JP2013229288A - Arc-extinguishing resin molding member and circuit breaker - Google Patents

Arc-extinguishing resin molding member and circuit breaker Download PDF

Info

Publication number
JP2013229288A
JP2013229288A JP2012266858A JP2012266858A JP2013229288A JP 2013229288 A JP2013229288 A JP 2013229288A JP 2012266858 A JP2012266858 A JP 2012266858A JP 2012266858 A JP2012266858 A JP 2012266858A JP 2013229288 A JP2013229288 A JP 2013229288A
Authority
JP
Japan
Prior art keywords
arc
extinguishing
resin molded
molded member
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012266858A
Other languages
Japanese (ja)
Other versions
JP5889172B2 (en
Inventor
Kazuki Kubo
一樹 久保
Mitsuaki Nakada
光昭 中田
Masahiro Fushimi
征浩 伏見
Kenichi Eko
憲一 江古
Toshikazu Uemoto
利和 上元
Atsushi Nakagawa
淳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012266858A priority Critical patent/JP5889172B2/en
Priority to CN201310103255.6A priority patent/CN103367069B/en
Publication of JP2013229288A publication Critical patent/JP2013229288A/en
Application granted granted Critical
Publication of JP5889172B2 publication Critical patent/JP5889172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breakers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arc-extinguishing resin molding member having excellent breaking performance durability in addition to excellent strength, heat resistance and pressure resistance, generating thermal decomposition gas required for arc-extinguishing, and capable of minimizing damage on the housing of the circuit breaker by suppressing generation of gas, and to provide a circuit breaker having excellent breaking performance and durability thereof, and capable of minimizing damage on the housing.SOLUTION: The arc-extinguishing resin molding member contains acicular or fibrous titanium oxide in resin. The circuit breaker includes an extinguishing device including the arc-extinguishing resin molding member.

Description

本発明は、消弧用樹脂成形部材、及びそれを用いた配線用遮断器及び漏電遮断器などの回路遮断器に関する。   TECHNICAL FIELD The present invention relates to an arc extinguishing resin molded member, and a circuit breaker such as a circuit breaker and a leakage breaker using the same.

配線用遮断器及び漏電遮断器などの回路遮断器は、過負荷及び短絡などの要因によって二次側の回路(負荷、電路)に異常な電流が流れた際に、電路を開放して一次側からの電源供給を遮断することにより、負荷回路及び電線を損傷から回避させるために用いる装置である。   Circuit breakers such as circuit breakers and earth leakage breakers open the primary circuit when abnormal current flows through the secondary circuit (load, circuit) due to overload or short circuit. It is an apparatus used for avoiding damage to the load circuit and the electric wire by shutting off the power supply from.

このような回路遮断器において、過剰電流又は定格電流の通電時に可動接触子の可動接点と固定接触子の固定接点とを開離させると、両者の間にアークが発生する。ここで、遮断時にアークが発生する付近の回路遮断器の様子を図8(a)及び(b)に模式的に示す。図8は、一般的な回路遮断器中の消弧装置の遮断時の様子を表す模式図であり、(a)は消弧装置の断面図、(b)は消弧装置の側面図((a)のIb−Ibに沿った断面図に相当する)である。アークは、回路遮断器の構成部材への熱的及び電磁力的な負担となるので、速やかに消弧させる必要がある。そこで、消弧を速やかに進めるために、図8(a)及び(b)に示すように、可動接触子30の可動接点31と固定接触子32の固定接点33との周辺部に消弧用樹脂成形部材34が配置される。消弧用樹脂成形部材34は、図8(a)に示すように、例えば、可動接触子30と固定接触子32とを両脇から挟むように配置される。消弧用樹脂成形部材34は、アークに暴露されると、その部材を構成する材料自体が分解してガスを発生し、発生したガスによるアークの冷却及び発生したガスの吹きつけによるアークの延伸などによって消弧に寄与する。   In such a circuit breaker, when the movable contact of the movable contactor and the fixed contact of the fixed contactor are separated when an excess current or a rated current is applied, an arc is generated between the two. Here, FIGS. 8A and 8B schematically show the state of a circuit breaker in the vicinity where an arc is generated during interruption. FIG. 8 is a schematic diagram showing a state of the arc-extinguishing device in a general circuit breaker when the arc-extinguishing device is interrupted. (A) is a cross-sectional view of the arc-extinguishing device, and (b) is a side view of the arc-extinguishing device (( a) corresponding to a cross-sectional view taken along line Ib-Ib). Since the arc becomes a thermal and electromagnetic force load on the components of the circuit breaker, it is necessary to extinguish the arc quickly. Therefore, in order to advance the arc extinguishing promptly, as shown in FIGS. 8A and 8B, the arc extinguishing is provided around the movable contact 31 of the movable contact 30 and the fixed contact 33 of the fixed contact 32. A resin molded member 34 is disposed. As shown in FIG. 8A, the arc-extinguishing resin molded member 34 is disposed so as to sandwich the movable contact 30 and the fixed contact 32 from both sides, for example. When the arc-extinguishing resin molded member 34 is exposed to an arc, the material itself constituting the member is decomposed to generate a gas, and the arc is cooled by the generated gas and the arc is stretched by blowing the generated gas. This contributes to extinguishing the arc.

また、消弧用樹脂成形部材34は、図9に示すように、可動接点31と固定接点33との間に発生したアークを引き延ばし、消弧板35(グリッド)を備えた消弧装置に誘導する役割も果たす。図9に示す消弧装置は、磁性体の金属からなる複数の消弧板35が互いに空隙を介して積層配列されたものであり、各消弧板35には切欠部36が設けられている。消弧用樹脂成形部材34は、可動接点31と固定接点33とを挟むように配置する(図8参照)ことで、この接点間に発生したアーク37を引き込んで分断し、電極降下電圧の発生及びアークの冷却などによって過電流を限流する(より低く抑制する)働きをする。   Further, as shown in FIG. 9, the arc-extinguishing resin molded member 34 extends an arc generated between the movable contact 31 and the fixed contact 33 and guides it to an arc-extinguishing device having an arc-extinguishing plate 35 (grid). Also plays a role. The arc-extinguishing apparatus shown in FIG. 9 is configured such that a plurality of arc-extinguishing plates 35 made of magnetic metal are stacked and arranged with a gap therebetween, and each arc-extinguishing plate 35 is provided with a notch 36. . The arc-extinguishing resin molded member 34 is arranged so as to sandwich the movable contact 31 and the fixed contact 33 (see FIG. 8), and draws and divides the arc 37 generated between the contacts, thereby generating an electrode drop voltage. In addition, it functions to limit (lower) overcurrent by cooling the arc.

消弧用樹脂成形部材34の材料としては、例えば、特許文献1には、ナイロン及びテフロン(登録商標)などの材料を用いることが開示されている。また、特許文献2には、耐熱性の高い樹脂に、耐圧強度向上のために無機充填材を配合したものを用いることが開示されている。   As a material for the arc-extinguishing resin molded member 34, for example, Patent Document 1 discloses the use of materials such as nylon and Teflon (registered trademark). Patent Document 2 discloses that a resin having a high heat resistance is blended with an inorganic filler for improving the pressure strength.

特開2007−149486号公報JP 2007-149486 A 特開平7−302535号公報Japanese Patent Laid-Open No. 7-302535

しかしながら、従来の消弧用樹脂成形部材34は、強度、耐熱性及び耐圧性などの特性に関しては向上が認められるものの、遮断性能の耐久性が十分でないという問題がある。実際、従来の消弧用樹脂成形部材34は、遮断性能の耐久性の指標となる過負荷遮断試験において、規定回数の連続遮断が不可能である。さらに、従来の消弧用樹脂成形部材34は、消弧時に発生する熱分解ガスによる消弧装置内の内圧上昇が抑制できないため、消弧時の内圧上昇によって回路遮断器の筐体が破損し易いという問題もある。   However, although the conventional arc-extinguishing resin molded member 34 is improved in properties such as strength, heat resistance and pressure resistance, there is a problem that the durability of the interruption performance is not sufficient. In fact, the conventional arc-extinguishing resin molded member 34 cannot be continuously interrupted a specified number of times in an overload interruption test that is an indicator of durability of interruption performance. Further, the conventional arc-extinguishing resin molded member 34 cannot suppress an increase in internal pressure in the arc extinguishing device due to pyrolysis gas generated during arc extinction, and therefore the casing of the circuit breaker is damaged by the increase in internal pressure during arc extinction. There is also a problem that it is easy.

本発明は、前記のような問題を解決するためになされたものであり、強度、耐熱性及び耐圧性に加えて遮断性能の耐久性にも優れ、且つ消弧に必要な熱分解ガスを発生させる一方、発生するガス量を抑制して回路遮断器の筐体の破損を抑制し得る消弧用樹脂成形部材を提供することを目的とする。
また、本発明は、遮断性能及びその耐久性に優れ、筐体の破損を抑制し得る回路遮断器を提供することを目的とする。
The present invention has been made in order to solve the above-described problems. In addition to strength, heat resistance, and pressure resistance, the present invention is excellent in durability of interruption performance and generates pyrolysis gas necessary for arc extinction. On the other hand, an object of the present invention is to provide an arc extinguishing resin molded member capable of suppressing the amount of generated gas and suppressing the breakage of the casing of the circuit breaker.
Another object of the present invention is to provide a circuit breaker that is excellent in breaking performance and durability and that can suppress damage to the casing.

