substrate 29 are enclosed. In addition, a spacer (not shown) is provided between the element substrate 28 and the counter substrate 29 to keep the gap between the substrates at a specified value, and a sealing material (not shown) for sealing the gap is provided on the end surface of the substrate. Is provided.

図3において、画素電極21と共通電極22との間に、相対的に共通電極22の電位が高くなるように電圧が印加された場合には、正に帯電した黒色粒子83は、クーロン力によって画素電極21側に引き寄せられるとともに、負に帯電した白色粒子82は、クーロン力によって共通電極22側に引き寄せられる。この結果、表示面側(共通電極22側)には、白色粒子82が集まり、表示部2の表示面は白色表示となる。一方、画素電極21と共通電極22との間に、相対的に画素電極21の電位が高くなるように(相対的に共通電極22の電位が低くなるように)電圧が印加された場合には、正に帯電した黒色粒子83は、クーロン力によって共通電極22側に引き寄せられるとともに、負に帯電した白色粒子82は、クーロン力によって画素電極21側に引き寄せられる。この結果、表示面側(共通電極22側)には、黒色粒子83が集まり、表示部2の表示面は黒色表示となる。   In FIG. 3, when a voltage is applied between the pixel electrode 21 and the common electrode 22 so that the potential of the common electrode 22 is relatively high, the positively charged black particles 83 are caused by Coulomb force. While attracted to the pixel electrode 21 side, the negatively charged white particles 82 are attracted to the common electrode 22 side by Coulomb force. As a result, white particles 82 gather on the display surface side (the common electrode 22 side), and the display surface of the display unit 2 displays white. On the other hand, when a voltage is applied between the pixel electrode 21 and the common electrode 22 such that the potential of the pixel electrode 21 is relatively high (so that the potential of the common electrode 22 is relatively low). The positively charged black particles 83 are attracted to the common electrode 22 side by the Coulomb force, and the negatively charged white particles 82 are attracted to the pixel electrode 21 side by the Coulomb force. As a result, the black particles 83 gather on the display surface side (common electrode 22 side), and the display surface of the display unit 2 is displayed in black.

なお、白色粒子82、黒色粒子83に用いる顔料を、例えば、赤色、緑色、青色などの顔料に変えることによって、表示部2の表示面を赤色表示、緑色表示、青色表示などにすることができる。   In addition, by changing the pigment used for the white particles 82 and the black particles 83 to pigments such as red, green, and blue, for example, the display surface of the display unit 2 can be displayed in red, green, and blue. .

また、粒子を同じ電界下においた場合に、粒子の大きさ、その他の要因によって、例えば白粒子と黒粒子の移動速度が異なる。本実施の形態においては白粒子の方が黒粒子よりも移動速度が速いものとして説明する。   Further, when the particles are placed under the same electric field, the moving speeds of, for example, white particles and black particles differ depending on the size of the particles and other factors. In the present embodiment, it is assumed that white particles are faster in moving speed than black particles.

次に、以上のように構成された電気泳動表示装置1において好適な階調表示を実現するための駆動方法について説明する。階調表示の解像度は、一例として、純黒色表示(最低側飽和反射率)を1階調目、純白色表示(最高側飽和反射率)を16階調目とする。さらに、1階調目を表示すべき画素を画素1、2階調目を表示すべき画素を画素2、以下同様に対応づけて、16階調目を表示すべき画素を画素16とする。   Next, a driving method for realizing suitable gradation display in the electrophoretic display device 1 configured as described above will be described. As an example, the resolution of gradation display is pure black display (lowest saturation reflectance) at the first gradation and pure white display (highest saturation reflectance) at the 16th gradation. Further, the pixel that should display the first gradation is associated with the pixel 1, the pixel that should display the second gradation, the pixel 2, and so on.

図4及び図5を参照して、画素1から画素16に対して所要の階調表示を実現するための駆動方法を説明する。図4は画素1から画素16を所要階調に変化させるまでのフロー図であり、図5は図4に示すフロー図に対応した階調遷移図である。図5において左端に縦(縦軸)に示す番号1から16は画素番号に対応し、横軸は階調に対応している。画素1から画素16は、図2に示す画素20に相当する。   With reference to FIG. 4 and FIG. 5, a driving method for realizing a desired gradation display for the pixels 1 to 16 will be described. FIG. 4 is a flowchart for changing the pixel 1 to the pixel 16 to the required gradation, and FIG. 5 is a gradation transition diagram corresponding to the flowchart shown in FIG. In FIG. 5, numbers 1 to 16 shown at the left end in the vertical direction (vertical axis) correspond to pixel numbers, and the horizontal axis corresponds to gradation. Pixel 1 to pixel 16 correspond to the pixel 20 shown in FIG.

先ず、全画素1〜16を、黒色表示(1階調目:最低側飽和反射率)へとリセットする(ステップS1)。このため、全画素1〜16に対して、共通電極22に低電位VLを印加し、画素電極21に高電位VHを印加する。ステップS1のリセット直後は、全画素1〜16は黒色表示(1階調目)となる。   First, all the pixels 1 to 16 are reset to black display (first gradation: lowest saturation reflectance) (step S1). Therefore, the low potential VL is applied to the common electrode 22 and the high potential VH is applied to the pixel electrode 21 for all the pixels 1 to 16. Immediately after the reset in step S1, all the pixels 1 to 16 are displayed in black (first gradation).

