JP2013225542A - Conjugated polymer compound and organic photoelectric conversion element using the same - Google Patents
Conjugated polymer compound and organic photoelectric conversion element using the same Download PDFInfo
- Publication number
- JP2013225542A JP2013225542A JP2012096009A JP2012096009A JP2013225542A JP 2013225542 A JP2013225542 A JP 2013225542A JP 2012096009 A JP2012096009 A JP 2012096009A JP 2012096009 A JP2012096009 A JP 2012096009A JP 2013225542 A JP2013225542 A JP 2013225542A
- Authority
- JP
- Japan
- Prior art keywords
- group
- carbon atoms
- photoelectric conversion
- fluorinated
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 241
- 150000001875 compounds Chemical class 0.000 title claims abstract description 124
- 229920000547 conjugated polymer Polymers 0.000 title claims abstract description 67
- 239000004065 semiconductor Substances 0.000 claims abstract description 100
- 125000004432 carbon atom Chemical group C* 0.000 claims description 149
- 125000000217 alkyl group Chemical group 0.000 claims description 50
- 125000001072 heteroaryl group Chemical group 0.000 claims description 42
- 230000005525 hole transport Effects 0.000 claims description 40
- 125000003545 alkoxy group Chemical group 0.000 claims description 33
- 125000003118 aryl group Chemical group 0.000 claims description 33
- 125000004414 alkyl thio group Chemical group 0.000 claims description 30
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 29
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 29
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 125000005843 halogen group Chemical group 0.000 claims description 15
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 10
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 264
- 239000000463 material Substances 0.000 description 89
- -1 n-octyl group Chemical group 0.000 description 84
- 239000010408 film Substances 0.000 description 52
- 238000000034 method Methods 0.000 description 49
- 239000000758 substrate Substances 0.000 description 35
- 238000000576 coating method Methods 0.000 description 34
- 239000000243 solution Substances 0.000 description 34
- 230000006870 function Effects 0.000 description 26
- 229920000642 polymer Polymers 0.000 description 25
- 239000000203 mixture Substances 0.000 description 22
- 125000001153 fluoro group Chemical group F* 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 239000011347 resin Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- 239000007772 electrode material Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 15
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 229910052731 fluorine Inorganic materials 0.000 description 15
- 238000004770 highest occupied molecular orbital Methods 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 230000006798 recombination Effects 0.000 description 12
- 238000005215 recombination Methods 0.000 description 12
- 229910052709 silver Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 150000001721 carbon Chemical group 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- 239000004332 silver Substances 0.000 description 11
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 10
- 229920001577 copolymer Polymers 0.000 description 10
- 229910003472 fullerene Inorganic materials 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 229910052794 bromium Inorganic materials 0.000 description 8
- 229910052801 chlorine Inorganic materials 0.000 description 8
- 229920001940 conductive polymer Polymers 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000010931 gold Substances 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- VJYJJHQEVLEOFL-UHFFFAOYSA-N thieno[3,2-b]thiophene Chemical compound S1C=CC2=C1C=CS2 VJYJJHQEVLEOFL-UHFFFAOYSA-N 0.000 description 8
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 238000010030 laminating Methods 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 229930192474 thiophene Natural products 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920000144 PEDOT:PSS Polymers 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000002861 polymer material Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052738 indium Inorganic materials 0.000 description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 239000002070 nanowire Substances 0.000 description 5
- 125000004430 oxygen atom Chemical group O* 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229920000123 polythiophene Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 235000019341 magnesium sulphate Nutrition 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229920000767 polyaniline Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- FYNROBRQIVCIQF-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole-5,6-dione Chemical group C1=CN=C2C(=O)C(=O)N=C21 FYNROBRQIVCIQF-UHFFFAOYSA-N 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- UVAMFBJPMUMURT-UHFFFAOYSA-N 2,3,4,5,6-pentafluorobenzenethiol Chemical compound FC1=C(F)C(F)=C(S)C(F)=C1F UVAMFBJPMUMURT-UHFFFAOYSA-N 0.000 description 3
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- 229940126086 compound 21 Drugs 0.000 description 3
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000001226 reprecipitation Methods 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 2
- STBLNCCBQMHSRC-BATDWUPUSA-N (2s)-n-[(3s,4s)-5-acetyl-7-cyano-4-methyl-1-[(2-methylnaphthalen-1-yl)methyl]-2-oxo-3,4-dihydro-1,5-benzodiazepin-3-yl]-2-(methylamino)propanamide Chemical compound O=C1[C@@H](NC(=O)[C@H](C)NC)[C@H](C)N(C(C)=O)C2=CC(C#N)=CC=C2N1CC1=C(C)C=CC2=CC=CC=C12 STBLNCCBQMHSRC-BATDWUPUSA-N 0.000 description 2
- IWZSHWBGHQBIML-ZGGLMWTQSA-N (3S,8S,10R,13S,14S,17S)-17-isoquinolin-7-yl-N,N,10,13-tetramethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-amine Chemical compound CN(C)[C@H]1CC[C@]2(C)C3CC[C@@]4(C)[C@@H](CC[C@@H]4c4ccc5ccncc5c4)[C@@H]3CC=C2C1 IWZSHWBGHQBIML-ZGGLMWTQSA-N 0.000 description 2
- WZZBNLYBHUDSHF-DHLKQENFSA-N 1-[(3s,4s)-4-[8-(2-chloro-4-pyrimidin-2-yloxyphenyl)-7-fluoro-2-methylimidazo[4,5-c]quinolin-1-yl]-3-fluoropiperidin-1-yl]-2-hydroxyethanone Chemical compound CC1=NC2=CN=C3C=C(F)C(C=4C(=CC(OC=5N=CC=CN=5)=CC=4)Cl)=CC3=C2N1[C@H]1CCN(C(=O)CO)C[C@@H]1F WZZBNLYBHUDSHF-DHLKQENFSA-N 0.000 description 2
- YSUIQYOGTINQIN-UZFYAQMZSA-N 2-amino-9-[(1S,6R,8R,9S,10R,15R,17R,18R)-8-(6-aminopurin-9-yl)-9,18-difluoro-3,12-dihydroxy-3,12-bis(sulfanylidene)-2,4,7,11,13,16-hexaoxa-3lambda5,12lambda5-diphosphatricyclo[13.2.1.06,10]octadecan-17-yl]-1H-purin-6-one Chemical compound NC1=NC2=C(N=CN2[C@@H]2O[C@@H]3COP(S)(=O)O[C@@H]4[C@@H](COP(S)(=O)O[C@@H]2[C@@H]3F)O[C@H]([C@H]4F)N2C=NC3=C2N=CN=C3N)C(=O)N1 YSUIQYOGTINQIN-UZFYAQMZSA-N 0.000 description 2
- GSOFREOFMHUMMZ-UHFFFAOYSA-N 3,4-dicarbamoylnaphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=N)C(C(=N)O)=C(C(O)=O)C(C(O)=O)=C21 GSOFREOFMHUMMZ-UHFFFAOYSA-N 0.000 description 2
- QBWKPGNFQQJGFY-QLFBSQMISA-N 3-[(1r)-1-[(2r,6s)-2,6-dimethylmorpholin-4-yl]ethyl]-n-[6-methyl-3-(1h-pyrazol-4-yl)imidazo[1,2-a]pyrazin-8-yl]-1,2-thiazol-5-amine Chemical compound N1([C@H](C)C2=NSC(NC=3C4=NC=C(N4C=C(C)N=3)C3=CNN=C3)=C2)C[C@H](C)O[C@H](C)C1 QBWKPGNFQQJGFY-QLFBSQMISA-N 0.000 description 2
- 229920003026 Acene Polymers 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- 239000011852 carbon nanoparticle Substances 0.000 description 2
- KWTSZCJMWHGPOS-UHFFFAOYSA-M chloro(trimethyl)stannane Chemical compound C[Sn](C)(C)Cl KWTSZCJMWHGPOS-UHFFFAOYSA-M 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 229940125846 compound 25 Drugs 0.000 description 2
- 229940125878 compound 36 Drugs 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 2
- AZVQGIPHTOBHAF-UHFFFAOYSA-N perfluoropentacene Chemical compound FC1=C(F)C(F)=C(F)C2=C(F)C3=C(F)C4=C(F)C5=C(F)C(F)=C(F)C(F)=C5C(F)=C4C(F)=C3C(F)=C21 AZVQGIPHTOBHAF-UHFFFAOYSA-N 0.000 description 2
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001197 polyacetylene Polymers 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229920000015 polydiacetylene Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical compound S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 150000003613 toluenes Chemical class 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- IUSARDYWEPUTPN-OZBXUNDUSA-N (2r)-n-[(2s,3r)-4-[[(4s)-6-(2,2-dimethylpropyl)spiro[3,4-dihydropyrano[2,3-b]pyridine-2,1'-cyclobutane]-4-yl]amino]-3-hydroxy-1-[3-(1,3-thiazol-2-yl)phenyl]butan-2-yl]-2-methoxypropanamide Chemical compound C([C@H](NC(=O)[C@@H](C)OC)[C@H](O)CN[C@@H]1C2=CC(CC(C)(C)C)=CN=C2OC2(CCC2)C1)C(C=1)=CC=CC=1C1=NC=CS1 IUSARDYWEPUTPN-OZBXUNDUSA-N 0.000 description 1
- 125000006686 (C1-C24) alkyl group Chemical group 0.000 description 1
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- 125000006002 1,1-difluoroethyl group Chemical group 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- 125000004776 1-fluoroethyl group Chemical group [H]C([H])([H])C([H])(F)* 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- OHZAHWOAMVVGEL-UHFFFAOYSA-N 2,2'-bithiophene Chemical compound C1=CSC(C=2SC=CC=2)=C1 OHZAHWOAMVVGEL-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- TUCRZHGAIRVWTI-UHFFFAOYSA-N 2-bromothiophene Chemical compound BrC1=CC=CS1 TUCRZHGAIRVWTI-UHFFFAOYSA-N 0.000 description 1
- BKYWEUVIGUEMFX-UHFFFAOYSA-N 4h-dithieno[3,2-a:2',3'-d]pyrrole Chemical compound S1C=CC2=C1NC1=C2SC=C1 BKYWEUVIGUEMFX-UHFFFAOYSA-N 0.000 description 1
- NAZODJSYHDYJGP-UHFFFAOYSA-N 7,18-bis[2,6-di(propan-2-yl)phenyl]-7,18-diazaheptacyclo[14.6.2.22,5.03,12.04,9.013,23.020,24]hexacosa-1(23),2,4,9,11,13,15,20(24),21,25-decaene-6,8,17,19-tetrone Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N(C(=O)C=1C2=C3C4=CC=1)C(=O)C2=CC=C3C(C=C1)=C2C4=CC=C3C(=O)N(C=4C(=CC=CC=4C(C)C)C(C)C)C(=O)C1=C23 NAZODJSYHDYJGP-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- WGDZVXNMVCZBIR-UHFFFAOYSA-N C1=CC(CC=2C3=CC4=C(C=5C=CC=C6C=CC=C(C=56)C4)C=2)=C2C3=CC=CC2=C1 Chemical compound C1=CC(CC=2C3=CC4=C(C=5C=CC=C6C=CC=C(C=56)C4)C=2)=C2C3=CC=CC2=C1 WGDZVXNMVCZBIR-UHFFFAOYSA-N 0.000 description 1
- ATLMFJTZZPOKLC-UHFFFAOYSA-N C70 fullerene Chemical compound C12=C(C3=C4C5=C67)C8=C9C%10=C%11C%12=C%13C(C%14=C%15C%16=%17)=C%18C%19=C%20C%21=C%22C%23=C%24C%21=C%21C(C=%25%26)=C%20C%18=C%12C%26=C%10C8=C4C=%25C%21=C5C%24=C6C(C4=C56)=C%23C5=C5C%22=C%19C%14=C5C=%17C6=C5C6=C4C7=C3C1=C6C1=C5C%16=C3C%15=C%13C%11=C4C9=C2C1=C34 ATLMFJTZZPOKLC-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 229920004933 Terylene® Polymers 0.000 description 1
- XBDYBAVJXHJMNQ-UHFFFAOYSA-N Tetrahydroanthracene Natural products C1=CC=C2C=C(CCCC3)C3=CC2=C1 XBDYBAVJXHJMNQ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 125000004062 acenaphthenyl group Chemical group C1(CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000005162 aryl oxy carbonyl amino group Chemical group 0.000 description 1
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004604 benzisothiazolyl group Chemical group S1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000004603 benzisoxazolyl group Chemical group O1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- RYQHWGXLBQHJST-UHFFFAOYSA-N bisanthene Chemical compound C1=CC(C2=CC=CC=3C2=C2C=4C(C=3)=CC=CC=43)=C4C2=C2C3=CC=CC2=CC4=C1 RYQHWGXLBQHJST-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- FQRWAZOLUJHNDT-UHFFFAOYSA-N c12c3c4c5c6c7c8c9c%10c%11c%12c%13c%14c%15c%16c%17c(c1c1c4c7c%10c%13c%161)c1c2c2c4c7c%10c%13c%16c%18c%19c%20c%21c%22c%23c%24c%25c%26c%27c%28c%29c(c7c7c%13c%19c%22c%25c%287)c4c1c1c%17c%15c(c%27c%291)c1c%14c%12c(c%24c%261)c1c%11c9c(c%21c%231)c1c8c6c(c%18c%201)c1c5c3c2c%10c%161 Chemical compound c12c3c4c5c6c7c8c9c%10c%11c%12c%13c%14c%15c%16c%17c(c1c1c4c7c%10c%13c%161)c1c2c2c4c7c%10c%13c%16c%18c%19c%20c%21c%22c%23c%24c%25c%26c%27c%28c%29c(c7c7c%13c%19c%22c%25c%287)c4c1c1c%17c%15c(c%27c%291)c1c%14c%12c(c%24c%261)c1c%11c9c(c%21c%231)c1c8c6c(c%18c%201)c1c5c3c2c%10c%161 FQRWAZOLUJHNDT-UHFFFAOYSA-N 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000002717 carbon nanostructure Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000005390 cinnolyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125807 compound 37 Drugs 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 125000000332 coumarinyl group Chemical group O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical group 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000000 cycloalkoxy group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 125000005509 dibenzothiophenyl group Chemical group 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 125000001028 difluoromethyl group Chemical group [H]C(F)(F)* 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 125000004785 fluoromethoxy group Chemical group [H]C([H])(F)O* 0.000 description 1
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- KDEZIUOWTXJEJK-UHFFFAOYSA-N heptacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=C3C=C21 KDEZIUOWTXJEJK-UHFFFAOYSA-N 0.000 description 1
- 125000002192 heptalenyl group Chemical group 0.000 description 1
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 125000000717 hydrazino group Chemical group [H]N([*])N([H])[H] 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000011630 iodine Chemical group 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- BXYVQNNEFZOBOZ-UHFFFAOYSA-N n-[3-(dimethylamino)propyl]-n',n'-dimethylpropane-1,3-diamine Chemical compound CN(C)CCCNCCCN(C)C BXYVQNNEFZOBOZ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004708 n-butylthio group Chemical group C(CCC)S* 0.000 description 1
- 125000006610 n-decyloxy group Chemical group 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000002116 nanohorn Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 125000005893 naphthalimidyl group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002964 pentacenes Chemical class 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Substances OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- WCXXBFNWCCIYQO-UHFFFAOYSA-N peropyren Chemical compound C12=C3C4=CC=C2C=CC=C1C=CC3=C1C=CC2=CC=CC3=CC=C4C1=C32 WCXXBFNWCCIYQO-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 125000001828 phenalenyl group Chemical group C1(C=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 125000001792 phenanthrenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-N phosphoric acid amide group Chemical group P(N)(O)(O)=O PTMHPRAIXMAOOB-UHFFFAOYSA-N 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- CLYVDMAATCIVBF-UHFFFAOYSA-N pigment red 224 Chemical compound C=12C3=CC=C(C(OC4=O)=O)C2=C4C=CC=1C1=CC=C2C(=O)OC(=O)C4=CC=C3C1=C42 CLYVDMAATCIVBF-UHFFFAOYSA-N 0.000 description 1
- 230000000485 pigmenting effect Effects 0.000 description 1
- 125000005936 piperidyl group Chemical group 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000323 polyazulene Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000417 polynaphthalene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- 125000005494 pyridonyl group Chemical group 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- UTUZBCDXWYMYGA-UHFFFAOYSA-N silafluorene Chemical compound C12=CC=CC=C2CC2=C1C=CC=[Si]2 UTUZBCDXWYMYGA-UHFFFAOYSA-N 0.000 description 1
- 150000003967 siloles Chemical class 0.000 description 1
- 229940100890 silver compound Drugs 0.000 description 1
- 150000003379 silver compounds Chemical class 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 125000000213 sulfino group Chemical group [H]OS(*)=O 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000006296 sulfonyl amino group Chemical group [H]N(*)S(*)(=O)=O 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- 125000001935 tetracenyl group Chemical group C1(=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C12)* 0.000 description 1
- VELSFHQDWXAPNK-UHFFFAOYSA-N tetracontacyclo[25.6.5.516,28.44,32.35,11.321,34.28,10.212,15.222,35.229,31.113,20.124,38.02,6.014,19.017,25.018,23.030,37.033,36.547,54.446,53.448,58.126,51.150,52.03,45.07,42.09,61.039,40.041,43.044,63.049,76.055,78.056,62.057,68.059,64.060,67.065,69.066,71.070,73.072,75.074,77]octaheptaconta-1,3(45),4(48),5(61),6,8,10,12,14,16,18,20,22,24(39),25,27(38),28,30,32,34(42),35(40),36,41(43),44(63),46,49(76),50(77),51,53,55(78),56(62),57,59,64,66,68,70(73),71,74-nonatriacontaene Chemical compound c12c3c4c5c6c1c1c7c8c2c2c3c3c9c4c4c5c5c%10c%11c%12c%13c%14c%15c%12c%12c%16c%17c%18c%19c%20c%21c%17c%17c%22c%21c%21c%23c%20c%20c%19c%19c%24c%18c%16c%15c%15c%24c%16c(c7c%15c%14c1c6c5%13)c8c1c2c2c3c3c(c%21c5c%22c(c%11c%12%17)c%10c4c5c93)c%23c2c%20c1c%19%16 VELSFHQDWXAPNK-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- CRUIOQJBPNKOJG-UHFFFAOYSA-N thieno[3,2-e][1]benzothiole Chemical compound C1=C2SC=CC2=C2C=CSC2=C1 CRUIOQJBPNKOJG-UHFFFAOYSA-N 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000005034 trifluormethylthio group Chemical group FC(S*)(F)F 0.000 description 1
- 125000004950 trifluoroalkyl group Chemical group 0.000 description 1
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Photovoltaic Devices (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
本発明は、共役系高分子化合物およびこれを用いた有機光電変換素子に関する。より詳しくは、本発明は、有機光電変換素子の光電変換効率等を向上させるための技術に関する。 The present invention relates to a conjugated polymer compound and an organic photoelectric conversion device using the same. More specifically, the present invention relates to a technique for improving the photoelectric conversion efficiency and the like of an organic photoelectric conversion element.
近年、地球温暖化に対処するため、二酸化炭素排出量の削減が切に望まれている。また、近い将来、石油、石炭、および天然ガスなどの化石燃料が枯渇することが予想されており、これらに替わる地球に優しいエネルギー資源の確保が急務となっている。そこで、太陽光、風力、地熱、原子力など利用した発電技術の開発が盛んに行われているが、なかでも太陽光発電は、安全性の高さから特に注目されている。 In recent years, in order to cope with global warming, reduction of carbon dioxide emissions has been strongly desired. In addition, fossil fuels such as oil, coal, and natural gas are expected to be depleted in the near future, and there is an urgent need to secure alternative earth-friendly energy resources. Therefore, development of power generation technology using sunlight, wind power, geothermal energy, nuclear power, and the like has been actively carried out. Among them, solar power generation is particularly attracting attention because of its high safety.
太陽光発電では、光起電力効果を利用した光電変換素子を用いて、光エネルギーを直接電力に変換する。光電変換素子は、一般的に、一対の電極の間に光電変換層(光吸収層)が挟持されてなる構造を有し、当該光電変換層において光エネルギーが電気エネルギーに変換される。光電変換素子は、光電変換層に用いられる材料や、素子の形態により、単結晶・多結晶・アモルファスのSiを用いたシリコン系光電変換素子、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体)等の化合物半導体を用いた化合物系光電変換素子、色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。 In solar power generation, light energy is directly converted into electric power using a photoelectric conversion element utilizing the photovoltaic effect. Generally, a photoelectric conversion element has a structure in which a photoelectric conversion layer (light absorption layer) is sandwiched between a pair of electrodes, and light energy is converted into electric energy in the photoelectric conversion layer. The photoelectric conversion element is a silicon-based photoelectric conversion element using single-crystal / polycrystalline / amorphous Si, GaAs, CIGS (copper (Cu), indium (In), depending on the material used for the photoelectric conversion layer and the form of the element. Compound-based photoelectric conversion elements using a compound semiconductor such as gallium (Ga) and selenium (Se)), dye-sensitized photoelectric conversion elements (Gretzel cells), and the like have been proposed and put to practical use.
しかしながら、これらの太陽電池を用いた場合の発電コストは、依然として化石燃料を用いて発電・送電する場合のコストと比較して高く、これが太陽光発電の普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、屋根などに設置する場合に補強工事が必要であり、これらも発電コストを高騰させる一因であった。 However, the power generation cost when these solar cells are used is still higher than the cost when generating and transmitting power using fossil fuels, which hinders the spread of solar power generation. In addition, since heavy glass must be used for the substrate, reinforcement work is required when it is installed on a roof or the like, which has also contributed to the increase in power generation costs.
太陽光発電における発電コストを低減させるための技術として、透明電極と対電極との間に、電子供与性有機化合物(p型有機半導体)と電子受容性有機化合物(n型有機半導体)との混合物を光電変換層として含むバルクへテロジャンクション(BHJ)型の光電変換素子が提案されている。2007年には5%を超える光電変換効率が報告され(非特許文献1)、さらに、理論的には光電変換効率10%の達成も可能であるとの見通しがなされている(非特許文献2)。このような高い光電変換効率の達成には、p型有機半導体材料のLUMOが−3.9〜−4.0eV、バンドギャップが1.4〜1.6eVであることが必要であると予測されている。なお、これらは曲線因子(FF)および外部量子効率(EQE)がともに0.65を達成しうる場合の予測である。 As a technique for reducing power generation costs in solar power generation, a mixture of an electron-donating organic compound (p-type organic semiconductor) and an electron-accepting organic compound (n-type organic semiconductor) between a transparent electrode and a counter electrode A bulk heterojunction (BHJ) type photoelectric conversion element is proposed that includes a photoelectric conversion layer. In 2007, a photoelectric conversion efficiency exceeding 5% was reported (Non-Patent Document 1), and further, it is theoretically expected that a photoelectric conversion efficiency of 10% can be achieved (Non-Patent Document 2). ). In order to achieve such high photoelectric conversion efficiency, it is predicted that the LUMO of the p-type organic semiconductor material is required to be −3.9 to −4.0 eV and the band gap is 1.4 to 1.6 eV. ing. These are predictions when the fill factor (FF) and the external quantum efficiency (EQE) can both achieve 0.65.