本発明者らは、上記のような問題を解決すべく鋭意研究した結果、樹脂に配合する無機充填材の種類が、遮断性能の耐久性などの特性に影響を与えるという知見に基づき、無機充填材として針状又は繊維状の酸化チタンを用いることで、上記の全ての問題を解決し得ることを見出した。
すなわち、本発明は、針状又は繊維状の酸化チタンを樹脂中に含むことを特徴とする消弧用樹脂成形部材である。
また、本発明は、上記の消弧用樹脂成形部材を含む消弧装置を備えることを特徴とする回路遮断器である。
As a result of diligent research to solve the above problems, the present inventors have found that inorganic fillers are based on the knowledge that the types of inorganic fillers blended in the resin affect properties such as durability of the barrier performance. It has been found that all the above problems can be solved by using acicular or fibrous titanium oxide as a material.
That is, the present invention is an arc-extinguishing resin molded member comprising needle-like or fibrous titanium oxide in a resin.
Moreover, this invention is a circuit breaker provided with the arc-extinguishing apparatus containing said resin molding member for arc-extinguishing.

本発明によれば、強度、耐熱性及び耐圧性に加えて遮断性能の耐久性にも優れ、且つ消弧に必要な熱分解ガスを発生させる一方、発生するガス量を抑制して回路遮断器の筐体の破損を抑制し得る消弧用樹脂成形部材を提供することができる。
また、本発明によれば、遮断性能及びその耐久性に優れ、筐体の破損を抑制し得る回路遮断器を提供することができる。
According to the present invention, in addition to strength, heat resistance, and pressure resistance, the circuit breaker is excellent in durability of interruption performance and generates pyrolysis gas necessary for arc extinction, while suppressing the amount of generated gas. The arc-extinguishing resin molded member that can suppress the breakage of the casing can be provided.
Moreover, according to this invention, the circuit breaker which is excellent in interruption | blocking performance and its durability, and can suppress the failure | damage of a housing | casing can be provided.

アークに曝された後の本発明の消弧用樹脂成形部材の模式図であり、(a)は上面図、(b)は断面図を表す。It is a schematic diagram of the arc-extinguishing resin molded member of the present invention after being exposed to an arc, (a) is a top view and (b) is a cross-sectional view. アークに曝された後の従来の消弧用樹脂成形部材の模式図であり、(a)は上面図、(b)は断面図を表す。It is a schematic diagram of the conventional arc-extinguishing resin molded member after being exposed to an arc, (a) is a top view and (b) is a cross-sectional view. 本発明の回路遮断器中の消弧装置の遮断時の様子を表す模式図であり、(a)は断面図、(b)は側面図((a)のIb−Ibに沿った断面図に相当する)である。It is a schematic diagram showing the mode at the time of interruption | blocking of the arc-extinguishing apparatus in the circuit breaker of this invention, (a) is sectional drawing, (b) is sectional drawing along Ib-Ib of (a). Equivalent). 切欠部を持つ複数の消弧板を一定間隔で積層して用いた本発明の消弧装置の斜視図である。It is a perspective view of the arc-extinguishing apparatus of the present invention in which a plurality of arc-extinguishing plates having notches are stacked at regular intervals. 本発明の回路遮断器の接触時(オン状態)の様子を表す断面図である。It is sectional drawing showing the mode at the time of the contact of the circuit breaker of this invention (on state). 図5に示す回路遮断器の部分拡大図であって、回路遮断器の遮断時(オフ状態)の様子を表す断面図である。It is the elements on larger scale of the circuit breaker shown in FIG. 5, Comprising: It is sectional drawing showing the mode at the time of interruption | blocking (OFF state) of a circuit breaker. 消弧用樹脂成形部材と接触子対(固定接触子及び可動接触子)との位置関係を表す模式図であり、(a)は側面図、(b)は上面図を表す。It is a schematic diagram showing the positional relationship between the arc-extinguishing resin molded member and a contact pair (fixed contact and movable contact), (a) is a side view, (b) is a top view. 一般的な回路遮断器中の消弧装置の遮断時の様子を表す模式図であり、(a)は断面図、(b)は側面図((a)のIb−Ibに沿った断面図に相当する)である。It is a schematic diagram showing the mode at the time of interruption | blocking of the arc-extinguishing apparatus in a general circuit breaker, (a) is sectional drawing, (b) is a sectional view along Ib-Ib of (a). Equivalent). 切欠部を持つ複数の消弧板を一定間隔で積層して用いた一般的な消弧装置の斜視図である。It is a perspective view of the general arc-extinguishing apparatus which used the several arc-extinguishing board with a notch by laminating | stacking with a fixed space | interval.

以下、本発明の消弧用樹脂成形部材及び回路遮断器の好適な実施の形態につき図面を用いて説明する。なお、以下の図面の説明において同一の参照符号を付したものは、同一部分又は相当部分を表す。   Hereinafter, preferred embodiments of the arc-extinguishing resin molded member and the circuit breaker of the present invention will be described with reference to the drawings. In addition, what attached | subjected the same referential mark in description of the following drawings represents the same part or an equivalent part.

実施の形態1.
消弧用樹脂成形部材は、アークに曝されることで生じる分解ガスによる消弧、分解ガスのガス流による消弧板へのアークの誘導、消弧装置内の絶縁遮蔽などを目的として設けられる部材である。
図1は、アークに曝された後の本発明の消弧用樹脂成形部材の模式図であり、(a)は上面図、(b)は断面図を表す。図1において、本発明の消弧用樹脂成形部材1は、針状又は繊維状の酸化チタン2を樹脂3中に含む。なお、図1では、本発明を理解し易くするために消弧用樹脂成形部材1の形状を直方体として表しているが、消弧用樹脂成形部材1の形状は、直方体に限定されることはなく、使用する消弧装置に応じて適宜決定することができる。
図2は、アークに曝された後の従来の消弧用樹脂成形部材の模式図であり、(a)は上面図、(b)は断面図を表す。図2において、従来の消弧用樹脂成形部材4は、無機充填材5(例えば、ガラス繊維、チタン酸カリウム、ワラストナイトなど)を樹脂3中に含む。
Embodiment 1 FIG.
The arc-extinguishing resin molded member is provided for the purpose of arc extinction by decomposition gas generated by exposure to arc, induction of arc to arc extinguishing plate by gas flow of decomposition gas, insulation shielding in arc extinguishing device, etc. It is a member.
1A and 1B are schematic views of the arc-extinguishing resin molded member of the present invention after being exposed to an arc, wherein FIG. 1A is a top view and FIG. 1B is a cross-sectional view. In FIG. 1, the arc-extinguishing resin molded member 1 of the present invention includes acicular or fibrous titanium oxide 2 in a resin 3. In FIG. 1, the shape of the arc-extinguishing resin molded member 1 is shown as a rectangular parallelepiped for easy understanding of the present invention. However, the shape of the arc-extinguishing resin molded member 1 is limited to a rectangular parallelepiped. However, it can be determined appropriately according to the arc extinguishing device to be used.
2A and 2B are schematic views of a conventional arc extinguishing resin molded member after being exposed to an arc, wherein FIG. 2A is a top view and FIG. 2B is a cross-sectional view. In FIG. 2, a conventional arc-extinguishing resin molded member 4 includes an inorganic filler 5 (for example, glass fiber, potassium titanate, wollastonite, etc.) in the resin 3.

従来の消弧用樹脂成形部材4は、遮断する電気容量が大きい場合、遮断を繰り返すと遮断性能が低下する現象が見られる。これは、図2に示すように、従来の消弧用樹脂成形部材4は、遮断を繰り返すにつれて樹脂3が分解し、無機充填材5のみが表面に残存することに起因しているためであると考えられる。   In the conventional arc-extinguishing resin molded member 4, when the electric capacity to be interrupted is large, a phenomenon in which the interrupting performance deteriorates when the interruption is repeated is observed. This is because, as shown in FIG. 2, the conventional arc-extinguishing resin molded member 4 is caused by the fact that the resin 3 is decomposed and the inorganic filler 5 remains on the surface as the interruption is repeated. it is conceivable that.