次に、全画素1〜16に対して、白書き込みを1回行う(ステップS2)。白書き込みは、共通電極22に高電位VHを印加し、画素電極21に低電位VLを印加し、書き込み対象画素20の画素スイッチング用トランジスタ24のゲートに走査信号となる標準選択パルスを印加する。共通電極22に印加される電位と、画素電極21に印加される電位と、画素スイッチング用トランジスタ24のゲートに印加される標準選択パルスによって、画素電極間に印加される第1の電圧パルスが生成される。標準選択パルスのパルス長は、例えば40μ秒であり、画素20への白書き込み時間である選択時間は40μ秒である。走査線駆動回路4が、画素1から画素16に対して順番に標準選択パルスを印加して全画素1〜16を1回走査する。標準選択パルスによる白書き込みによって、全画素1〜16の階調表示は図5に示す“白1回”まで変化する。この結果、画素1及び画素2は、図5に示すように第1の表示状態に到達する。   Next, white writing is performed once for all the pixels 1 to 16 (step S2). In white writing, a high potential VH is applied to the common electrode 22, a low potential VL is applied to the pixel electrode 21, and a standard selection pulse serving as a scanning signal is applied to the gate of the pixel switching transistor 24 of the writing target pixel 20. The first voltage pulse applied between the pixel electrodes is generated by the potential applied to the common electrode 22, the potential applied to the pixel electrode 21, and the standard selection pulse applied to the gate of the pixel switching transistor 24. Is done. The pulse length of the standard selection pulse is, for example, 40 μsec, and the selection time that is the white writing time to the pixel 20 is 40 μsec. The scanning line driving circuit 4 scans all the pixels 1 to 16 once by applying a standard selection pulse to the pixels 1 to 16 in order. The white display by the standard selection pulse changes the gradation display of all the pixels 1 to 16 to “white once” shown in FIG. As a result, the pixel 1 and the pixel 2 reach the first display state as shown in FIG.

ここで、白書き込みを行う前に、全画素1〜16を黒色表示へとリセットする意義について説明する。図6は画素20を黒色表示の状態から白書き込みの走査を繰り返して白色表示へと階調変化させた場合の変化特性(黒基準)と、画素20を白色表示の状態から黒書き込みの走査を繰り返して黒色表示へと階調変化させた場合の変化特性(白基準)とを示している。白基準での変化特性に比べて、黒基準での変化特性は1回目走査と2回目走査との変化率の差がより大きいことが判る。このことより、黒基準の方が白基準よりも走査回数の組み合わせによる反射率の選択範囲が広いことが判る。よって、黒基準(黒色表示)から階調変化させることにより反射率の選択範囲が広いので、より所要の階調を実現しやすい。   Here, the significance of resetting all the pixels 1 to 16 to black display before white writing will be described. FIG. 6 shows the change characteristics (black reference) when the gradation of the pixel 20 from the black display state to the white display is repeated by repeating the white writing scan, and the black writing scan from the white display state of the pixel 20. The change characteristic (white reference) when the gradation is changed to black display repeatedly is shown. It can be seen that the difference in change rate between the first scan and the second scan is larger in the change characteristic in the black reference than in the change characteristic in the white reference. From this, it can be seen that the black reference has a wider range of reflectance selection by the combination of the number of scans than the white reference. Therefore, since the selection range of the reflectance is wide by changing the gradation from the black reference (black display), it is easier to realize the required gradation.

また、ステップS2において白書き込みを1回行う前に、全画素1〜16に対してシェイキングパルスを印加しても良い。データ線駆動回路3、走査線駆動回路4、共通電位供給回路5及びコントローラ6等からなる駆動回路は、制御対象エリアとなる全画素又は所定エリアの画素に対して、各画素20の画素電極21と共通電極22との間に、短時間に電圧の極性が交互に反転するシェイキングパルスを印加する。   Further, a shaking pulse may be applied to all the pixels 1 to 16 before white writing is performed once in step S2. A driving circuit including the data line driving circuit 3, the scanning line driving circuit 4, the common potential supply circuit 5, the controller 6 and the like has a pixel electrode 21 of each pixel 20 with respect to all pixels serving as a control target area or pixels in a predetermined area. And a common electrode 22 are applied with a shaking pulse in which the polarity of the voltage is alternately inverted in a short time.

次に、画素1及び画素2を除いた、画素3〜画素16に対して2回目の白書き込みを行う(ステップS3)。走査線駆動回路4が、画素3から画素16に対して順番に標準選択パルスを印加して全画素3〜16を1回走査する。この2回目の白書き込みによって、画素3〜16の階調表示は図5に示す“白2回”まで変化する。2回目の白書き込みによる階調変化量が1回目の白書き込みより小さいのは、図6に示すように黒基準では1回目走査よりも2回目走査の変化量が小さいからである。2回目の白書き込みによって画素11〜画素15は第1の表示状態に到達する。   Next, the second white writing is performed on the pixels 3 to 16 excluding the pixels 1 and 2 (step S3). The scanning line driving circuit 4 scans all the pixels 3 to 16 once by applying a standard selection pulse to the pixels 3 to 16 in order. By the second white writing, the gradation display of the pixels 3 to 16 is changed to “twice white” shown in FIG. The reason why the gradation change amount due to the second white writing is smaller than the first white writing is because the change amount of the second scanning is smaller than that of the first scanning in the black reference as shown in FIG. By the second white writing, the pixels 11 to 15 reach the first display state.

次に、画素3〜画素10及び画素16に対して3回目の白書き込みを行う(ステップS4)。走査線駆動回路4が、画素3から画素10及び画素16に対して順番に標準選択パルスを印加して全画素3〜10、16を1回走査する。この3回目の白書き込みによって、画素3〜10、16の階調表示は図5に示す“白3回”まで変化する。2回目の白書き込みによる階調変化量が2回目の白書き込みより小さい。3回目の白書き込みによって画素3〜画素10、画素16は第1の表示状態に到達する。   Next, the third white writing is performed on the pixels 3 to 10 and the pixel 16 (step S4). The scanning line driving circuit 4 scans all the pixels 3 to 10 and 16 once by applying a standard selection pulse to the pixels 3 to 10 and the pixel 16 in order. By the third white writing, the gradation display of the pixels 3 to 10 and 16 is changed to “white three times” shown in FIG. The amount of gradation change due to the second white writing is smaller than the second white writing. By the third white writing, the pixels 3 to 10 and the pixel 16 reach the first display state.