バルクへテロジャンクション型有機光電変換素子は、軽量で柔軟性に富むことから、様々な製品への応用が期待されている。また、構造が比較的単純であり、p型有機半導体およびn型有機半導体を塗布することによって光電変換層を形成できることから、ロール・トゥ・ロールでの大量生産によってコストダウンが期待でき、太陽電池の早期普及にも寄与するものと考えられる。より具体的には、バルクへテロジャンクション型有機光電変換素子において、電極(陽極および陰極)や、正孔輸送層等を構成する金属酸化物層は、塗布プロセス以外の手法(例えば、真空蒸着法など)により形成されうる。その一方で、これら以外の層は塗布プロセスを用いて形成することができる。したがって、バルクへテロジャンクション型光電変換素子の製造は高速でかつ安価に行うことが可能であると期待され、上述した発電コストの課題を解決できる可能性があると考えられるのである。さらに、従来のシリコン系光電変換素子、化合物系光電変換素子、色素増感型光電変換素子などの製造とは異なり、160℃よりも高温の製造プロセスを必須に伴うものではないため、安価でかつ軽量なプラスチック基板上への形成も可能であると期待される。 Bulk heterojunction organic photoelectric conversion elements are lightweight and flexible, and are expected to be applied to various products. In addition, since the structure is relatively simple and a photoelectric conversion layer can be formed by applying a p-type organic semiconductor and an n-type organic semiconductor, cost reduction can be expected by mass production on a roll-to-roll basis. It is thought to contribute to the early dissemination of More specifically, in the bulk heterojunction organic photoelectric conversion element, the electrodes (anode and cathode), the metal oxide layer constituting the hole transport layer, and the like can be formed by a method other than the coating process (for example, vacuum deposition method). Etc.). On the other hand, other layers can be formed using a coating process. Therefore, it is expected that the production of the bulk heterojunction photoelectric conversion element can be performed at high speed and at low cost, and it is considered that there is a possibility that the above-described problem of power generation cost can be solved. Further, unlike the production of conventional silicon-based photoelectric conversion elements, compound-based photoelectric conversion elements, dye-sensitized photoelectric conversion elements, etc., it does not necessarily involve a manufacturing process at a temperature higher than 160 ° C. It is expected that it can be formed on a lightweight plastic substrate.
しかしながら、有機光電変換素子は、他のタイプの光電変換素子と比較して、未だ光電変換効率や、熱や光に対する耐久性が十分とはいえない。そこで、光電変換効率や耐久性を向上させるために、各種改良が進められている。特に、耐久性を向上させることを目的として、例えば、通常の有機光電変換素子とは逆順に各層を積層し、透明電極側から電子を取り出し、仕事関数の深い安定な金属電極側から正孔を取り出す、いわゆる逆層型の有機光電変換素子が提案されている(特許文献1)。このような逆層型の有機光電変換素子は、光透過性に劣る導電性ポリマーから構成される正孔輸送層が、対電極(陽極)と光電変換層との間に存在する構成を有する。一般に、対電極(陽極)は金属材料から構成されるが、光透過性の低い正孔輸送層の存在により、対電極で反射される光を効率的に光電変換層に再利用することができないため、逆層型は光の利用の観点からいえば不利な構成である(非特許文献3)。よって、逆層型において十分な光電変換効率を得るためには、一般的に順層型よりも光電変換層の膜厚を大きくするなどの対応が必要となり、そのためには高い移動度の有機半導体材料が求められる。特に、前述の曲線因子(FF)>0.65および外部量子効率(EQE)>0.65を達成するためには、高い移動度の有機半導体材料が必要となる。 However, the organic photoelectric conversion element is still not sufficient in photoelectric conversion efficiency and durability against heat and light as compared with other types of photoelectric conversion elements. Accordingly, various improvements have been made in order to improve photoelectric conversion efficiency and durability. In particular, for the purpose of improving durability, for example, each layer is laminated in the reverse order of a normal organic photoelectric conversion element, electrons are taken out from the transparent electrode side, and holes are taken from the stable metal electrode side having a deep work function. A so-called reverse layer type organic photoelectric conversion element to be taken out has been proposed (Patent Document 1). Such a reverse layer type organic photoelectric conversion element has a configuration in which a hole transport layer composed of a conductive polymer having inferior optical transparency exists between a counter electrode (anode) and a photoelectric conversion layer. In general, the counter electrode (anode) is made of a metal material, but the light reflected by the counter electrode cannot be efficiently reused in the photoelectric conversion layer due to the presence of the hole transport layer having low light transmittance. Therefore, the reverse layer type is a disadvantageous configuration from the viewpoint of utilization of light (Non-Patent Document 3). Therefore, in order to obtain sufficient photoelectric conversion efficiency in the reverse layer type, it is generally necessary to take measures such as increasing the film thickness of the photoelectric conversion layer compared to the normal layer type. Material is required. In particular, in order to achieve the aforementioned fill factor (FF)> 0.65 and external quantum efficiency (EQE)> 0.65, a high mobility organic semiconductor material is required.
このような課題に対し、特許文献2には、良好な電荷移動特性および適切なエネルギー準位を有する有機半導体材料として、ジケトピロロピロール部位を有するポリマーなどが提案されている。 In response to such a problem, Patent Document 2 proposes a polymer having a diketopyrrolopyrrole moiety as an organic semiconductor material having good charge transfer characteristics and an appropriate energy level.
しかしながら、上記特許文献2に記載のジケトピロロピロール構造を有するポリマーは窒素原子と結合したアルキル基が立体的な障害となってポリマー主鎖がねじれるためか、依然として移動度が1×10−4cm2・V−1・s−1台に留まり、高い移動度および高い光電変換効率を達成することは困難であった。 However, the polymer having a diketopyrrolopyrrole structure described in Patent Document 2 still has a mobility of 1 × 10 −4 because an alkyl group bonded to a nitrogen atom causes a steric hindrance to twist the polymer main chain. It was difficult to achieve high mobility and high photoelectric conversion efficiency while staying on the order of cm 2 · V −1 · s −1 .
そこで本発明は、高い移動度を有し、有機光電変換素子において十分な光電変換効率を発揮できる共役系高分子化合物、および、これを用いた有機光電変換素子(特に、耐久性の面で有利な逆層構成においても優れた光電変換効率を発揮できる有機光電変換素子)を提供することを目的とする。 Accordingly, the present invention provides a conjugated polymer compound that has high mobility and can exhibit sufficient photoelectric conversion efficiency in an organic photoelectric conversion element, and an organic photoelectric conversion element using the same (especially advantageous in terms of durability). Another object of the present invention is to provide an organic photoelectric conversion element that can exhibit excellent photoelectric conversion efficiency even in a reverse layer configuration.
本発明者らは、上記課題を解決するために、鋭意研究を行った。そして、移動度が高く立体障害の小さいチエノチオフェンジイリデン構造を含有する新規な共役系高分子化合物を用いることにより、高い移動度および適切なエネルギー準位を両立でき、十分な光電変換効率を発揮できる有機光電変換素子を提供することが可能となることを見出し、本発明を完成させた。 In order to solve the above problems, the present inventors have conducted intensive research. And by using a novel conjugated polymer compound containing thienothiophene diylidene structure with high mobility and low steric hindrance, both high mobility and appropriate energy level can be achieved, and sufficient photoelectric conversion efficiency is demonstrated. It was found that an organic photoelectric conversion element capable of being provided could be provided, and the present invention was completed.
すなわち、本発明の一形態によれば、第一の電極と、第二の電極と、前記第一の電極および前記第二の電極の間に存在する、n型有機半導体およびp型有機半導体を含む光電変換層と、を有し、前記p型有機半導体は、下記一般式1で表される部分構造を有する共役系高分子化合物を含む、有機光電変換素子が提供される。 That is, according to one aspect of the present invention, an n-type organic semiconductor and a p-type organic semiconductor that exist between the first electrode, the second electrode, and the first electrode and the second electrode are provided. An organic photoelectric conversion element is provided, wherein the p-type organic semiconductor includes a conjugated polymer compound having a partial structure represented by the following general formula 1.
また、本発明の他の一形態によれば、下記一般式1で表される部分構造を有する共役系高分子化合物が提供される。 According to another embodiment of the present invention, a conjugated polymer compound having a partial structure represented by the following general formula 1 is provided.
式中、X1およびX2は、それぞれ独立して、=Oまたは=CR1R2を表し、
R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表し、
D1およびD2は、それぞれ独立して、複素芳香族環を含むドナー性ユニットを表し、
pは1〜4の整数を表し、
qは1〜4の整数を表す。
In the formula, X 1 and X 2 each independently represent ═O or ═CR 1 R 2 ,
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of number 1 to 20, or a cyano group,
D 1 and D 2 each independently represent a donor unit containing a heteroaromatic ring,
p represents an integer of 1 to 4,
q represents the integer of 1-4.
本発明によれば、有機光電変換素子において、高い移動度および適切なエネルギー準位を両立できる共役系高分子化合物を提供することが可能となる。そして、当該共役系高分子化合物を用いた有機光電変換素子は、十分な光電変換効率を発揮できる。さらに、当該共役系高分子化合物は耐久性も良好であり、これを用いることで耐久性に優れた有機光電変換素子が得られる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the conjugated polymer compound which can make high mobility and an appropriate energy level compatible in an organic photoelectric conversion element. And the organic photoelectric conversion element using the said conjugated polymer compound can exhibit sufficient photoelectric conversion efficiency. Furthermore, the conjugated polymer compound has good durability, and an organic photoelectric conversion element having excellent durability can be obtained by using this conjugated polymer compound.
以下、本発明の好ましい形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described.
<有機光電変換素子>
本発明の一形態は、下記一般式1で表される部分構造を有する共役系高分子化合物を光電変換層に含む有機光電変換素子に関する。すなわち、本形態に係る有機光電変換素子は、第一の電極と、第二の電極と、前記第一の電極および前記第二の電極の間に存在する、n型有機半導体およびp型有機半導体を含む光電変換層とを有し、前記p型有機半導体は、下記一般式1で表される部分構造を有する共役系高分子化合物を含む。
<Organic photoelectric conversion element>
One embodiment of the present invention relates to an organic photoelectric conversion element including a conjugated polymer compound having a partial structure represented by the following general formula 1 in a photoelectric conversion layer. That is, the organic photoelectric conversion element according to this embodiment includes a first electrode, a second electrode, and an n-type organic semiconductor and a p-type organic semiconductor that exist between the first electrode and the second electrode. The p-type organic semiconductor contains a conjugated polymer compound having a partial structure represented by the following general formula 1.
また、本発明の他の一形態によれば、下記一般式1で表される部分構造を有する共役系高分子化合物が提供される。なお、本発明の共役系高分子化合物は一般式1で表される部分構造を1または2以上含むが、当該部分構造が2以上存在する場合には、各部分構造における、X1、X2、D1、D2、p、およびqは、互いに同一であってもよいし、異なってもよい。 According to another embodiment of the present invention, a conjugated polymer compound having a partial structure represented by the following general formula 1 is provided. In addition, although the conjugated polymer compound of the present invention includes one or more partial structures represented by the general formula 1, when there are two or more partial structures, X 1 and X 2 in each partial structure. , D 1 , D 2 , p, and q may be the same as or different from each other.
本発明に係る共役系高分子化合物は、高い移動度を有し立体障害の小さいチエノチオフェンジイリデン構造を有するユニットを介してドナー性ユニット(D1、D2)が結合された構造を有する点を特徴とする。かかる構造を有することで、当該共役系高分子化合物は高い移動度および適切なエネルギー準を両立でき、当該共役系高分子化合物を用いた有機光電変換素子は、十分な光電変換効率を発揮できる。ここで、本願発明の共役系高分子化合物および有機光電変換素子が上記効果を奏するメカニズムは明らかではないが、以下のように推測される。ただし、本願発明は下記推測に限定されるものではない。 The conjugated polymer compound according to the present invention has a structure in which donor units (D 1 , D 2 ) are bonded via a unit having a thienothiophene diylidene structure having high mobility and small steric hindrance. It is characterized by. By having such a structure, the conjugated polymer compound can achieve both high mobility and an appropriate energy level, and an organic photoelectric conversion element using the conjugated polymer compound can exhibit sufficient photoelectric conversion efficiency. Here, the mechanism by which the conjugated polymer compound and the organic photoelectric conversion element of the present invention have the above-mentioned effects is not clear, but is presumed as follows. However, the present invention is not limited to the following estimation.
上記特許文献2に記載されるような、ジケトピロロピロール構造を有するポリマーは移動度が不十分であり、高い光電変換効率を達成することができなかった。本発明者らはこの理由について検討し、ジケトピロロピロール構造における窒素原子と結合したアルキル基が立体的な障害となってポリマー主鎖がねじれるため、結晶性が低下し、移動度が低下してしまうと推定している。 A polymer having a diketopyrrolopyrrole structure as described in Patent Document 2 has insufficient mobility and could not achieve high photoelectric conversion efficiency. The present inventors examined this reason, and the alkyl group bonded to the nitrogen atom in the diketopyrrolopyrrole structure becomes a steric hindrance and the polymer main chain is twisted, so that the crystallinity is lowered and the mobility is lowered. It is estimated that.
他方、Shiyan Chen et al.,Chem. Lett. 2011, 40, p998には、n型有機薄膜トランジスタ材料としてチエノチオフェンジオン構造を有する蒸着型低分子材料が提案されており、当該材料が良好な移動度を有するとの開示がある。 On the other hand, Shiyan Chen et al. , Chem. Lett. In 2011, 40, p998, a vapor deposition type low molecular material having a thienothiophenedione structure is proposed as an n-type organic thin film transistor material, and it is disclosed that the material has good mobility.
本発明者らは、上記推定に基づき、高い移動度を有し、かつ、立体障害の小さいチエノチオフェンジイリデン構造を有するユニットをドナー性ユニット(D1、D2)と組み合わせて共役系高分子化合物を構成することにより、共役系高分子化合物の結晶性を向上させることができ、これによりp型有機半導体としての共役系高分子化合物の移動度が向上し、その結果、高い光電変換効率の有機光電変換素子、ひいては有機薄膜太陽電池を得られると推定している。 Based on the above estimation, the present inventors combined a unit having a thienothiophene diylidene structure having high mobility and small steric hindrance with a donor unit (D 1 , D 2 ) to provide a conjugated polymer. By constituting the compound, the crystallinity of the conjugated polymer compound can be improved, thereby improving the mobility of the conjugated polymer compound as a p-type organic semiconductor, and as a result, having high photoelectric conversion efficiency. It is estimated that an organic photoelectric conversion element, and thus an organic thin film solar cell can be obtained.
また、詳細は不明であるが、チエノチオフェンジイリデン構造を有する共役系高分子化合物は耐久性についても良好であることを見出した。したがって、かかる共役系高分子化合物を用いることで、優れた耐久性を有する有機光電変換素子が得られる。 Further, although details are unknown, it has been found that a conjugated polymer compound having a thienothiophene diylidene structure has good durability. Therefore, an organic photoelectric conversion element having excellent durability can be obtained by using such a conjugated polymer compound.
上記一般式1中、X1およびX2は、=O(酸素原子)または=CR1R2を表す。X1およびX2は同一であってもよいし、異なっていてもよいが、結晶性を高め、高い移動度の材料を得やすい点で同一であることが好ましい。 In the general formula 1, X 1 and X 2 represent ═O (oxygen atom) or ═CR 1 R 2 . X 1 and X 2 may be the same or different, but are preferably the same in terms of enhancing crystallinity and easily obtaining a material with high mobility.
中でも、X1またはX2は、=O(酸素原子)である、すなわち、下記一般式1で表される部分構造がチエノチオフェンジオン構造を有することが好ましい。かかる場合には高いVocが得られると期待される。 Among these, X 1 or X 2 is ═O (oxygen atom), that is, the partial structure represented by the following general formula 1 preferably has a thienothiophenedione structure. In such a case, a high Voc is expected.
上記一般式1中、R1およびR2は、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基(−CN)を表す。R1およびR2は同一であってもよいし、異なっていてもよいが、結晶性を高め、高い移動度の材料を得やすい点で同一であることが好ましい。 In the general formula 1, R 1 and R 2 are a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a carbon atom A fluorinated alkyl group having 1 to 24 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a fluorinated cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, and 1 to 24 carbon atoms A fluorinated alkoxy group, an alkylthio group having 1 to 24 carbon atoms, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, A heteroaryl group having 1 to 20 carbon atoms, a fluorinated heteroaryl group having 1 to 20 carbon atoms, or a cyano group (—CN) is represented. R 1 and R 2 may be the same or different, but are preferably the same in terms of enhancing crystallinity and easily obtaining a material with high mobility.
中でも好ましくは、R1およびR2は、溶解性と結晶性を両立しやすい点で、水素原子、炭素原子数1〜24のアルキル基、フッ化アルキル基、アルコキシ基、アルキルチオ基、シアノ基である。 Among these, R 1 and R 2 are preferably a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group, an alkoxy group, an alkylthio group, or a cyano group in that both solubility and crystallinity are easily achieved. is there.
上記ハロゲン原子としては、特に制限はなく、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)のいずれであってもよい。このうち、重合時に副反応を起こしにくい(Br,Iはスズと反応する可能性がある)という観点からフッ素原子(F)または塩素原子であることが好ましく、フッ素原子(F)であることがより好ましい。 There is no restriction | limiting in particular as said halogen atom, Any of a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br), and an iodine atom (I) may be sufficient. Among these, a fluorine atom (F) or a chlorine atom is preferable and a fluorine atom (F) is preferable from the viewpoint that side reactions hardly occur during polymerization (Br and I may react with tin). More preferred.
上記炭素原子数1〜24のアルキル基としては、特に制限はないが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル、ネオペンチル、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、2−テトラオクチル基、n−ペンタデシル基、n−ヘキサデシル基、2−ヘキシルデシル基、n−ヘプタデシル基、1−オクチルノニル基、n−オクタデシル基、n−ノナデシル基、n−イコシル基、2−デシルテトラデシル基などの直鎖または分岐鎖のアルキル基が挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数6〜24のアルキル基であることが好ましく、炭素原子数8〜16のアルキル基であることがより好ましい。 Although there is no restriction | limiting in particular as said C1-C24 alkyl group, For example, a methyl group, an ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Butyl group, n-pentyl group, isopentyl, neopentyl, n-hexyl group, cyclohexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, 2-tetraoctyl group, n-pentadecyl group, n-hexadecyl group, 2-hexyldecyl group, n-heptadecyl group, 1-octylnonyl group, n- Examples include linear or branched alkyl groups such as octadecyl group, n-nonadecyl group, n-icosyl group, and 2-decyltetradecyl group. That. Among these, from the viewpoint of improving solubility, an alkyl group having 6 to 24 carbon atoms is preferable, and an alkyl group having 8 to 16 carbon atoms is more preferable.
上記炭素原子数1〜24のフッ化アルキル基としては、特に制限はないが、例えば、上記で例示したアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、環(チエノチオフェン環)との結合部位に最も近い炭素原子(すなわちアルキル基中の1位の炭素原子)のみがフッ素原子で置換された基であることが好ましい。具体的には、フルオロメチル基、1−フルオロエチル基、1−フルオロプロピル基、1−フルオロブチル基、1−フルオロオクチル基、1−フルオロデシル基、1−フルオロヘキサデシル基、1−フルオロ−2−エチルヘキシル基、1−フルオロ−2−ヘキシルデシル基などのモノフルオロアルキル基;ジフルオロメチル基、1,1−ジフルオロエチル基、1,1−ジフルオロプロピル基、1,1−ジフルオロブチル基、1,1−ジフルオロオクチル基、1,1−ジフルオロデシル基、1,1−ジフルオロヘキサデシル基、1,1−ジフルオロ−2−エチルヘキシル基、1,1−ジフルオロ−2−ヘキシルデシル基などのジフルオロアルキル基;トリフルオロメチル基等のトリフルオロアルキル基などが挙げられる。また、上層の塗布性を維持するという観点から、炭素原子数1〜3のフッ化アルキル基であることが好ましい。このような炭素原子数であれば、他の溶解性基に比して十分短く(溶解性を付与するための置換基は、一般にC6以上を用いる)、上層塗布性に対する影響が少ないためである。中でも、炭素原子数が1であるトリフルオロメチル基であることがより好ましい。 The fluorinated alkyl group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the alkyl group exemplified above is substituted with a fluorine atom. Among these, from the viewpoint of achieving a higher V oc (deep HOMO level), only the carbon atom closest to the bonding site with the ring (thienothiophene ring) (that is, the 1st carbon atom in the alkyl group) is a fluorine atom. A group substituted with is preferable. Specifically, fluoromethyl group, 1-fluoroethyl group, 1-fluoropropyl group, 1-fluorobutyl group, 1-fluorooctyl group, 1-fluorodecyl group, 1-fluorohexadecyl group, 1-fluoro- Monofluoroalkyl groups such as 2-ethylhexyl group and 1-fluoro-2-hexyldecyl group; difluoromethyl group, 1,1-difluoroethyl group, 1,1-difluoropropyl group, 1,1-difluorobutyl group, 1 , 1-difluorooctyl group, 1,1-difluorodecyl group, 1,1-difluorohexadecyl group, 1,1-difluoro-2-ethylhexyl group, 1,1-difluoro-2-hexyldecyl group, etc. Group; a trifluoroalkyl group such as a trifluoromethyl group, and the like. Moreover, it is preferable that it is a C1-C3 fluorinated alkyl group from a viewpoint of maintaining the applicability | paintability of an upper layer. This is because the number of carbon atoms is sufficiently shorter than other soluble groups (substituents for imparting solubility generally use C6 or more) and have little influence on the upper layer coatability. . Among these, a trifluoromethyl group having 1 carbon atom is more preferable.
上記炭素原子数3〜20のシクロアルキル基としては、特に制限はないが、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などが挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数4〜8のシクロアルキル基であることが好ましい。 Although there is no restriction | limiting in particular as said C3-C20 cycloalkyl group, For example, a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group etc. are mentioned. Among these, a cycloalkyl group having 4 to 8 carbon atoms is preferable from the viewpoint of improving solubility.
上記炭素原子数3〜20のフッ化シクロアルキル基としては、特に制限はないが、例えば、上記で例示したシクロアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したシクロアルキル基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。また、溶解性を向上させるという観点から、炭素原子数4〜8のフッ化シクロアルキル基であることが好ましい。 The fluorinated cycloalkyl group having 3 to 20 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the cycloalkyl group exemplified above is substituted with a fluorine atom. . Among these, from the viewpoint of achieving higher V oc (deep HOMO level), it is preferable that all the hydrogen atoms contained in the cycloalkyl group exemplified above are groups substituted with fluorine atoms. In view of this, the number and position of fluorine atoms are preferably adjusted appropriately. Moreover, it is preferable that it is a C4-C8 fluorinated cycloalkyl group from a viewpoint of improving solubility.
上記炭素原子数1〜24のアルコキシ基としては、特に制限はないが、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert−ブトキシ基、n−オクチルオキシ基、n−デシルオキシ基、n−ドデシルオキシ基、n−ヘキサデシルオキシ基、2−エチルヘキシルオキシ基、2−ヘキシルデシルオキシ基、2−デシルテトラデシルオキシ基などが挙げられる。このうち、溶解性と結晶性の両立の観点から、炭素原子数1〜16のアルコキシ基が好ましく、炭素原子数6〜12のアルコキシ基がより好ましい。 The alkoxy group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, n-decyloxy group, and n-dodecyl. Examples thereof include an oxy group, an n-hexadecyloxy group, a 2-ethylhexyloxy group, a 2-hexyldecyloxy group, and a 2-decyltetradecyloxy group. Among these, from the viewpoint of compatibility between solubility and crystallinity, an alkoxy group having 1 to 16 carbon atoms is preferable, and an alkoxy group having 6 to 12 carbon atoms is more preferable.