そこで、本発明者らは、上記の現象について詳細に検討した結果、上記の現象が無機充填材5の種類に依存することを見出した。
本発明の消弧用樹脂成形部材1は、針状又は繊維状の酸化チタン2(以下、「酸化チタン2」と略す)を用いることにより、図1に示すように、遮断を繰り返しても酸化チタン2のみが表面に残存することはなく、酸化チタン2と樹脂3とが混在した表面を保持することができる。これは、消弧用樹脂成形部材1の表面がアークに曝されることで、樹脂3の分解により生じた分解ガスと共に酸化チタン2が飛散するためであると考えられる。酸化チタン2が樹脂3の分解ガスと共に飛散し易い理由としては、アーク暴露によって誘起された酸化チタン2の光触媒能により、樹脂3と酸化チタン2との間の界面に存在する樹脂3の分解が促進され、酸化チタン2の接着力が低下したことに起因すると推察される。そして、本発明の消弧用樹脂成形部材1は、酸化チタン2と樹脂3とが混在した表面を長期間保持することができるため、遮断性能の耐久性を向上させることが可能となる。
これに対して無機充填材5(例えば、ガラス繊維、チタン酸カリウム、ワラストナイトなど)を用いる場合は、樹脂3と無機充填材5との間の界面に存在する樹脂3は分解せずに残存し、樹脂3と無機充填材5との間の接着性が保持される結果として、消弧用樹脂成形部材4の表面に無機充填材5が残存したものと推察される。
Therefore, as a result of examining the above phenomenon in detail, the present inventors have found that the above phenomenon depends on the type of the inorganic filler 5.
The arc-extinguishing resin molded member 1 of the present invention uses needle-like or fiber-like titanium oxide 2 (hereinafter abbreviated as “titanium oxide 2”), as shown in FIG. Only the titanium 2 does not remain on the surface, and the surface in which the titanium oxide 2 and the resin 3 are mixed can be maintained. This is considered to be because the surface of the arc-extinguishing resin molded member 1 is exposed to the arc, so that the titanium oxide 2 is scattered together with the decomposition gas generated by the decomposition of the resin 3. The reason why the titanium oxide 2 is likely to be scattered together with the decomposition gas of the resin 3 is that the decomposition of the resin 3 existing at the interface between the resin 3 and the titanium oxide 2 is caused by the photocatalytic ability of the titanium oxide 2 induced by arc exposure. This is presumed to be caused by the decrease in the adhesive strength of the titanium oxide 2. And since the arc-extinguishing resin molded member 1 of the present invention can hold the surface where the titanium oxide 2 and the resin 3 are mixed for a long period of time, it is possible to improve the durability of the interruption performance.
On the other hand, when using the inorganic filler 5 (for example, glass fiber, potassium titanate, wollastonite, etc.), the resin 3 present at the interface between the resin 3 and the inorganic filler 5 is not decomposed. It is presumed that the inorganic filler 5 remains on the surface of the arc-extinguishing resin molded member 4 as a result of remaining and maintaining the adhesion between the resin 3 and the inorganic filler 5.

本発明の消弧用樹脂成形部材1は、上記のようにアーク暴露によって酸化チタン2が樹脂3の分解ガスと共に容易に飛散するため、酸化チタン2の周りをアーク暴露に熱及び/又は光によって分解する無機表面処理剤(例えば、無機化合物からなる表面処理剤)などで処理する必要がない。すなわち、本発明の消弧用樹脂成形部材1は、無機表面処理剤などの分解力に頼らなくても、消弧用樹脂成形部材1の表面に酸化チタン2を偏在させることなくアーク消弧に有効な樹脂3の分解ガスを発生させ続けることができる。   In the arc-extinguishing resin molded member 1 of the present invention, since the titanium oxide 2 is easily scattered along with the decomposition gas of the resin 3 by the arc exposure as described above, the surroundings of the titanium oxide 2 are exposed to the arc exposure by heat and / or light. There is no need to treat with an inorganic surface treatment agent that decomposes (for example, a surface treatment agent comprising an inorganic compound). That is, the arc-extinguishing resin molded member 1 of the present invention can be used for arc extinguishing without the titanium oxide 2 being unevenly distributed on the surface of the arc-extinguishing resin molded member 1 without depending on the decomposition force of an inorganic surface treatment agent or the like. Effective decomposition gas of the resin 3 can be continuously generated.

本発明の消弧用樹脂成形部材1に用いられる酸化チタン2は、針状又は繊維状である。酸化チタン2が針状又は繊維状でないと、遮断性能の耐久性が十分に向上しない上、消弧時の消弧装置内の内圧上昇に耐え得る強度が得られない。
ここで、本明細書において「針状又は繊維状」とは、平均短径が0.01μm以上1000μm以下であり、平均アスペクト比(平均長径/平均短径)が2以上2500以下のものを意味する。特に、「針状」とは、平均長径が100μm以下であり、平均アスペクト比が2以上100以下のものを意味し、「繊維状」とは、平均長径が100μmを超え、平均アスペクト比が100以上のものを意味する。ここで、本明細書において「平均長径」とは、顕微鏡観察によって計測される複数の酸化チタン2(粒子)の長手方向の長さの平均値を意味し、「平均短径」とは、顕微鏡観察によって計測される複数の酸化チタン2(粒子)の短手方向の長さの平均値を意味する。
The titanium oxide 2 used for the arc-extinguishing resin molded member 1 of the present invention is needle-like or fibrous. If the titanium oxide 2 is not in the form of needles or fibers, the durability of the shielding performance is not sufficiently improved, and the strength that can withstand the increase in internal pressure in the arc extinguishing device during arc extinction cannot be obtained.
As used herein, “needle-like or fibrous” means that the average minor axis is 0.01 μm or more and 1000 μm or less, and the average aspect ratio (average major axis / average minor axis) is 2 or more and 2500 or less. To do. In particular, “needle” means an average major axis of 100 μm or less and an average aspect ratio of 2 to 100, and “fibrous” means an average major axis of more than 100 μm and an average aspect ratio of 100. It means the above. Here, in this specification, “average major axis” means an average value of lengths in the longitudinal direction of a plurality of titanium oxides 2 (particles) measured by microscopic observation, and “average minor axis” means a microscope It means the average value of the lengths in the short direction of a plurality of titanium oxides 2 (particles) measured by observation.

遮断性能の耐久性の観点から、好ましい酸化チタン2は、平均短径が0.01μm以上5μm以下、平均長径が0.05μm以上50μm以下の針状のものである。より好ましい酸化チタン2は、平均短径が0.02μm以上2μm以下、平均長径が0.5μm以上50μm以下の針状のものである。最も好ましい酸化チタン2は、平均短径が0.05μm以上1μm以下、平均長径が1μm以上10μm以下の針状のものである。酸化チタン2の平均短径が0.01μm未満又は平均長径が0.05μm未満では、充填材として樹脂に添加した場合の補強効果が小さく、機械的強度の向上効果が十分ではないことがある。また、酸化チタン2の平均短径が5μm超過又は平均長径が50μm超過では、アーク暴露の際に、酸化チタン2が樹脂3の分解ガスと共に飛散するのが難しくなる。その結果、アーク暴露後に酸化チタン2が表面に残存し易くなり、遮断性能が低下することがある。   From the viewpoint of durability of the blocking performance, preferred titanium oxide 2 is needle-shaped having an average minor axis of 0.01 μm to 5 μm and an average major axis of 0.05 μm to 50 μm. More preferable titanium oxide 2 has a needle-like shape having an average minor axis of 0.02 μm to 2 μm and an average major axis of 0.5 μm to 50 μm. The most preferable titanium oxide 2 is needle-shaped having an average minor axis of 0.05 μm to 1 μm and an average major axis of 1 μm to 10 μm. When the average minor axis of titanium oxide 2 is less than 0.01 μm or the average major axis is less than 0.05 μm, the reinforcing effect when added to the resin as a filler is small, and the effect of improving the mechanical strength may not be sufficient. If the average minor axis of titanium oxide 2 exceeds 5 μm or the average major axis exceeds 50 μm, it becomes difficult for titanium oxide 2 to scatter with the decomposition gas of resin 3 during arc exposure. As a result, the titanium oxide 2 tends to remain on the surface after the arc exposure, and the interruption performance may be deteriorated.

また、本明細書において「酸化チタン2」とは、チタンと酸素とから構成される化合物であり、例えば、二酸化チタン(TiO);三酸化二チタン(Ti);一酸化チタン(TiO);Ti、Tiなどに代表される二酸化チタンから酸素欠損した組成を有するものを意味する。従って、本明細書における「酸化チタン2」は、チタンとチタン以外の金属との複合酸化物を包含しない。例えば、チタンとアルカリ金属(例えば、カリウム)との複合酸化物(例えば、チタン酸カリウム)を用いても、遮断性能の耐久性は十分に向上しない。 In the present specification, “titanium oxide 2” is a compound composed of titanium and oxygen. For example, titanium dioxide (TiO 2 ); dititanium trioxide (Ti 2 O 3 ); titanium monoxide ( TiO); means having an oxygen deficient composition from titanium dioxide represented by Ti 4 O 7 , Ti 5 O 9 and the like. Therefore, “titanium oxide 2” in the present specification does not include a composite oxide of titanium and a metal other than titanium. For example, even when a composite oxide (for example, potassium titanate) of titanium and an alkali metal (for example, potassium) is used, the durability of the blocking performance is not sufficiently improved.

酸化チタン2は、樹脂3との混練時の分散性、及び消弧用樹脂成形部材1の強度向上を目的として、シランカップリング処理を行うことができる。シランカップリング処理としては、特に限定されず、周知のシランカップリング剤を用いて処理を行えばよい。シランカップリング剤としては、例えば、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシランなどが挙げられる。これらのシランカップリング剤は、特に、樹脂3としてポリアミド樹脂を用いる場合に、混練時の分散性を高める効果が高く、また、衝撃強度の改善も期待できる。また、これらのシランカップリング剤は、単独又は2種以上を組み合わせて用いることができる。   Titanium oxide 2 can be subjected to silane coupling treatment for the purpose of improving dispersibility during kneading with resin 3 and strength of arc-extinguishing resin molded member 1. The silane coupling treatment is not particularly limited, and the treatment may be performed using a known silane coupling agent. Examples of the silane coupling agent include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, and N-2 (aminoethyl) 3-amino. And propyltrimethoxysilane. In particular, when a polyamide resin is used as the resin 3, these silane coupling agents are highly effective in increasing dispersibility during kneading, and can also be expected to improve impact strength. Moreover, these silane coupling agents can be used individually or in combination of 2 or more types.

酸化チタン2は、光触媒活性を抑制することを目的として、無機物を用いて表面処理を行うことができる。この表面処理に用いる無機物としては、水酸化アルミニウム及び酸化アルミニウム水和物などが挙げられる。   Titanium oxide 2 can be surface-treated with an inorganic substance for the purpose of suppressing photocatalytic activity. Examples of the inorganic material used for the surface treatment include aluminum hydroxide and aluminum oxide hydrate.

消弧用樹脂成形部材1における酸化チタン2の含有量は、特に限定されないが、好ましくは5質量%以上50質量%以下、より好ましくは10質量%以上30質量%以下である。酸化チタン2の含有量が5質量%を未満であると、消弧用樹脂成形部材1中の消弧成分(樹脂3)の含有量が相対的に多くなる結果、消弧用樹脂成形部材1の強度が十分でないことがある。また、アークに曝された際に発生するガスの量が多くなり、消弧装置内の内圧上昇を抑制できず、回路遮断器の筐体の破損が生じることがある。一方、酸化チタン2の含有量が50質量%を超えると、消弧用樹脂成形部材1中の消弧成分(樹脂3)の含有量が相対的に少なくなる結果、遮断性能が低下してしまうことがある。   The content of titanium oxide 2 in the arc-extinguishing resin molded member 1 is not particularly limited, but is preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 30% by mass or less. When the content of titanium oxide 2 is less than 5% by mass, the content of the arc-extinguishing component (resin 3) in the arc-extinguishing resin molded member 1 is relatively increased. As a result, the arc-extinguishing resin molded member 1 May not be strong enough. In addition, the amount of gas generated when exposed to the arc increases, the increase in internal pressure in the arc extinguishing device cannot be suppressed, and the circuit breaker casing may be damaged. On the other hand, when the content of titanium oxide 2 exceeds 50% by mass, the content of the arc-extinguishing component (resin 3) in the arc-extinguishing resin molded member 1 is relatively reduced, and as a result, the shielding performance is lowered. Sometimes.

本発明の消弧用樹脂成形部材1に用いられる樹脂3は、消弧性能、耐圧強度及び耐アーク消耗性の向上に加え、成形時間の短縮を図るために用いられる成分である。樹脂3としては、特に限定されず、当該技術分野において公知のものを用いることができる。
樹脂3の例としては、ポリオレフィン樹脂、ポリオレフィン系共重合体、ポリアミド樹脂、ポリアミド系ポリマーブレンド、ポリアセタール樹脂、ポリアセタール系ポリマーブレンド、脂肪族ポリエステル樹脂、セルロース系樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、ユリア樹脂、メラミン樹脂が挙げられる。これらは、単独又は2種以上を組み合わせて用いることができる。
The resin 3 used in the arc-extinguishing resin molded member 1 of the present invention is a component used for shortening the molding time in addition to improving the arc-extinguishing performance, the pressure resistance, and the arc wear resistance. The resin 3 is not particularly limited, and those known in the technical field can be used.
Examples of the resin 3 include polyolefin resins, polyolefin copolymers, polyamide resins, polyamide polymer blends, polyacetal resins, polyacetal polymer blends, aliphatic polyester resins, cellulose resins, polytetrafluoroethylene and other fluorine resins. , Urea resin, and melamine resin. These can be used alone or in combination of two or more.

ポリオレフィン樹脂は、芳香環を有さず、且つ耐衝撃性に優れることから、消弧性能及び耐圧強度を高めるのに有効である。ポリオレフィン樹脂の例としては、ポリプロピレン、ポリエチレン、ポリメチルペンテンなどが挙げられる。これらの中でも、ポリプロピレン、ポリメチルペンテンなどの比重が小さいものは、消弧用樹脂成形部材1の軽量化の点から好ましい。特に、ポリメチルペンテンは、融点が240℃の結晶性樹脂であるため、高耐熱性も向上させることができる。   Polyolefin resins do not have an aromatic ring and are excellent in impact resistance, and are therefore effective in enhancing arc extinguishing performance and pressure resistance. Examples of the polyolefin resin include polypropylene, polyethylene, polymethylpentene, and the like. Among these, those having a small specific gravity such as polypropylene and polymethylpentene are preferable from the viewpoint of reducing the weight of the arc-extinguishing resin molded member 1. In particular, since polymethylpentene is a crystalline resin having a melting point of 240 ° C., high heat resistance can also be improved.

ポリオレフィン系共重合体は、芳香環を有しないことから、消弧性能を高めるのに有効である。ポリオレフィン系共重合体の例としては、エチレン−ビニルアルコール共重合体、エチレン−酢酸ビニル共重合体などが挙げられる。これらの中でも、エチレン−ビニルアルコール共重合体などの高強度樹脂は、耐圧強度の向上の点から好ましい。   Since the polyolefin-based copolymer does not have an aromatic ring, it is effective for enhancing the arc extinguishing performance. Examples of the polyolefin copolymer include an ethylene-vinyl alcohol copolymer and an ethylene-vinyl acetate copolymer. Among these, high-strength resins such as ethylene-vinyl alcohol copolymer are preferable from the viewpoint of improving the pressure strength.

ポリアミド樹脂は、アミド結合をもつ高分子化合物のこと意味し、本発明ではポリアミド共重合体も包含する。ポリアミド樹脂は、高強度樹脂であり、耐圧強度を高めるのに有効である。また、ポリアミド樹脂は、アーク暴露による分解で発生するガスによってアークを冷却すると共にアーク電圧を高める能力に優れているため、大電流遮断時における過電流を低く抑制する場合に有効である。   The polyamide resin means a polymer compound having an amide bond, and the present invention includes a polyamide copolymer. The polyamide resin is a high-strength resin and is effective in increasing the pressure strength. In addition, the polyamide resin is excellent in the ability to cool the arc by the gas generated by the decomposition due to the arc exposure and increase the arc voltage, and is therefore effective in suppressing the overcurrent when the large current is interrupted.

ポリアミド樹脂の例としては、ナイロン6T、ナイロン46、ナイロン66、ナイロンMXD6、ナイロン610、ナイロン6、ナイロン11、ナイロン12、及びナイロン6とナイロン66との共重合体ナイロンなどが挙げられる。これらの中でも、高融点の結晶性ポリアミドであるナイロン46(融点290℃)及びナイロン66(融点260℃)が好ましい。特に、樹脂3がナイロン46である場合、消弧に有効な熱分解ガスを発生し続ける効果が高い上、耐熱性に優れた消弧用樹脂成形部材1を得ることができる。   Examples of the polyamide resin include nylon 6T, nylon 46, nylon 66, nylon MXD6, nylon 610, nylon 6, nylon 11, nylon 12, and copolymer nylon of nylon 6 and nylon 66. Among these, nylon 46 (melting point 290 ° C.) and nylon 66 (melting point 260 ° C.), which are high melting crystalline polyamides, are preferable. In particular, when the resin 3 is nylon 46, it is possible to obtain the arc-extinguishing resin molded member 1 having a high effect of continuously generating pyrolysis gas effective for arc extinction and having excellent heat resistance.

消弧用樹脂成形部材1における樹脂3の含有量は、特に限定されないが、好ましくは50質量%以上95質量%以下である。樹脂3の含有量が50質量%未満であると、消弧用樹脂成形部材1中の消弧成分の含有量が相対的に少なくなる結果、遮断性能が低下してしまうことがある。一方、樹脂3の含有量が95質量%を超えると、消弧用樹脂成形部材1中の酸化チタン2の含有量が相対的に少なくなる結果、消弧用樹脂成形部材1の強度が低下しまうことがある。また、アークに曝された際に発生するガスの量が多くなり、消弧装置内の内圧上昇を抑制できず、回路遮断器の筐体の破損が生じることがある。   The content of the resin 3 in the arc-extinguishing resin molded member 1 is not particularly limited, but is preferably 50% by mass or more and 95% by mass or less. When the content of the resin 3 is less than 50% by mass, the content of the arc-extinguishing component in the arc-extinguishing resin molded member 1 is relatively reduced, and as a result, the interruption performance may be deteriorated. On the other hand, when the content of the resin 3 exceeds 95% by mass, the content of the titanium oxide 2 in the arc-extinguishing resin molded member 1 is relatively reduced, resulting in a decrease in strength of the arc-extinguishing resin molded member 1. Sometimes. In addition, the amount of gas generated when exposed to the arc increases, the increase in internal pressure in the arc extinguishing device cannot be suppressed, and the circuit breaker casing may be damaged.

消弧用樹脂成形部材1は、強度向上及び熱変形温度(荷重をかけながら試料の温度を上げていき、たわみの大きさが一定の値になる温度)などの耐熱性向上を目的として、酸化チタン2以外の無機充填材(例えば、タルクなど)を加えることも可能である。この無機充填材の配合量は、本発明の効果を阻害しない範囲であれば特に限定されない。   The arc-extinguishing resin molded member 1 is oxidized for the purpose of improving the heat resistance such as strength improvement and heat deformation temperature (temperature at which the temperature of the sample is raised while applying a load and the deflection becomes a constant value). It is also possible to add an inorganic filler other than titanium 2 (for example, talc). The blending amount of the inorganic filler is not particularly limited as long as it does not impair the effects of the present invention.

消弧用樹脂成形部材1は、必要に応じて、当該技術分野において周知の添加剤を配合することができる。添加剤の例としては、難燃剤、安定剤、酸化防止剤、酸化促進剤、紫外線吸収剤、可塑剤、着色剤、充填材などが挙げられる。これらの添加剤の配合量は、本発明の効果を阻害しない範囲であれば特に限定されない。   The arc-extinguishing resin molded member 1 can be blended with additives known in the technical field as necessary. Examples of additives include flame retardants, stabilizers, antioxidants, oxidation accelerators, ultraviolet absorbers, plasticizers, colorants, fillers, and the like. The amount of these additives is not particularly limited as long as it does not impair the effects of the present invention.

消弧用樹脂成形部材1の作製方法としては、特に限定されず、当該技術分野において周知の方法で行なうことができる。例えば、酸化チタン2と樹脂3とを混練した後、所望の形状に成形すればよい。成形方法としては特に限定されず、例えば、射出成形、押し出し成形、中空成形(ブロー成形)、熱成形(真空又は圧空成形)、カレンダー成形、2種以上のシート又はフィルムを重ね合わせたり、貼り合わせて一体物に加工する積層成形、液体成形、注型、粉末成形などが挙げられる。   The method for producing the arc-extinguishing resin molded member 1 is not particularly limited, and can be performed by a method well known in the art. For example, the titanium oxide 2 and the resin 3 may be kneaded and then formed into a desired shape. The molding method is not particularly limited. For example, injection molding, extrusion molding, hollow molding (blow molding), thermoforming (vacuum or pressure molding), calender molding, two or more sheets or films are stacked or bonded. Lamination molding, liquid molding, casting, powder molding, etc. that are processed into a single product.

消弧用樹脂成形部材1は、必要に応じて、表面の耐光性向上、耐候性向上などを目的として、化学的処理及び物理的処理などの後処理を行なってもよい。化学的処理としては、薬品処理、溶剤処理、カップリング剤処理、モノマー・ポリマーコティング、表面グラフト化などが挙げられる。また、物理的処理としては、紫外線照射処理、プラズマ処理、イオンビーム処理などが挙げられる。   The arc-extinguishing resin molded member 1 may be subjected to post-treatment such as chemical treatment and physical treatment for the purpose of improving the light resistance and weather resistance of the surface, if necessary. Examples of the chemical treatment include chemical treatment, solvent treatment, coupling agent treatment, monomer / polymer coating, surface grafting, and the like. Examples of the physical treatment include ultraviolet irradiation treatment, plasma treatment, and ion beam treatment.

上記のようにして得られる消弧用樹脂成形部材1は、酸化チタン2を無機充填材として用いているため、強度、耐熱性及び耐圧性に加えて遮断性能の耐久性にも優れ、且つ消弧に必要な熱分解ガスを発生させる一方、発生するガス量を抑制して回路遮断器の筐体の破損を抑制することができる。   Since the arc-extinguishing resin molded member 1 obtained as described above uses titanium oxide 2 as an inorganic filler, in addition to strength, heat resistance and pressure resistance, it is excellent in the durability of the interruption performance and is also extinguished. While generating the pyrolysis gas required for the arc, it is possible to suppress the amount of the generated gas and suppress the breakage of the casing of the circuit breaker.

実施の形態2.
本発明の回路遮断器は、上記の消弧用樹脂成形部材を含む消弧装置を備えている。本発明の回路遮断器は、消弧用樹脂成形部材に特徴があるため、消弧用樹脂成形部材以外の部材は、従来公知のものを用いることができる。具体的には、本発明の回路遮断装置は、固定接点を有する固定接触子と、可動接点を有する可動接触子と、可動接触子を作動させて固定接点と可動接点とを開閉させる開閉機構と、接触状態にある固定接点と可動接点とが開離するときに発生するアークを消弧する消弧装置とを一般に備えており、消弧装置は、前記アークに曝される部分に、上記の消弧用樹脂成形部材が配置される。
Embodiment 2. FIG.
The circuit breaker of this invention is equipped with the arc-extinguishing apparatus containing said resin molding member for arc-extinguishing. Since the circuit breaker of the present invention is characterized by the arc-extinguishing resin molded member, conventionally known members can be used for members other than the arc-extinguishing resin molded member. Specifically, the circuit breaker of the present invention includes a fixed contact having a fixed contact, a movable contact having a movable contact, and an opening / closing mechanism that opens and closes the fixed contact and the movable contact by operating the movable contact. And an arc extinguishing device that extinguishes an arc generated when the fixed contact and the movable contact in contact with each other are separated from each other. An arc extinguishing resin molded member is disposed.

以下、本発明の消弧用樹脂成形部材を備える回路遮断器の好適な実施の形態を説明する。
図3は、本発明の回路遮断器中の消弧装置の遮断時の様子を表す模式図であり、(a)は消弧装置の断面図、(b)は消弧装置の側面図((a)のIb−Ibに沿った断面図に相当する)である。図3(a)及び(b)に示すように、この消弧装置では、可動接点11が設けられた可動接触子10と、固定接点13が設けられた固定接触子12と、可動接点11及び固定接点13の周囲を囲む消弧用樹脂成形部材14とが配置されている。図3(a)及び(b)において、消弧用樹脂成形部材14は、便宜上その一部を図示しているが、実際には接触子を介して板状部材を対向配置したり、コの字状部材で上記接触子を囲むように配置してもよい。
Hereinafter, preferred embodiments of a circuit breaker including the arc-extinguishing resin molded member of the present invention will be described.
3A and 3B are schematic views showing a state of the arc-extinguishing device in the circuit breaker according to the present invention when the arc-extinguishing device is interrupted. FIG. 3A is a cross-sectional view of the arc-extinguishing device, and FIG. a) corresponding to a cross-sectional view taken along line Ib-Ib). As shown in FIGS. 3A and 3B, in this arc extinguishing apparatus, the movable contact 10 provided with the movable contact 11, the fixed contact 12 provided with the fixed contact 13, the movable contact 11 and An arc-extinguishing resin molding member 14 surrounding the fixed contact 13 is disposed. 3 (a) and 3 (b), a part of the arc extinguishing resin molded member 14 is shown for convenience, but in actuality, a plate-like member is disposed oppositely via a contactor, You may arrange | position so that the said contactor may be enclosed with a character-shaped member.

可動接点11は可動接触子10の可動側(固定接点13と対向する側)に設けられ、固定接点13は、通電時に可動接点11と接触するように固定接触子12の可動接点11と対向する位置に設けられている。これらの接触子は接触子対をなしている。また、消弧用樹脂成形部材14は、回路遮断時に可動接点11と固定接点13との間で発生するアークに曝される部分に配置されている。   The movable contact 11 is provided on the movable side of the movable contact 10 (the side facing the fixed contact 13), and the fixed contact 13 faces the movable contact 11 of the fixed contact 12 so as to contact the movable contact 11 when energized. In the position. These contacts form a contact pair. Further, the arc extinguishing resin molded member 14 is disposed in a portion exposed to an arc generated between the movable contact 11 and the fixed contact 13 when the circuit is interrupted.

次に、回路遮断器の一般的な動作について説明する。図3(a)及び(b)において、開閉機構部(図5及び6参照)を動作させると、可動接触子10が回動して可動接点11と固定接点13とが接触又は開離する。可動接点11と固定接点13とを接触させることにより、電力が電源から負荷に供給される。この状態において、可動接点11は、通電の信頼性を確保するために、規定の接触圧力で固定接点13に押さえつけることで接触させている。   Next, general operation of the circuit breaker will be described. 3 (a) and 3 (b), when the opening / closing mechanism (see FIGS. 5 and 6) is operated, the movable contact 10 rotates and the movable contact 11 and the fixed contact 13 are contacted or separated. By bringing the movable contact 11 and the fixed contact 13 into contact, electric power is supplied from the power source to the load. In this state, the movable contact 11 is brought into contact by pressing against the fixed contact 13 with a specified contact pressure in order to ensure the reliability of energization.

短絡事故などの発生によって回路に大きな過電流が流れると、可動接点11と固定接点13との間の接触面における電磁反発力が非常に大きくなる。その結果、電磁反発力が、可動接点11に加えられている接触圧力を上回り、可動接触子10が回動して可動接点11と固定接点13とが開離する。また、開閉機構部及び引き外し装置の動作によって固定接点13と可動接点11との開離距離が増大する。その結果、アーク抵抗の増大によってアーク電圧が上昇する。   When a large overcurrent flows in the circuit due to the occurrence of a short circuit accident or the like, the electromagnetic repulsion force on the contact surface between the movable contact 11 and the fixed contact 13 becomes very large. As a result, the electromagnetic repulsion force exceeds the contact pressure applied to the movable contact 11, the movable contact 10 rotates and the movable contact 11 and the fixed contact 13 are separated. Further, the opening distance between the fixed contact 13 and the movable contact 11 is increased by the operation of the opening / closing mechanism and the tripping device. As a result, the arc voltage increases due to an increase in arc resistance.

上記のような遮断動作において、可動接点11と固定接点13との間には、アークによって短時間(すなわち、数ミリ秒)のうちに大量のエネルギーが発生する。このとき、消弧装置の側面などに設けた消弧用樹脂成形部材14がアークに曝されることによって分解ガスが生じ、発生した分解ガスによってアークを冷却して消弧する。   In the interruption operation as described above, a large amount of energy is generated between the movable contact 11 and the fixed contact 13 by an arc in a short time (that is, several milliseconds). At this time, when the arc-extinguishing resin molded member 14 provided on the side surface of the arc extinguishing device is exposed to the arc, decomposition gas is generated, and the arc is cooled and extinguished by the generated decomposition gas.

また一般に、消弧装置には、消弧用樹脂成形部材14と共に消弧板が配置される。図4は、U字型又はV字型の切欠部16を持つ複数の消弧板15を一定間隔で積層して用いた消弧装置の斜視図である。ここで、消弧板15は、一般に金属から構成される。可動接点11と固定接点13の間に発生したアーク17は、消弧板15の方向へ磁気力によって引き付けられて伸長するため、アーク電圧は更に上昇する。さらに、複数の消弧板15にアーク17を取り込むことで過電流を限流させる。このとき、消弧用樹脂成形部材14から発生した分解ガスは、アーク17を消弧板15に誘導する役割も担う。   In general, the arc extinguishing apparatus is provided with an arc extinguishing plate together with the arc extinguishing resin molded member 14. FIG. 4 is a perspective view of an arc extinguishing apparatus using a plurality of arc extinguishing plates 15 having U-shaped or V-shaped cutout portions 16 stacked at regular intervals. Here, the arc extinguishing plate 15 is generally made of metal. Since the arc 17 generated between the movable contact 11 and the fixed contact 13 is attracted and extended by the magnetic force in the direction of the arc extinguishing plate 15, the arc voltage further increases. Further, the overcurrent is limited by taking in the arc 17 into the plurality of arc extinguishing plates 15. At this time, the decomposition gas generated from the arc extinguishing resin molded member 14 also plays a role of guiding the arc 17 to the arc extinguishing plate 15.

上記の回路遮断器について、より詳細に説明する。図5及び図6は、本発明の回路遮断器の模式的な断面図である。図5は回路遮断器の接触時(オン状態)、図6は、図5に示す回路遮断器の部分拡大図であって、回路遮断器の遮断時(オフ状態)を示す。
図5及び図6において、回路遮断器は、銅、アルミ、銀、銀合金、鉄などの導体からなる可動接触子10、可動接触子10の一端に配置された可動接点11、可動接点11と接触又は開離する固定接点13、固定接点13が配置された銅などの導体からなる固定接触子12、固定接触子12の他端部に接続された電源側の端子部18を主に備え、外部電源から配線(図示していない)が接続されている。
The above circuit breaker will be described in more detail. FIG.5 and FIG.6 is typical sectional drawing of the circuit breaker of this invention. FIG. 5 is a contacted circuit breaker (on state), and FIG. 6 is a partially enlarged view of the circuit breaker shown in FIG. 5, showing the circuit breaker being disconnected (off state).
5 and 6, the circuit breaker includes a movable contact 10 made of a conductor such as copper, aluminum, silver, a silver alloy, and iron, a movable contact 11 disposed at one end of the movable contact 10, a movable contact 11 and The fixed contact 13 to be contacted or separated, the fixed contact 12 made of a conductor such as copper on which the fixed contact 13 is disposed, and the power supply side terminal portion 18 connected to the other end of the fixed contact 12 are mainly provided. Wiring (not shown) is connected from an external power source.

消弧装置100は、可動接点11と固定接点13との間に発生したアーク17を冷却及び消弧する磁性体の金属からなる複数の消弧板15(グリッド)と、消弧板15を両側で保持する消弧側板20(図5及び図6においては、消弧側板20の片側のみを示す)と、消弧用樹脂成形部材14とから構成される。消弧装置100における消弧板15は、互いに空隙を介して積層配列されている。消弧用樹脂成形部材14は、回路遮断器の接触時の状態において可動接点11と固定接点13とを両脇から挟むように設けられており、固定接触子12の大部分を覆うように設けられている(図7(a)及び(b)参照)。   The arc extinguishing device 100 includes a plurality of arc extinguishing plates 15 (grids) made of a magnetic metal that cools and extinguishes an arc 17 generated between the movable contact 11 and the fixed contact 13, and the arc extinguishing plates 15 on both sides. The arc extinguishing side plate 20 (only one side of the arc extinguishing side plate 20 is shown in FIGS. 5 and 6) and the arc extinguishing resin molded member 14 are held. The arc extinguishing plates 15 in the arc extinguishing apparatus 100 are stacked and arranged with a gap therebetween. The arc-extinguishing resin molded member 14 is provided so as to sandwich the movable contact 11 and the fixed contact 13 from both sides in the state of contact with the circuit breaker, and is provided so as to cover most of the fixed contact 12. (See FIGS. 7A and 7B).

さらに、回路遮断器は、例えば、可動接触子10を回動して開閉駆動する開閉機構部110、この開閉機構部110を手動で操作するためのハンドル21、引き外し装置部120、負荷側の端子部19などを備えている。カバー22及びベース23は、上記の各部材を収納及び/又は固定し、筐体27の一部を構成している。端子部18を筐体27から隔離するエンドプレート25は、アーク17によるホットガスを排出する排気孔25aを有し、ベース23に設けられたガイド溝24に挿入装着されている。また、アーク17を消弧板15の中央へ走行させるアークランナー26が設けられている。   Further, the circuit breaker includes, for example, an opening / closing mechanism 110 that rotates and opens the movable contact 10, a handle 21 for manually operating the opening / closing mechanism 110, a tripping device 120, a load side The terminal part 19 etc. are provided. The cover 22 and the base 23 store and / or fix the above-described members and constitute a part of the housing 27. The end plate 25 that isolates the terminal portion 18 from the housing 27 has an exhaust hole 25 a that discharges hot gas from the arc 17, and is inserted into a guide groove 24 provided in the base 23. Further, an arc runner 26 is provided for causing the arc 17 to travel to the center of the arc extinguishing plate 15.

上記の消弧用樹脂成形部材14と接触子対(固定接触子12及び可動接触子10)との位置関係について、図7(a)に側面図を示し、図7(b)に図7(a)の上面図を示す。図7(a)及び(b)において、消弧用樹脂成形部材14は、可動接触子10の可動接点11(図示していない)と、固定接触子12の固定接点13との接触子対付近に設けられており、上面から見ると、固定接点13が露出しており、アーク17に曝される固定接触子12の大部分を覆うように設けられている。消弧用樹脂成形部材14は、アーク17が固定接触子12の固定接点13以外の部分に移動しないようにする絶縁部材としての働きも有している。   FIG. 7A shows a side view and FIG. 7B shows the positional relationship between the arc extinguishing resin molding member 14 and the contact pair (the fixed contact 12 and the movable contact 10). The top view of a) is shown. 7A and 7B, the arc-extinguishing resin molded member 14 is in the vicinity of a contact pair between the movable contact 11 (not shown) of the movable contact 10 and the fixed contact 13 of the fixed contact 12. The fixed contact 13 is exposed when viewed from above, and is provided so as to cover most of the fixed contact 12 exposed to the arc 17. The arc-extinguishing resin molded member 14 also functions as an insulating member that prevents the arc 17 from moving to a portion other than the fixed contact 13 of the fixed contact 12.

上記のような構造を有する回路遮断器は、強度、耐熱性及び耐圧性に加えて遮断性能の耐久性にも優れ、且つ消弧に必要な熱分解ガスを発生させる一方、発生するガス量を抑制し得る消弧用樹脂成形部材14を備えているので、遮断性能及びその耐久性に優れ、筐体の破損を抑制することが可能となる。特に、この回路遮断器に設けられる消弧用樹脂成形部材14は、アーク17に曝された際に生じる分解ガスにより、限流性能を高めると共に、接触子付近に発生したアーク17を伸張させて消弧板15へ誘導する働きをする。そのため、事故発生などの過電流遮断時に回路遮断器に注入されるエネルギーを低下させ、回路遮断器の構造物への負担を軽減することができる。従って、本発明の消弧用樹脂成形部材14を用いることで回路遮断器の大容量化及び小型化を行うことが可能になる。   The circuit breaker having the structure as described above is excellent in durability of breaking performance in addition to strength, heat resistance and pressure resistance, and generates pyrolysis gas necessary for arc extinction, while reducing the amount of gas generated. Since the arc-extinguishing resin molded member 14 that can be suppressed is provided, the shielding performance and the durability thereof are excellent, and damage to the housing can be suppressed. In particular, the arc-extinguishing resin molded member 14 provided in this circuit breaker enhances the current limiting performance by the decomposed gas generated when exposed to the arc 17 and extends the arc 17 generated in the vicinity of the contact. It works to guide to the arc extinguishing plate 15. Therefore, the energy injected into the circuit breaker at the time of overcurrent interruption such as the occurrence of an accident can be reduced, and the burden on the structure of the circuit breaker can be reduced. Therefore, it is possible to increase the capacity and size of the circuit breaker by using the arc extinguishing resin molded member 14 of the present invention.

以下、実施例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
(実施例1〜4)
表1に、実施例1〜4で作製した消弧用樹脂成形部材の材料組成を示す。実施例1〜4では、樹脂としてナイロン46(DSM社製TS350)を用いた。また、実施例1では酸化チタンとして平均短径0.1μm及び平均長径1.7μmの針状酸化チタン(石原産業株式会社製FTL−100)を用い、実施例2では酸化チタンとして平均短径0.2μm及び平均長径2.9μmの針状酸化チタン(石原産業株式会社製FTL−200)を用い、実施例3では酸化チタンとして平均短径0.3μm及び平均長径5.2μmの針状酸化チタン(石原産業株式会社製FTL−300)を用い、実施例4では平均短径0.2μm及び平均長径2.9μmの針状酸化チタン(石原産業株式会社製FTL−200)をアミノシランカップリン剤処理したものを用いた。
表1に示す配合量で酸化チタンを樹脂に配合し、サイドフィード式樹脂混練機で加熱混練し、押出機によってペレットを作製した後、射出成形を行うことによって、縦40mm、横60mm、厚さ1mmの消弧用樹脂成形部材を得た。
EXAMPLES Hereinafter, although an Example demonstrates the detail of this invention, this invention is not limited by these.
(Examples 1-4)
Table 1 shows the material composition of the arc-extinguishing resin molded member produced in Examples 1-4. In Examples 1-4, nylon 46 (TS350 manufactured by DSM) was used as the resin. In Example 1, acicular titanium oxide (FTL-100 manufactured by Ishihara Sangyo Co., Ltd.) having an average minor axis of 0.1 μm and an average major axis of 1.7 μm was used as titanium oxide, and in Example 2, an average minor axis of 0 was used as titanium oxide. .2 μm and needle-like titanium oxide having an average major axis of 2.9 μm (FTL-200 manufactured by Ishihara Sangyo Co., Ltd.) are used, and in Example 3, needle-like titanium oxide having an average minor axis of 0.3 μm and an average major axis of 5.2 μm (FTL-300 manufactured by Ishihara Sangyo Co., Ltd.) In Example 4, acicular titanium oxide (FTL-200 manufactured by Ishihara Sangyo Co., Ltd.) having an average minor axis of 0.2 μm and an average major axis of 2.9 μm was treated with an aminosilane coupling agent. What was done was used.
Titanium oxide is blended with the resin in the blending amounts shown in Table 1, heated and kneaded with a side-feed type resin kneader, and pellets are produced with an extruder, and then injection molding is performed to obtain a length of 40 mm, a width of 60 mm, and a thickness. A 1 mm arc-extinguishing resin molded member was obtained.

(比較例1〜3)
酸化チタンの代わりに、ワラストナイト(キンセイマテック株式会社製SH−800S)、チタン酸カリウム(大塚化学株式会社製ティスモD)、ガラス繊維(日東紡績株式会社製CS 3J-459)を用いたこと以外は、上記の実施例と同様にして縦40mm、横60mm、厚さ1mmの消弧用樹脂成形部材を得た。
(Comparative Examples 1-3)
Instead of titanium oxide, wollastonite (SH-800S manufactured by Kinsei Matec Co., Ltd.), potassium titanate (Tismo D manufactured by Otsuka Chemical Co., Ltd.), glass fiber (CS 3J-459 manufactured by Nitto Boseki Co., Ltd.) was used. Except for the above, an arc extinguishing resin molded member having a length of 40 mm, a width of 60 mm, and a thickness of 1 mm was obtained in the same manner as in the above example.

次に、上記の実施例及び比較例で得られた消弧用樹脂成形部材を、図3及び4に示す回路遮断器に配置し、過負荷遮断試験及び短絡遮断試験を行った。過負荷遮断試験及び短絡遮断試験は、以下のようにして行った。   Next, the arc-extinguishing resin molded members obtained in the above examples and comparative examples were placed in the circuit breakers shown in FIGS. 3 and 4, and an overload interruption test and a short circuit interruption test were performed. The overload interruption test and the short circuit interruption test were performed as follows.

(過負荷遮断試験)
図3及び4に示す回路遮断器にオン状態で定格電流の6倍の電流(例えば、100A用回路遮断器の場合は600A)を通電し、可動接点と固定接点とを接点開離距離L(可動接点と固定接点との距離)が15〜25mmとなるように開離させてアーク電流を発生させ、このアーク電流の遮断を行った。アーク電流の規定遮断回数(112回)のうちアーク電流の遮断が成功した回数を表1に示す。なお、この試験は、AC690V/600Aの条件で行った。
(Overload interruption test)
The circuit breaker shown in FIGS. 3 and 4 is energized with a current that is six times the rated current in the ON state (for example, 600 A in the case of a circuit breaker for 100 A), and the movable contact and the fixed contact are separated by a contact opening distance L ( The arc current was generated by breaking the circuit so that the distance between the movable contact and the fixed contact was 15 to 25 mm, and the arc current was interrupted. Table 1 shows the number of successful interruptions of the arc current among the prescribed number of interruptions of the arc current (112 times). This test was performed under the condition of AC690V / 600A.

(短絡遮断試験)
閉成状態において、440V/50kAの過剰電流を通電して可動接点と固定接点とを開離させてアーク電流を発生させ、このアーク電流の遮断を行った。アーク電流の規定遮断回数(3回)のうちアーク電流の遮断が成功した回数、並びに消弧用樹脂成形部材及び筐体の破損の有無を表1に示す。消弧用樹脂成形部材及び筐体の破損の有無は目視によって確認した。
(Short-circuit interruption test)
In the closed state, an excess current of 440 V / 50 kA was applied to open the movable contact and the fixed contact to generate an arc current, and this arc current was interrupted. Table 1 shows the number of successful interruptions of the arc current out of the prescribed number of interruptions of the arc current (three times) and the presence or absence of breakage of the arc extinguishing resin molded member and the casing. The presence or absence of breakage of the arc extinguishing resin molded member and the casing was confirmed by visual observation.

Figure 2013229288
Figure 2013229288

表1に示すように、実施例1〜4の消弧用樹脂成形部材を備える回路遮断器は、過負荷遮断試験及び短絡遮断試験における規定遮断回数をクリアすると共に、短絡遮断試験において消弧用樹脂成形部材及び筐体の破損も見られなかった。また、過負荷遮断試験及び短絡遮断試験後に、実施例1〜4の消弧用樹脂成形部材の表面を観察した結果、アークに曝された表面は、樹脂と酸化チタンとが均一に混在していることが確認された。   As shown in Table 1, the circuit breaker including the arc-extinguishing resin molded members of Examples 1 to 4 clears the specified number of interruptions in the overload interruption test and the short-circuit interruption test, and for arc-extinguishing in the short-circuit interruption test. The resin molded member and the casing were not damaged. Moreover, as a result of observing the surface of the arc-extinguishing resin molded member of Examples 1 to 4 after the overload interruption test and the short circuit interruption test, the surface exposed to the arc is a mixture of resin and titanium oxide uniformly. It was confirmed that

これに対して、比較例1〜3の消弧用樹脂成形部材を備える回路遮断器は、過負荷遮断試験における規定遮断回数をクリアすることができなかった。また、比較例2〜3の消弧用樹脂成形部材を備える回路遮断器は、短絡遮断試験における規定遮断回数もクリアすることができなかった。また、過負荷遮断試験及び短絡遮断試験後に、比較例1〜3の消弧用樹脂成形部材についても表面を観察したところ、比較例1では、ワラストナイトが表面に多く露出していた。従って、比較例1では、表面の樹脂不足によって遮断性能が低下したものと考えられる。また、比較例2では、樹脂とチタン酸カリウムとが均一に混在した表面が保持されており、特異的な変化は見られなかった。従って、比較例2では、チタン酸カリウムの影響によって遮断性能が低下したものと考えられる。また、比較例3では、一部溶解したガラス繊維が表面に露出していた。従って、比較例3では、表面の樹脂不足によって遮断性能が低下したものと考えられる。特に、比較例3では、露出したガラス繊維上に、遮断時に析出したすすが沿面放電経路を与え、アークの遮断を阻害する要因となったと考えられる。   On the other hand, the circuit breaker provided with the arc-extinguishing resin molded member of Comparative Examples 1 to 3 could not clear the specified number of interruptions in the overload interruption test. Moreover, the circuit breaker provided with the arc-extinguishing resin molded member of Comparative Examples 2 to 3 could not clear the specified number of interruptions in the short circuit interruption test. Moreover, when the surface was observed also about the resin-molding member for arc-extinguishing of Comparative Examples 1-3 after the overload interruption | blocking test and the short circuit interruption | blocking test, in Comparative Example 1, a lot of wollastonite was exposed on the surface. Therefore, in Comparative Example 1, it is considered that the blocking performance was lowered due to the lack of resin on the surface. Further, in Comparative Example 2, a surface in which the resin and potassium titanate were uniformly mixed was retained, and no specific change was observed. Therefore, in the comparative example 2, it is thought that the interruption | blocking performance fell by the influence of potassium titanate. In Comparative Example 3, partially dissolved glass fibers were exposed on the surface. Therefore, in Comparative Example 3, it is considered that the blocking performance was lowered due to the lack of resin on the surface. In particular, in Comparative Example 3, it is considered that soot deposited at the time of interruption on the exposed glass fiber provided a creeping discharge path, which hindered arc interruption.

以上の結果からわかるように、本発明によれば、強度、耐熱性及び耐圧性に加えて遮断性能の耐久性にも優れ、且つ消弧に必要な熱分解ガスを発生させる一方、発生するガス量を抑制して回路遮断器の筐体の破損を抑制し得る消弧用樹脂成形部材を提供することができる。また、本発明によれば、遮断性能及びその耐久性に優れ、筐体の破損を抑制し得る回路遮断器を提供することができる。   As can be seen from the above results, according to the present invention, in addition to strength, heat resistance and pressure resistance, it has excellent interruption performance and generates pyrolysis gas necessary for arc extinction, while the generated gas. It is possible to provide an arc extinguishing resin molded member capable of suppressing the breakage of the circuit breaker casing by suppressing the amount. Moreover, according to this invention, the circuit breaker which is excellent in interruption | blocking performance and its durability, and can suppress the failure | damage of a housing | casing can be provided.

1、14 本発明の消弧用樹脂成形部材、2 酸化チタン、3 樹脂、4、34 従来の消弧用樹脂成形部材、5 無機充填材、10、30 可動接触子、11、31 可動接点、12、32 固定接触子、13、33 固定接点、15、35 消弧板、16、36 切欠部、17、37 アーク、18 端子部、19 端子部、20 消弧側板、21 ハンドル、22 カバー、23 ベース、24 ガイド溝、25 エンドプレート、26 アークランナー、27 筐体。   DESCRIPTION OF SYMBOLS 1,14 Arc-extinguishing resin molding member of this invention, Titanium oxide, 3 Resin, 4,34 Conventional arc-extinguishing resin molding member, 5 Inorganic filler, 10, 30 Movable contact, 11, 31 Movable contact, 12, 32 fixed contact, 13, 33 fixed contact, 15, 35 arc extinguishing plate, 16, 36 notch, 17, 37 arc, 18 terminal, 19 terminal, 20 arc extinguishing side plate, 21 handle, 22 cover, 23 base, 24 guide groove, 25 end plate, 26 arc runner, 27 housing.

Claims (6)

針状又は繊維状の酸化チタンを樹脂中に含むことを特徴とする消弧用樹脂成形部材。   An arc-extinguishing resin molded member comprising acicular or fibrous titanium oxide in a resin. 前記酸化チタンは、0.02μm以上2μm以下の平均短径及び0.5μm以上50μm以下の平均長径を有する針状の酸化チタンであることを特徴とする請求項1に記載の消弧用樹脂成形部材。   2. The arc-extinguishing resin molding according to claim 1, wherein the titanium oxide is acicular titanium oxide having an average minor axis of 0.02 μm to 2 μm and an average major axis of 0.5 μm to 50 μm. Element. 前記樹脂がポリアミド樹脂であることを特徴とする請求項1又は2に記載の消弧用樹脂成形部材。   The arc-extinguishing resin molded member according to claim 1 or 2, wherein the resin is a polyamide resin. 前記ポリアミド樹脂がナイロン46であることを特徴とする請求項3に記載の消弧用樹脂成形部材。   The arc-extinguishing resin molded member according to claim 3, wherein the polyamide resin is nylon 46. 請求項1〜4のいずれか一項に記載の消弧用樹脂成形部材を含む消弧装置を備えることを特徴とする回路遮断器。   A circuit breaker comprising an arc extinguishing device including the arc-extinguishing resin molded member according to any one of claims 1 to 4. 固定接点を有する固定接触子と、可動接点を有する可動接触子と、前記可動接触子を作動させて前記固定接点と前記可動接点とを開閉させる開閉機構と、接触状態にある前記固定接点と前記可動接点とが開離するときに発生するアークを消弧する消弧装置とを備える回路遮断器であって、
前記消弧装置は、前記アークに曝される部分に、請求項1〜4のいずれか一項に記載の消弧用樹脂成形部材が配置されていることを特徴とする回路遮断器。
A stationary contact having a stationary contact; a movable contact having a movable contact; an open / close mechanism that opens and closes the stationary contact and the movable contact by operating the movable contact; the stationary contact in a contact state; A circuit breaker comprising: an arc extinguishing device that extinguishes an arc generated when the movable contact is opened;
The arc-extinguishing device is a circuit breaker in which the arc-extinguishing resin molded member according to any one of claims 1 to 4 is disposed in a portion exposed to the arc.
JP2012266858A 2012-03-29 2012-12-06 Circuit breaker Active JP5889172B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012266858A JP5889172B2 (en) 2012-03-29 2012-12-06 Circuit breaker
CN201310103255.6A CN103367069B (en) 2012-03-29 2013-03-28 Extinguishing arc resin-molded component and circuit breaker

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012076777 2012-03-29
JP2012076777 2012-03-29
JP2012266858A JP5889172B2 (en) 2012-03-29 2012-12-06 Circuit breaker

Publications (2)

Publication Number Publication Date
JP2013229288A true JP2013229288A (en) 2013-11-07
JP5889172B2 JP5889172B2 (en) 2016-03-22

Family

ID=49676700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266858A Active JP5889172B2 (en) 2012-03-29 2012-12-06 Circuit breaker

Country Status (1)

Country Link
JP (1) JP5889172B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
JP2007326925A (en) * 2006-06-07 2007-12-20 Toray Ind Inc Resin composition and molded product comprising the same
JP2011071048A (en) * 2009-09-28 2011-04-07 Mitsubishi Electric Corp Insulated molding for arc-extinguishing, and circuit breaker using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210507A (en) * 1981-06-22 1982-12-24 Hitachi Ltd Breaker
JP2007326925A (en) * 2006-06-07 2007-12-20 Toray Ind Inc Resin composition and molded product comprising the same
JP2011071048A (en) * 2009-09-28 2011-04-07 Mitsubishi Electric Corp Insulated molding for arc-extinguishing, and circuit breaker using the same

Also Published As

Publication number Publication date
JP5889172B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US7893380B2 (en) Arc-extinguishing composition and articles manufactured therefrom
JP4655094B2 (en) Arc extinguishing resin processed product and circuit breaker using the same
AU2009202223B2 (en) Metal-hydrate containing arc-extinguishing compostions and methods
TW563151B (en) Circuit breaker
JP2008130373A (en) Resinated article for arc extinction and circuit breaker using it
JP2010092806A (en) Circuit breaker
JP5889172B2 (en) Circuit breaker
US8809721B2 (en) Quenching element, quenching unit, quenching and plugging unit, and switching device
WO2019175042A1 (en) Circuit breaker for isolating an electrical circuit
JP5741148B2 (en) Insulation material molded body for arc extinguishing, and circuit breaker using the same
JP5286537B2 (en) Insulation molding for arc extinction and circuit breaker using the same
JP5575098B2 (en) Insulation material molded body for arc extinguishing, and circuit breaker using the same
JP2008130375A (en) Arc-extinguishing resin processed product, and circuit breaker using it
JP2015130356A (en) Arc-extinguishing insulating material molding, and circuit breaker using the same
EP1548772A1 (en) Arc extinguishing installation for a circuit breaker with a double break
ITMI20002695A1 (en) CONDUCTIVE POLYMER COMPOSITIONS CONTAINING FIBER FIBERS AND DEVICES
CN103367069A (en) Resin-molded component for arc extinction and loop breaker
JP2001176372A (en) Circuit breaker
JP5003630B2 (en) Arc extinguishing resin processed product and circuit breaker using the same
JP4941409B2 (en) Arc extinguishing resin processed product and circuit breaker using the same
WO2019116945A1 (en) Arc-extinguishing insulation material molding and circuit breaker
JPH02256110A (en) Arc-extringuishing material and circuit breaker
US20220351919A1 (en) Circuit Breaker with Double Break Contacts and Non-Polarity Sensitive Design
JP4140204B2 (en) Current limiting mechanism and circuit breaker having the same
US20230260672A1 (en) Insulated electrical wire and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent or registration of utility model

Ref document number: 5889172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250