次に、画素1から画素12に対して第1の電圧パルスとは逆極性の第2の電圧パルスによって微小黒書き込みを行って、画素1から画素12の階調表示を黒色表示側へ折り返す。ここで、微小黒書き込みは、全体の走査時間はそのままとし、書き込み対象画素20の選択時間を短くして、等価的に画素電極22への印加電圧を下げて、黒書き込みを行う。等価的に印加電圧を下げるのは微妙な階調制御を容易にするためである。本例では、微小黒書き込みは、標準選択パルスによる標準選択時間(40μ秒)よりも小さい選択時間(例えば10μ秒)となる微小選択パルスの印加によって実現される。また、黒書き込みであるので、共通電極22に低電位VLを印加し、画素電極21に高電位VHを印加した状態で、微小選択パルスを書き込み対象画素20の画素スイッチング用トランジスタ24のゲートに印加する。微小黒書き込みのための微小選択パルスと、共通電極22の印加電位と、画素電極21の印加電位とで、第2の電圧パルスを生成する。   Next, minute black writing is performed on the pixels 1 to 12 with a second voltage pulse having a polarity opposite to that of the first voltage pulse, and the gradation display of the pixels 1 to 12 is turned back to the black display side. Here, in the fine black writing, the entire scanning time is left as it is, the selection time of the writing target pixel 20 is shortened, and the voltage applied to the pixel electrode 22 is equivalently lowered to perform black writing. The reason why the applied voltage is equivalently lowered is to facilitate delicate gradation control. In this example, the micro black writing is realized by applying a micro selection pulse having a selection time (for example, 10 μsec) smaller than the standard selection time (40 μsec) by the standard selection pulse. In addition, since black writing is applied, a low potential VL is applied to the common electrode 22 and a high potential VH is applied to the pixel electrode 21, and a minute selection pulse is applied to the gate of the pixel switching transistor 24 of the writing target pixel 20. To do. A second voltage pulse is generated by the minute selection pulse for minute black writing, the applied potential of the common electrode 22, and the applied potential of the pixel electrode 21.

黒色表示側への折り返し対象画素である画素1から画素12に対して、1回目の微小黒書き込みを行う(ステップS5)。走査線駆動回路4が、画素1から画素12に対して順番に微小選択パルスを印加して画素1から画素12を1回走査する。例えば、図5に示す画素12は、白2回の階調位置から黒色表示側へ微小黒書き込み1回で折り返した階調位置を示している。   The first minute black writing is performed on the pixels 1 to 12 which are the pixels to be folded to the black display side (step S5). The scanning line driving circuit 4 scans the pixels 1 to 12 once by applying minute selection pulses to the pixels 1 to 12 in order. For example, the pixel 12 shown in FIG. 5 shows a gradation position that is turned back by a minute black writing from the gradation position of white twice to the black display side.

以下同様に、ステップS6〜ステップS15によって、ステップ番号が増加するたびに最終画素番号を1減らしながら、画素2から画素12に対して、2回目からから11回目の微小黒書き込みを行う。図5に示す画素1から画素12の階調表示は微小黒書き込みを打ち切った時点での階調である。   Similarly, in steps S6 to S15, the second to eleventh micro black writes are performed from pixel 2 to pixel 12 while the final pixel number is decreased by 1 each time the step number increases. The gradation display of the pixel 1 to the pixel 12 shown in FIG. 5 is the gradation when the minute black writing is stopped.

以上の階調制御によって、画素1から第12までの階調表示が1階調目から12階調目まで表示できたことになる。   Through the above gradation control, gradation display from the pixel 1 to the twelfth gradation can be displayed from the first gradation to the twelfth gradation.

次に、画素13から画素16に対して第1の電圧パルスと同一極性であって選択時間の短い第3の電圧パルスによって微小白書き込みを行って、画素13から画素16の階調表示を白色表示側へ階調度を継ぎ足す。ここで、微小白書き込みは、微小黒書き込みと同様に、全体の走査時間はそのままとし、書き込み対象画素20の選択時間を短くして、等価的に画素電極22への印加電圧を下げて、白書き込みを行う。微小白書き込みのための微小選択パルスと、共通電極22の印加電位と、画素電極21の印加電位とで、第3の電圧パルスを生成する。   Next, minute white writing is performed on the pixels 13 to 16 with a third voltage pulse having the same polarity as the first voltage pulse and a short selection time, and the gradation display of the pixels 13 to 16 is white. Add gradation to the display side. Here, in the fine white writing, similarly to the fine black writing, the entire scanning time is left as it is, the selection time of the pixel 20 to be written is shortened, and the voltage applied to the pixel electrode 22 is equivalently lowered, and the white is written. Write. A third voltage pulse is generated by a minute selection pulse for minute white writing, an applied potential of the common electrode 22, and an applied potential of the pixel electrode 21.

白色表示側への継ぎ足し対象画素である画素13から画素16に対して、1回目の微小白書き込みを行う(ステップS16)。走査線駆動回路4が、画素13から画素16に対して順番に微小選択パルスを印加して画素13から画素16を1回走査する。例えば、図5に示す画素13は、白2回の階調位置から白色表示側へ微小白書き込み1回で継ぎ足された階調位置を示している。   The first minute white writing is performed on the pixels 13 to 16 which are pixels to be added to the white display side (step S16). The scanning line driving circuit 4 scans the pixels 13 to 16 once by applying minute selection pulses to the pixels 13 to 16 in order. For example, the pixel 13 shown in FIG. 5 shows a gradation position that is added by one minute white writing from the gradation position of white twice to the white display side.

以下同様に、ステップS17〜ステップS20によって、ステップ番号が増加するたびに開始画素番号を1増やしながら、画素13から画素16に対して、2回目からから5回目の微小白書き込みを行う。図5に示す画素13から画素16の階調表示は微小白書き込みを目標階調に到達した時点で打ち切った時点での階調である。   Similarly, in steps S17 to S20, the second to the fifth minute white writing is performed on the pixels 13 to 16 while the start pixel number is incremented by 1 each time the step number increases. The gradation display of the pixels 13 to 16 shown in FIG. 5 is the gradation when the minute white writing is stopped when the target gradation is reached.

以上の階調制御によって、画素13から第16までの階調表示が13階調目から16階調目まで表示できたことになる。   With the above gradation control, the gradation display from the pixel 13 to the 16th gradation can be displayed from the 13th gradation to the 16th gradation.

すなわち、標準選択時間による白書き込みと、微小選択時間による微小黒書き込み及び微小白書き込みを組み合わせ、黒色表示側への折り返し対象画素と、白色表示側への継ぎ足し対象画素とを選択することにより、画素1から画素16までの階調表示が1階調目から16階調目で表示できたことになる。   That is, by combining white writing by the standard selection time, minute black writing and minute white writing by the minute selection time, and selecting a pixel to be folded to the black display side and a pixel to be added to the white display side, The gradation display from 1 to pixel 16 can be displayed from the first gradation to the 16th gradation.