上記炭素数1〜24のフッ化アルコキシ基(フッ化アルキルオキシ基)としては、特に制限はないが、例えば、上記で例示したフッ化アルキル基の根元に酸素原子が結合されてなる基が挙げられる。このうち、より高いVoc(深いHOMO準位)達成の観点から、上記で例示したアルキル鎖中に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いから適切な個数・位置に調節されることもまた好ましい。溶解性と深いHOMO準位の両立をしやすいのは、置換部位の炭素原子近傍のみがフッ素原子であるフッ化アルキル鎖を有するフッ化アルコキシ基である。また、上層の塗布性を維持するという観点から、炭素原子数1〜3のフッ化アルキル基の根元に酸素原子が結合されてなる基が好ましく、特に好ましくは、炭素原子数が1であるトリフルオロメトキシ基である。 The fluorinated alkoxy group having 1 to 24 carbon atoms (fluorinated alkyloxy group) is not particularly limited, and examples thereof include a group in which an oxygen atom is bonded to the root of the fluorinated alkyl group exemplified above. It is done. Among these, from the viewpoint of achieving a higher Voc (deep HOMO level), it is preferable that all the hydrogen atoms contained in the alkyl chain exemplified above are groups substituted with fluorine atoms. It is also preferable that the number and position are adjusted appropriately from the balance. It is a fluorinated alkoxy group having a fluorinated alkyl chain in which only the vicinity of the carbon atom in the substitution site is a fluorine atom that easily achieves both solubility and a deep HOMO level. Further, from the viewpoint of maintaining the coatability of the upper layer, a group in which an oxygen atom is bonded to the root of a fluorinated alkyl group having 1 to 3 carbon atoms is preferable, and a trivalent having 1 carbon atom is particularly preferable. A fluoromethoxy group;
上記炭素原子数1〜24のアルキルチオ基としては、特に制限はないが、例えば、メチルチオ基、エチルチオ基、プロピルチオ基、n−ブチルチオ基、sec−ブチルチオ基、tert−ブチルチオ基及びiso−プロピルチオ基、n−ドデシルチオ基等が挙げられる。このうち、溶解性と結晶性の両立の観点から、炭素原子数1〜16のアルキルチオ基が好ましく、炭素原子数1〜12のアルキルチオ基がより好ましく、炭素原子数6〜12のアルキルチオ基がさらに好ましい。 The alkylthio group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include a methylthio group, an ethylthio group, a propylthio group, an n-butylthio group, a sec-butylthio group, a tert-butylthio group, and an iso-propylthio group. Examples include n-dodecylthio group. Among these, from the viewpoint of achieving both solubility and crystallinity, an alkylthio group having 1 to 16 carbon atoms is preferable, an alkylthio group having 1 to 12 carbon atoms is more preferable, and an alkylthio group having 6 to 12 carbon atoms is further included. preferable.
上記炭素原子数1〜24のフッ化アルキルチオ基としては特に制限はないが、例えば、上記で例示したフッ化アルキル基の根元に硫黄原子が結合されてなる基が挙げられる。このうち、より高いVoc(深いHOMO準位)達成の観点の観点から、上記で例示したアルキル鎖中に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いから適切な個数・位置に調節されることもまた好ましい。また、上層の塗布性を維持するという観点からは、炭素原子数1〜12のフッ化アルキル基の根元に硫黄原子が結合されてなる基が好ましく、特に好ましくは、炭素原子数が1であるトリフルオロメチルチオ基である。 The fluorinated alkylthio group having 1 to 24 carbon atoms is not particularly limited, and examples thereof include a group in which a sulfur atom is bonded to the base of the fluorinated alkyl group exemplified above. Among these, from the viewpoint of achieving a higher Voc (deep HOMO level), it is preferable that all the hydrogen atoms contained in the alkyl chain exemplified above are groups substituted with fluorine atoms. It is also preferable to adjust the number and position to an appropriate number in consideration of the above. Further, from the viewpoint of maintaining the coatability of the upper layer, a group in which a sulfur atom is bonded to the base of a fluorinated alkyl group having 1 to 12 carbon atoms is preferable, and the number of carbon atoms is particularly preferably 1. A trifluoromethylthio group;
上記炭素原子数6〜30のアリール基としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。 The aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, a naphthyl group, an azulenyl group, Heptalenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group, triphenylenyl group, pyrenyl group , Condensed polycyclic hydrocarbon groups such as a chrycenyl group and a naphthacenyl group.
上記炭素原子数6〜30のフッ化アリール基としては、特に制限はないが、例えば、上記で例示したアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切調節されることが好ましい。 The fluorinated aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the aryl group exemplified above is substituted with a fluorine atom. Among these, from the viewpoint of achieving higher V oc (deep HOMO level), it is preferable that all the hydrogen atoms contained in the aryl group exemplified above are groups substituted with fluorine atoms. In view of the above, the number and position of fluorine atoms are preferably adjusted appropriately.
上記炭素原子数1〜20のヘテロアリール基としては、特に制限はないが、例えば、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリル基、チオフェニル基(チエニル基)、キノリル基、フリル基、ピペリジル基、クマリニル基、シラフルオレニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、フタルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソピリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、ナフタルイミジル基、ジチエノシクロペンタジエニル基、ジチエノシラシクロペンタジエニル基、ジチエノピロリル基、ベンゾジチオフェニル基などが挙げられる。 The heteroaryl group having 1 to 20 carbon atoms is not particularly limited. For example, pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, furanyl group, pyrrolyl group, thiophenyl group (thienyl group), quinolyl group, Furyl group, piperidyl group, coumarinyl group, silafluorenyl group, benzofuranyl group, benzimidazolyl group, benzoxazolyl group, benzthiazolyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, indolyl group, carbazolyl group, pyrazolyl Group, imidazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, indazolyl group, benzothiazolyl group, pyridazinyl group, cinnolyl group, quinazolyl group, quinoxalyl group, phthalazinyl group, phthalazine dionyl group, phthalamidyl group, Romonyl, naphtholactamyl, quinolonyl, naphthalidinyl, benzimidazolonyl, benzoxazolonyl, benzothiazolonyl, benzothiazothionyl, quinazolonyl, quinoxalonyl, phthalazonyl, dioxopyrimidinyl Group, pyridonyl group, isoquinolonyl group, isoquinolinyl group, isothiazolyl group, benzisoxazolyl group, benzisothiazolyl group, indazironyl group, acridinyl group, acridonyl group, quinazoline dionyl group, quinoxaline dionyl group, benzoxazine dionyl Group, benzoxazinonyl group, naphthalimidyl group, dithienocyclopentadienyl group, dithienosylcyclopentadienyl group, dithienopyrrolyl group, benzodithiophenyl group and the like.
上記炭素原子数1〜20のフッ化ヘテロアリール基としては、特に制限はないが、例えば、上記で例示したヘテロアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したヘテロアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。 The fluorinated heteroaryl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the heteroaryl group exemplified above is substituted with a fluorine atom. . Among these, from the viewpoint of achieving higher V oc (deep HOMO level), it is preferable that all of the hydrogen atoms contained in the heteroaryl group exemplified above are groups substituted with fluorine atoms. In view of this, the number and position of fluorine atoms are preferably adjusted appropriately.
上記R1およびR2に場合によって存在する置換基は、特に制限はないが、例えば、置換または非置換の、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基などを挙げることができる。なお、上記において、同一の置換基で置換されることはない。すなわち、置換のアルキル基は、アルキル基で置換されることはない。 The substituent optionally present in R 1 and R 2 is not particularly limited, and examples thereof include a substituted or unsubstituted alkyl group, cycloalkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, acyl Group, alkoxycarbonyl group, amino group, alkoxy group, cycloalkyloxy group, aryloxy group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, Carbamoyl group, alkylthio group, arylthio group, silyl group, sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, halogen atom, hydroxyl group, mercapto group, cyano group, sulfo group, carboxyl group, nitro group, hydroxam It can be exemplified group, sulfino group, hydrazino group, and an imino group. In the above, they are not substituted with the same substituent. That is, a substituted alkyl group is not substituted with an alkyl group.
上記一般式1中、pは1〜4を表す。pは、高いVocを得る観点で1〜2が好ましい。また、上記一般式1中、qは1〜4を表す。qは、高いVocを得る観点の点で1〜2が好ましい。ここで、pおよびqは同一であってもよいし、異なっていてもよいが、結晶性を高め、高い移動度の材料を得やすい点で同一であることが好ましい。 In the general formula 1, p represents 1 to 4. p is preferably 1 to 2 from the viewpoint of obtaining a high Voc. Moreover, in the said General formula 1, q represents 1-4. q is preferably 1 to 2 from the viewpoint of obtaining a high Voc. Here, p and q may be the same or different, but are preferably the same in terms of enhancing crystallinity and easily obtaining a material with high mobility.
上記一般式1中、D1およびD2は、複素芳香族環を含むドナー性ユニット(群)を表す。(より詳しくは、ドナー性複素芳香族環基および/またはドナー性複素縮合芳香族環基)を表す。ここで、一般式1中のドナー性ユニットD1およびD2は同一であってもよいし、異なっていてもよい。また、D1および/またはD2が一つの部分構造中に複数個存在する(p=2〜4および/またはq=2〜8)場合には、D1、D2は1種のみを単独で使用してもよいし、2種以上を併用してもよい。 In the general formula 1, D 1 and D 2 represent a donor unit (group) containing a heteroaromatic ring. (More specifically, it represents a donor heteroaromatic ring group and / or a donor heterofused aromatic ring group). Here, the donor units D 1 and D 2 in the general formula 1 may be the same or different. Further, when a plurality of D 1 and / or D 2 are present in one partial structure (p = 2 to 4 and / or q = 2 to 8), only one of D 1 and D 2 is used alone. Or two or more of them may be used in combination.
なお、本明細書において、「ドナー性ユニット」とは、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が浅くなるような部分構造(ユニット)をいう。また、「ユニット群」とは、それぞれ、2以上のユニットが連結されてなる部分構造を意味する。 In this specification, the “donor unit” means a partial structure in which the LUMO level or the HOMO level is shallower than a hydrocarbon aromatic ring having the same number of π electrons (benzene, naphthalene, anthracene, etc.) Unit). The “unit group” means a partial structure in which two or more units are connected.
上記ドナー性ユニットとしては、例えば、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエンなどの複素5員環、およびこれらの縮合環を含むユニットなどが挙げられる。具体的には、チオフェン、チエノチオフェン、ビチオフェン、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンを含むユニットなどが挙げられるが、これらに制限されるものではない。 Examples of the donor unit include a unit containing a 5-membered ring such as a thiophene ring, a furan ring, a pyrrole ring, a cyclopentadiene, and a silacyclopentadiene, and a condensed ring thereof. Specific examples include units containing thiophene, thienothiophene, bithiophene, fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, benzodithiophene, and the like. is not.
以下に、ドナー性ユニットD1およびD2の好ましい具体例を示す。 Hereinafter, specific preferred examples of donor units D 1 and D 2.
上記D1〜D24のドナー性ユニット(群)において、Rは、それぞれ独立して、水素原子(H)、または、置換されたもしくは非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜24のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。これの基の好ましい形態は、上記一般式1で説明したのと同様である。 In the donor unit (group) of D1 to D24, each R independently represents a hydrogen atom (H), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, or the number of carbon atoms. 1 to 24 fluorinated alkyl groups, cycloalkyl groups having 3 to 24 carbon atoms, fluorinated cycloalkyl groups having 3 to 20 carbon atoms, alkoxy groups having 1 to 24 carbon atoms, 1 to 24 carbon atoms Fluorinated alkoxy group, alkylthio group having 1 to 24 carbon atoms, fluorinated alkylthio group having 1 to 24 carbon atoms, aryl group having 6 to 30 carbon atoms, fluorinated aryl group having 6 to 30 carbon atoms, carbon A heteroaryl group having 1 to 20 atoms or a fluorinated heteroaryl group having 1 to 20 carbon atoms is represented. The preferred form of this group is the same as described in the general formula 1.
中でも、D1および/またはD2は、硫黄原子(S)を含む複素芳香族環(含硫黄複素芳香族環)を含むドナー性ユニット(D1〜D11,D16〜D24)であることが好ましい。より好ましくは、5員の含硫黄複素芳香族環を含む基、すなわちチオフェンまたはチオフェン誘導体を含む基(D1〜D11,D16〜D23)である。上述したShiyan Chen et al.,Chem. Lett. 2011, 40, p998では、チエノチオフェンジオン基と接続する芳香族環としてフェニル基を用いていた。しかしながら、フェニル基のような6員環構造を用いた場合には、立体障害によりねじれが発生し、ポリマーとした際に結晶性が低下し、これにより、大きく移動度を損なうおそれがある。これに対して、チエノチオフェンジイリデン構造と接続するD1および/またはD2を5員の含硫黄複素芳香族環由来の基とすることにより、ポリマー主鎖のねじれが抑制され、より高い移動度の材料を得ることが可能となる。 Among them, D 1 and / or D 2 are heteroaromatic rings containing a sulfur atom (S) donor unit comprising (sulfur-containing heterocyclic aromatic ring) (D1~D11, D16~D24) is preferably. More preferably, it is a group containing a 5-membered sulfur-containing heteroaromatic ring, that is, a group containing thiophene or a thiophene derivative (D1 to D11, D16 to D23). Shiyan Chen et al. , Chem. Lett. In 2011, 40, p998, a phenyl group was used as an aromatic ring connected to a thienothiophenedione group. However, when a 6-membered ring structure such as a phenyl group is used, twisting occurs due to steric hindrance, and the crystallinity is lowered when a polymer is formed, which may greatly impair mobility. On the other hand, by using D 1 and / or D 2 connected to the thienothiophene diylidene structure as a group derived from a 5-membered sulfur-containing heteroaromatic ring, twisting of the polymer main chain is suppressed and higher movement is achieved. It becomes possible to obtain a material of a degree.
溶解性が高く、高分子量のポリマーを得るためには、D1、D5、D6,D8、D18で表されるドナー性ユニットであることが好ましい。 In order to obtain a polymer having high solubility and high molecular weight, a donor unit represented by D1, D5, D6, D8, or D18 is preferable.
また、一般にこれらの共役系高分子材料は、分子量が大きいほど分子間の粒界が少なくなり、ホール移動度が増大する傾向がある(J. Am. Chem. Soc. 2011, 133, p2605 参照)。一方、一般に共役系高分子の溶解性は低いうえ、分子量の増大とともに溶解度がさらに低下する傾向がある。かかる観点から、ホール移動度を向上させつつ十分な溶解性を確保するためには、高い溶解性を有するモノマーを用いて分子量を増大させることが好ましい。このように溶解性の高いモノマーとするには、分岐鎖を有する側鎖を導入することが有効であり、さらには主鎖の共役平面から分岐するような構造が好ましいため、より好ましくはD5、D8、D18で表わされるユニットである。 In general, these conjugated polymer materials have a tendency that as the molecular weight increases, the intergranular grain boundaries decrease and the hole mobility increases (see J. Am. Chem. Soc. 2011, 133, p2605). . On the other hand, the solubility of the conjugated polymer is generally low, and the solubility tends to further decrease as the molecular weight increases. From this point of view, in order to ensure sufficient solubility while improving hole mobility, it is preferable to increase the molecular weight using a monomer having high solubility. In order to make such a highly soluble monomer, it is effective to introduce a side chain having a branched chain, and further, a structure that branches from the conjugate plane of the main chain is preferable. It is a unit represented by D8 and D18.
本形態の共役系高分子化合物は、上記一般式1で表される部分構造を少なくとも1種有する限りにおいて、(1)上記一般式1で表される部分構造のみからなる共重合体であってもよいし、(2)上記一般式1で表される部分構造と、他の部分構造1つ以上とを含む共重合体であってもよい。 As long as the conjugated polymer compound of this embodiment has at least one partial structure represented by the above general formula 1, (1) a copolymer consisting of only the partial structure represented by the above general formula 1, Alternatively, (2) a copolymer including the partial structure represented by the general formula 1 and one or more other partial structures may be used.
前記一般式1の部分構造は、アクセプター性を有するチエノチオフェンジイリデン構造がドナーとして機能しうるユニット(ドナー性ユニット)に挟まれた構成を有しているが、当該部分構造を、アクセプターとして機能するユニット(アクセプター性ユニット)と結合させることで、HOMO準位および吸収波長の調整が良好となり、より高い光電変換効率を得ることができるようになる。このため、本形態に係る共役系高分子化合物は、上記一般式1で現れる部分構造だけを繰り返し単位として有する共役系高分子化合物であってもよいが、光電変換効率の向上の面で、いわゆるアクセプター性ユニット(第二のアクセプター性ユニット)をさらに有することが好ましい。 The partial structure of the general formula 1 has a structure in which a thienothiophene diylidene structure having an acceptor property is sandwiched between units that can function as a donor (donor unit). The partial structure functions as an acceptor. By combining with a unit (acceptor unit), the adjustment of the HOMO level and the absorption wavelength is improved, and higher photoelectric conversion efficiency can be obtained. For this reason, the conjugated polymer compound according to this embodiment may be a conjugated polymer compound having only the partial structure appearing in the general formula 1 as a repeating unit. It is preferable to further have an acceptor unit (second acceptor unit).
なお、本明細書において、「アクセプター性ユニット」とは、一般に、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が深くなるような部分構造(ユニット)をいう。 In this specification, the “acceptor unit” generally means a portion having a LUMO level or a HOMO level deeper than a hydrocarbon aromatic ring having the same number of π electrons (benzene, naphthalene, anthracene, etc.). Structure (unit).
好ましくは、本形態の共役系高分子化合物は、ドナー性ユニット(群)と、アクセプター性ユニット(群)とが交互に配列した構造を有する共重合体(以下、「D−Aポリマー」とも称する)である。D−Aポリマーとすることにより、吸収域を長波長域に拡大することができる。したがって、このような共役系高分子化合物は、従来のp型有機半導体の吸収域(例えば、400〜700nm)に加え、長波長域(例えば、700〜1000nm)の光も吸収することが可能となる。これにより、光電変換素子として広い範囲のスペクトルを吸収し、一層高い短絡電流密度を得ることが可能となる。 Preferably, the conjugated polymer compound of this embodiment is a copolymer having a structure in which a donor unit (group) and an acceptor unit (group) are alternately arranged (hereinafter also referred to as “D-A polymer”). ). By using a D-A polymer, the absorption region can be expanded to a long wavelength region. Therefore, such a conjugated polymer compound can absorb light in a long wavelength region (for example, 700 to 1000 nm) in addition to the absorption region (for example, 400 to 700 nm) of a conventional p-type organic semiconductor. Become. As a result, it is possible to absorb a broad spectrum as a photoelectric conversion element and obtain a higher short-circuit current density.
すなわち、好ましくは、本形態の共役系高分子化合物は、下記一般式2で表される部分構造を有する。前記一般式1で表わされる構造が、さらに−A−または−D3−A−で表わされる構造で連結されたポリマーとすることで、長波長まで太陽光を吸収することが可能となる。本実施形態の共役系高分子化合物には、一般式2で表される部分構造が1または2以上含まれるが、当該部分構造が2以上存在する場合には、各部分構造におけるX1、X2、A、D1、D2、D3、p、q、rおよびsは、互いに同一であってもよいし、異なってもよい。 That is, preferably, the conjugated polymer compound of this embodiment has a partial structure represented by the following general formula 2. When the structure represented by the general formula 1 is a polymer linked by a structure represented by -A- or -D 3 -A-, sunlight can be absorbed to a long wavelength. The conjugated polymer compound of the present embodiment includes one or more partial structures represented by the general formula 2. When there are two or more partial structures, X 1 and X in each partial structure are present. 2 , A, D 1 , D 2 , D 3 , p, q, r and s may be the same as or different from each other.
上記一般式2中、X1およびX2は、=O(酸素原子)または=CR1R2を表す。X1およびX2の好ましい形態に関しては、上記一般式1で説明したのと同様である。 In the general formula 2, X 1 and X 2 represent ═O (oxygen atom) or ═CR 1 R 2 . The preferred forms of X 1 and X 2 are the same as described in the general formula 1.
上記一般式1中、R1およびR2は、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表す。R1およびR2の好ましい形態に関しては、上記一般式1で説明したのと同様である。 In the general formula 1, R 1 and R 2 are a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a carbon atom A fluorinated alkyl group having 1 to 24 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a fluorinated cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, and 1 to 24 carbon atoms A fluorinated alkoxy group, an alkylthio group having 1 to 24 carbon atoms, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, A heteroaryl group having 1 to 20 carbon atoms, a fluorinated heteroaryl group having 1 to 20 carbon atoms, or a cyano group is represented. The preferred form of R 1 and R 2 is the same as described in the general formula 1.
上記一般式2中、pおよびrは、それぞれ独立して、1〜4の整数を表す。pおよびrは、より高いVocを得るためには1〜2が好ましい。pおよびrは同一であってもよいし異なっていてもよい。 In the general formula 2, p and r each independently represent an integer of 1 to 4. p and r are preferably 1 to 2 in order to obtain a higher Voc. p and r may be the same or different.
上記一般式2中、qは1〜4の整数を表す。qはより高いVocを得るためには1〜2が好ましい。 In the above general formula 2, q represents an integer of 1 to 4. q is preferably 1 to 2 in order to obtain a higher Voc.
上記一般式2中、sは0〜4の整数を表す。sはより高いVocを得るためには1〜2が好ましい。 In the general formula 2, s represents an integer of 0 to 4. In order to obtain a higher Voc, s is preferably 1 to 2.
上記一般式2中、D1、D2、およびD3は、複素芳香族環を含むドナー性ユニット(群)(より詳しくは、ドナー性複素芳香族環基および/またはドナー性複素縮合芳香族環基)を表わす。一般式2中のドナー性ユニットD1、D2、およびD3は同一であってもよいし、異なっていてもよい。また、各D1、D2、およびD3が一つの部分構造中に複数個存在する(p=2〜4、またはq=2〜8、またはs=2〜4)場合には、各D1、D2、およびD3は1種のみを単独で使用してもよいし、2種以上を併用してもよい。D1、D2、およびD3の具体例としては、上記一般式1におけるD1およびD2として例示した複素芳香族環を含むドナー性ユニット(D1〜D24)が挙げられる。D1、D2、およびD3の好ましい形態に関しては、上記一般式1におけるD1およびD2の好ましい形態と同様である。 In the general formula 2, D 1 , D 2 , and D 3 are a donor unit (group) containing a heteroaromatic ring (more specifically, a donor heteroaromatic ring group and / or a donor heterofused aromatic group) Ring group). The donor units D 1 , D 2 , and D 3 in the general formula 2 may be the same or different. In addition, when each D 1 , D 2 , and D 3 is present in plural in one partial structure (p = 2 to 4, or q = 2 to 8, or s = 2 to 4), each D 1 , D 2 and D 3 may be used alone or in combination of two or more. Specific examples of D 1 , D 2 , and D 3 include donor units (D1 to D24) including the heteroaromatic ring exemplified as D 1 and D 2 in the general formula 1. The preferred forms of D 1 , D 2 , and D 3 are the same as the preferred forms of D 1 and D 2 in the general formula 1.
上記一般式2中、Aは、アクセプター性ユニット(群)(より詳しくは、アクセプター性芳香族環基および/またはアクセプター性縮合芳香族環基)を表す。なお、アクセプターユニットAは1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、Aが一つの部分構造中に複数個存在する(r=2〜4)場合には、Aは、同じであってもあるいは異なるものであってもよい。 In General Formula 2, A represents an acceptor unit (group) (more specifically, an acceptor aromatic ring group and / or an acceptor condensed aromatic ring group). In addition, acceptor unit A may be used alone or in combination of two or more. When a plurality of A are present in one partial structure (r = 2 to 4), A may be the same or different.
以下に、アクセプター性ユニットの好ましい具体例を示す。 Below, the preferable specific example of an acceptor property unit is shown.
上記A−1〜A−49のアクセプター性ユニットにおいて、Rは、それぞれ独立して、水素原子(H)、または、置換もしくは非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜24のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。ユニット中に複数のRが含まれる場合、複数のRは互いに結合して置換基を有してもよい環を形成してもよく、または、複数のRが縮環していてもよい。 In the acceptor units A-1 to A-49, each R independently represents a hydrogen atom (H), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, or 1 carbon atom. -24 fluorinated alkyl groups, cycloalkyl groups having 3 to 24 carbon atoms, fluorinated cycloalkyl groups having 3 to 20 carbon atoms, alkoxy groups having 1 to 24 carbon atoms, and fluorine groups having 1 to 24 carbon atoms. Alkoxy group, alkylthio group having 1 to 24 carbon atoms, fluorinated alkylthio group having 1 to 24 carbon atoms, aryl group having 6 to 30 carbon atoms, fluorinated aryl group having 6 to 30 carbon atoms, carbon atom This represents a heteroaryl group having 1 to 20 carbon atoms or a fluorinated heteroaryl group having 1 to 20 carbon atoms. When a plurality of Rs are contained in the unit, the plurality of Rs may be bonded to each other to form a ring that may have a substituent, or the plurality of Rs may be condensed.
中でも好ましくは、Rは、溶解性と結晶性を両立しやすい点で、水素原子、炭素原子数1〜24のアルキル基、フッ化アルキル基、アルコキシ基、アルキルチオ基である。Rの具体的な基、および、Rに場合によって存在する置換基は、上記一般式1におけるR1およびR2で説明したのと同様である。 Among these, R is preferably a hydrogen atom, an alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group, an alkoxy group, or an alkylthio group in that both solubility and crystallinity are easily achieved. Specific groups of R and substituents optionally present in R are the same as those described for R 1 and R 2 in the general formula 1.
本形態の共役系高分子化合物に含まれるアクセプター性ユニットAは、上記で例示した部分構造以外にも、他の部分構造(電子求引性を有する構造)を含んでもよい。ただし、より高い光電変換効率を達成するためには、共役系高分子化合物に含まれるアクセプター性ユニットのうち、上記部分構造の割合が多いほど好ましい。具体的には、共役系高分子化合物に含まれる全アクセプター性ユニットの数に対して、上記部分構造(A−1〜A−49)の数が50%以上であることが好ましく、70%以上であることがより好ましく、90%以上であることがさらに好ましく、95%以上であることが特に好ましく、100%であることが最も好ましい。 The acceptor unit A included in the conjugated polymer compound of this embodiment may include other partial structures (structures having electron withdrawing properties) in addition to the partial structures exemplified above. However, in order to achieve higher photoelectric conversion efficiency, it is preferable that the proportion of the partial structure is larger in the acceptor unit included in the conjugated polymer compound. Specifically, the number of the partial structures (A-1 to A-49) is preferably 50% or more, and 70% or more with respect to the number of all acceptor units contained in the conjugated polymer compound. Is more preferably 90% or more, particularly preferably 95% or more, and most preferably 100%.
好ましい実施形態において、前記Aで表わされるアクセプターユニットは、2環以上が縮環した複素芳香族縮合多環(複素芳香族縮合多環)由来の2価の基である。例えば、上記A−1〜A−25、A−32〜A−40、A−45〜A−49のアクセプター性ユニットである。このような化合物とすることで、p型有機半導体材料の長波長化による短絡電流の向上、およびπ平面面積の向上による移動度の向上が期待されるためである。さらに好ましくは、Aは一般式3Aまたは3Bで表わされる構造、すなわち、A−1〜A−18、A−40であることが好ましい。 In a preferred embodiment, the acceptor unit represented by A is a divalent group derived from a heteroaromatic condensed polycycle (heteroaromatic condensed polycycle) in which two or more rings are condensed. For example, the acceptor units of A-1 to A-25, A-32 to A-40, and A-45 to A-49. This is because such a compound is expected to improve the short circuit current by increasing the wavelength of the p-type organic semiconductor material and improve the mobility by improving the π plane area. More preferably, A is a structure represented by the general formula 3A or 3B, that is, A-1 to A-18, A-40.
上記一般式3Aまたは3B中、Y1およびY2は、−O−、−NR5−、−S−、−C(R6)=C(R7)−、−N=C(R8)−、または−CR9R10−を表す。一般式3Bにおいて、各Y2は同一であってもよいし、異なっていてもよいが、結晶性を高め、高い移動度の材料を得やすい点で同一であることが好ましい。 In the general formula 3A or 3B, Y 1 and Y 2 are —O—, —NR 5 —, —S—, —C (R 6 ) ═C (R 7 ) —, —N═C (R 8 ). -, or -CR 9 R 10 - represents a. In General Formula 3B, each Y 2 may be the same or different, but is preferably the same in terms of enhancing crystallinity and easily obtaining a material with high mobility.
中でも、より好ましくは、Y1およびY2は−S−である。これらの化合物では、深いHOMO準位と高い移動度の両立が期待される。 Of these, more preferably, Y 1 and Y 2 are —S—. These compounds are expected to have both a deep HOMO level and a high mobility.
上記式中、R3〜R10は、それぞれ独立して、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換もしくは非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表す。一般式3Aまたは一般式3Bにおいて、各R3、各R4は同一であってもよいし、異なっていてもよいが、結晶性を高め、高い移動度の材料を得やすい点で同一であることが好ましい。一般式3Aにおける各R3または一般式3Aまたは3BにおけるR6およびR7もしくはR9およびR10はそれぞれ、互いに結合して置換基を有してもよい環を形成してもよく、または、縮環していてもよい。 In the above formula, R 3 to R 10 are each independently a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms. , A fluorinated alkyl group having 1 to 24 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, a fluorinated cycloalkyl group having 3 to 20 carbon atoms, an alkoxy group having 1 to 24 carbon atoms, and the number of carbon atoms 1 to 24 fluorinated alkoxy groups, 1 to 24 carbon alkylthio groups, 1 to 24 carbon fluoride alkylthio groups, 6 to 30 aryl groups, 6 to 30 carbon fluorides An aryl group, a C1-C20 heteroaryl group, or a C1-C20 fluorinated heteroaryl group is represented. In General Formula 3A or General Formula 3B, each R 3 and each R 4 may be the same or different, but they are the same in terms of enhancing crystallinity and easily obtaining a material with high mobility. It is preferable. Each R 3 in the general formula 3A or R 6 and R 7 or R 9 and R 10 in the general formula 3A or 3B may be bonded to each other to form a ring that may have a substituent, or It may be condensed.
R3またはR4は、好ましくは、共役高分子主鎖の平面性(移動度向上)の点から、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、炭素原子数1〜24のアルキル基、フッ化アルキル基、アルコキシ基、アルキルチオ基であり、より好ましくは、より深いHOMOの共役ポリマーを得る(開放電圧向上)の点から、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)であることが好ましい。 R 3 or R 4 is preferably a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), 1 carbon atom from the viewpoint of the planarity (improving mobility) of the conjugated polymer main chain. To 24 alkyl groups, fluorinated alkyl groups, alkoxy groups, and alkylthio groups, and more preferably, from the viewpoint of obtaining a deeper HOMO conjugated polymer (improvement of open-circuit voltage), a hydrogen atom (H), a halogen atom (F , Cl, Br, or I).
R5〜R10は、好ましくは、共役高分子の溶解性の点から、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、溶解性と結晶性を両立しやすい点で、水素原子、炭素原子数1〜24のアルキル基、フッ化アルキル基、アルコキシ基、アルキルチオ基であり、より好ましくは、合成の容易性の点から、水素原子(H)、炭素原子数1〜24のアルキル基である。 R 5 to R 10 are preferably a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), from the viewpoint of the solubility of the conjugated polymer, and are easy to achieve both solubility and crystallinity. , A hydrogen atom, an alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group, an alkoxy group, and an alkylthio group, and more preferably a hydrogen atom (H) and 1 to 1 carbon atoms from the viewpoint of ease of synthesis. 24 alkyl groups.
上記R3〜R10の具体的な基、および、R3〜R10に場合によって存在する置換基は、上記一般式1におけるR1およびR2で説明したのと同様である。 Specific groups of R 3 to R 10 and, the optional substituents in R 3 to R 10 are the same as described in R 1 and R 2 in the general formula 1.
以下、本形態の共役系高分子化合物の好ましい形態(例示化合物1〜54)を例示するが、本発明が以下の形態のみに限定されるわけではない。 Hereinafter, although the preferable form (Exemplary compounds 1-54) of the conjugated polymer compound of this form is illustrated, this invention is not necessarily limited only to the following forms.
また、本形態の共役系高分子化合物の分子量は特に制限はないが、共役系高分子化合物に良好なモルフォロジーを与えるためには、適度に大きい分子量を有することが好ましい。他方で分子量が高すぎると溶解性が低くなることがある。かような観点から、共役系高分子化合物の数平均分子量(Mn)が10,000〜100,000であることが好ましく、15,000〜70,000であることがより好ましく、20,000〜50,000であることがさらに好ましい。特に、本形態の共役系高分子化合物をp型有機半導体として用いてバルクヘテロジャンクション型の光電変換層を構成する場合、n型有機半導体として低分子化合物(例えば、フラーレン誘導体)が広く用いられているが、p型有機半導体として用いられる共役系高分子化合物の分子量が上記範囲内であると、ミクロ相分離構造が良好に形成されるため、pn接合界面で発生した正孔と電子とを運ぶキャリアパスが形成されやすくなるという利点もある。本明細書における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC;標準物質ポリスチレン)で測定することができる。 In addition, the molecular weight of the conjugated polymer compound of this embodiment is not particularly limited, but it preferably has an appropriately large molecular weight in order to give a good morphology to the conjugated polymer compound. On the other hand, if the molecular weight is too high, the solubility may be lowered. From such a viewpoint, the number average molecular weight (Mn) of the conjugated polymer compound is preferably 10,000 to 100,000, more preferably 15,000 to 70,000, and 20,000 to More preferably, it is 50,000. In particular, when a bulk heterojunction photoelectric conversion layer is formed using the conjugated polymer compound of this embodiment as a p-type organic semiconductor, a low-molecular compound (for example, a fullerene derivative) is widely used as an n-type organic semiconductor. However, when the molecular weight of the conjugated polymer compound used as the p-type organic semiconductor is within the above range, a microphase separation structure is formed well, and thus carriers that carry holes and electrons generated at the pn junction interface. There is also an advantage that a path is easily formed. The number average molecular weight in this specification can be measured by gel permeation chromatography (GPC; standard material polystyrene).
上述の本形態の共役系高分子化合物を光電変換層のp型有機半導体として用いることにより、優れた耐久性を有するとともに、十分な光電変換効率を発揮する素子とすることができる。すなわち、本発明の一形態に係る有機光電変換素子は、第一の電極と、第二の電極と、前記第一の電極および前記第二の電極の間に存在する、n型有機半導体およびp型有機半導体を含む光電変換層とを有し、前記p型有機半導体は、上述の共役系高分子化合物を含む。 By using the conjugated polymer compound of the present embodiment as a p-type organic semiconductor of the photoelectric conversion layer, it is possible to obtain an element having excellent durability and sufficient photoelectric conversion efficiency. That is, an organic photoelectric conversion element according to one embodiment of the present invention includes a first electrode, a second electrode, an n-type organic semiconductor that exists between the first electrode and the second electrode, and p. The p-type organic semiconductor contains the conjugated polymer compound described above.
以下、添付した図面を参照しながら本形態を説明するが、本発明の技術的範囲は、特許請求の範囲の記載により定められるべきものであり、以下の形態のみに制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the present embodiment will be described with reference to the accompanying drawings. However, the technical scope of the present invention should be determined by the description of the scope of claims, and is not limited to the following embodiments. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
図1は、本発明の一実施形態に係る、順層型の有機光電変換素子を模式的に表した断面概略図である。具体的には、図1の有機光電変換素子10は、基板25上に、陽極(透明電極)11、正孔輸送層26、光電変換層14、電子輸送層27、および陰極(対電極)12がこの順に積層されてなる構成を有する。なお、基板25は、主に、その上の陽極(透明電極)11を塗布方式で形成するのを容易にするために任意に設けられる部材である。 FIG. 1 is a schematic cross-sectional view schematically showing a normal layer type organic photoelectric conversion element according to an embodiment of the present invention. Specifically, the organic photoelectric conversion element 10 of FIG. 1 includes an anode (transparent electrode) 11, a hole transport layer 26, a photoelectric conversion layer 14, an electron transport layer 27, and a cathode (counter electrode) 12 on a substrate 25. Are stacked in this order. The substrate 25 is a member that is arbitrarily provided mainly for facilitating the formation of the anode (transparent electrode) 11 thereon by a coating method.
図1に示す有機光電変換素子10の作動時において、光は基板25側から照射される。本実施形態において、陽極(透明電極)11は、照射された光が光電変換層14へと届くようにするため、透明な電極材料(例えば、ITO)で構成される。基板25側から照射された光は、透明な陽極(透明電極)11および正孔輸送層26を経て光電変換層14へと届く。 When the organic photoelectric conversion element 10 shown in FIG. 1 is operated, light is irradiated from the substrate 25 side. In the present embodiment, the anode (transparent electrode) 11 is made of a transparent electrode material (for example, ITO) so that the irradiated light reaches the photoelectric conversion layer 14. The light irradiated from the substrate 25 side reaches the photoelectric conversion layer 14 through the transparent anode (transparent electrode) 11 and the hole transport layer 26.
なお、正孔輸送層26は、正孔の移動度が高い材料で形成されており、光電変換層14のpn接合界面で生成した正孔を効率よく陽極(透明電極)11へと輸送する機能を担っている。一方、電子輸送層27は、電子の移動度が高い材料で形成されており、光電変換層14のpn接合界面で生成した電子を効率よく陰極(対電極)12へと輸送する機能を担っている。 The hole transport layer 26 is made of a material having a high hole mobility, and functions to efficiently transport holes generated at the pn junction interface of the photoelectric conversion layer 14 to the anode (transparent electrode) 11. Is responsible. On the other hand, the electron transport layer 27 is formed of a material having high electron mobility, and has a function of efficiently transporting electrons generated at the pn junction interface of the photoelectric conversion layer 14 to the cathode (counter electrode) 12. Yes.
図2は、本発明の他の一実施形態に係る、逆層型の有機光電変換素子を模式的に表した断面概略図である。図2の有機光電変換素子20は、図1の有機光電変換素子10と比較して、陽極11と陰極12とが逆の位置に配置され、また、正孔輸送層26と電子輸送層27とが逆の位置に配置されている点が異なる。すなわち、逆層型の有機光電変換素子は、第一の電極が陰極(透明電極)12であり、第二の電極が陽極(対電極)11であり、第二の電極および光電変換層14の間に正孔輸送層26が含まれる点に特徴を有する。図2の有機光電変換素子20は、基板25上に、陰極(透明電極)12、電子輸送層27、光電変換層14、正孔輸送層26、および陽極(対電極)11がこの順に積層されてなる構成を有している。このような構成を有することにより、光電変換層14のpn接合界面で生成される電子は電子輸送層27を経て陰極(透明電極)12へと輸送され、正孔は正孔輸送層26を経て陽極(対電極)11へと輸送される。 FIG. 2 is a schematic cross-sectional view schematically showing a reverse layer type organic photoelectric conversion element according to another embodiment of the present invention. The organic photoelectric conversion element 20 in FIG. 2 has the anode 11 and the cathode 12 disposed at opposite positions as compared with the organic photoelectric conversion element 10 in FIG. 1, and the hole transport layer 26, the electron transport layer 27, and the like. Are different in that they are arranged at the opposite positions. That is, in the reverse layer type organic photoelectric conversion element, the first electrode is the cathode (transparent electrode) 12, the second electrode is the anode (counter electrode) 11, and the second electrode and the photoelectric conversion layer 14 It is characterized in that the hole transport layer 26 is included therebetween. In the organic photoelectric conversion element 20 of FIG. 2, a cathode (transparent electrode) 12, an electron transport layer 27, a photoelectric conversion layer 14, a hole transport layer 26, and an anode (counter electrode) 11 are stacked in this order on a substrate 25. It has the composition which becomes. By having such a configuration, electrons generated at the pn junction interface of the photoelectric conversion layer 14 are transported to the cathode (transparent electrode) 12 through the electron transport layer 27, and holes are transported through the hole transport layer 26. It is transported to the anode (counter electrode) 11.
図3は、本発明の他の一実施形態に係る、タンデム型(多接合型)の光電変換層を備えた有機光電変換素子を模式的に表した断面概略図である。図3の有機光電変換素子30は、図1の有機光電変換素子10と比較して、光電変換層14に代えて、第1の光電変換層14aと、第2の光電変換層14bと、これら2つの光電変換層の間に介在する電荷再結合層38と、の積層体が配置されている点が異なる。図3に示すタンデム型の有機光電変換素子30では、第1の光電変換層14aおよび第2の光電変換層14bに、それぞれ吸収波長の異なる光電変換材料(p型有機半導体およびn型有機半導体)を用いることにより、より広い波長域の光を効率よく電気に変換することが可能となる。 FIG. 3 is a schematic cross-sectional view schematically illustrating an organic photoelectric conversion element including a tandem (multi-junction type) photoelectric conversion layer according to another embodiment of the present invention. Compared with the organic photoelectric conversion element 10 in FIG. 1, the organic photoelectric conversion element 30 in FIG. 3 replaces the photoelectric conversion layer 14 with a first photoelectric conversion layer 14 a, a second photoelectric conversion layer 14 b, and these The difference is that a laminate of the charge recombination layer 38 interposed between the two photoelectric conversion layers is disposed. In the tandem organic photoelectric conversion element 30 shown in FIG. 3, photoelectric conversion materials (p-type organic semiconductor and n-type organic semiconductor) having different absorption wavelengths are used for the first photoelectric conversion layer 14a and the second photoelectric conversion layer 14b, respectively. By using this, light in a wider wavelength range can be efficiently converted into electricity.
以下、本発明に係る有機光電変換素子の各構成について詳細に説明する。 Hereinafter, each structure of the organic photoelectric conversion element which concerns on this invention is demonstrated in detail.
[電極]
本形態の有機光電変換素子は、第一の電極および第二の電極を必須に含む。第一の電極および第二の電極は、各々、陽極または陰極として機能する。本明細書において、「第一の」および「第二の」とは、陽極または陰極としての機能を区別するための用語である。したがって、第一の電極が陽極として機能し、第二の電極が陰極として機能する場合もあるし、逆に、第一の電極が陰極として機能し、第二の電極が陽極として機能する場合もある。上述したように、光電変換層14で生成されるキャリア(正孔・電子)は、電極間を移動し、正孔は陽極11へ、電子は陰極12へと到達する。なお、本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。また、タンデム構成をとる場合には電荷再結合層(中間電極)を用いることでタンデム構成を達成することができる。さらに、電極が透光性を有するものであるか否かという機能面から、透光性を有する電極を透明電極と呼び、透光性のない電極を対電極と呼び分ける場合もある。順層構成の場合、通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。
[electrode]
The organic photoelectric conversion element of this embodiment essentially includes a first electrode and a second electrode. The first electrode and the second electrode each function as an anode or a cathode. In the present specification, “first” and “second” are terms for distinguishing functions as an anode or a cathode. Therefore, the first electrode may function as an anode and the second electrode may function as a cathode. Conversely, the first electrode may function as a cathode and the second electrode may function as an anode. is there. As described above, the carriers (holes / electrons) generated in the photoelectric conversion layer 14 move between the electrodes, and the holes reach the anode 11 and the electrons reach the cathode 12. In the present invention, an electrode through which holes mainly flow is called an anode, and an electrode through which electrons mainly flow is called a cathode. Moreover, when taking a tandem structure, a tandem structure can be achieved by using a charge recombination layer (intermediate electrode). Furthermore, from the functional aspect of whether or not the electrode has translucency, the translucent electrode is sometimes referred to as a transparent electrode, and the non-translucent electrode is sometimes referred to as a counter electrode. In the case of a normal layer configuration, the anode is usually a transparent electrode having a light transmitting property, and the cathode is a counter electrode having no light transmitting property.
本形態の電極に使用される材料は、光電変換素子として駆動する限りにおいては特に制限はなく、本技術分野で使用されうる電極材料を適宜採用することができる。中でも、陽極は陰極と比較して相対的に仕事関数が大きい材料から構成されることが好ましく、逆に陰極は陽極と比較して相対的に仕事関数が小さい材料から構成から構成されることが好ましい。 The material used for the electrode of this embodiment is not particularly limited as long as it is driven as a photoelectric conversion element, and an electrode material that can be used in this technical field can be appropriately employed. In particular, the anode is preferably composed of a material having a relatively large work function compared to the cathode, and conversely, the cathode is composed of a material having a relatively small work function compared to the anode. preferable.
上述の図1に示す順層型の有機光電変換素子10における陽極11は、相対的に仕事関数が大きく、透明な(380〜800nmの光を透過可能な)電極材料から構成されることが好ましい。一方、陰極12は、相対的に仕事関数が小さく(例えば、4eV以下)、通常、透光性の低い電極材料から構成されうる。 The anode 11 in the normal layer type organic photoelectric conversion element 10 shown in FIG. 1 is preferably composed of a transparent electrode material having a relatively large work function and capable of transmitting light of 380 to 800 nm. . On the other hand, the cathode 12 has a relatively small work function (for example, 4 eV or less), and can usually be composed of an electrode material having low translucency.
このような、順層型の有機光電変換素子10において、陽極(透明電極)に使用される電極材料としては、例えば、金、銀、白金などの金属;インジウムスズ酸化物(ITO)、SnO2、ZnOなどの透明な導電性金属酸化物;金属ナノワイヤー、カーボンナノチューブなどの炭素材料などが挙げられる。また、陽極の電極材料として導電性高分子を用いることも可能である。陽極に使用されうる導電性高分子としては、例えば、PEDOT:PSS、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、ポリナフタレンおよびこれらの誘導体などが挙げられる。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陽極(透明電極)の厚さは特に制限はないが、通常10nm〜10μm、好ましくは100nm〜1000nmである。 In such a normal layer type organic photoelectric conversion element 10, examples of electrode materials used for the anode (transparent electrode) include metals such as gold, silver, and platinum; indium tin oxide (ITO), SnO 2. And transparent conductive metal oxides such as ZnO; carbon materials such as metal nanowires and carbon nanotubes. It is also possible to use a conductive polymer as the anode electrode material. Examples of the conductive polymer that can be used for the anode include PEDOT: PSS, polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, and polyphenyl. Examples include acetylene, polydiacetylene, polynaphthalene, and derivatives thereof. These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material. The thickness of the anode (transparent electrode) is not particularly limited, but is usually 10 nm to 10 μm, preferably 100 nm to 1000 nm.
一方、順層型の有機光電変換素子において、陰極(対電極)に使用される電極材料としては、金属、合金、電子電導性化合物、およびこれらの混合物が使用されうる。具体的には、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属、金、銀、白金などの金属などが挙げられる。このうち、電子の取り出し性能や、酸化などに対する耐久性の観点から、仕事関数が低い第一の金属と、第一の金属よりも仕事関数が大きく安定な金属である第二の金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物や、安定な金属であるアルミニウムなどを用いることが好ましい。また、これらの材料のうち金属を用いることも好ましく、これにより、第一の電極側から入射し光電変換層で吸収されずに透過した光を、第二の電極で反射させて光電変換に再利用することができ、光電変換効率を向上させることが可能である。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陰極(対電極)の厚さは特に制限はないが、通常10nm〜5μm、好ましくは100〜1000nmである。 On the other hand, in the normal layer type organic photoelectric conversion element, as an electrode material used for the cathode (counter electrode), a metal, an alloy, an electron conductive compound, and a mixture thereof can be used. Specifically, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium, Examples include lithium / aluminum mixtures, rare earth metals, gold, silver, platinum and other metals. Of these, a mixture of a first metal having a low work function and a second metal, which is a metal having a larger work function and more stable than the first metal, from the viewpoint of electron extraction performance and durability against oxidation, etc. For example, it is preferable to use a magnesium / silver mixture, a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum which is a stable metal, or the like. In addition, it is also preferable to use a metal among these materials, so that light that is incident from the first electrode side and transmitted without being absorbed by the photoelectric conversion layer is reflected by the second electrode and is regenerated for photoelectric conversion. The photoelectric conversion efficiency can be improved. These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material. The thickness of the cathode (counter electrode) is not particularly limited, but is usually 10 nm to 5 μm, preferably 100 to 1000 nm.