図7は画素1から画素16を1階調目から16階調目で表示したときの、白書き込み回数、微小黒書き込み回数及び微小白書き込み回数の組み合わせ示す図である。図7において横軸に左端が画素1に対応し、右端が画素16に対応している。   FIG. 7 is a diagram showing combinations of the number of times of white writing, the number of times of minute black writing, and the number of times of minute white writing when the pixels 1 to 16 are displayed from the first gradation to the 16th gradation. In FIG. 7, the left end on the horizontal axis corresponds to the pixel 1, and the right end corresponds to the pixel 16.

以上の説明では、画素1から画素16の16個の画素に対して、1階調目から16階調目までリニアに変化する階調表示を行う場合について説明した。本実施の形態によれば、任意の表示画像に応じて所望の画素に所望の階調表示が可能であり、表示画像を高精度に再現した階調表示が可能になる。   In the above description, the case where gradation display that linearly changes from the first gradation to the 16th gradation is performed on the 16 pixels from pixel 1 to pixel 16 has been described. According to the present embodiment, a desired gradation display can be performed on a desired pixel in accordance with an arbitrary display image, and a gradation display in which the display image is reproduced with high accuracy is possible.

以上のように、第1の実施の形態によれば、画素電極に印加するパルス長又は印加タイミングを制御するスイッチング素子又はドライバに対する要求性能を上げることなく、多階調を実現でき、高品質の画像を表示できる。   As described above, according to the first embodiment, multi-gradation can be realized without increasing the required performance for the switching element or driver for controlling the pulse length or application timing applied to the pixel electrode, and high quality. An image can be displayed.

次に、本発明の第2の実施の形態に係る電気泳動表示装置について説明する。
第2の実施の形態に係る電気泳動表示装置の構成及び基本的な動作は、前述した第1の実施の形態に係る電気泳動表示装置と同じである。ここでは、第2の実施の形態に係る電気泳動表示装置の所要の階調表示を実現するための駆動方法を説明する。
Next, an electrophoretic display device according to a second embodiment of the invention will be described.
The configuration and basic operation of the electrophoretic display device according to the second embodiment are the same as those of the electrophoretic display device according to the first embodiment described above. Here, a driving method for realizing required gradation display of the electrophoretic display device according to the second embodiment will be described.

第1の実施の形態では、標準選択時間(40μ秒)による白書き込み後、微小選択時間(10μ秒)による黒又は白書き込みを行って所要の階調表示を得た。ところが、画素スイッチング用トランジスタ24を構成するTFT等の種類や、表示画像の画像データの転送速度の関係で、微小選択時間(10μ秒)による書き込みが実現困難であり、標準選択時間(40μ秒)を最低選択時間とせざるを得ないケースも考えられる。   In the first embodiment, after white writing with a standard selection time (40 μsec), black or white writing with a minute selection time (10 μsec) is performed to obtain a required gradation display. However, it is difficult to realize writing with a very small selection time (10 μsec) because of the type of TFT constituting the pixel switching transistor 24 and the transfer speed of the image data of the display image, and the standard selection time (40 μsec). There may be a case where the minimum selection time is unavoidable.

第2の実施の形態は、画素選択時間(画素スイッチング用トランジスタ24のゲートON期間に相当)を標準選択時間(40μ秒)よりも短くしないで、第1の実施の形態と同等の階調表示を行う例である。   In the second embodiment, the pixel selection time (corresponding to the gate ON period of the pixel switching transistor 24) is not made shorter than the standard selection time (40 μsec), and the same gray scale display as in the first embodiment is performed. Is an example of

そのために、第2の実施の形態は、画素選択時間として標準選択時間(40μ秒)を適用し、走査周期(電圧パルスの繰り返し周期)を第1の実施の形態の2倍の周期にすることで、等価的に微小選択時間(10μ秒)による書き込み時の電圧と同等レベルまで下げ、微妙な階調表示を実現する。図11Aは、標準選択時間(40μ秒)のパルス幅を有する標準選択パルスを走査周期Tで、画素20の画素スイッチング用トランジスタ24のゲートに対し、繰り返し印加した場合の電極間の電圧を示している。走査周期Tでは電圧が十分下がる前に、次の標準選択パルスが印加されるため、平均電圧レベルがV1となっている。図11Bは、標準選択時間(40μ秒)のパルス幅を有する標準選択パルスを走査周期Tの2倍の周期T2(2×T)で、画素20の画素スイッチング用トランジスタ24のゲートに対し、繰り返し印加した場合の電極間の電圧を示している。倍周期となる走査周期2Tでは電圧が十分に下がってから、次の標準選択パルスが印加されるため、平均電圧レベルV2が図11Aに示すV1よりも下がっている。本実施の形態は、走査周期Tの2倍の走査周期T2で駆動すると走査周期Tで駆動した時よりも電極間の電圧が低下することを利用している。   Therefore, in the second embodiment, the standard selection time (40 μsec) is applied as the pixel selection time, and the scanning cycle (voltage pulse repetition cycle) is set to twice the cycle of the first embodiment. Thus, it is equivalently reduced to a level equivalent to the voltage at the time of writing with a minute selection time (10 μsec), and a fine gradation display is realized. FIG. 11A shows the voltage between the electrodes when a standard selection pulse having a pulse width of the standard selection time (40 μsec) is repeatedly applied to the gate of the pixel switching transistor 24 of the pixel 20 in the scanning period T. Yes. In the scanning cycle T, the next standard selection pulse is applied before the voltage drops sufficiently, so the average voltage level is V1. In FIG. 11B, a standard selection pulse having a pulse width of a standard selection time (40 μsec) is repeated with respect to the gate of the pixel switching transistor 24 of the pixel 20 in a cycle T2 (2 × T) which is twice the scanning cycle T. The voltage between the electrodes when applied is shown. In the scanning cycle 2T, which is a double cycle, since the next standard selection pulse is applied after the voltage is sufficiently lowered, the average voltage level V2 is lower than V1 shown in FIG. 11A. This embodiment utilizes the fact that the voltage between the electrodes decreases when driven at a scanning cycle T2 that is twice the scanning cycle T than when driven at the scanning cycle T.

図8及び図9を参照して、画素1から画素16に対して所要の階調表示を実現するための駆動方法を説明する。図8は画素1から画素16を所要階調に変化させるまでのフロー図であり、図9は図8に示すフロー図に対応した階調遷移図である。図8において左端に縦(縦軸)に示す番号1から16は画素番号に対応し、横軸は階調に対応している。画素1から画素16は、図2に示す画素20に相当する。   With reference to FIGS. 8 and 9, a driving method for realizing a desired gradation display for the pixels 1 to 16 will be described. FIG. 8 is a flowchart for changing the pixel 1 to the pixel 16 to the required gradation, and FIG. 9 is a gradation transition diagram corresponding to the flowchart shown in FIG. In FIG. 8, numbers 1 to 16 shown at the left end in the vertical direction (vertical axis) correspond to pixel numbers, and the horizontal axis corresponds to gradation. Pixel 1 to pixel 16 correspond to the pixel 20 shown in FIG.

先ず、全画素1〜16を、黒色表示(1階調目)へとリセットする(ステップS21)。このため、全画素1〜16に対して、共通電極22に低電位VLを印加し、画素電極21に高電位VHを印加する。ステップS21のリセット直後は、全画素1〜16は黒色表示(1階調目)となる。   First, all the pixels 1 to 16 are reset to black display (first gradation) (step S21). Therefore, the low potential VL is applied to the common electrode 22 and the high potential VH is applied to the pixel electrode 21 for all the pixels 1 to 16. Immediately after the reset in step S21, all the pixels 1 to 16 are displayed in black (first gradation).

また、ステップS22において白書き込みを1回行う前に、全画素1〜16に対してシェイキングパルスを印加しても良い。データ線駆動回路3、走査線駆動回路4、共通電位供給回路5及びコントローラ6等からなる駆動回路は、制御対象エリアとなる全画素又は所定エリアの画素に対して、各画素20の画素電極21と共通電極22との間に、短時間に電圧の極性が交互に反転するシェイキングパルスを印加する。   In addition, a shaking pulse may be applied to all the pixels 1 to 16 before white writing is performed once in step S22. A driving circuit including the data line driving circuit 3, the scanning line driving circuit 4, the common potential supply circuit 5, the controller 6 and the like has a pixel electrode 21 of each pixel 20 with respect to all pixels serving as a control target area or pixels in a predetermined area. And a common electrode 22 are applied with a shaking pulse in which the polarity of the voltage is alternately inverted in a short time.

次に、全画素1〜16に対して、白書き込みを1回行う(ステップS22)。白書き込みは、共通電極22に高電位VHを印加し、画素電極21に低電位VLを印加し、書き込み対象画素20の画素スイッチング用トランジスタ24のゲートに走査信号となる標準選択パルスを印加する。標準選択パルスのパルス幅は、例えば40μ秒であり、画素20への白書き込み時間である選択時間は40μ秒である。共通電極22の印加電位、画素電極21の印加電位、標準選択パルス(走査周期T1)で第1の電圧パルスが生成される。標準選択パルス走査線駆動回路4が、画素1から画素16に対して順番に標準選択パルスを印加して全画素1〜16を1回走査する。このとき、画面全体を1回走査するのに要する走査時間はT1である。標準選択パルスによる白書き込みによって、全画素1〜16の階調表示は図9に示す“白1回”まで変化する。   Next, white writing is performed once for all the pixels 1 to 16 (step S22). In white writing, a high potential VH is applied to the common electrode 22, a low potential VL is applied to the pixel electrode 21, and a standard selection pulse serving as a scanning signal is applied to the gate of the pixel switching transistor 24 of the writing target pixel 20. The pulse width of the standard selection pulse is 40 μs, for example, and the selection time that is the white writing time to the pixel 20 is 40 μs. The first voltage pulse is generated by the applied potential of the common electrode 22, the applied potential of the pixel electrode 21, and the standard selection pulse (scanning cycle T1). The standard selection pulse scanning line driving circuit 4 scans all the pixels 1 to 16 once by applying the standard selection pulse to the pixels 1 to 16 in order. At this time, the scanning time required to scan the entire screen once is T1. By the white writing by the standard selection pulse, the gradation display of all the pixels 1 to 16 changes to “white once” shown in FIG.

次に、画素1、画素8及び画素12を除いた画素に対して2回目の白書き込みを行う(ステップS22)。以下、図9に示すように画素選択して、選択画素に対して3回目から6回目の白書き込みを行う(ステップS23〜ステップS27)。ステップS22〜ステップS27までの走査周期はT1である。   Next, the second white writing is performed on the pixels excluding the pixel 1, the pixel 8, and the pixel 12 (step S22). Thereafter, as shown in FIG. 9, the pixel is selected, and the third to sixth white writing is performed on the selected pixel (steps S23 to S27). The scanning cycle from step S22 to step S27 is T1.

次に、黒表示側に階調表示を折り返す画素に対して、走査周期T1の2倍の走査周期T2にて倍周期黒書き込みを行う。上記した通り、走査周期T2にて倍周期黒書き込みを行う場合も、画素20の選択時間は標準選択パルスによる40μ秒である。倍周期黒書き込み時の標準選択パルス、共通電極22の印加電位、画素電極21の印加電位で、第2の電圧パルスを生成する。   Next, double period black writing is performed with a scanning period T2 that is twice the scanning period T1 for the pixel that returns the gradation display to the black display side. As described above, even when double period black writing is performed in the scanning period T2, the selection time of the pixel 20 is 40 μs by the standard selection pulse. A second voltage pulse is generated by the standard selection pulse at the time of double period black writing, the applied potential of the common electrode 22, and the applied potential of the pixel electrode 21.

図9に示すように画素選択して、画面全体を走査周期T2にて走査し、選択画素に対して1回目から4回目の倍周期黒書き込みを行う(ステップS28〜ステップS31)。走査周期T2での1回目から4回目の倍周期黒書き込み時は書き込みのための電極間の電圧(V2)が、走査周期T1での黒書き込み時の電極間の電圧(V1)よりも下がるので、走査周期T1での黒書き込みに比べて、細かな階調表示が可能になる。   As shown in FIG. 9, the pixel is selected, the entire screen is scanned at the scanning period T2, and the first to fourth double period black writing is performed on the selected pixel (steps S28 to S31). The voltage (V2) between the electrodes for writing is lower than the voltage (V1) between the electrodes at the time of black writing in the scanning cycle T1 during the first to fourth double cycle black writing in the scanning cycle T2. Compared with black writing in the scanning period T1, fine gradation display is possible.

以上の階調制御によって、画素1から第7、画素9〜11までの階調表示が終了する。   With the above gradation control, gradation display from the pixel 1 to the seventh and pixels 9 to 11 is completed.

次に、画素12から画素16に対して白表示側へ階調を継ぎ足す。白色表示側への継ぎ足し対象画素に対して、走査周期T1の2倍の走査周期T2にて倍周期白書き込みを行う。画素20の選択時間は標準選択時間である40μ秒である。倍周期白書き込み時の標準選択パルス、共通電極22の印加電位、画素電極21の印加電位で、第3の電圧パルスを生成する。   Next, gradation is added from the pixel 12 to the pixel 16 toward the white display side. Double period white writing is performed on the pixel to be added to the white display side at a scanning period T2 that is twice the scanning period T1. The selection time of the pixel 20 is 40 μs which is a standard selection time. A third voltage pulse is generated by the standard selection pulse at the time of double period white writing, the applied potential of the common electrode 22, and the applied potential of the pixel electrode 21.

図9に示すように画素選択して、画面全体を走査周期T2にて走査し、選択画素に対して1回目から7回目の倍周期白書き込みを行う(ステップS32〜ステップS38)。走査周期T2での1回目から7回目の白書き込み時は書き込みのための電極間の電圧(V2)が、走査周期T1での白書き込み時の電極間の電圧(V1)よりも下がるので、走査周期T1での白書き込みに比べて、細かな階調表示が可能になる。   As shown in FIG. 9, the pixel is selected, the entire screen is scanned at the scanning cycle T2, and the first to seventh double cycle white writing is performed on the selected pixel (steps S32 to S38). Since the voltage (V2) between the electrodes for writing is lower than the voltage (V1) between the electrodes at the time of white writing in the scanning cycle T1 during the first to seventh white writing in the scanning cycle T2, scanning is performed. Compared with white writing in the period T1, fine gradation display is possible.

以上の階調制御によって、画素13から第16までの階調表示が13階調目から16階調目まで表示できたことになる。   With the above gradation control, the gradation display from the pixel 13 to the 16th gradation can be displayed from the 13th gradation to the 16th gradation.

すなわち、標準選択時間による白書き込みと、標準選択時間のまま走査周期を倍にした倍周期白書き込みと、標準選択時間のまま走査周期を倍にした倍周期黒書き込みとを組み合わせ、黒色表示側への折り返し対象画素と、白色表示側への継ぎ足し対象画素とを選択することにより、画素1から画素16までの階調表示が1階調目から16階調目で表示できたことになる。   In other words, white writing by the standard selection time, double cycle white writing in which the scanning cycle is doubled while maintaining the standard selection time, and double cycle black writing in which the scanning cycle is doubled while maintaining the standard selection time are combined into the black display side. By selecting the return target pixel and the target pixel to be added to the white display side, the gradation display from pixel 1 to pixel 16 can be displayed from the first gradation to the 16th gradation.

図10は画素1から画素16を1階調目から16階調目で表示したときの、白書き込み回数、黒書き込み回数、倍周期白書き込み回数及び倍周期黒書き込み回数の組み合わせ示す図である。図10において横軸に左端が画素1に対応し、右端が画素16に対応している。   FIG. 10 is a diagram showing a combination of the number of white writing times, the number of black writing times, the number of times of double white writing, and the number of times of double black writing when the pixels 1 to 16 are displayed in the first to 16th gradations. In FIG. 10, the left end on the horizontal axis corresponds to the pixel 1 and the right end corresponds to the pixel 16.

以上のように、第2の実施の形態によれば、標準選択時間のまま走査周期を組み合わせることにより、対象画素の電極間に印加する電圧を制御するので、スイッチング素子又はドライバに対する要求性能を上げることなく、多階調を実現でき、高品質の画像を表示できる。特に、TFT等の種類や表示画像の画像データの転送速度の関係で、微小選択時間(10μ秒)による書き込みが実現困難である場合にも、標準選択時間(40μ秒)を最低選択時間として多階調を実現でき、高品質の画像を表示できる。   As described above, according to the second embodiment, since the voltage applied between the electrodes of the target pixel is controlled by combining the scanning periods with the standard selection time, the required performance for the switching element or driver is increased. Therefore, multi-gradation can be realized and a high-quality image can be displayed. In particular, the standard selection time (40 μsec) is set as the minimum selection time even when writing with a very small selection time (10 μsec) is difficult due to the type of TFT and the transfer rate of the image data of the display image. Gradation can be realized and high quality images can be displayed.

なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。   In addition, this invention is not limited to the said embodiment, It can implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

1 電気泳動表示装置
2 表示部
3 データ線駆動回路
4 走査線駆動回路
5 共通電位供給回路
6 コントローラ
11 共通電位線
20 画素
21 画素電極
22 共通電極
23 電気泳動素子
24 画素スイッチング用トランジスタ
25 保持容量
28 素子基板
29 対向基板
81 分散媒
82 白色粒子
83 黒色粒子
DESCRIPTION OF SYMBOLS 1 Electrophoretic display apparatus 2 Display part 3 Data line drive circuit 4 Scan line drive circuit 5 Common electric potential supply circuit 6 Controller 11 Common electric potential line 20 Pixel 21 Pixel electrode 22 Common electrode 23 Electrophoretic element 24 Pixel switching transistor 25 Retention capacity 28 Element substrate 29 Counter substrate 81 Dispersion medium 82 White particles 83 Black particles

Claims (6)

少なくとも一方が光透過性を有する一対の基板と、前記一対の基板のうち一方の基板の基板面に形成された複数の画素電極と、前記一対の基板のうち他方の基板の基板面に前記複数の画素電極に対向して形成された共通電極と、前記一対の基板間に形成されたスペースに封入された移動速度の異なる少なくとも2種類の帯電粒子を分散させてなる液状体と、前記画素電極と前記共通電極との間に前記帯電粒子を移動させる電位差を発生させる電圧パルスを生成すると共に、前記電圧パルスを印加すべき対象画素を選択する選択信号を生成する駆動回路と、を具備し、
前記駆動回路は、
対象画素対して当該画素の目標階調に応じて決まる回数だけ第1の電圧パルスを印加して第1の表示状態に遷移させ、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向とは逆方向であれば、第1の電圧パルスとは逆極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第2の電圧パルスを、目標階調までの階調距離に応じた回数だけ印加し、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向と同一方向であれば、第1の電圧パルスと同一極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第3の電圧パルスを目標階調までの階調距離に応じた回数だけ印加することを特徴とする電気泳動表示装置。
At least one of the pair of substrates having light transparency, a plurality of pixel electrodes formed on a substrate surface of one of the pair of substrates, and the plurality of pixels on the substrate surface of the other substrate of the pair of substrates A liquid electrode formed by dispersing at least two kinds of charged particles having different moving speeds enclosed in a space formed between the pair of substrates, and the pixel electrode. And a drive circuit for generating a selection signal for selecting a target pixel to which the voltage pulse is to be applied, and generating a voltage pulse that generates a potential difference for moving the charged particles between the common electrode and the common electrode,
The drive circuit is
The first voltage pulse is applied to the target pixel a number of times determined according to the target gradation of the pixel, and the target pixel is changed to the first display state, and the target gradation is the first voltage pulse as viewed from the first display state. If the direction is the reverse of the direction of gradation change due to, the second voltage pulse having a polarity opposite to that of the first voltage pulse and having a smaller amount of gradation change per time than the first voltage pulse is selected as the target. If the target gradation is applied in the number of times corresponding to the gradation distance to the gradation and the target gradation is in the same direction as the gradation change direction by the first voltage pulse as seen from the first display state, it is the same as the first voltage pulse. An electrophoretic display characterized in that a third voltage pulse having a polarity and a gradation change amount per time smaller than that of the first voltage pulse is applied a number of times corresponding to the gradation distance to the target gradation. apparatus.
前記駆動回路は、
前記第2及び第3の電圧パルスとして、前記第1の電圧パルスよりも画素選択時間が短い電圧パルスを生成することを特徴とする請求項1記載の電気泳動表示装置。
The drive circuit is
The electrophoretic display device according to claim 1, wherein a voltage pulse having a pixel selection time shorter than that of the first voltage pulse is generated as the second and third voltage pulses.
前記駆動回路は、
前記第2及び第3の電圧パルスとして、前記第1の電圧パルスと画素選択時間が同じ電圧パルスを生成し、前記第2及び又は第3の電圧パルスを複数階印加する場合の繰り返し周期が、前記第1の電圧パルスの繰り返し周期よりも長いことを特徴とする請求項1記載の電気泳動表示装置。
The drive circuit is
As the second and third voltage pulses, a voltage pulse having the same pixel selection time as the first voltage pulse is generated, and a repetition cycle when the second and / or third voltage pulses are applied multiple times, The electrophoretic display device according to claim 1, wherein the electrophoretic display device is longer than a repetition period of the first voltage pulse.
前記駆動回路は、
前記第1の表示状態に遷移させる前に、対象画素にリセットパルスを印加して、移動速度が遅い帯電粒子を、光透過性を有する基板側の電極に集結させることを特徴とする請求項1から請求項3のいずれかに記載の電気泳動表示装置。
The drive circuit is
The charged particles having a low moving speed are collected on the electrode on the substrate side having light permeability by applying a reset pulse to the target pixel before the transition to the first display state. The electrophoretic display device according to claim 3.
前記駆動回路は、
制御対象エリアとなる全画素または所定エリアの画素の全体に対して、各画素の前記画素電極および前記共通電極間に、電圧の極性が交互に反転するシェイキングパルスを印加することを特徴とする請求項1から請求項4のいずれかに記載の電気泳動表示装置。
The drive circuit is
A shaking pulse whose polarity of voltage is alternately inverted is applied between the pixel electrode and the common electrode of each pixel with respect to all the pixels to be controlled or all of the pixels in a predetermined area. The electrophoretic display device according to any one of claims 1 to 4.
少なくとも一方が光透過性を有する一対の基板と、前記一対の基板のうち一方の基板の基板面に複数の画素電極と、前記一対の基板のうち他方の基板の基板面に前記複数の画素電極に対向して形成された共通電極と、前記一対の基板間に形成されたスペースに封入された移動速度の異なる少なくとも2種類の帯電粒子を分散させてなる液状体と、前記画素電極と前記共通電極との間に前記帯電粒子を移動させる電位差を発生させる電圧パルスを生成すると共に、前記電圧パルスを印加すべき対象画素を選択する選択信号を生成する駆動回路と、を具備した電気泳動表示装置の駆動方法において、
対象画素対して当該画素の目標階調に応じて決まる回数だけ第1の電圧パルスを印加して第1の表示状態に遷移させ、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向とは逆方向であれば、第1の電圧パルスとは逆極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第2の電圧パルスを、目標階調までの階調距離に応じた回数だけ印加し、第1の表示状態からみて目標階調が第1の電圧パルスによる階調変化方向と同一方向であれば、第1の電圧パルスと同一極性であって1回当たりの階調変化量が第1の電圧パルスよりも小さい第3の電圧パルスを目標階調までの階調距離に応じた回数だけ印加することを特徴とする電気泳動表示装置の駆動方法。
A pair of substrates at least one of which is light transmissive, a plurality of pixel electrodes on a substrate surface of one of the pair of substrates, and a plurality of pixel electrodes on a substrate surface of the other substrate of the pair of substrates A liquid electrode formed by dispersing at least two kinds of charged particles having different moving speeds enclosed in a space formed between the pair of substrates, the pixel electrode and the common electrode An electrophoretic display device comprising: a drive circuit that generates a voltage pulse that generates a potential difference for moving the charged particles between the electrode and a selection signal that selects a target pixel to which the voltage pulse is to be applied. In the driving method of
The first voltage pulse is applied to the target pixel a number of times determined according to the target gradation of the pixel, and the target pixel is changed to the first display state, and the target gradation is the first voltage pulse as viewed from the first display state. If the direction is the reverse of the direction of gradation change due to, the second voltage pulse having a polarity opposite to that of the first voltage pulse and having a smaller amount of gradation change per time than the first voltage pulse is selected as the target. If the target gradation is applied in the number of times corresponding to the gradation distance to the gradation and the target gradation is in the same direction as the gradation change direction by the first voltage pulse as seen from the first display state, it is the same as the first voltage pulse. An electrophoretic display characterized in that a third voltage pulse having a polarity and a gradation change amount per time smaller than that of the first voltage pulse is applied a number of times corresponding to the gradation distance to the target gradation. Device driving method.
JP2012103311A 2012-04-27 2012-04-27 Electrophoretic display device and drive method of the same Withdrawn JP2013231824A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012103311A JP2013231824A (en) 2012-04-27 2012-04-27 Electrophoretic display device and drive method of the same
CN201380022310.7A CN104272373A (en) 2012-04-27 2013-04-22 Electrophoretic display device and drive method therefor
PCT/JP2013/061793 WO2013161763A1 (en) 2012-04-27 2013-04-22 Electrophoretic display device and drive method therefor
KR20147029977A KR20150005932A (en) 2012-04-27 2013-04-22 Electrophoretic display device and drive method therefor
US14/396,901 US20150138256A1 (en) 2012-04-27 2013-04-22 Electrophoretic display apparatus and drive method thereof
TW102115143A TW201351382A (en) 2012-04-27 2013-04-26 Electrophoretic display device and drive method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012103311A JP2013231824A (en) 2012-04-27 2012-04-27 Electrophoretic display device and drive method of the same

Publications (1)

Publication Number Publication Date
JP2013231824A true JP2013231824A (en) 2013-11-14

Family

ID=49483076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012103311A Withdrawn JP2013231824A (en) 2012-04-27 2012-04-27 Electrophoretic display device and drive method of the same

Country Status (6)

Country Link
US (1) US20150138256A1 (en)
JP (1) JP2013231824A (en)
KR (1) KR20150005932A (en)
CN (1) CN104272373A (en)
TW (1) TW201351382A (en)
WO (1) WO2013161763A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515502A (en) * 2016-06-15 2017-12-26 广州奥翼电子科技股份有限公司 Electrophoretic display and electrophoretic display microcell thereof
TWI702459B (en) * 2019-05-30 2020-08-21 元太科技工業股份有限公司 Electrophoretic display and driving method thereof
TW202139195A (en) * 2019-12-03 2021-10-16 美商美光科技公司 System and method for reading memory cells
KR20230155569A (en) 2021-04-29 2023-11-10 이 잉크 코포레이션 Resolution drive sequence for four-particle electrophoresis display
CN115223510B (en) * 2022-08-17 2023-07-18 惠科股份有限公司 Driving method and module of electrophoretic display pixel and display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7193625B2 (en) * 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
ATE320022T1 (en) * 2002-10-18 2006-03-15 Koninkl Philips Electronics Nv ELECTROPHORETIC DISPLAY DEVICE
US6900924B2 (en) * 2003-01-16 2005-05-31 Canon Kabushiki Kaisha Driving method of electrophoretic display
US20060262081A1 (en) * 2003-05-05 2006-11-23 Guofu Zhou Electrophoretic display device
KR20060080925A (en) * 2003-09-08 2006-07-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Electrophoretic display activation with blanking frames
WO2005031691A1 (en) * 2003-09-29 2005-04-07 Koninklijke Philips Electronics, N.V. Driving scheme for monochrome mode and transition method for monochrome-to-greyscale mode in bi-stable displays
US20070132687A1 (en) * 2003-10-24 2007-06-14 Koninklijke Philips Electronics N.V. Electrophoretic display device
JP4724384B2 (en) * 2004-06-08 2011-07-13 キヤノン株式会社 Electrophoretic display element and driving method of electrophoretic display element
JP4867247B2 (en) * 2005-09-14 2012-02-01 セイコーエプソン株式会社 Display device, driving device, and driving method
JP4862589B2 (en) * 2006-09-27 2012-01-25 ブラザー工業株式会社 Electrophoretic display panel control device and electrophoretic display device
JP4528759B2 (en) * 2006-11-22 2010-08-18 Okiセミコンダクタ株式会社 Driving circuit
JP5311220B2 (en) * 2008-04-16 2013-10-09 Nltテクノロジー株式会社 Image display device having memory, drive control device and drive method used in the device
JP5304324B2 (en) * 2009-03-02 2013-10-02 セイコーエプソン株式会社 Electrophoretic display device driving method, electrophoretic display device, and electronic apparatus
JP2010217282A (en) * 2009-03-13 2010-09-30 Seiko Epson Corp Electrophoretic display device, electronic device and drive method for electrophoretic display panel
JP5499785B2 (en) * 2010-03-08 2014-05-21 セイコーエプソン株式会社 Driving method of electrophoretic display device

Also Published As

Publication number Publication date
KR20150005932A (en) 2015-01-15
WO2013161763A1 (en) 2013-10-31
CN104272373A (en) 2015-01-07
TW201351382A (en) 2013-12-16
US20150138256A1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP4811510B2 (en) Electrophoretic display device and driving method thereof
JP5045976B2 (en) Electrophoretic display device and driving method thereof
WO2013161763A1 (en) Electrophoretic display device and drive method therefor
US11520202B2 (en) Electro-optic displays, and methods for driving same
KR101031667B1 (en) Liquid crystal display device
JP4010308B2 (en) Display device and driving method of display device
CN115148163A (en) Method for driving electro-optic display
JP2008304940A (en) Method for driving electrophoretic display, electrophoretic display and electronic equipment
KR20060033791A (en) Electrophoretic display panel
TWI477872B (en) Multi-gray level display apparatus and method thereof
US11450262B2 (en) Electro-optic displays, and methods for driving same
JP5304556B2 (en) Electrophoretic display device and driving method thereof
KR102659779B1 (en) Methods for driving electro-optical displays
JP5512409B2 (en) Electrophoretic display device and driving method thereof
US7746319B2 (en) Image display device
WO2013035623A1 (en) Liquid crystal display device and drive method therefor
JP5620863B2 (en) Electrophoretic display device and driving method thereof
JP2013195521A (en) Electrophoretic display device and driving method of the same
JP4086089B2 (en) Display device and driving method of display device
KR20070065694A (en) Liquid crystal display device
JP2015082041A (en) Driving method of electrophoretic display device, and electrophoretic display device
JP2015081978A (en) Drive method of electrophoretic display device and electrophoretic display device
JP2015148708A (en) Method of driving electrophoresis display unit and electrophoresis display unit
WO2014178330A1 (en) Method for driving electrophoretic display device, and electrophoretic display device
JP2014215583A (en) Driving method of electrophoretic display device, and electrophoretic display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150327

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160205