図2に示す逆層型の有機光電変換素子では、光が入射する基板25側に陰極12が位置し、反対側に陽極11が位置する。したがって、図2に示す逆層型の形態における陽極11は、相対的に仕事関数が大きく、通常、透光性の低い電極材料から構成されることが好ましい。一方、陰極12は、相対的に仕事関数が小さく、透明な電極材料から構成される。 In the reverse layer type organic photoelectric conversion element shown in FIG. 2, the cathode 12 is located on the substrate 25 side on which light is incident, and the anode 11 is located on the opposite side. Therefore, the anode 11 in the reverse layer type shown in FIG. 2 is preferably composed of an electrode material having a relatively large work function and usually low translucency. On the other hand, the cathode 12 has a relatively small work function and is made of a transparent electrode material.
逆層型の有機光電変換素子において、陰極(透明電極)に使用される電極材料としては、例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウムなどの金属、金属化合物、および合金;カーボンナノ粒子、カーボンナノワイヤー、カーボンナノ構造体などの炭素材料;が挙げられる。このうち、インジウムスズ酸化物(ITO)などの透明な導電性金属酸化物を用いることが好ましい。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。このうち、カーボンナノワイヤーを用いることにより、透明で導電性の高い陰極を塗布法により形成できるため好ましい。また、金属系の材料を使用する場合、陽極(対電極)と対向する側に、例えば、アルミニウム、アルミニウム合金、銀、銀化合物などを用いて、1〜20nm程度の厚さの補助電極を作製した後、上述の順層型の有機光電変換素子の陽極(透明電極)材料として例示した導電性高分子の膜を設けることで、陰極(透明電極)とすることができる。なお、陰極(透明電極)の厚さは特に制限はないが、通常10nm〜10μm、好ましくは100nm〜1μmである。 In the reverse layer type organic photoelectric conversion element, examples of the electrode material used for the cathode (transparent electrode) include metals such as gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, and indium, metal compounds, And carbon materials such as carbon nanoparticles, carbon nanowires, and carbon nanostructures. Among these, it is preferable to use a transparent conductive metal oxide such as indium tin oxide (ITO). These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material. Among these, it is preferable to use carbon nanowires because a transparent and highly conductive cathode can be formed by a coating method. In addition, when a metal material is used, an auxiliary electrode having a thickness of about 1 to 20 nm is formed on the side facing the anode (counter electrode) using, for example, aluminum, an aluminum alloy, silver, a silver compound, or the like. Then, a cathode (transparent electrode) can be obtained by providing a conductive polymer film exemplified as the anode (transparent electrode) material of the above-mentioned normal layer type organic photoelectric conversion element. The thickness of the cathode (transparent electrode) is not particularly limited, but is usually 10 nm to 10 μm, preferably 100 nm to 1 μm.
一方、逆層型の有機光電変換素子において、陽極(対電極)に使用される電極材料は、上記陰極(透明電極)よりも相対的に仕事関数が大きい電極材料であることが好ましい。一例を挙げると、銀、ニッケル、モリブデン、金、白金、タングステン、および銅などの金属材料を用いて陽極(対電極)が形成されうる。なお、陽極(対電極)の厚さは特に制限はないが、通常10nm〜5μm、好ましくは100〜1000nmである。 On the other hand, in the reverse layer type organic photoelectric conversion element, the electrode material used for the anode (counter electrode) is preferably an electrode material having a relatively higher work function than the cathode (transparent electrode). For example, the anode (counter electrode) may be formed using a metal material such as silver, nickel, molybdenum, gold, platinum, tungsten, and copper. The thickness of the anode (counter electrode) is not particularly limited, but is usually 10 nm to 5 μm, preferably 100 to 1000 nm.
前述のとおり、本発明においては、酸素や水分等で劣化しにくい材料を陽極・陰極の双方に用いることができる、図2の逆層構成の有機光電変換素子であることが好ましい。前述のとおり、本発明においては、酸素や水分等で劣化しにくい材料を陽極・陰極の双方に用いることができる、図2の逆層型の有機光電変換素子であることが好ましい。このように逆層型の有機光電変換素子とすることで、対極の酸化に起因する素子の劣化を大幅に抑制することができ、順層型の素子よりも更に高い安定性を提供できる。すなわち、本発明の有機光電変換素子は、前記第一の電極は透明電極であり、前記第二の電極は対電極であり、および前記光電変換層と前記第二の電極との間に、さらに正孔輸送層を有する、逆層型の有機光電変換素子であることが好ましい。逆層構成において好ましい陽極・陰極の組合せの例としては、例えば、逆層構成において好ましい陽極・陰極の組合せの例としては、たとえば
1) 第1電極(陰極)ITO, 第2電極(陽極)銀
2) 第1電極(陰極)PEDOT:PSS, 第2電極(陽極)銀
3) 第1電極(陰極)ITO, 第2電極(陽極)銅
4) 第1電極(陰極)PEDOT:PSS, 第2電極(陽極)金
5) 第1電極(陰極)ITO, 第2電極(陽極)PEDOT:PSS
等を挙げることができる。
As described above, in the present invention, the organic photoelectric conversion element having the reverse layer structure of FIG. 2 in which a material that hardly deteriorates due to oxygen, moisture, or the like can be used for both the anode and the cathode is preferable. As described above, in the present invention, the reverse layer type organic photoelectric conversion element of FIG. 2 in which a material that is hardly deteriorated by oxygen, moisture, or the like can be used for both the anode and the cathode is preferable. Thus, by setting it as a reverse layer type organic photoelectric conversion element, degradation of the element resulting from oxidation of a counter electrode can be suppressed significantly, and still higher stability can be provided than a normal layer type element. That is, in the organic photoelectric conversion element of the present invention, the first electrode is a transparent electrode, the second electrode is a counter electrode, and between the photoelectric conversion layer and the second electrode, It is preferable that it is a reverse layer type organic photoelectric conversion element which has a positive hole transport layer. Examples of preferred anode / cathode combinations in the reverse layer configuration include, for example, 1) preferred anode / cathode combinations in the reverse layer configuration: 1) first electrode (cathode) ITO, second electrode (anode) silver 2) 1st electrode (cathode) PEDOT: PSS, 2nd electrode (anode) silver 3) 1st electrode (cathode) ITO, 2nd electrode (anode) copper 4) 1st electrode (cathode) PEDOT: PSS, 2nd Electrode (anode) gold 5) first electrode (cathode) ITO, second electrode (anode) PEDOT: PSS
Etc.
[光電変換層]
光電変換層は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する機能を有する。本形態の有機光電変換素子は、光電変換層に、n型有機半導体および上述の本発明の共役系高分子化合物をp型有機半導体として必須に含む点に特徴を有する。これらの光電変換材料に光が吸収されると、励起子が発生し、これがpn接合界面において、正孔と電子とに電荷分離される。
[Photoelectric conversion layer]
The photoelectric conversion layer has a function of converting light energy into electric energy using the photovoltaic effect. The organic photoelectric conversion element of this embodiment is characterized in that the photoelectric conversion layer essentially includes the n-type organic semiconductor and the conjugated polymer compound of the present invention as a p-type organic semiconductor. When light is absorbed by these photoelectric conversion materials, excitons are generated, which are separated into holes and electrons at the pn junction interface.
本形態の光電変換層は、上述の本発明の共役系高分子化合物を必須に含み、必要に応じて、他のp型有機半導体材料を含みうる。他のp型有機半導体材料の一例を以下に示す。 The photoelectric conversion layer of this embodiment essentially contains the above-described conjugated polymer compound of the present invention, and may contain other p-type organic semiconductor materials as necessary. An example of another p-type organic semiconductor material is shown below.
縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)−テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンジチオテトラチアフルバレン(BEDTTTF)−過塩素酸錯体、およびこれらの誘導体や前駆体が挙げられる。 Examples of the condensed polycyclic aromatic low molecular weight compound include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, thacumanthracene, bisanthene, zeslene. , Heptazethrene, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, etc., porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenedithiotetrathiafulvalene (BEDTTTTF) -perchloric acid complex, and derivatives and precursors thereof.
また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号、国際公開第03/28125号、米国特許第6,690,029号明細書、特開2004−107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。 Examples of the derivative having the above condensed polycycle include International Publication No. 03/16599, International Publication No. 03/28125, US Pat. No. 6,690,029, JP-A No. 2004-107216, etc. A pentacene derivative having the substituent described in U.S. Pat. No. 2003/136964, a pentacene precursor; Amer. Chem. Soc. , Vol127. No. 14.4986, J. MoI. Amer. Chem. Soc. , Vol. 123, p9482; Amer. Chem. Soc. , Vol. 130 (2008), no. 9, acene-based compounds substituted with a trialkylsilylethynyl group described in 2706 and the like.
共役系ポリマーとしては、例えば、ポリ3−ヘキシルチオフェン(P3HT)等のポリチオフェンおよびそのオリゴマー、またはTechnical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン−チエノチオフェン共重合体、国際公開第2008/000664号に記載のポリチオフェン−ジケトピロロピロール共重合体、Adv Mater,2007,p4160に記載のポリチオフェン−チアゾロチアゾール共重合体、Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロールおよびそのオリゴマー、ポリアニリン、ポリフェニレンおよびそのオリゴマー、ポリフェニレンビニレンおよびそのオリゴマー、ポリチエニレンビニレンおよびそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。 As the conjugated polymer, for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, p328, a polythiophene-thienothiophene copolymer, a polythiophene-diketopyrrolopyrrole copolymer described in WO2008 / 000664, and a polythiophene-thiazolothiazole copolymer described in Adv Mater, 2007, p4160. Combined, Nature Mat. vol. 6 (2007), p497 described in PCPDTBT, etc., polypyrrole and its oligomer, polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as σ-conjugated polymers such as polysilane and polygermane.
また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα−セクシチオフェンα,ω−ジヘキシル−α−セクシチオフェン、α,ω−ジヘキシル−α−キンケチオフェン、α,ω−ビス(3−ブトキシプロピル)−α−セクシチオフェン、等のオリゴマーが好適に用いることができる。 In addition, oligomeric materials instead of polymer materials include thiophene hexamer α-sexual thiophene α, ω-dihexyl-α-sexual thiophene, α, ω-dihexyl-α-kinkethiophene, α, ω-bis (3 Oligomers such as -butoxypropyl) -α-sexithiophene can be preferably used.
これらの化合物の中でも、溶液プロセスが可能な程度に有機溶剤への溶解性が高く、かつ乾燥後は結晶性薄膜を形成し、高い移動度を達成することが可能な化合物が好ましい。より好ましくは、本発明のn型有機半導体材料であるフラーレン誘導体と適度な相溶性を有するような化合物(適度な相分離構造形成し得る化合物)であることが好ましい。 Among these compounds, compounds that have high solubility in organic solvents to the extent that solution processing is possible, can form a crystalline thin film after drying, and can achieve high mobility are preferable. More preferably, it is a compound (a compound capable of forming an appropriate phase separation structure) having appropriate compatibility with the fullerene derivative which is the n-type organic semiconductor material of the present invention.
またバルクへテロジャンクション層上にさらに溶液プロセスで電子輸送層や正孔ブロック層を形成する際には、一度塗布した層の上にさらに塗布することができれば、容易に積層することができるが、通常溶解性のよい材料からなる層の上にさらに層を溶液プロセスによって積層使用とすると、下地の層を溶かしてしまうために積層することができないという課題を有していた。したがって、溶液プロセスで塗布した後に不溶化できるような材料が好ましい。 In addition, when forming an electron transport layer or a hole blocking layer by a solution process on the bulk heterojunction layer, if it can be further applied on the layer once applied, it can be easily laminated, When a layer is further laminated by a solution process on a layer made of a material that usually has good solubility, there is a problem that the layer cannot be laminated because the underlying layer is dissolved. Therefore, a material that can be insolubilized after application by a solution process is preferable.
このような材料としては、Technical Digest of the International PVSEC−17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェンのような、塗布後に塗布膜を重合架橋して不溶化できる材料、または米国特許出願公開第2003/136964号、および特開2008−16834等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料などを挙げることができる。 Examples of such materials include materials that can be insolubilized by polymerizing the coating film after coating, such as polythiophene having a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Or a material in which soluble substituents react and become insoluble (pigmented) by applying energy such as heat, as described in US Patent Application Publication No. 2003/136964, and Japanese Patent Application Laid-Open No. 2008-16834 And so on.
なお、本形態の光電変換層に含まれるp型有機半導体は、上述の共役系高分子化合物を含む限りにおいては、上記他のp型有機半導体材料の含有量は特に制限はない。ただし、より高い光電変換効率を達成するためには、光電変換層に含まれるp型有機半導体の総量(光電変換層が2層以上含まれる場合には、全ての層における総量)に対して、上述の共役系高分子化合物の割合が多いほど好ましい。具体的には、p型有機半導体の総量に対する共役系高分子化合物の割合が、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましく、100質量%であることが最も好ましい。 In addition, as long as the p-type organic semiconductor contained in the photoelectric converting layer of this form contains the above-mentioned conjugated polymer compound, the content of the other p-type organic semiconductor material is not particularly limited. However, in order to achieve higher photoelectric conversion efficiency, with respect to the total amount of the p-type organic semiconductor included in the photoelectric conversion layer (when two or more photoelectric conversion layers are included, the total amount in all layers), The larger the proportion of the conjugated polymer compound described above, the better. Specifically, the ratio of the conjugated polymer compound to the total amount of the p-type organic semiconductor is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferably, it is particularly preferably 95% by mass or more, and most preferably 100% by mass.
本形態の光電変換層に使用されるn型有機半導体は、前記p型有機半導体に対してアクセプター性(電子受容性)である有機化合物であれば特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。このような化合物としては、前記p型有機半導体のLUMO準位に対して0.2〜0.5eV以上深い化合物であればよく、例えば、フラーレン、カーボンナノチューブ、オクタアザポルフィリン、上記p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニンなど)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミドなどの芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物などが挙げられる。 The n-type organic semiconductor used in the photoelectric conversion layer of the present embodiment is not particularly limited as long as it is an organic compound that has an acceptor property (electron-accepting property) with respect to the p-type organic semiconductor, and can be used in this technical field. Materials can be adopted as appropriate. Such a compound may be a compound deeper by 0.2 to 0.5 eV or more than the LUMO level of the p-type organic semiconductor, such as fullerene, carbon nanotube, octaazaporphyrin, and the p-type organic semiconductor. Perfluoro compounds in which hydrogen atoms are substituted with fluorine atoms (for example, perfluoropentacene and perfluorophthalocyanine), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic diimide, perylenetetracarboxylic anhydride, perylenetetracarboxylic diimide And the like, and polymer compounds containing an aromatic carboxylic acid anhydride and the imidized product thereof as a skeleton.
このうち、p型有機半導体と高速(〜50fs)かつ効率的に電荷分離を行うことができるという観点から、フラーレンもしくはカーボンナノチューブまたはこれらの誘導体を用いることが好ましい。より具体的には、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層カーボンナノチューブ、単層カーボンナノチューブ、カーボンナノホーン(円錐型)など、およびこれらの一部が水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、置換されたまたは非置換の、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基などによって置換されたフラーレン誘導体が挙げられる。 Of these, fullerenes, carbon nanotubes, or derivatives thereof are preferably used from the viewpoint that charge separation can be efficiently performed with a p-type organic semiconductor at high speed (up to 50 fs). More specifically, fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotube, multi-walled carbon nanotube, single-walled carbon nanotube, carbon nanohorn (conical type), etc. , And some of these are hydrogen atoms, halogen atoms (fluorine atoms, chlorine atoms, bromine atoms, iodine atoms), substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, And a fullerene derivative substituted with a cycloalkyl group, a silyl group, an ether group, a thioether group, an amino group, or the like.
特に、[6,6]−フェニル−C61−ブチリックアシッドメチルエステル(略称PC60BM,PC61BM)、[6,6]−フェニル−C61−ブチリックアシッド−nブチルエステル(PCBnB)、[6,6]−フェニル−C61−ブチリックアシッド−イソブチルエステル(PCBiB)、[6,6]−フェニル−C61−ブチリックアシッド−nヘキシルエステル(PCBH)、[6,6]−フェニル−C71−ブチリックアシッドメチルエステル(略称PC70BM)、Adv.Mater.,vol.20(2008),p2116に記載のbis−PCBM、特開2006−199674号公報に記載のアミノ化フラーレン、特開2008−130889号公報に記載のメタロセン化フラーレン、米国特許第7,329,709号明細書に記載の環状エーテル基を有するフラーレンなどのような、置換基により溶解性が向上されてなるフラーレン誘導体を用いることが好ましい。なお、本形態において、n型有機半導体は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。 In particular, [6,6] -phenyl-C61-butyric acid methyl ester (abbreviation PC60BM, PC61BM), [6,6] -phenyl-C61-butyric acid-nbutyl ester (PCBnB), [6,6] -Phenyl-C61-butyric acid-isobutyl ester (PCBiB), [6,6] -Phenyl-C61-butyric acid-n hexyl ester (PCBH), [6,6] -Phenyl-C71-butyric acid methyl Esters (abbreviation PC70BM), Adv. Mater. , Vol. 20 (2008), p2116, aminated fullerene described in JP-A 2006-199674, metallocene fullerene described in JP-A 2008-130889, US Pat. No. 7,329,709 It is preferable to use a fullerene derivative whose solubility is improved by a substituent, such as fullerene having a cyclic ether group described in the specification. In this embodiment, the n-type organic semiconductor may be used alone or in combination of two or more.
本形態の光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、特に制限はなく、平面へテロ接合であってもよいし、バルクへテロ接合(バルクヘテロジャンクション)であってもよい。平面ヘテロ接合とは、p型有機半導体を含むp型有機半導体層と、n型有機半導体を含むn型有機半導体層とが積層され、これら2つの層が接触する面がpn接合界面となる接合形態である。一方、バルクヘテロジャンクションとは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロジャンクションでは、平面へテロ接合と比較して、pn接合界面が層全体にわたって数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、本形態の光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクヘテロジャンクションであることが好ましい。 There is no particular limitation on the junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment, and it may be a planar heterojunction or a bulk heterojunction (bulk heterojunction). Good. A planar heterojunction is a junction in which a p-type organic semiconductor layer containing a p-type organic semiconductor and an n-type organic semiconductor layer containing an n-type organic semiconductor are stacked, and the surface where these two layers contact is the pn junction interface. It is a form. On the other hand, a bulk heterojunction is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor. In this single layer, a domain of the p-type organic semiconductor and a domain of the n-type organic semiconductor are formed. It has a microphase separation structure. Therefore, in a bulk heterojunction, many pn junction interfaces exist throughout the layer as compared to a planar heterojunction. Therefore, most of the excitons generated by light absorption can reach the pn junction interface, and the efficiency leading to charge separation can be increased. For these reasons, the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment is preferably a bulk heterojunction.
また、バルクヘテロジャンクション層は、通常の、p型有機半導体材料とn型有機半導体層が混合されてなる単一の層(i層)からなる場合の他に、当該i層がp型有機半導体からなるp層およびn型有機半導体からなるn層により挟持されてなる3層構造(p−i−n構造)を有する場合がある。このようなp−i−n構造は、正孔および電子の整流性がより高くなり、電荷分離した正孔・電子の再結合等によるロスが低減され、一層高い光電変換効率を得ることができる。 The bulk heterojunction layer is formed of a single layer (i layer) in which a normal p-type organic semiconductor material and an n-type organic semiconductor layer are mixed, and the i layer is made of a p-type organic semiconductor. In some cases, it has a three-layer structure (p-i-n structure) sandwiched between a p layer and an n layer made of an n-type organic semiconductor. Such a pin structure has higher rectification of holes and electrons, reduces loss due to recombination of charge-separated holes and electrons, and can achieve higher photoelectric conversion efficiency. .
本発明において、光電変換層に含まれるp型有機半導体とn型有機半導体との混合比は、質量比で2:8〜8:2の範囲が好ましく、より好ましくは3.3:6.7〜5:5の範囲である。また、光電変換層1層の膜厚は、好ましくは50〜400nmであり、より好ましくは80〜300nmであり、特に好ましくは100〜200nmである。一般に、より多くの光を吸収させる観点から、光電変換層の膜厚は大きい方が好ましいが、膜厚が大きくなるとキャリア(正孔・電子)の取り出し効率が低下するために光電変換効率が低下する傾向がある。しかしながら、上述の本形態の共役系高分子化合物をp型有機半導体材料として用いて光電変換層を形成すると、従来のp型有機半導体材料を用いた光電変換層と比較して、100nm以上の膜厚とした場合であってもキャリア(正孔・電子)の取り出し効率が低下しにくいため、高い光電変換効率を維持することができる。よって、逆層型の光電変換素子において、光電変換層の膜厚を大きくした場合であっても十分な光電変換効率を達成することが可能となる。 In the present invention, the mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 3.3: 6.7. It is the range of -5: 5. Moreover, the film thickness of one photoelectric conversion layer is preferably 50 to 400 nm, more preferably 80 to 300 nm, and particularly preferably 100 to 200 nm. In general, from the viewpoint of absorbing more light, it is preferable that the thickness of the photoelectric conversion layer is larger. However, as the film thickness increases, the extraction efficiency of carriers (holes / electrons) decreases, so the photoelectric conversion efficiency decreases. Tend to. However, when a photoelectric conversion layer is formed using the conjugated polymer compound of the present embodiment described above as a p-type organic semiconductor material, a film having a thickness of 100 nm or more is formed as compared with a photoelectric conversion layer using a conventional p-type organic semiconductor material. Even when the thickness is increased, the extraction efficiency of carriers (holes / electrons) is unlikely to decrease, so that high photoelectric conversion efficiency can be maintained. Therefore, in the reverse layer type photoelectric conversion element, sufficient photoelectric conversion efficiency can be achieved even when the film thickness of the photoelectric conversion layer is increased.
(基板)
本発明の有機光電変換素子は、必要に応じて基板を含みうる。基板は、電極を塗布方式で形成する場合における、塗布液の被塗布部材としての役割を有する。
(substrate)
The organic photoelectric conversion element of the present invention may include a substrate as necessary. The substrate has a role as a member to be coated with a coating solution when the electrode is formed by a coating method.
基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。 When light that is photoelectrically converted enters from the substrate side, the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted. As the substrate, for example, a glass substrate, a resin substrate and the like are preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380〜800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。なかでも透明性、耐熱性、取り扱いやすさ、強度およびコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。 There is no restriction | limiting in particular in the transparent resin film which can be preferably used as a transparent substrate by this invention, The material, a shape, a structure, thickness, etc. can be suitably selected from well-known things. For example, polyolefins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester resin film such as modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, cyclic olefin resin, etc. Resin films, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, polycarbonate (PC) resin films , Polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, and the like. If the resin film transmittance of 80% or more in from zero to eight hundred nanomolar), can be preferably applied to a transparent resin film according to the present invention. Among these, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film. More preferred are a stretched polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film.
本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。 The transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesiveness of the coating solution. A conventionally well-known technique can be used about a surface treatment or an easily bonding layer. For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment. Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
また、酸素および水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。 For the purpose of suppressing the permeation of oxygen and water vapor, a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
(正孔輸送層)
本形態の有機光電変換素子は、必要に応じて正孔輸送層を含みうる。正孔輸送層は、正孔を輸送する機能を有し、かつ電子を輸送する能力が著しく小さい(例えば、正孔の移動度の10分の1以下)という性質を有する。正孔輸送層は、光電変換層と陽極との間に設けられ、正孔を陽極へと輸送しつつ、電子の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。
(Hole transport layer)
The organic photoelectric conversion element of this form can contain a positive hole transport layer as needed. The hole transport layer has a function of transporting holes and a property of extremely small ability to transport electrons (for example, 1/10 or less of the mobility of holes). The hole transport layer is provided between the photoelectric conversion layer and the anode and prevents recombination of electrons and holes by blocking the movement of electrons while transporting holes to the anode. Can do.
正孔輸送層に用いられる正孔輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。一例を挙げると、例えば、Clevios社製、商品名BaytronP等のPEDOT:PSS、欧州特許第1647566号等に記載のポリチエノチオフェン類、特開2010−206146号に記載のスルホン化ポリチオフェン類、ポリアニリンおよびそのドープ材料、国際公開第2006/019270号等に記載のシアン化合物などが挙げられる。 There is no restriction | limiting in particular in the hole transport material used for a hole transport layer, The material which can be used in this technical field can be employ | adopted suitably. As an example, for example, PEDOT: PSS such as product name BaytronP manufactured by Clevios, polythienothiophenes described in European Patent No. 1647566, sulfonated polythiophenes described in JP 2010-206146, polyaniline, and the like Examples thereof include cyan compounds described in International Publication No. 2006/019270.
また、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また、導電性高分子オリゴマー、特にチオフェンオリゴマーなどもまた、用いられうる。 Also, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers, can also be used.
また、これら以外にも、ポルフィリン化合物、芳香族第3級アミン化合物、およびスチリルアミン化合物などが使用可能であり、これらのうちでは、芳香族第3級アミン化合物を用いることが好ましい。なお、場合によっては、モリブデン、バナジウム、タングステンなどの金属酸化物やその混合物などの無機化合物を用いて正孔輸送層を形成してもよい。 Besides these, a porphyrin compound, an aromatic tertiary amine compound, a styrylamine compound, and the like can be used, and among these, it is preferable to use an aromatic tertiary amine compound. In some cases, the hole transport layer may be formed using an inorganic compound such as a metal oxide such as molybdenum, vanadium, or tungsten, or a mixture thereof.
さらに上記化合物に含まれる構造単位を高分子鎖に導入した、あるいは、上記化合物を高分子の主鎖とした高分子材料を正孔輸送材料として用いることもできる。また、特開平11−251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、p型正孔輸送材料を用いることもできる。さらに、不純物をドープしたp性の高い正孔輸送材料を用いることもできる。一例を挙げると、特開平4−297076号公報、特開2000−196140号公報、特開2001−102175号公報、J.Appl.Phys.,95,5773(2004)などに記載された材料が挙げられる。なお、これらの正孔輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて正孔輸送層を構成することも可能である。 Further, a polymer material in which a structural unit contained in the above compound is introduced into a polymer chain, or a polymer material having the above compound as a polymer main chain can also be used as a hole transport material. JP-A-11-251067, J. Org. Huang et. al. , Applied Physics Letters, 80 (2002), p. A p-type hole transport material as described in 139 can also be used. Furthermore, a hole transport material with high p property doped with impurities can be used. For example, JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like. In addition, these hole transport materials may be used individually by 1 type, and may use 2 or more types together. It is also possible to form a hole transport layer by laminating two or more layers made of each material.
正孔輸送層の厚さは、特に制限はないが、通常1〜2000nmである。リーク防止効果をより高める観点からは、厚さは5nm以上であることが好ましい。また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。 The thickness of the hole transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further improving the leak prevention effect, the thickness is preferably 5 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 1000 nm or less, and more preferably 200 nm or less.
正孔輸送層の導電率は、一般的に高い方が好ましいが、高くなりすぎると電子が移動するのを阻止する能力が低下し、整流性が低くなりうる。したがって、正孔輸送層の導電率は、10−5〜1S/cmであることが好ましく、10−4〜10−2S/cmであることがより好ましい。 In general, the conductivity of the hole transport layer is preferably as high as possible. However, if the conductivity is too high, the ability to prevent electrons from moving may be reduced, and rectification may be reduced. Therefore, the conductivity of the hole transport layer is preferably 10 −5 to 1 S / cm, and more preferably 10 −4 to 10 −2 S / cm.
(電子輸送層)
本形態の有機光電変換素子は、必要に応じて電子輸送層を含みうる。電子輸送層は、電子を輸送する機能を有し、かつ正孔を輸送する能力が著しく小さいという性質を有する。電子輸送層は、光電変換層と陰極との間に設けられ、電子を陰極へと輸送しつつ、正孔の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。
(Electron transport layer)
The organic photoelectric conversion element of this form can contain an electron carrying layer as needed. The electron transport layer has a property of transporting electrons and having a remarkably small ability to transport holes. The electron transport layer is provided between the photoelectric conversion layer and the cathode, and prevents the recombination of electrons and holes by blocking the movement of holes while transporting electrons to the cathode. it can.
電子輸送層に用いられる電子輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。例えば、オクタアザポルフィリン、p型有機半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、光電変換層に用いられるp型有機半導体のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。よって、より好ましくは、n型有機半導体のHOMO準位よりも深い材料が電子輸送材料として用いられる。このような電子輸送材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型有機半導体、および酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物およびフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等が用いられうる。また、光電変換層に用いたn型有機半導体単体からなる層を用いることもできる。なお、これらの電子輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電子輸送層を構成することも可能である。 There is no restriction | limiting in particular in the electron transport material used for an electron carrying layer, The material which can be used in this technical field can be employ | adopted suitably. For example, octaazaporphyrin, a perfluoro body of a p-type organic semiconductor (perfluoropentacene, perfluorophthalocyanine, etc.) can be used. The electron transport layer having a deep HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. Therefore, more preferably, a material deeper than the HOMO level of the n-type organic semiconductor is used as the electron transport material. Examples of such electron transport materials include phenanthrene compounds such as bathocuproine, n-type organic semiconductors such as naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, perylenetetracarboxylic acid diimide, and oxidation. N-type inorganic oxides such as titanium, zinc oxide, and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of a n-type organic semiconductor single-piece | unit used for the photoelectric converting layer can also be used. In addition, these electron transport materials may be used individually by 1 type, and may use 2 or more types together. It is also possible to form an electron transport layer by stacking two or more layers made of each material.
なお、前述のように耐久性の観点で有利な逆層型の素子とする場合には、第一の電極上に電子輸送層を形成した後に光電変換層が形成されるため、光電変換材料を含む塗布液に対して不溶である化合物が電子輸送材料として好ましい。そのような観点から、電子輸送材料は、酸化チタンや酸化亜鉛といった無機物、および国際公開2008−134492号に記載のポリエチレンイミンやアミノシランカップリング剤のような架橋可能な有機物であることが好ましい。中でもアミノシランカップリング剤(一例を挙げると、3−(2−アミノエチル)−アミノプロピルトリメトキシシラン)を用いることが好ましい。 As described above, in the case of an inverted layer type element that is advantageous from the viewpoint of durability, the photoelectric conversion layer is formed after the electron transport layer is formed on the first electrode. A compound that is insoluble in the coating liquid to be contained is preferred as the electron transport material. From such a viewpoint, the electron transport material is preferably an inorganic substance such as titanium oxide or zinc oxide, or a crosslinkable organic substance such as polyethyleneimine or an aminosilane coupling agent described in International Publication No. 2008-134492. Of these, aminosilane coupling agents (3- (2-aminoethyl) -aminopropyltrimethoxysilane, for example) are preferably used.
また、光電変換層を塗布する際に使用する溶剤に対して不溶な材料としては、アルコール類に可溶なπ共役高分子等を挙げることができ、APPLIED PHYSICS LETTERS 95(2009),p043301、Adv.Funct.Mat.,2010,p.1977、Adv.Mater.,2011,23,3086、J.Am.Chem.Soc.,2011,p.8416、Advanced Materials,2011(Vol 23,no.40),p4636−4643等に記載のポリフルオレン類、ポリチオフェン類等、および下記のポリフルオレン類を用いてもよい。これらのポリマーの場合、上記のシランカップリング剤等と異なり、順層構成、すなわち光電変換層上にも形成することができるために好ましい。また、ITO等の金属酸化物だけでなく、金、銀、銅などの金属電極に対しても電子輸送層・正孔ブロック層として機能させることができるため、順層構成においても酸化に安定な金属を陰極に用いることが可能となり、好ましい。 Moreover, as a material insoluble with respect to the solvent used when apply | coating a photoelectric converting layer, (pi) conjugated polymer etc. soluble in alcohol can be mentioned, APPLIED PHYSICS LETTERS 95 (2009), p043301, Adv. . Funct. Mat. 2010, p. 1977, Adv. Mater. , 2011, 23, 3086, J.A. Am. Chem. Soc. , 2011, p. 8416, Advanced Materials, 2011 (Vol 23, no. 40), p4636-4463, and the like, and the following polyfluorenes may be used. These polymers are preferable because they can be formed on a normal layer structure, that is, a photoelectric conversion layer, unlike the silane coupling agent and the like described above. In addition, it can function as an electron transport layer / hole blocking layer not only for metal oxides such as ITO but also for metal electrodes such as gold, silver, copper, etc. A metal can be used for the cathode, which is preferable.
電子輸送層の厚さは、特に制限はないが、通常1〜2000nmである。リーク防止効果をより高める観点からは、厚さは2nm以上であることが好ましく、より好ましくは5nm以上である。また、高い透過率と低い抵抗を維持する観点からは、厚さは100nm以下であることが好ましく、20nm以下であることがより好ましい。 The thickness of the electron transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further enhancing the leak prevention effect, the thickness is preferably 2 nm or more, and more preferably 5 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 100 nm or less, and more preferably 20 nm or less.
(電荷再結合層;中間電極)
図3で示すような、2以上の光電変換層を有するタンデム型(多接合型)の有機光電変換素子において、光電変換層間には、電荷再結合層(中間電極)が配置される。
(Charge recombination layer; intermediate electrode)
In a tandem (multi-junction type) organic photoelectric conversion element having two or more photoelectric conversion layers as shown in FIG. 3, a charge recombination layer (intermediate electrode) is disposed between the photoelectric conversion layers.
電荷再結合層(中間電極)に用いられる材料は、導電性および透光性を併せ持つ材料であれば、特に制限はなく、上述の電極材料として例示した、ITO、AZO、FTO、酸化チタンなどの透明金属酸化物、Ag、Al、Auなどの金属、およびカーボンナノ粒子、カーボンナノワイヤーなどの炭素材料、PEDOT:PSS、ポリアニリンなどの導電性高分子などが用いられうる。これらの材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電荷再結合層を構成することも可能である。 The material used for the charge recombination layer (intermediate electrode) is not particularly limited as long as it is a material having both conductivity and translucency, and examples thereof include ITO, AZO, FTO, and titanium oxide exemplified above. Transparent metal oxides, metals such as Ag, Al, and Au, carbon materials such as carbon nanoparticles and carbon nanowires, and conductive polymers such as PEDOT: PSS and polyaniline can be used. These materials may be used alone or in combination of two or more. It is also possible to form a charge recombination layer by laminating two or more layers made of each material.
電荷再結合層の導電率は、高い変換効率を得る観点から、高いことが好ましく、具体的には、5〜50000S/cmであることが好ましく、100〜10,000S/cmであることがより好ましい。また、電荷再結合層の厚さは、特に制限はないが、1〜1000nmであることが好ましく、5〜50nmであることが好ましい。厚さが1nm以上とすることにより、膜面を平滑化することができる。一方、厚さが1000nm以下とすることにより、短絡電流密度Jsc(mA/cm2)の低下を軽減することができる。 The electric conductivity of the charge recombination layer is preferably high from the viewpoint of obtaining high conversion efficiency. Specifically, it is preferably 5 to 50000 S / cm, more preferably 100 to 10,000 S / cm. preferable. The thickness of the charge recombination layer is not particularly limited, but is preferably 1 to 1000 nm, and preferably 5 to 50 nm. By setting the thickness to 1 nm or more, the film surface can be smoothed. On the other hand, by setting the thickness to 1000 nm or less, it is possible to reduce the decrease in the short-circuit current density J sc (mA / cm 2 ).
(その他の層)
本形態の有機光電変換素子は、上記の各部材(各層)の他に、光電変換効率の向上や、素子の寿命の向上のために、他の部材(他の層)をさらに設けてもよい。その他の部材としては、例えば、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などが挙げられる。また、上層に偏在した金属酸化物微粒子をより安定にするため等にシランカップリング剤等の層を設けてもよい。さらに本発明の光電変換層に隣接して金属酸化物の層を積層してもよい。
(Other layers)
The organic photoelectric conversion device of this embodiment may further include other members (other layers) in addition to the above-described members (each layer) in order to improve photoelectric conversion efficiency and improve the lifetime of the device. . Examples of other members include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer. Further, a layer such as a silane coupling agent may be provided in order to make the metal oxide fine particles unevenly distributed in the upper layer more stable. Further, a metal oxide layer may be laminated adjacent to the photoelectric conversion layer of the present invention.
また、本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等が挙げられる。 Moreover, the organic photoelectric conversion element of this invention may have various optical function layers for the purpose of more efficient light reception of sunlight. Examples of the optical functional layer include a light condensing layer such as an antireflection film and a microlens array, and a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again.
反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57〜1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。 Various known antireflection layers can be provided as the antireflection layer. For example, when the transparent resin film is a biaxially stretched polyethylene terephthalate film, the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ˜1.63 because the interface reflection between the film substrate and the easy adhesion layer can be reduced and the transmittance can be improved. The method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。 As the condensing layer, for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。 As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。 Examples of the light scattering layer include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
<有機光電変換素子の製造方法>
上述の本形態の有機光電変換素子の製造方法は特に制限はなく、従来公知の手法を適宜参照することにより製造することができる。以下、図2に示すような逆層型の有機光電変換素子の製造方法を例に挙げて、本形態の有機光電変換素子の好ましい製造方法を説明する。ただし、当該製造方法における各工程は、逆層型の有機光電変換素子のみならず、図1に示すような順層型の有機光電変換素子や、図3に示すようなタンデム型の製造に適用可能である。
<Method for producing organic photoelectric conversion element>
There is no restriction | limiting in particular in the manufacturing method of the organic photoelectric conversion element of the above-mentioned this form, It can manufacture by referring a conventionally well-known method suitably. Hereinafter, the manufacturing method of the reverse layer type organic photoelectric conversion element as shown in FIG. 2 will be described as an example, and a preferable manufacturing method of the organic photoelectric conversion element of this embodiment will be described. However, each process in the manufacturing method is applied not only to the reverse layer type organic photoelectric conversion element but also to the normal layer type organic photoelectric conversion element as shown in FIG. 1 and the tandem type manufacturing as shown in FIG. Is possible.
本形態の有機光電変換素子の製造方法は、陰極を形成する工程と、前記陰極の上に、p型有機半導体材料およびn型有機半導体材料を含む光電変換層を形成する工程と、前記光電変換層の上に、陽極を形成する工程とを含む。以下、本形態の有機光電変換素子の製造方法の各工程について、詳細に説明する。 The method for producing an organic photoelectric conversion element of the present embodiment includes a step of forming a cathode, a step of forming a photoelectric conversion layer including a p-type organic semiconductor material and an n-type organic semiconductor material on the cathode, and the photoelectric conversion. Forming an anode on the layer. Hereinafter, each process of the manufacturing method of the organic photoelectric conversion element of this form is demonstrated in detail.
本形態の製造方法では、まず、陰極を形成する。陰極を形成する方法は、特に制限はないが、操作の容易性や、ダイコータなどの装置を用いてロール・ツー・ロールで生産可能なことから、基板の上に、陰極の構成材料を含む液体を塗布し、乾燥させる方法であることが好ましい。またこれ以外にも、市販の薄膜状の電極材料をそのまま使用しても構わない。 In the manufacturing method of this embodiment, first, a cathode is formed. The method of forming the cathode is not particularly limited, but is easy to operate and can be produced on a roll-to-roll basis using a device such as a die coater. Preferably, the method is a method of applying and drying. Besides this, a commercially available thin film electrode material may be used as it is.
上記で陰極を形成した後、必要に応じて、この陰極上に、電子輸送層を形成してもよい。電子輸送層を形成する手段としては、蒸着法、溶液塗布法のいずれであってもよいが、好ましくは溶液塗布法である。溶液塗布法を用いて電子輸送層を形成する場合には、上述した電子輸送材料を適当な溶剤に溶解・分散させた溶液を、適当な塗布法を用いて陰極上に塗布し、乾燥させればよい。 After forming the cathode as described above, an electron transport layer may be formed on the cathode as necessary. The means for forming the electron transport layer may be either vapor deposition or solution coating, but is preferably solution coating. In the case of forming an electron transport layer using a solution coating method, a solution obtained by dissolving and dispersing the above-described electron transport material in a suitable solvent is coated on the cathode using a suitable coating method and dried. That's fine.
溶液塗布法に用いられる塗布法としては、キャスト法、スピンコート法、ブレードコーティング法、ワイヤーバーコーティング法、グラビアコート法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法、Langmuir−Blodgett(LB)法等の通常の方法を用いることができる。なかでも、ブレードコーティング法を用いることが特に好ましい。 The coating methods used for the solution coating method include cast method, spin coating method, blade coating method, wire bar coating method, gravure coating method, spray coating method, dipping (dipping) coating method, bead coating method, air knife coating method. Ordinary methods such as a curtain coating method, an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, a flexographic printing method, and a Langmuir-Blodgett (LB) method can be used. Among these, it is particularly preferable to use a blade coating method.
なお、塗布法に使用する溶液の固形分濃度は、塗布方法や膜厚によっても変動しうるが、0.01〜15質量%が好ましく、より好ましくは0.05〜10質量%である。また、なお、塗布の際の塗布液および/または塗布面の温度は、特に制限はないが、塗布・乾燥時の温度変動による析出、ムラを防ぐといった観点から、好ましくは30〜120℃であり、より好ましくは50〜110℃である。さらに、乾燥の具体的な形態についても特に制限はなく、従来公知の知見が適宜参照されうる。乾燥条件の一例を挙げると80〜140℃程度の温度で、数十秒間〜数十分間程度といった条件が例示される。乾燥に使用する装置としては、ホットプレート、温風乾燥、赤外線ヒーター、マイクロウエーブ、真空乾燥機などが挙げられるが、これ以外の乾燥装置を用いることも勿論可能である。 The solid content concentration of the solution used in the coating method may vary depending on the coating method and the film thickness, but is preferably 0.01 to 15% by mass, more preferably 0.05 to 10% by mass. In addition, the temperature of the coating liquid and / or the coating surface during coating is not particularly limited, but is preferably 30 to 120 ° C. from the viewpoint of preventing precipitation and unevenness due to temperature fluctuations during coating and drying. More preferably, it is 50-110 degreeC. Furthermore, there is no restriction | limiting in particular also about the specific form of drying, A conventionally well-known knowledge can be referred suitably. An example of the drying conditions is exemplified by conditions such as a temperature of about 80 to 140 ° C. and about several tens of seconds to several tens of minutes. Examples of the apparatus used for drying include a hot plate, hot air drying, an infrared heater, a microwave, and a vacuum dryer. Of course, other drying apparatuses can be used.
続いて、上記で形成した陰極または電子輸送層上に、p型有機半導体およびn型有機半導体を含む光電変換層を形成する。ここで、本形態の製造方法は、p型有機半導体として、上述の本発明の共役系高分子化合物を必須に含む。光電変換層を形成するための具体的な手法について特に制限はないが、好ましくは、p型有機半導体およびn型有機半導体をそれぞれ、または一括して、適当な溶剤に溶解・分散させた溶液を、適当な塗布法(具体的な形態については、上述した通りである)を用いて陰極または電子輸送層上に塗布し、乾燥させればよい。なお、p型有機半導体およびn型有機半導体を一括して溶剤に溶解・分散させた溶液を、塗布法により塗布する。その後、残留溶媒および水分、ガスの除去、および半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層の正孔と電子(キャリア)の移動度が向上し、高い効率を得ることができるようになる。このようにして、p型有機半導体およびn型有機半導体が一様に混合され、バルクヘテロジャンクション型の有機光電変換素子とすることができる。 Subsequently, a photoelectric conversion layer including a p-type organic semiconductor and an n-type organic semiconductor is formed on the cathode or the electron transport layer formed as described above. Here, the manufacturing method of this embodiment essentially includes the above-described conjugated polymer compound of the present invention as a p-type organic semiconductor. A specific method for forming the photoelectric conversion layer is not particularly limited, but preferably, a solution in which a p-type organic semiconductor and an n-type organic semiconductor are dissolved or dispersed in an appropriate solvent, respectively or collectively. Then, it may be applied on the cathode or the electron transport layer by using a suitable application method (the specific form is as described above) and dried. A solution in which a p-type organic semiconductor and an n-type organic semiconductor are collectively dissolved and dispersed in a solvent is applied by a coating method. After that, it is preferable to perform heating in order to cause removal of residual solvent, moisture, gas, and improvement of mobility and absorption absorption by crystallization of the semiconductor material. When annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized and the photoelectric conversion layer can have an appropriate phase separation structure. As a result, the mobility of holes and electrons (carriers) in the photoelectric conversion layer is improved, and high efficiency can be obtained. In this way, the p-type organic semiconductor and the n-type organic semiconductor are uniformly mixed, and a bulk heterojunction organic photoelectric conversion element can be obtained.
一方、p型有機半導体とn型有機半導体の混合比の異なる複数層からなる光電変換層(例えば、p−i−n構造)を形成する場合には、一の層を塗布後に、当該層を不溶化(顔料化)し、その後、他の層を塗布することにより形成することが可能である。 On the other hand, in the case of forming a photoelectric conversion layer (for example, a p-i-n structure) composed of a plurality of layers having different mixing ratios of a p-type organic semiconductor and an n-type organic semiconductor, the layer is applied after applying one layer. It can be formed by insolubilizing (pigmenting) and then applying another layer.
なお、当該光電変換層を形成する工程以降は、酸素や水分に曝さないようにするために窒素雰囲気下のグローブボックス内で行うことが好ましい。このように、窒素雰囲気下で行うことにより、大気中の酸素または水分によりp型有機半導体が劣化するのを防ぎ、素子の耐久性を高めることができる。具体的には、前記グローブボックスの酸素および水分の濃度が1000ppm以下であることが好ましく、より好ましくは100ppm以下であることが好ましい。最も好ましくは10ppm以下である。 Note that the steps after the step of forming the photoelectric conversion layer are preferably performed in a glove box under a nitrogen atmosphere so as not to be exposed to oxygen or moisture. Thus, by performing in a nitrogen atmosphere, it is possible to prevent the p-type organic semiconductor from being deteriorated by oxygen or moisture in the air, and to increase the durability of the element. Specifically, the concentration of oxygen and moisture in the glove box is preferably 1000 ppm or less, and more preferably 100 ppm or less. Most preferably, it is 10 ppm or less.
次に、上記で形成した光電変換層上に、陽極を形成する。陽極を形成するための手段についても特に制限はなく、蒸着法、溶液塗布法のいずれであってもよいが、好ましくは蒸着法(例えば、真空蒸着法)が用いられる。 Next, an anode is formed on the photoelectric conversion layer formed above. The means for forming the anode is not particularly limited and may be either a vapor deposition method or a solution coating method, but a vapor deposition method (for example, a vacuum vapor deposition method) is preferably used.
なお、光電変換層と陽極との間に正孔輸送層を設ける場合には、蒸着法または溶液塗布法、好ましくは溶液塗布法を用いて、正孔輸送層が形成される。なお、当該正孔輸送層を形成する工程は、上記光電変換層を形成する工程と同様、窒素雰囲気下のグローブボックス内で行うことが好ましい。このように、窒素雰囲気下で行うことにより、大気中の酸素または水分により光電変換層が劣化するのを防ぎ、素子の耐久性を高めることができる。また、本発明に係る共役系高分子化合物は、高い溶媒親和性を有する。よって、溶液塗布法を用いて正孔輸送層を形成する場合、光電変換層の表面において正孔輸送材料を含む塗布溶液がはじかれるのを効果的に防ぐことができ、正孔輸送層の製膜性が向上しうる。 In addition, when providing a positive hole transport layer between a photoelectric converting layer and an anode, a positive hole transport layer is formed using a vapor deposition method or a solution coating method, Preferably a solution coating method. In addition, it is preferable to perform the process of forming the said positive hole transport layer within the glove box of nitrogen atmosphere similarly to the process of forming the said photoelectric converting layer. Thus, by performing in a nitrogen atmosphere, deterioration of the photoelectric conversion layer due to oxygen or moisture in the air can be prevented, and the durability of the element can be improved. Moreover, the conjugated polymer compound according to the present invention has high solvent affinity. Therefore, when forming the hole transport layer using the solution coating method, it is possible to effectively prevent the coating solution containing the hole transport material from being repelled on the surface of the photoelectric conversion layer. The film property can be improved.
さらに、上述した各種の層以外の層が含まれる場合には、これらの層を形成するための工程を、溶液塗布法や蒸着法などを用いることで適宜追加して行うことができる。 Furthermore, when layers other than the various layers described above are included, a step for forming these layers can be appropriately added by using a solution coating method, a vapor deposition method, or the like.
上記電極(陰極・陽極)、光電変換層、正孔輸送層、電子輸送層等は、必要に応じてパターニングされうる。パターニングの方法は特に制限はなく、公知の手法を適宜適用することができる。例えば、バルクへテロジャンクション型の光電変換層や正孔輸送層・電子輸送層などで使用される可溶性の材料をパターニングする場合には、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷等の方法を使用して塗布時に直接パターニングしてもよい。一方、電極などで使用される不溶性の材料の場合は、真空蒸着法による堆積時にマスク蒸着を行ったり、エッチングまたはリフトオフなどの公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。 The electrodes (cathode / anode), photoelectric conversion layer, hole transport layer, electron transport layer, and the like can be patterned as necessary. The patterning method is not particularly limited, and a known method can be appropriately applied. For example, when patterning soluble materials used in bulk heterojunction type photoelectric conversion layers, hole transport layers, electron transport layers, etc., even if only unnecessary portions are wiped off after the entire surface of die coating, dip coating, etc. Alternatively, direct patterning may be performed at the time of application using a method such as an inkjet method or screen printing. On the other hand, in the case of an insoluble material used for an electrode or the like, mask deposition can be performed at the time of deposition by vacuum deposition, or patterning can be performed by a known method such as etching or lift-off. Alternatively, the pattern may be formed by transferring a pattern formed on another substrate.
また、本形態の有機光電変換素子は、環境中の酸素、水分などによる劣化を防止するために、必要に応じて封止されうる。封止の方法は特に制限はなく、有機光電変換素子や有機エレクトロルミネッセンス素子などで用いられる公知の手法によって行われうる。例えば、(1)アルミニウムまたはガラスなどでできたキャップを接着剤によって接着することによって封止する手法;(2)アルミニウム、酸化ケイ素、酸化アルミニウムなどのガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法;(3)ガスバリア性の高い有機高分子材料(ポリビニルアルコールなど)をスピンコートする方法;(4)ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウムなど)または有機膜(パリレン等)を真空下で堆積する方法;ならびに(5)これらを複合的用いて積層する方法などが挙げられる。 Moreover, the organic photoelectric conversion element of this embodiment can be sealed as necessary in order to prevent deterioration due to oxygen, moisture, and the like in the environment. There is no restriction | limiting in particular in the sealing method, It can carry out by the well-known method used with an organic photoelectric conversion element, an organic electroluminescent element, etc. For example, (1) a method of sealing by bonding a cap made of aluminum or glass with an adhesive; (2) a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed, and organic photoelectric conversion (3) A method of spin-coating an organic polymer material (polyvinyl alcohol, etc.) having a high gas barrier property; (4) An inorganic thin film (silicon oxide, aluminum oxide, etc.) having a high gas barrier property Alternatively, a method of depositing an organic film (parylene or the like) under vacuum; and (5) a method of laminating these in a composite manner may be mentioned.
<有機光電変換素子の用途>
本発明の他の形態によれば、上述の有機光電変換素子を有する太陽電池が提供される。本形態の有機光電変換素子は、優れた耐久性を有し、十分な光電変換効率を達成することができるため、これを発電素子とする太陽電池に好適に使用されうる。
<Uses of organic photoelectric conversion elements>
According to the other form of this invention, the solar cell which has the above-mentioned organic photoelectric conversion element is provided. Since the organic photoelectric conversion element of this embodiment has excellent durability and can achieve sufficient photoelectric conversion efficiency, it can be suitably used for a solar cell using this as a power generation element.
また、本発明のさらに他の形態によれば、上述した有機光電変換素子がアレイ状に配列されてなる光センサアレイが提供される。すなわち、本形態の有機光電変換素子は、その光電変換機能を利用して、光センサアレイ上に投影された画像を電気的な信号に変換する光センサアレイとして利用することもできる。 Moreover, according to the further another form of this invention, the optical sensor array by which the organic photoelectric conversion element mentioned above is arranged in the array form is provided. That is, the organic photoelectric conversion element of this embodiment can also be used as an optical sensor array that converts an image projected on the optical sensor array into an electrical signal using the photoelectric conversion function.
本発明の作用効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of this invention is demonstrated using a following example and a comparative example. However, the technical scope of the present invention is not limited only to the following examples.
<共役系高分子化合物の合成>
[例示化合物11の合成]
<Synthesis of conjugated polymer compound>
[Synthesis of Exemplified Compound 11]
Chemische Berichte; vol. 125 (1992); p. 1235を参考として、化合物11−1を合成した。また、Macromolecules, 2010, vol.43, p. 9779およびJournal of Polymer Science, Part A, 2010 , vol. 48, p. 1714を参考として、化合物11−2を合成した。 Chemische Berichte; vol. 125 (1992); p. With reference to 1235, compound 11-1 was synthesized. Macromolecules, 2010, vol. 43, p. 9779 and Journal of Polymer Science, Part A, 2010, vol. 48, p. With reference to 1714, compound 11-2 was synthesized.
化合物11−1 3.28g(10mmol)、化合物11−2 7.9g(22mmol)、およびテトラキストリフェニルホスフィンパラジウム 1.16g(1mmol)を脱水トルエン200mlに溶解させ、110℃で8時間反応を行った。反応終了後、シリカゲルカラムクロマトグラフィー(ヘプタン:トルエン=10:0〜8:2(体積比))で精製し、化合物11−3を5.0g(9.0mmol)得た(収率90%)。 Compound 11-1 3.28 g (10 mmol), Compound 11-2 7.9 g (22 mmol), and tetrakistriphenylphosphine palladium 1.16 g (1 mmol) were dissolved in 200 ml of dehydrated toluene and reacted at 110 ° C. for 8 hours. It was. After completion of the reaction, the residue was purified by silica gel column chromatography (heptane: toluene = 10: 0 to 8: 2 (volume ratio)) to obtain 5.0 g (9.0 mmol) of compound 11-3 (yield 90%). .
ついで化合物11−3を558mg(1.0mmol)と、Nブロモスクシンイミド(NBS)を390mg(2.2mmol)とを塩化メチレン30mlおよび酢酸30mlの混合溶媒に加えて室温で一昼夜撹拌した。反応終了後、食塩水を加えて水洗し、有機相を抽出して硫酸マグネシウムで乾燥し、溶媒を留去した。ついでシリカゲルカラムクロマトグラフィー(ヘプタン:トルエン=10:0〜8:2(体積比))で精製し、化合物11−4を667mg(0.93mmol)得た(収率93%)。 Subsequently, 558 mg (1.0 mmol) of Compound 11-3 and 390 mg (2.2 mmol) of N bromosuccinimide (NBS) were added to a mixed solvent of 30 ml of methylene chloride and 30 ml of acetic acid, and stirred at room temperature for a whole day and night. After completion of the reaction, brine was added and washed, the organic phase was extracted and dried over magnesium sulfate, and the solvent was distilled off. Subsequently, it was purified by silica gel column chromatography (heptane: toluene = 10: 0 to 8: 2 (volume ratio)) to obtain 667 mg (0.93 mmol) of Compound 11-4 (yield 93%).
ついで、上記化合物11−4 180mg(0.25mmol)と、2,6−ビス(トリメチルスズ)−4,8−ジ(2−エチルヘキシルオキ)シベンゾ[1,2−b:4,5−b’]ジチオフェン 193mg(Journal of the American Chemical Society,2009,vol.131,p.7792を参考に合成、0.25mmol)とを20mlの無水トルエンに溶解させた。この溶液をアルゴンでパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o−トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110〜120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2−トリブチルスズチオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2−ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物をソックスレー抽出により精製し、メタノールに再沈殿を行うことで110mgの純粋なポリマー(Mn=15,000)(例示化合物11)を得た。 Subsequently, 180 mg (0.25 mmol) of the above compound 11-4 and 2,6-bis (trimethyltin) -4,8-di (2-ethylhexyloxy) cibenzo [1,2-b: 4,5-b ′ 193 mg of dithiophene (synthesized with reference to Journal of the American Chemical Society, 2009, vol. 131, p. 7792, 0.25 mmol) was dissolved in 20 ml of anhydrous toluene. After purging this solution with argon, 6.3 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 16.7 mg (0.055 mmol) of tris (o-tolyl) phosphine were added. It was. This solution was purged with argon for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 72 hours. Furthermore, in order to perform an end cap, 2-tributyltin thiophene (11 mg, 0.03 mmol) was added, and it recirculate | refluxed for 10 hours. Further 2-bromothiophene (10 mg, 0.06 mmol) was added and refluxed for 10 hours. After completion of the reaction, reprecipitation in methanol (500 ml), the polymer product collected by filtration was purified by Soxhlet extraction, and 110 mg of pure polymer (Mn = 15,000) (Exemplary Compound 11) was obtained by reprecipitation in methanol. )
[例示化合物19の合成] [Synthesis of Exemplified Compound 19]
Organic Letters, 2010, p.5478を参考として、化合物19−1を合成した。また、国際公開第2011/131280を参考として、化合物19−2を合成した。 Organic Letters, 2010, p. Compound 19-1 was synthesized with reference to 5478. In addition, Compound 19-2 was synthesized with reference to International Publication No. 2011/131280.
化合物19−1 3.26g(10mmol)、化合物19−2 7.9g(22mmol)、およびテトラキストリフェニルホスフィンパラジウム 1.16g(1mmol)を脱水トルエン200mlに溶解させ、110℃で8時間反応を行った。反応終了後、シリカゲルカラムクロマトグラフィー(ヘプタン:トルエン=10:0〜8:2(体積比))で精製し、化合物19−3を3.8g(6.8mmol)得た(収率68%)。 3.19 g (10 mmol) of Compound 19-1, 7.9 g (22 mmol) of Compound 19-2, and 1.16 g (1 mmol) of tetrakistriphenylphosphine palladium were dissolved in 200 ml of dehydrated toluene and reacted at 110 ° C. for 8 hours. It was. After completion of the reaction, the residue was purified by silica gel column chromatography (heptane: toluene = 10: 0 to 8: 2 (volume ratio)) to obtain 3.8 g (6.8 mmol) of compound 19-3 (yield 68%). .
化合物19−3 556mg(1.0mmol)を窒素下で脱水テトラヒドロフラン(THF)20mlに溶解させ、−78℃で1.6M n−ブチルリチウム ヘキサン溶液を1.4ml(2.2mmol)滴下して30分間撹拌を行った後、塩化トリメチルスズ1.0Mヘキサン溶液3.0ml(3.0mmol)を加え、さらに30分間撹拌を行った後、室温まで昇温させて一昼夜撹拌を行った。反応終了後、酢酸エチルと水とを加えて水洗し、有機相を抽出後に硫酸マグネシウムを加えて乾燥し、溶媒を留去した。この粗製物を、事前にトリエチルアミンで処理を行ったシリカゲルによってカラムクロマトグラフィーを行う(ヘプタン:酢酸エチル=10:0〜9:1(体積比))ことにより、化合物19−4を700mg(0.8mmol)得た(収率80%)。 Compound 19-3 556 mg (1.0 mmol) was dissolved in 20 ml of dehydrated tetrahydrofuran (THF) under nitrogen, and 1.4 ml (2.2 mmol) of 1.6 M n-butyllithium hexane solution was added dropwise at −78 ° C. 30 After stirring for 30 minutes, 3.0 ml (3.0 mmol) of a 1.0 M trimethyltin chloride 1.0 M hexane solution was added, followed by further stirring for 30 minutes, and then the temperature was raised to room temperature and stirring was performed overnight. After completion of the reaction, ethyl acetate and water were added and washed, and the organic phase was extracted, then magnesium sulfate was added and dried, and the solvent was distilled off. This crude product is subjected to column chromatography on silica gel previously treated with triethylamine (heptane: ethyl acetate = 10: 0 to 9: 1 (volume ratio)), whereby 700 mg (0. 8 mmol) (yield 80%).
ついで、上記化合物11−1 82mg(0.25mmol)と、化合物19−4 220mg(0.25mmol)とを用いた以外は例示化合物11の合成と同様にして100mgの純粋なポリマー(Mn=29,000)(例示化合物19)を得た。 Subsequently, 100 mg of a pure polymer (Mn = 29, 82 mg (0.25 mmol)) and Compound 19-4 (220 mg, 0.25 mmol) were used in the same manner as in the synthesis of Exemplified Compound 11 except that the compound 11-4 (220 mg, 0.25 mmol) was used. 000) (Exemplary Compound 19).
[例示化合物21の合成] [Synthesis of Exemplary Compound 21]
例示化合物11の合成において、前記化合物11−5の代わりに化合物21−1 256mg(0.25mmol)を用いた以外は同様にして180mgの純粋なポリマー(Mn=25,000)(例示化合物21)を得た。 In the synthesis of Exemplified Compound 11, 180 mg of pure polymer (Mn = 25,000) was similarly used except that Compound 21-1 256 mg (0.25 mmol) was used instead of Compound 11-5 (Exemplary Compound 21) Got.
[例示化合物25の合成] [Synthesis of Exemplified Compound 25]
化合物11−3 1.12g(2.0mmol)を窒素下で脱水テトラヒドロフラン(THF)50mlに溶解させ、−78℃で1.6M n−ブチルリチウム ヘキサン溶液を2.8ml(4.4mmol)滴下して30分間撹拌を行った後、塩化トリメチルスズ1.0Mヘキサン溶液6.0ml(6.0mmol)を加え、さらに30分間撹拌を行った後、室温まで昇温させて一昼夜撹拌を行った。反応終了後、酢酸エチルと水とを加えて水洗し、有機相を抽出後に硫酸マグネシウムを加えて乾燥し、溶媒を留去した。この粗製物を、事前にトリエチルアミンで処理を行ったシリカゲルによってカラムクロマトグラフィーを行う(ヘプタン:酢酸エチル=10:0〜9:1(体積比))ことにより、化合物25−1を1.77g(2.0mmol)得た(定量的)。 Compound 11-3 1.12 g (2.0 mmol) was dissolved in 50 ml of dehydrated tetrahydrofuran (THF) under nitrogen, and 2.8 ml (4.4 mmol) of 1.6M n-butyllithium hexane solution was added dropwise at −78 ° C. After stirring for 30 minutes, 6.0 ml (6.0 mmol) of 1.0 M trimethyltin chloride 1.0 M hexane solution was added, and the mixture was further stirred for 30 minutes, and then the temperature was raised to room temperature and stirring was performed overnight. After completion of the reaction, ethyl acetate and water were added and washed, and the organic phase was extracted, then magnesium sulfate was added and dried, and the solvent was distilled off. This crude product is subjected to column chromatography on silica gel previously treated with triethylamine (heptane: ethyl acetate = 10: 0 to 9: 1 (volume ratio)), whereby 1.77 g of compound 25-1 ( 2.0 mmol) obtained (quantitative).
ついで、上記化合物25−1 221mg(0.25mmol)と、化合物25−2 147mg(Journal of the American Chemical Society, 2011, p4625を参考として合成、0.25mmol)とを用いた以外は例示化合物11の合成と同様にして200mgの純粋なポリマー(Mn=31,000)(例示化合物25)を得た。 Subsequently, Exemplified Compound 11 was used except that 221 mg (0.25 mmol) of Compound 25-1 and 147 mg of Compound 25-2 (Synthetic with reference to Journal of the American Chemical Society, 2011, p4625, 0.25 mmol) were used. In the same manner as in the synthesis, 200 mg of a pure polymer (Mn = 31,000) (Exemplary Compound 25) was obtained.
[例示化合物26の合成] [Synthesis of Exemplified Compound 26]
前記化合物11−1から化合物25−1の合成において、化合物11−2の代わりに化合物19−2を用いた以外は同様にして、化合物26−2を合成した。 Compound 26-2 was synthesized in the same manner as in compound 25-1, except that compound 19-2 was used instead of compound 11-2.
ついで、上記化合物26−2 221mg(0.25mmol)と、化合物26−3 180mg(Journal of Materials Chemistry, 2011,p 3226を参考として合成、0.25mmol)とを用いた以外は例示化合物11の合成と同様にして220mgの純粋なポリマー(Mn=48,000)(例示化合物26)を得た。 Next, Synthesis of Exemplified Compound 11 except that 221 mg (0.25 mmol) of Compound 26-2 and 180 mg of Compound 26-3 (Synthesis with reference to Journal of Materials Chemistry, 2011, p 3226, 0.25 mmol) were used. In the same manner, 220 mg of a pure polymer (Mn = 48,000) (Exemplary Compound 26) was obtained.
[例示化合物30の合成] [Synthesis of Exemplary Compound 30]
前記化合物26−2 221mg(0.25mmol)と、化合物30−1 310mg(J. Am. Chem. Soc., 2012, 134 (7), pp 3498を参考として合成、0.25mmol)とを用いた以外は例示化合物11の合成と同様にして220mgの純粋なポリマー(Mn=40,000)(例示化合物30)を得た。 221 mg (0.25 mmol) of the compound 26-2 and 310 mg of the compound 30-1 (synthesized with reference to J. Am. Chem. Soc., 2012, 134 (7), pp 3498, 0.25 mmol) were used. Except for the above, 220 mg of a pure polymer (Mn = 40,000) (Exemplary Compound 30) was obtained in the same manner as in the synthesis of Exemplified Compound 11.
[例示化合物36の合成] [Synthesis of Exemplary Compound 36]
化合物36−1 1.23g(Tetrahedron Letters, 1991, p4367を参考として合成、2mmol)を塩化メチレン25ml、酢酸25mlとに溶解し、臭素1.0g(6.3mmol)を添加し、室温で96h反応を行った。反応終了後、食塩水で水洗後に塩化メチレンで抽出し、硫酸マグネシウムで乾燥後に溶媒を留去し、シリカゲルカラムクロマトグラフィーで精製することにより、化合物36−2を 540mg得た(収率35%)。 Compound 36-1 1.23 g (synthesized with reference to Tetrahedron Letters, 1991, p4367, 2 mmol) was dissolved in 25 ml of methylene chloride and 25 ml of acetic acid, and 1.0 g (6.3 mmol) of bromine was added and reacted at room temperature for 96 h. Went. After completion of the reaction, the extract was washed with brine, extracted with methylene chloride, dried over magnesium sulfate, evaporated to remove the solvent, and purified by silica gel column chromatography to obtain 540 mg of Compound 36-2 (yield 35%). .
例示化合物21の合成において、前記化合物11−4のかわりに化合物36−1 193mg(0.25mmol)とした以外は同様にして160mgの純粋なポリマー(Mn=20,000)(例示化合物36)を得た。 In the synthesis of Exemplified Compound 21, 160 mg of a pure polymer (Mn = 20,000) (Exemplary Compound 36) was similarly obtained except that 193 mg (0.25 mmol) of Compound 36-1 was used instead of Compound 11-4. Obtained.
<逆層型の有機光電変換素子の作製>
国際公開2008−134492号パンフットの記載を参考に、以下のようにして逆層型の有機光電変換素子を作製した。
<Preparation of reverse layer type organic photoelectric conversion element>
With reference to the description of International Publication No. 2008-134492 Panfoot, a reverse layer type organic photoelectric conversion device was produced as follows.
[比較例1]
PET基板上に、第一の電極(陰極)としてインジウムスズ酸化物(ITO)透明導電膜150nm堆積したもの(シート抵抗12Ω/square cm2)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第一の電極を形成した。パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
[Comparative Example 1]
An indium tin oxide (ITO) transparent conductive film 150 nm deposited (sheet resistance 12 Ω / square cm 2 ) as a first electrode (cathode) on a PET substrate using a normal photolithography technique and wet etching. The first electrode was formed by patterning to a width of 10 mm. The patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning. After this, the substrate was brought into the glove box and operated under a nitrogen atmosphere.
この第一の電極上に、Aldrich社製3−(2−アミノエチル)−アミノプロピルトリメトキシシランの0.05質量%メトキシエタノール溶液を、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、ホットプレート上で120℃1分間の加熱処理をして、電子輸送層を製膜した。 On this first electrode, a 0.05 mass% methoxyethanol solution of 3- (2-aminoethyl) -aminopropyltrimethoxysilane manufactured by Aldrich was used with a blade coater so that the dry film thickness was about 5 nm. And dried. Thereafter, a heat treatment was performed at 120 ° C. for 1 minute on a hot plate to form an electron transport layer.
次いで、o−ジクロロベンゼンに、p型有機半導体材料である比較化合物1(特許文献2:国際公開第2011−119446号明細書に基づいて合成)を0.8質量%、n型有機半導体材料であるPC60BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%で混合した溶液を調製し(p型有機半導体材料:n型有機半導体材料=33:67(質量比))、オーブンで110℃に加熱しながら一昼夜撹拌して溶解した後、乾燥膜厚が約200nmになるように基板温度を80℃に保持したブレードコーターを用いて塗布し、そのまま80℃で2分間乾燥して、光電変換層を製膜した。 Next, 0.8% by mass of Comparative Compound 1 (Patent Document 2: synthesized based on International Publication No. 2011-119446), which is a p-type organic semiconductor material, is added to o-dichlorobenzene by an n-type organic semiconductor material. A solution in which a certain PC60BM (nanom spectra E100H made by Frontier Carbon) was mixed at 1.6% by mass was prepared (p-type organic semiconductor material: n-type organic semiconductor material = 33: 67 (mass ratio)), and heated to 110 ° C. After being dissolved by stirring all day and night while heating, it was applied using a blade coater that kept the substrate temperature at 80 ° C. so that the dry film thickness was about 200 nm, and dried at 80 ° C. for 2 minutes as it was. Was formed.
光電変換層の乾燥完了後、次いで正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT−PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率:1×10−3S/cm)を等量のイソプロパノールで希釈した液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、90℃の温風で20秒間加熱処理して、有機物からなる正孔輸送層(有機材料層)を形成した。なお塗布時の大気の温度・湿度は23℃65%であった。 After the drying of the photoelectric conversion layer, as a hole transport layer, PEDOT-PSS (CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity: 1 × 10 −3 ) composed of a conductive polymer and a polyanion. (S / cm) was diluted with an equal amount of isopropanol, and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Then, it heat-processed for 20 second with 90 degreeC warm air, and formed the positive hole transport layer (organic material layer) which consists of organic substance. The temperature and humidity of the atmosphere at the time of application were 23 ° C. and 65%.
次に、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、1×10−3Pa以下にまで真空蒸着装置内を減圧した後、蒸着速度0.5nm/秒でAgメタルを200nm積層して、第二の電極(陽極)を形成した。 Next, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the inside of the vacuum deposition apparatus was depressurized to 1 × 10 −3 Pa or less, and then Ag metal was deposited at a deposition rate of 0.5 nm / second. A second electrode (anode) was formed by laminating 200 nm.
得られた積層体を窒素チャンバーに移動し、住友3M社製のUBF−9L(水蒸気透過率5.0×10−4g/m2/d)の間に挟みこみ、接着剤としてのUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後に大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子1を得た。 The obtained laminate was transferred to a nitrogen chamber and sandwiched between UBF-9L (water vapor transmission rate 5.0 × 10 −4 g / m 2 / d) manufactured by Sumitomo 3M, and UV curing as an adhesive. After sealing using resin (manufactured by Nagase ChemteX Corp., UV RESIN XNR5570-B1), it was taken out into the atmosphere, and an organic photoelectric conversion element 1 having a light receiving portion of about 10 × 10 mm size was obtained.
[実施例1〜6]
光電変換層の形成において、p型有機半導体として下記表1に記載の化合物をそれぞれ用いたことを除いては、上記比較例1と同様の方法で、逆層型の有機光電変換素子を作製した。
[Examples 1 to 6]
In the formation of the photoelectric conversion layer, a reverse layer type organic photoelectric conversion element was produced in the same manner as in Comparative Example 1 except that each of the compounds shown in Table 1 below was used as the p-type organic semiconductor. .
<順層型の有機光電変換素子の作製>
[化合物P(電子輸送材料)の合成]
下記反応により、化合物Pを合成した。
<Preparation of normal layer type organic photoelectric conversion element>
[Synthesis of Compound P (Electron Transport Material)]
Compound P was synthesized by the following reaction.
Adv.Mater.2007,19,2010を参考として、ポリ(9,9−ビス(6−ブロモヘキシル)−4,7−フルオレン)を合成した。この化合物の重量平均分子量は4400であった。この化合物1.0gおよび3,3’−イミノビス(N,N−ジメチルプロピルアミン)(アルドリッチ社製)9.0gを、テトラヒドロフラン100mlおよびN,N−ジメチルホルムアミド100mlの混合溶媒に溶解し、室温(25℃)で48時間撹拌して、反応を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、化合物Pを1.3g得た(収率90%)。得られた化合物について、H−NMRによって構造を特定した。結果を下記に示す。7.6〜8.0ppm(br),2.88ppm(br),2.18ppm(m),2.08ppm(s),1.50ppm(m),1.05ppm(br)。 Adv. Mater. Poly (9,9-bis (6-bromohexyl) -4,7-fluorene) was synthesized with reference to 2007, 19, 2010. The weight average molecular weight of this compound was 4400. 1.0 g of this compound and 9.0 g of 3,3′-iminobis (N, N-dimethylpropylamine) (manufactured by Aldrich) were dissolved in a mixed solvent of 100 ml of tetrahydrofuran and 100 ml of N, N-dimethylformamide, and room temperature ( The reaction was carried out at 48 ° C. for 48 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and reprecipitation was further performed in water to obtain 1.3 g of Compound P (yield 90%). About the obtained compound, the structure was specified by H-NMR. The results are shown below. 7.6-8.0 ppm (br), 2.88 ppm (br), 2.18 ppm (m), 2.08 ppm (s), 1.50 ppm (m), 1.05 ppm (br).
[実施例7]
PET基板上に、第一の電極(陽極)としてインジウムスズ酸化物(ITO)透明導電膜150nm堆積したもの(シート抵抗12Ω/square)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第一の電極を形成した。パターン形成した第一の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT−PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率:1×10−3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記第一の電極上に製膜した。これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
[Example 7]
An indium tin oxide (ITO) transparent conductive film deposited with a thickness of 150 nm (sheet resistance 12 Ω / square) as a first electrode (anode) on a PET substrate is 10 mm wide using a normal photolithography technique and wet etching. To form a first electrode. The patterned first electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning. Next, PEDOT-PSS (CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity: 1 × 10 −3 S / cm) made of a conductive polymer and a polyanion is used as a hole transport layer. An isopropanol solution containing 0% by mass was prepared, and the substrate was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 30 nm. Then, it heat-processed with the warm air of 120 degreeC for 20 second, and formed the positive hole transport layer on said 1st electrode. After this, the substrate was brought into the glove box and operated under a nitrogen atmosphere.
まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。 First, the substrate was heat-treated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
次いで、o−ジクロロベンゼンに、p型有機半導体材料として前記例示化合物37を0.8質量%、n型有機半導体材料であるPC60BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%混合した有機光電変換材料組成物溶液を調製し(p型有機半導体材料:n型有機半導体材料=33:67(質量比))、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した後、乾燥膜厚が約170nmになるように、基板を40℃に調温したブレードコーターを用いて塗布し、120℃で2分間乾燥して、光電変換層を上記正孔輸送層上に製膜した。 Subsequently, the organic compound which mixed 0.8 mass% of said exemplary compound 37 as a p-type organic-semiconductor material, and 1.6 mass% of PC60BM (nanospectra E100H made from a frontier carbon) which is an n-type organic-semiconductor material in o-dichlorobenzene. A photoelectric conversion material composition solution was prepared (p-type organic semiconductor material: n-type organic semiconductor material = 33: 67 (mass ratio)), and completely dissolved by stirring (60 minutes) while heating to 100 ° C. on a hot plate. After that, the substrate was applied using a blade coater adjusted to 40 ° C. so that the dry film thickness was about 170 nm, and dried at 120 ° C. for 2 minutes, and the photoelectric conversion layer was placed on the hole transport layer. A film was formed.
続いて、前記化合物Pを、それぞれ、0.02質量%になるように1−ブタノール:ヘキサフルオロイソプロパノール=1:1の混合溶媒に溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記光電変換層上に製膜した。 Subsequently, the compound P was dissolved in a mixed solvent of 1-butanol: hexafluoroisopropanol = 1: 1 so as to be 0.02% by mass, respectively, to prepare a solution. This solution was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with warm air at 100 ° C. to form an electron transport layer on the photoelectric conversion layer.
次に、上記電子輸送層を製膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10−3Pa以下にまでに真空蒸着機内を減圧した後、蒸着速度で2nm/秒で銀を、それぞれ、100nm蒸着して、第二の電極(陰極)を上記電子輸送層上に形成した。 Next, the substrate on which the electron transport layer was formed was placed in a vacuum deposition apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 −3 Pa or less, and then silver was deposited at a deposition rate of 2 nm / second, and 100 nm was deposited. Then, a second electrode (cathode) was formed on the electron transport layer.
得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL−9L(水蒸気透過率<5×10−4g/m2/d)の間に挟みこみ、接着剤としてのUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570−B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子9を作製した。 The obtained organic photoelectric conversion element was moved to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate <5 × 10 −4 g / m 2 / d) and adhered. After sealing using a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) as an agent, the organic photoelectric conversion element 9 having a light receiving portion of about 10 × 10 mm size is taken out under the atmosphere. Produced.
<有機光電変換素子の評価>
<正孔移動度の測定>
熱酸化によって形成された厚さ230nmの酸化珪素膜を有する、比抵抗0.02Ω・cmのn型Siウェハー上に、厚さ100nmのAuから形成される、W=1000μm、L=10μmの形状のトソース・ドレイン電極パターンを形成した。
<Evaluation of organic photoelectric conversion element>
<Measurement of hole mobility>
Formed from Au having a thickness of 100 nm on an n-type Si wafer having a specific resistance of 0.02 Ω · cm having a silicon oxide film having a thickness of 230 nm formed by thermal oxidation, a shape having W = 1000 μm and L = 10 μm The to-source / drain electrode pattern was formed.
上記のソース・ドレイン電極パターンを有する基板を、アセトン・イソプロパノールで洗浄した後、SAMCO製UVオゾンクリーナーUV−1を使用し、70℃10分間のドライ洗浄を行った。 The substrate having the source / drain electrode pattern was washed with acetone / isopropanol, and then dry-cleaned at 70 ° C. for 10 minutes using a UV ozone cleaner UV-1 manufactured by SAMCO.
ついでソース・ドレイン電極上にペンタフルオロベンゼンチオール(以下、「PFBT」と略すこともある)からなる単分子膜を、PFBTの0.1Mエタノール溶液に2分間浸漬したのち、エタノールで数回洗浄を行うことで形成した。 Next, a monomolecular film made of pentafluorobenzenethiol (hereinafter sometimes abbreviated as “PFBT”) on the source / drain electrodes is immersed in a 0.1M ethanol solution of PFBT for 2 minutes, and then washed several times with ethanol. Formed by doing.
次いで、上記の基板上に、ヘキサメチルジシラザン(HMDS)を4000rpmで30秒間スピンコートし、90℃で90秒間乾燥した後、トルエンで洗浄を行い、酸化ケイ素膜表面にHMDSからなる単分子膜を形成した。 Then, hexamethyldisilazane (HMDS) is spin-coated at 4000 rpm for 30 seconds on the above substrate, dried at 90 ° C. for 90 seconds, washed with toluene, and a monomolecular film made of HMDS on the silicon oxide film surface. Formed.
次に、比較化合物および本発明の例示化合物(有機半導体材料)を、それぞれ、ジクロロベンゼンに0.5質量%の濃度で溶解し、この溶液を、上記で形成された単分子膜上に、1000rpmで30秒間スピンコートし、有機半導体層を形成した。 Next, the comparative compound and the exemplary compound of the present invention (organic semiconductor material) were each dissolved in dichlorobenzene at a concentration of 0.5% by mass, and this solution was added at 1000 rpm on the monomolecular film formed above. Was spin-coated for 30 seconds to form an organic semiconductor layer.
各有機半導体材料について、各有機薄膜トランジスタを用いて、アジレントテクノロジーズ製半導体パラメータ測定装置B1500を使用して、ドレインバイアスを−80V、ゲートバイアスを0Vから−80Vまで掃引したときのI−V特性から正孔移動度を算出し、4個の素子についての平均値を算出し、有機半導体材料のキャリア移動度とした。 For each organic semiconductor material, using each organic thin film transistor, using a semiconductor parameter measuring apparatus B1500 manufactured by Agilent Technologies, the drain bias is −80 V, the gate bias is swept from 0 V to −80 V, and the positive characteristics are obtained from the IV characteristics. The hole mobility was calculated, and the average value for the four elements was calculated as the carrier mobility of the organic semiconductor material.
(開放電圧、曲線因子、および光電変換効率の評価)
上記実施例1〜7および比較例1で得た有機光電変換素子を、それぞれエポキシ樹脂とガラスキャップとで封止した。これにソーラーシミュレーター(AM1.5Gフィルタ)を用いて100mW/cm2の強度の光を照射し、有効面積を1cm2にしたマスクを受光部に重ね、IV特性を評価することで、短絡電流密度Jsc(mA/cm2)、開放電圧Voc(V)、および曲線因子FF測定した。得られたJsc、Voc、およびFFの値から、下記式1に従って光電変換効率η[%]を算出した。結果を表1に示す。
(Evaluation of open circuit voltage, fill factor, and photoelectric conversion efficiency)
The organic photoelectric conversion elements obtained in Examples 1 to 7 and Comparative Example 1 were sealed with an epoxy resin and a glass cap, respectively. A solar simulator (AM1.5G filter) is used to irradiate light with an intensity of 100 mW / cm 2 , a mask with an effective area of 1 cm 2 is overlaid on the light receiving part, and IV characteristics are evaluated, thereby short-circuit current density J sc (mA / cm 2 ), open circuit voltage V oc (V), and fill factor FF were measured. From the obtained values of J sc , V oc and FF, photoelectric conversion efficiency η [%] was calculated according to the following formula 1. The results are shown in Table 1.
(耐久性評価)
上記実施例1〜7および比較例1で得た各有機光電変換素子を、温度80℃、湿度80%に保持した容器内に保存し、定期的に取り出してIV特性を測定し、初期の光電変換効率を100として、初期の効率の80%まで低下した時間をLT80[時間]として評価した。LT80の値が大きいほど、耐久性が良好であることを意味する。結果を表1に示す。
(Durability evaluation)
Each of the organic photoelectric conversion elements obtained in Examples 1 to 7 and Comparative Example 1 was stored in a container maintained at a temperature of 80 ° C. and a humidity of 80%, taken out periodically, and measured for IV characteristics. The conversion efficiency was set to 100, and the time when the initial efficiency was reduced to 80% was evaluated as LT80 [time]. It means that durability is so favorable that the value of LT80 is large. The results are shown in Table 1.
表1の結果より、本発明の共役系高分子化合物を用いた実施例は、比較例と比べてp型有機半導体層の移動度が良好であり、かつ高い光電変換効率ηが得られることが示された。また、素子の耐久性評価(LT80)については、いずれの実施例も、比較例よりも著しく耐久性が向上した。 From the results of Table 1, the example using the conjugated polymer compound of the present invention shows that the mobility of the p-type organic semiconductor layer is better than that of the comparative example, and a high photoelectric conversion efficiency η can be obtained. Indicated. In addition, regarding the durability evaluation (LT80) of the device, the durability of each of the examples was significantly improved as compared with the comparative example.
さらに、逆層構成の有機光電変換素子に置いて、本発明の化合物はより耐久性が高い有機薄膜太陽電池が得られることもことが示された。 Furthermore, it was shown that an organic thin film solar cell with higher durability can be obtained by placing the compound of the present invention in an organic photoelectric conversion element having a reverse layer structure.
10、20、30 有機光電変換素子、
11 陽極、
12 陰極、
14 光電変換層、
14a 第1の光電変換層、
14b 第2の光電変換層、
25 基板、
26 正孔輸送層、
27 電子輸送層、
38 電荷再結合層。
10, 20, 30 organic photoelectric conversion element,
11 Anode,
12 cathode,
14 photoelectric conversion layer,
14a 1st photoelectric conversion layer,
14b second photoelectric conversion layer,
25 substrates,
26 hole transport layer,
27 electron transport layer,
38 Charge recombination layer.
Claims (11)
第二の電極と、
前記第一の電極および前記第二の電極の間に存在する、n型有機半導体およびp型有機半導体を含む光電変換層と、
を有し、
前記p型有機半導体は、下記一般式1で表される部分構造を有する共役系高分子化合物を含む、有機光電変換素子;
R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表し、
D1およびD2は、それぞれ独立して、複素芳香族環を含むドナー性ユニットを表し、
pは1〜4の整数を表し、
qは1〜4の整数を表す。 A first electrode;
A second electrode;
A photoelectric conversion layer including an n-type organic semiconductor and a p-type organic semiconductor, which exists between the first electrode and the second electrode;
Have
The p-type organic semiconductor includes an organic photoelectric conversion element including a conjugated polymer compound having a partial structure represented by the following general formula 1;
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of number 1 to 20, or a cyano group,
D 1 and D 2 each independently represent a donor unit containing a heteroaromatic ring,
p represents an integer of 1 to 4,
q represents the integer of 1-4.
R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表し、
D1、D2、およびD3は、それぞれ独立して、複素芳香族環を含むドナー性ユニットを表し、
Aはアクセプター性ユニットを表し、
pおよびrは、それぞれ独立して、1〜4の整数を表し、
qは1〜4の整数を表し、
sは0〜4の整数を表す。 The organic photoelectric conversion element according to claim 1 or 2, wherein the conjugated polymer compound has a partial structure represented by the following general formula 2.
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of number 1 to 20, or a cyano group,
D 1 , D 2 , and D 3 each independently represent a donor unit containing a heteroaromatic ring;
A represents an acceptor unit,
p and r each independently represents an integer of 1 to 4;
q represents an integer of 1 to 4,
s represents an integer of 0 to 4.
R3〜R10は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基を表し、この際、各R3またはR6およびR7またはR9およびR10はそれぞれ、互いに結合して置換基を有してもよい環を形成してもよく、または、縮環していてもよい。 The organic photoelectric conversion device according to claim 3 or 4, wherein A is represented by the following general formula 3A or 3B.
R 3 to R 10 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of 1 to 20, wherein each R 3 or R 6 and R 7 or R 9 and R 10 are bonded to each other to form an optionally substituted ring. The Well, or, it may be condensed.
前記第二の電極は対電極であり、
前記光電変換層と前記第二の電極との間に、さらに正孔輸送層を有する、請求項1〜7のいずれか1項に記載の有機光電変換素子。 The first electrode is a transparent electrode;
The second electrode is a counter electrode;
The organic photoelectric conversion element according to any one of claims 1 to 7, further comprising a hole transport layer between the photoelectric conversion layer and the second electrode.
R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表し、
D1およびD2は、それぞれ独立して、複素芳香族環を含むドナー性ユニットを表し、
pは、それぞれ独立して、1〜4の整数を表し、
qは1〜4の整数を表す。 A conjugated polymer compound having a partial structure represented by the following general formula 1.
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of number 1 to 20, or a cyano group,
D 1 and D 2 each independently represent a donor unit containing a heteroaromatic ring,
p represents each independently an integer of 1 to 4,
q represents the integer of 1-4.
R1およびR2は、それぞれ独立して、水素原子、ハロゲン原子、置換または非置換の、炭素原子数1〜24のアルキル基、炭素原子数1〜24のフッ化アルキル基、炭素原子数3〜20のシクロアルキル基、炭素原子数3〜20のフッ化シクロアルキル基、炭素原子数1〜24のアルコキシ基、炭素原子数1〜24のフッ化アルコキシ基、炭素原子数1〜24のアルキルチオ基、炭素原子数1〜24のフッ化アルキルチオ基、炭素原子数6〜30のアリール基、炭素原子数6〜30のフッ化アリール基、炭素原子数1〜20のヘテロアリール基、または炭素原子数1〜20のフッ化ヘテロアリール基、またはシアノ基を表し、
D1、D2、およびD3は、それぞれ独立して、複素芳香族環を含むドナー性ユニットを表し、
Aはアクセプター性ユニットを表し、
pおよびrは、それぞれ独立して、1〜4の整数を表し、
qは1〜4の整数を表し、
sは0〜4の整数を表す。 A conjugated polymer compound having a partial structure represented by the following general formula 2.
R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a fluorinated alkyl group having 1 to 24 carbon atoms, or 3 carbon atoms. -20 cycloalkyl group, fluorinated cycloalkyl group having 3 to 20 carbon atoms, alkoxy group having 1 to 24 carbon atoms, fluorinated alkoxy group having 1 to 24 carbon atoms, alkylthio having 1 to 24 carbon atoms Group, a fluorinated alkylthio group having 1 to 24 carbon atoms, an aryl group having 6 to 30 carbon atoms, a fluorinated aryl group having 6 to 30 carbon atoms, a heteroaryl group having 1 to 20 carbon atoms, or a carbon atom Represents a fluorinated heteroaryl group of number 1 to 20, or a cyano group,
D 1 , D 2 , and D 3 each independently represent a donor unit containing a heteroaromatic ring;
A represents an acceptor unit,
p and r each independently represents an integer of 1 to 4;
q represents an integer of 1 to 4,
s represents an integer of 0 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012096009A JP5891924B2 (en) | 2012-04-19 | 2012-04-19 | Conjugated polymer compound and organic photoelectric conversion device using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012096009A JP5891924B2 (en) | 2012-04-19 | 2012-04-19 | Conjugated polymer compound and organic photoelectric conversion device using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013225542A true JP2013225542A (en) | 2013-10-31 |
JP5891924B2 JP5891924B2 (en) | 2016-03-23 |
Family
ID=49595423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012096009A Active JP5891924B2 (en) | 2012-04-19 | 2012-04-19 | Conjugated polymer compound and organic photoelectric conversion device using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5891924B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254818A (en) * | 2012-06-06 | 2013-12-19 | Hiroshima Univ | Organic semiconductor material and intermediate body for organic semiconductor material |
WO2016017350A1 (en) * | 2014-07-31 | 2016-02-04 | 富士フイルム株式会社 | Photoelectric conversion element and imaging element |
JP2017503875A (en) * | 2013-12-26 | 2017-02-02 | レイナジー テック インコーポレイション | Conjugated polymers and devices incorporating them |
CN106632999A (en) * | 2016-09-06 | 2017-05-10 | 华南理工大学 | Polymer semiconductor material containing naphthalene[1,2-c;5,6-c]bis[1,2,5]thiadiazole and preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010098326A1 (en) * | 2009-02-24 | 2010-09-02 | 国立大学法人広島大学 | Novel compounds, process for preparing same, organic semiconductor materials, and organic semiconductor devices |
WO2012079675A2 (en) * | 2010-12-17 | 2012-06-21 | Merck Patent Gmbh | Conjugated polymers |
WO2012146506A1 (en) * | 2011-04-28 | 2012-11-01 | Basf Se | Semiconductor materials based on thienothiophene-2,5-dione oligomers and polymers |
-
2012
- 2012-04-19 JP JP2012096009A patent/JP5891924B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010098326A1 (en) * | 2009-02-24 | 2010-09-02 | 国立大学法人広島大学 | Novel compounds, process for preparing same, organic semiconductor materials, and organic semiconductor devices |
WO2012079675A2 (en) * | 2010-12-17 | 2012-06-21 | Merck Patent Gmbh | Conjugated polymers |
JP2014507488A (en) * | 2010-12-17 | 2014-03-27 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Conjugated polymer |
WO2012146506A1 (en) * | 2011-04-28 | 2012-11-01 | Basf Se | Semiconductor materials based on thienothiophene-2,5-dione oligomers and polymers |
JP2014514413A (en) * | 2011-04-28 | 2014-06-19 | ビーエーエスエフ ソシエタス・ヨーロピア | Semiconductor materials based on thienothiophene-2,5-dione oligomers and polymers |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013254818A (en) * | 2012-06-06 | 2013-12-19 | Hiroshima Univ | Organic semiconductor material and intermediate body for organic semiconductor material |
JP2017503875A (en) * | 2013-12-26 | 2017-02-02 | レイナジー テック インコーポレイション | Conjugated polymers and devices incorporating them |
WO2016017350A1 (en) * | 2014-07-31 | 2016-02-04 | 富士フイルム株式会社 | Photoelectric conversion element and imaging element |
JPWO2016017350A1 (en) * | 2014-07-31 | 2017-04-27 | 富士フイルム株式会社 | Photoelectric conversion device and imaging device |
CN106632999A (en) * | 2016-09-06 | 2017-05-10 | 华南理工大学 | Polymer semiconductor material containing naphthalene[1,2-c;5,6-c]bis[1,2,5]thiadiazole and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5891924B2 (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742705B2 (en) | Organic photoelectric conversion element | |
JP6015672B2 (en) | Organic photoelectric conversion element | |
JP5845937B2 (en) | Organic photoelectric conversion element | |
JP5838975B2 (en) | Organic photoelectric conversion element and solar cell | |
JP5573066B2 (en) | Organic photoelectric conversion element, solar cell and optical sensor array using the same | |
JP2012255098A (en) | Conjugated polymer, and organic photoelectric converter using the same | |
JP2013254912A (en) | Organic photoelectric conversion element and solar cell using the same | |
JP5310838B2 (en) | Organic photoelectric conversion element, solar cell, and optical sensor array | |
JP5853805B2 (en) | Conjugated polymer compound and organic photoelectric conversion device using the same | |
JP5853852B2 (en) | Conjugated polymer compound and organic photoelectric conversion device using the same | |
JP5920341B2 (en) | ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL | |
JP5839033B2 (en) | Conjugated polymer and organic photoelectric conversion device using the same | |
JP2014053383A (en) | Tandem organic photoelectric conversion element and solar cell using the same | |
JP5891924B2 (en) | Conjugated polymer compound and organic photoelectric conversion device using the same | |
JPWO2013065573A1 (en) | Organic photoelectric conversion device and solar cell using the same | |
WO2010090123A1 (en) | Organic photoelectric conversion element, solar cell using same, and optical sensor array | |
JP5686141B2 (en) | Organic photoelectric conversion element and solar cell | |
JP5825134B2 (en) | ORGANIC PHOTOELECTRIC CONVERSION DEVICE, SOLAR CELL USING THE SAME, AND OPTICAL SENSOR ARRAY | |
JP5712769B2 (en) | Organic photoelectric conversion element and solar cell | |
JP5790404B2 (en) | Conjugated polymer compound and organic photoelectric conversion device using the same | |
JP2010283003A (en) | Organic photoelectric conversion element, solar battery using the same, and photosensor array | |
JP5691810B2 (en) | Conjugated polymer and organic photoelectric conversion device using the same | |
JP5413055B2 (en) | Organic photoelectric conversion element, solar cell using the same, and optical sensor array | |
JP5930090B2 (en) | Organic photoelectric conversion element | |
JP6194982B2 (en) | Organic photoelectric conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5891924 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |