JP2013225437A - Negative electrode for lithium ion secondary battery and method of manufacturing the same - Google Patents

Negative electrode for lithium ion secondary battery and method of manufacturing the same Download PDF

Info

Publication number
JP2013225437A
JP2013225437A JP2012097683A JP2012097683A JP2013225437A JP 2013225437 A JP2013225437 A JP 2013225437A JP 2012097683 A JP2012097683 A JP 2012097683A JP 2012097683 A JP2012097683 A JP 2012097683A JP 2013225437 A JP2013225437 A JP 2013225437A
Authority
JP
Japan
Prior art keywords
tin plating
current collector
collector plate
less
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012097683A
Other languages
Japanese (ja)
Inventor
Hiromitsu Date
博充 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012097683A priority Critical patent/JP2013225437A/en
Publication of JP2013225437A publication Critical patent/JP2013225437A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive negative electrode for a lithium ion secondary battery which has excellent charge/discharge cycle characteristics and can be manufactured by a low cost method, and also to provide a method of manufacturing the same.SOLUTION: A current collection plate is made of metal foil having particulate tin plating on at least one surface. A negative electrode for a lithium ion secondary battery is characterized in that an average diameter in the current collection plate surface direction of the particulate tin plating is 0.5 μm or more and 20 μm or less, a lower part of the particulate tin plating forms an alloy layer with metal constituting a current collection plate, the area coverage ratio of the current collection plate formed by tin plating is 60% or more and 90% or less, the total attached amount of tin plating exceeds 3 g/mand is 20 g/mor less, and the attached mount of alloyed tin is 0.2 g/mor more and 2 g/mor less.

Description

本発明は、リチウムイオン二次電池用負極とその製造方法に関する。   The present invention relates to a negative electrode for a lithium ion secondary battery and a method for producing the same.

これまでリチウムイオン二次電池の負極活物質にはグラファイトが用いられてきたが、その理論容量密度は372mAh/gであり、近年急速に高まっている電気自動車の駆動用電池としての要求には十分に応えられない。そこで、グラファイトを超える高容量の二次電池用負極材料が求められており、負極活物質として錫とシリコンが有力な候補として挙げられている。錫は最大で994mAh/g、シリコンは最大で4200mAh/gの容量密度が見込めることから、これらの活物質を実用化することができれば、従来と比べて格段にリチウムイオン二次電池のエネルギー密度を高めることが可能である。   Until now, graphite has been used as a negative electrode active material for lithium ion secondary batteries, but its theoretical capacity density is 372 mAh / g, which is sufficient for the demand for batteries for driving electric vehicles, which have been rapidly increasing in recent years. I can not respond to. Therefore, a high-capacity negative electrode material for secondary batteries exceeding graphite has been demanded, and tin and silicon are cited as promising candidates as negative electrode active materials. Since the maximum capacity density of tin is expected to be 994 mAh / g and the maximum capacity density of silicon is 4200 mAh / g, if these active materials can be put to practical use, the energy density of the lithium ion secondary battery will be significantly higher than conventional ones. It is possible to increase.

特許文献1には、集電体表面に電気めっき法によって結晶粒子が1μm以下の平滑な錫皮膜を10μm以上300μm以下の厚さで積層させた負極が開示されている。錫の結晶粒子径を1μm以下にするのは、皮膜の平滑性、安定性、強度等のためであり、錫皮膜を10μm以上300μm以下の厚さとするのは、10μmより薄いとリチウムを吸蔵する作用が小さく、逆に、300μmを超えると、負極利用率(錫皮膜のうち負極として機能する部分の割合)が低下するためであるとしている。   Patent Document 1 discloses a negative electrode in which a smooth tin film having crystal grains of 1 μm or less is laminated on a current collector surface by electroplating with a thickness of 10 μm or more and 300 μm or less. The reason why the crystal grain size of tin is 1 μm or less is for the smoothness, stability, strength, etc. of the film, and the thickness of the tin film is 10 μm or more and 300 μm or less. The effect is small, and conversely, if it exceeds 300 μm, the negative electrode utilization factor (the ratio of the portion that functions as the negative electrode in the tin film) is reduced.

しかし、このような平滑錫めっきをリチウムイオン二次電池の負極に用いるには次のような問題がある。充電時に電解質中のリチウムイオンが還元されて金属リチウムとなり、その際、負極活物質である錫と合金化して取り込まれるため、負極の錫の体積は3倍近くに膨張する。逆に、放電の際は負極からリチウムイオンが電解質中に溶出するため、負極は収縮する。したがって、充放電を繰り返すと負極の錫は膨張、収縮を繰り返すことになり、その大きな体積変化に耐えられずに錫は微紛化または粗大化、あるいは集電体から剥離してしまうため、充放電サイクルとともにリチウムイオン二次電池の容量が極端に低くなってしまう。   However, the use of such a smooth tin plating for the negative electrode of a lithium ion secondary battery has the following problems. At the time of charging, lithium ions in the electrolyte are reduced to become metallic lithium, and at that time, alloyed with tin, which is the negative electrode active material, is taken in, so that the volume of tin in the negative electrode expands nearly three times. On the other hand, since lithium ions are eluted from the negative electrode into the electrolyte during discharge, the negative electrode contracts. Therefore, when charging / discharging is repeated, the tin of the negative electrode repeatedly expands and contracts, and it cannot withstand the large volume change, so that the tin becomes fine or coarse or peels from the current collector. The capacity of the lithium ion secondary battery becomes extremely low with the discharge cycle.

充放電サイクル特性の向上のため、負極の集電体である銅箔の表面に微細な凹凸を設け、その表面に微結晶シリコン皮膜を形成し、その厚み方向に初回以降の充放電で形成される切れ目によって柱状に分離されることで充放電時の体積変化を緩和吸収し、シリコン皮膜が銅箔から剥離するのを防止する技術が開示されている(特許文献2)。しかし、この場合は、リチウムイオン二次電池の製造時点では求められる特性を持った負極となっておらず、シリコン皮膜に初回以降の充放電で形成される前記切れ目がその性能を左右するという、出荷管理ができない製品となってしまう点が課題として残る。また、銅箔表面にシリコン薄膜を形成する方法は、CVD法、スパッタリング法、溶射法、真空蒸着法といった高コストの方法によらざるを得ないという問題もある。   In order to improve the charge / discharge cycle characteristics, fine irregularities are provided on the surface of the negative electrode current collector copper foil, a microcrystalline silicon film is formed on the surface, and it is formed by the first and subsequent charge / discharge in the thickness direction. A technique is disclosed in which a change in volume during charge / discharge is relaxed and absorbed by being separated into a columnar shape by a cut, and the silicon film is prevented from peeling from the copper foil (Patent Document 2). However, in this case, it is not a negative electrode having the characteristics required at the time of production of the lithium ion secondary battery, and the cut formed by the charge and discharge after the first time on the silicon film affects its performance. The problem remains that the product cannot be shipped. Further, the method of forming a silicon thin film on the surface of the copper foil has a problem that it must be a high-cost method such as a CVD method, a sputtering method, a thermal spraying method, or a vacuum deposition method.

特許文献3には、シート状の集電体の表面に、Liと合金化できるシリコンや錫等をスクリーン印刷法、インクジェット法、スプレー法、グラビア印刷法、熱転写法、凸版印刷法、凹版印刷法、オフセット印刷法等の手法によってドット状に点在させる技術が開示されている。ボール転写法によれば、錫等の金属からなる活物質を集電体表面に直接付着させることも原理的には可能ではあるが、予め非常に細かい金属ボールを製造する工程が必要であるし、細かい金属ボールはその体積に対して表面積が大きく、すなわち大気中で酸化する部分が多いために、実際的なコストでこれを集電体と金属結合させるのは困難である。その他の印刷法などの方法では、インク状の液体に活物質を分散させる必要があり、錫等の金属からなる活物質のみを集電体表面に付着させるには不向きである。   In Patent Document 3, silicon or tin that can be alloyed with Li is applied to the surface of a sheet-like current collector by a screen printing method, an ink jet method, a spray method, a gravure printing method, a thermal transfer method, a relief printing method, an intaglio printing method. In addition, there is disclosed a technique in which dots are dotted in a method such as an offset printing method. According to the ball transfer method, it is possible in principle to directly attach an active material made of a metal such as tin to the surface of the current collector, but it requires a process of manufacturing very fine metal balls in advance. Since the fine metal ball has a large surface area relative to its volume, that is, there are many portions that oxidize in the atmosphere, it is difficult to metal-bond it to the current collector at a practical cost. In other methods such as printing, it is necessary to disperse the active material in an ink-like liquid, and it is not suitable for attaching only an active material made of metal such as tin to the surface of the current collector.

特許文献4には、粒状錫めっきを施した溶接缶用めっき鋼板およびその製造方法が開示されている。しかし、特許文献4は本発明とは目的、用途、構成が異なり、粒状錫めっきをリチウムイオン電池の負極として用いるのに必要な情報や特性について何も開示されていない。   Patent Document 4 discloses a plated steel plate for a welding can subjected to granular tin plating and a method for manufacturing the same. However, Patent Document 4 differs from the present invention in its purpose, application, and configuration, and does not disclose any information or characteristics necessary for using granular tin plating as a negative electrode of a lithium ion battery.

特開2001−68094号公報JP 2001-68094 A 特開2002−83594号公報JP 2002-83594 A 特開2005−50681号公報JP 2005-50681 A 特開平11−131285号公報JP-A-11-131285

上記の通り、リチウムイオン二次電池の負極活物質への錫、シリコン等の適用については広く検討されているものの、実用化には様々な課題が残されている。本発明の目的は、優れた充放電サイクル特性を有し、かつコストの低い方法で製造できる安価なリチウムイオン二次電池用負極を提供することにある。   As described above, application of tin, silicon, and the like to the negative electrode active material of the lithium ion secondary battery has been widely studied, but various problems remain in practical use. An object of the present invention is to provide an inexpensive negative electrode for a lithium ion secondary battery that has excellent charge / discharge cycle characteristics and can be manufactured by a low cost method.

本発明者は、上記の課題に対して鋭意検討し、サイクル特性の優れたリチウムイオン二次電池用負極、及びその製造方法を構築して本発明に至ったものである。   The inventor has intensively studied the above problems, and has constructed a negative electrode for a lithium ion secondary battery excellent in cycle characteristics and a method for producing the same, and has reached the present invention.

即ち、本発明の主旨とするところは、
(1)少なくとも片面に不連続な粒状錫めっきを有する金属箔から成る集電板であって、該粒状錫めっきの集電板面方向の平均径が0.5μm以上、20μm以下であり、かつ、粒状錫めっき下部が集電板を構成する金属との合金層を形成していること、前記粒状錫めっきによる集電板の被覆面積率が、60%以上、90%以下であること、前記粒状錫めっきの全付着量が3g/m2を超え、20g/m2以下、うち合金化した錫の付着量が0.2g/m2以上、2g/m2以下であることを特徴とするリチウムイオン二次電池用負極、
(2)少なくとも片面に不連続な粒状錫めっきを有する金属箔から成る集電板であり、該粒状錫めっきの集電板面方向の平均径が0.5μm以上、20μm以下であり、かつ、粒状錫めっき下部が集電板を構成する金属との合金層を形成し、前記粒状錫めっきによる集電板の被覆面積率が、60%以上、90%以下であり、前記粒状錫めっきの全付着量が3g/m2を超え、20g/m2以下、うち合金化した錫の付着量が0.2g/m2以上、2g/m2以下であるリチウムイオン二次電池用負極を製造する方法であって、金属箔から成る集電板の少なくとも片面に、酸成分を0.1〜0.6mol/L、錫(II)イオンを0.1〜0.7mol/L含み、レベリング作用のある有機添加剤を含まない酸性水溶液からなるめっき浴を用いて陰極電流密度5〜60A/dm2で陰極電解することで粒状錫めっきを施した後、到達温度180℃〜240℃の加熱処理を施すことを特徴とするリチウムイオン二次電池用負極の製造方法、
(3)前記めっき浴が、酸化防止剤を含有することを特徴とする前記(2)に記載のリチウムイオン二次電池用負極の製造方法、
である。
That is, the main point of the present invention is that
(1) A current collector plate made of a metal foil having discontinuous granular tin plating on at least one surface, wherein the average diameter of the granular tin plating in the current collector plate surface direction is 0.5 μm or more and 20 μm or less, and The lower part of the granular tin plating forms an alloy layer with the metal constituting the current collector plate, the coverage area ratio of the current collector plate by the granular tin plating is 60% or more and 90% or less, The total adhesion amount of granular tin plating exceeds 3 g / m 2 and is 20 g / m 2 or less, and the adhesion amount of alloyed tin is 0.2 g / m 2 or more and 2 g / m 2 or less. Negative electrode for lithium ion secondary battery,
(2) It is a current collector plate made of a metal foil having discontinuous granular tin plating on at least one surface, and the average diameter in the current collector plate surface direction of the granular tin plating is 0.5 μm or more and 20 μm or less, and The lower part of the granular tin plating forms an alloy layer with the metal constituting the current collector plate, and the coverage area ratio of the current collector plate by the granular tin plating is 60% or more and 90% or less. A negative electrode for a lithium ion secondary battery having an adhesion amount exceeding 3 g / m 2 and 20 g / m 2 or less, of which the adhesion amount of alloyed tin is 0.2 g / m 2 or more and 2 g / m 2 or less is manufactured. A method comprising: at least one surface of a current collector plate made of metal foil containing 0.1 to 0.6 mol / L of an acid component and 0.1 to 0.7 mol / L of a tin (II) ion; Using a plating bath consisting of an acidic aqueous solution that does not contain any organic additives, After applying granular tin plating by cathodic electrolysis at a current density of 5 to 60 A / dm 2, anode method of manufacturing a lithium ion secondary battery, characterized by performing heat treatment temperature reached 180 ° C. to 240 ° C.,
(3) The method for producing a negative electrode for a lithium ion secondary battery according to (2), wherein the plating bath contains an antioxidant,
It is.

本発明により、優れた充放電サイクル特性を有し、かつコストの低い方法で製造できる安価なリチウムイオン二次電池用負極が提供できる。   According to the present invention, an inexpensive negative electrode for a lithium ion secondary battery that has excellent charge / discharge cycle characteristics and can be manufactured by a low cost method can be provided.

以下に、本発明を詳細に説明する。
本発明で用いる金属箔から成る集電板は、錫めっきが容易で、加熱処理によって錫と合金化しやすい銅板、銅合金板または鋼板が適している。厚さは限定しないが、実用的な集電板基板の厚さは15μm程度である。
The present invention is described in detail below.
The current collector plate made of the metal foil used in the present invention is suitably a copper plate, a copper alloy plate, or a steel plate that can be easily tin-plated and easily alloyed with tin by heat treatment. Although the thickness is not limited, the thickness of a practical current collector plate substrate is about 15 μm.

本発明のリチウムイオン二次電池用負極は、少なくとも片面に不連続な粒状錫めっきを有する金属箔から成る集電板であって、該粒状錫めっきの集電板面方向の平均径が0.5μm以上、20μm以下であり、かつ、粒状錫めっき下部が集電板を構成する金属との合金層を形成していることが特徴である。   The negative electrode for a lithium ion secondary battery of the present invention is a current collecting plate made of a metal foil having discontinuous granular tin plating on at least one surface, and the average diameter of the granular tin plating in the current collecting plate surface direction is 0.00. It is 5 micrometers or more and 20 micrometers or less, and the granular tin plating lower part forms the alloy layer with the metal which comprises a current collecting plate, It is the characteristics.

錫が負極活物質であるから、電池に組み込む際は、粒状錫めっき面が電解液、セパレーター側になるようにする。反対面には錫めっきは必要ないが、電気めっき工程における裏まわりによって粒状もしくは平滑な錫めっきが付着していても差し支えない。   Since tin is a negative electrode active material, the granular tin-plated surface should be on the electrolyte solution and separator side when incorporated into the battery. Tin plating is not necessary on the opposite surface, but granular or smooth tin plating may be adhered by the back of the electroplating process.

粒状錫めっきは後述するように電気めっきによって製造することができるので大量生産に適しており、製造コストを低く抑えることができる。通常の平滑な錫めっきとの性能上の差異は、以下のようなものである。   Since the granular tin plating can be manufactured by electroplating as described later, it is suitable for mass production, and the manufacturing cost can be kept low. The difference in performance from normal smooth tin plating is as follows.

平滑な錫めっきをリチウムイオン二次電池の負極活物質として用いると、深い充放電を数回繰り返すだけで大半が集電板から剥離してしまう。負極活物質である錫は充電時に1原子当たり最大4.4原子のリチウムと合金化して約3倍に体積膨張し、放電時にリチウムを放出して収縮するが、集電板の平面方向へ膨張するスペースがないために大きく変形しながら高さ方向へ膨張するため、歪みが大きくなるのだと考えられる。   When smooth tin plating is used as a negative electrode active material of a lithium ion secondary battery, most of the peeling occurs from the current collector plate only by repeating deep charge / discharge several times. Tin, the negative electrode active material, is alloyed with up to 4.4 atoms of lithium per atom during charging and expands about 3 times in volume. When discharging, lithium is released and contracts, but expands in the plane direction of the current collector plate. Since there is no space to do so, it expands in the height direction while deforming greatly, so it is thought that the distortion increases.

これに対し、粒状錫めっきを負極に用いた場合、充電時にリチウムと合金化して体積膨張するスペースが集電板の平面方向にもあるため、平滑なめっきのように初期数回の充放電では剥離しにくい。ただし、粒状錫めっきは下地金属との接触面積が小さいために、密着性に難があり、充放電による体積変化を繰り返し行うと、徐々に粒状錫めっきが剥離して充放電容量が低下してくる。   On the other hand, when granular tin plating is used for the negative electrode, there is also a space that is alloyed with lithium at the time of charging and expands in volume, so that in the planar direction of the current collector plate, initial charge and discharge several times like smooth plating Hard to peel. However, since granular tin plating has a small contact area with the base metal, adhesion is difficult, and repeated volume changes due to charging / discharging cause the granular tin plating to peel off gradually, reducing the charge / discharge capacity. come.

本発明のリチウムイオン二次電池用負極の粒状錫めっきは、下部(集電板との接触部)が集電板を構成する金属との合金層を形成していることで密着性が飛躍的に向上し、充放電サイクルを繰り返しても剥離しにくくなっている。粒状錫めっき下部の合金層は、錫めっきとも集電板基材とも強力な結合をするため、密着性が確保される。合金層がない場合は密着力が十分でない。   The granular tin plating of the negative electrode for a lithium ion secondary battery of the present invention has dramatically improved adhesion because the lower part (contact part with the current collector plate) forms an alloy layer with the metal constituting the current collector plate. It is difficult to peel off even if the charge / discharge cycle is repeated. The alloy layer under the granular tin plating is strongly bonded to both the tin plating and the current collector plate base, so that adhesion is ensured. When there is no alloy layer, the adhesion is not sufficient.

粒状錫めっきの集電板面方向の平均径は0.5μm以上、20μm以下である。0.5μm未満であると、集電板単位面積当たりの充放電容量が確保しがたい。これは、粒状錫に被覆されない部分の面積が相対的に大きくなるためであると考えられる。一方、20μmを超えると、充電の際、リチウムを取り込んで合金化する際に特に外側では体積膨張が大きく崩壊しやすくなってしまう。より好ましい平均径は、0.5μm以上、10μm以下である。前述の通り、大きな粒ほど外側の体積変化による歪みが大きいためである。   The average diameter of the granular tin plating in the direction of the current collector plate is 0.5 μm or more and 20 μm or less. When the thickness is less than 0.5 μm, it is difficult to ensure the charge / discharge capacity per unit area of the current collector plate. This is considered to be because the area of the portion not covered with granular tin becomes relatively large. On the other hand, when the thickness exceeds 20 μm, the volume expansion is large and easily collapses particularly when the lithium is taken in and alloyed during charging. A more preferable average diameter is 0.5 μm or more and 10 μm or less. This is because, as described above, the larger the grain, the greater the distortion caused by the outer volume change.

ここで、平均径とは以下のようにして求められる長さのことである。粒状錫めっきされた集電板表面の錫の分布を、電子線マイクロアナライザー(EPMA)を用いて画像としてコンピューターに取り込み、画像処理によって平均の直径を算出する。例えば、60μm×80μmの範囲の視野で5視野取って各視野ごとに算出した5つ平均直径をさらに平均すると安定した値が得られる。   Here, the average diameter is a length obtained as follows. The distribution of tin on the surface of the current collector plate subjected to granular tin plating is taken into a computer as an image using an electron beam microanalyzer (EPMA), and an average diameter is calculated by image processing. For example, a stable value can be obtained by taking five visual fields in the field of view of 60 μm × 80 μm and further averaging the five average diameters calculated for each visual field.

前記粒状錫めっきの集電板被覆面積率は、60%以上、90%以下である。60%未満では、集電板の単位面積当たりの活物質の量が少なすぎて、十分な充放電容量が得られない。一方、90%を超えると、充電時にリチウムが合金化して体積膨張する際に、隣接する粒状錫めっきと接触し、集電板の垂直方向に膨張することとなって歪みが生じ、崩壊しやすくなってしまう。また、隣接する粒状錫めっきどうしが融合して粗大化し、その後の充放電サイクルで崩壊しやすくなる。   The current collector plate covering area ratio of the granular tin plating is 60% or more and 90% or less. If it is less than 60%, the amount of the active material per unit area of the current collector plate is too small, and a sufficient charge / discharge capacity cannot be obtained. On the other hand, if it exceeds 90%, when lithium is alloyed and expands during charging, it contacts with the adjacent granular tin plating and expands in the vertical direction of the current collector plate. turn into. Moreover, adjacent granular tin plating fuse | melts and coarsens, and it becomes easy to collapse | disintegrate by a subsequent charging / discharging cycle.

より好ましい粒状錫めっきの集電板被覆面積率は、60%以上、80%以下である。錫付着量が同程度であれば、被覆面積率が80%以下でより優れた充放電サイクル特性が得られる。前述の通り、錫は充電時にリチウムと合金化し、体積が最大約3倍にも膨張する。計算上、面積の膨張は約2倍であるため、錫の被覆率は50%以下が好ましいということになるが、実際は上記の被覆面積率で良好な充放電サイクル特性が得られる。ここで、錫めっきの被覆面積率とは以下のようにして求められる、集電板表面に占める錫の面積率のことである。平均径同様、粒状錫めっきされた集電板表面の錫の分布を、電子線マイクロアナライザー(EPMA)を用いて画像としてコンピューターに取り込み、画像処理によって錫が占める面積率を算出し、これを被覆面積率とみなす。例えば、60μm×80μmの範囲の視野で5視野取って各視野ごとに算出した5つの面積率をさらに平均すると安定した値が得られる。   The collector plate coverage area ratio of the granular tin plating is more preferably 60% or more and 80% or less. If the amount of tin adhesion is about the same, more excellent charge / discharge cycle characteristics can be obtained when the covering area ratio is 80% or less. As described above, tin is alloyed with lithium during charging, and the volume expands up to about 3 times. In terms of calculation, the expansion of the area is about twice, so that the coverage of tin is preferably 50% or less, but actually, good charge / discharge cycle characteristics can be obtained with the above-mentioned coverage area. Here, the covering area ratio of tin plating refers to the area ratio of tin occupying the current collector plate surface, which is obtained as follows. Similar to the average diameter, the distribution of tin on the surface of the current collector plate coated with granular tin is taken into a computer as an image using an electron beam microanalyzer (EPMA), and the area ratio occupied by tin is calculated by image processing and covered. Considered area ratio. For example, a stable value can be obtained by further averaging five area ratios calculated for each field by taking five fields of view in the range of 60 μm × 80 μm.

前記粒状錫めっきの全付着量は3g/m2を超え、20g/m2以下、うち合金化した錫の付着量が0.2g/m2以上、2g/m2以下である。全錫付着量が3g/m2以下では集電板の単位面積当たりの活物質の量が少なすぎて、十分な充放電容量が得られない。一方、付着量が20g/m2を超えると、充放電に伴う体積変化によって粒状錫めっきが崩壊しやすくなる。より好ましい粒状錫めっきの付着量は、5g/m2以上、20g/m2以下である。この範囲でより好ましい集電板の単位面積当たりの充放電容量が得られる。合金化した錫の付着量が0.2g/m2未満では集電板基材と粒状錫めっきとの密着性を高める効果が不十分である。一方、2g/m2を超えると、合金層の硬く割れやすい性質が現れてしまい、密着性が低下してしまう。合金化した錫の付着量は、好ましくは0.4g/m2以上、0.7g/m2以下である。この範囲で集電板基材と粒状錫めっきとのより向上した密着性が得られる。 The total adhesion amount of the granular tin plating exceeds 3 g / m 2 and is 20 g / m 2 or less, of which the adhesion amount of alloyed tin is 0.2 g / m 2 or more and 2 g / m 2 or less. If the total tin adhesion amount is 3 g / m 2 or less, the amount of the active material per unit area of the current collector plate is too small, and a sufficient charge / discharge capacity cannot be obtained. On the other hand, when the adhesion amount exceeds 20 g / m 2 , the granular tin plating easily collapses due to the volume change accompanying charging / discharging. The more preferable amount of granular tin plating is 5 g / m 2 or more and 20 g / m 2 or less. Within this range, a more preferable charge / discharge capacity per unit area of the current collector plate can be obtained. If the adhesion amount of alloyed tin is less than 0.2 g / m 2 , the effect of increasing the adhesion between the current collector plate base material and the granular tin plating is insufficient. On the other hand, if it exceeds 2 g / m 2 , the properties of the alloy layer which are hard and easy to break will appear, and the adhesion will deteriorate. The adhesion amount of alloyed tin is preferably 0.4 g / m 2 or more and 0.7 g / m 2 or less. Within this range, improved adhesion between the current collector base material and the granular tin plating can be obtained.

錫の付着量は、次のようにして求めることができる。全錫付着量は、集電板表面の錫の蛍光X線強度を測定し、予め作成した錫の検量線を用いて算出する。合金錫量は、5%水酸化ナトリウム溶液中でSUS304を陰極として、0.4V印加して負極集電板を陽極的に定電位電解した後、負極集電板に残存した合金錫の蛍光X線強度を測定し、予め作成した検量線を用いて算出する。   The amount of tin deposited can be determined as follows. The total tin adhesion amount is calculated by measuring the fluorescent X-ray intensity of tin on the surface of the current collector plate and using a previously prepared tin calibration curve. The amount of tin alloy is Fluorescent X of alloy tin remaining in the negative electrode current collector plate after anodic constant potential electrolysis of the negative electrode current collector plate by applying 0.4 V with SUS304 as the cathode in 5% sodium hydroxide solution. The line intensity is measured and calculated using a calibration curve prepared in advance.

次に、粒状錫めっき負極の製造方法について詳述する。
金属箔から成る集電板の少なくとも片面に、錫(II)を含む酸性水溶液からなるめっき浴を用いた電気めっき法によって粒状錫めっきを施す。前記酸性水溶液からなるめっき浴は、酸成分を0.1〜0.6mol/L、錫(II)イオンを0.1〜0.7mol/L含み、レベリング作用のある有機添加剤を含まない水溶液である。
Next, the manufacturing method of a granular tin plating negative electrode is explained in full detail.
At least one surface of a current collector plate made of metal foil is subjected to granular tin plating by electroplating using a plating bath made of an acidic aqueous solution containing tin (II). The plating bath comprising the acidic aqueous solution contains an acid component in an amount of 0.1 to 0.6 mol / L, tin (II) ions in an amount of 0.1 to 0.7 mol / L, and does not contain an organic additive having a leveling action. It is.

浴温は35〜60℃の範囲が操業しやすく、かつ良好な粒状錫めっき負極が得られるので好ましい。酸成分としては、フェノールスルホン酸、メタンスルホン酸、硫酸がコスト、取り扱いの容易さの点で好ましい。また、これらの酸成分を用いることで、比較的高い陰極電流効率で良好なめっきが得られる。酸成分の濃度0.1mol/L未満ではめっき浴中の錫(II)イオンが水酸化物となって沈殿しやすいので避けた方がよい。一方、0.6mol/Lを超えると電解時に陰極である集電板表面で水素イオンが還元されて水素ガスが発生する割合が高くなり、めっきの電流効率が低くなってしまうので、経済的に不利である。より好ましい酸成分濃度は0.3〜0.6mol/Lである。   The bath temperature is preferably in the range of 35 to 60 ° C. because it is easy to operate and a good granular tin-plated negative electrode is obtained. As the acid component, phenolsulfonic acid, methanesulfonic acid, and sulfuric acid are preferable in terms of cost and ease of handling. Further, by using these acid components, good plating can be obtained with relatively high cathode current efficiency. If the concentration of the acid component is less than 0.1 mol / L, it is better to avoid tin (II) ions in the plating bath as hydroxides and precipitate easily. On the other hand, if it exceeds 0.6 mol / L, the rate at which hydrogen ions are reduced on the surface of the current collector plate, which is the cathode during electrolysis, and hydrogen gas is generated becomes high, and the current efficiency of plating becomes low. It is disadvantageous. A more preferable acid component concentration is 0.3 to 0.6 mol / L.

錫(II)イオン濃度は0.1〜0.7mol/Lである。0.1mol/Lより低いと、電解時に陰極である集電板表面近傍で錫(II)イオンが不足して、いわゆるめっき焼けが生じやすい。一方、0.7mol/Lより高くなっても、得られるめっきの性能に向上はなく、集電板に付着して持ち出される錫(II)イオンの量が多くなるため、経済的に不利である。より好ましい錫(II)イオン濃度は0.2〜0.6mol/Lである。   The tin (II) ion concentration is 0.1 to 0.7 mol / L. When it is lower than 0.1 mol / L, tin (II) ions are insufficient in the vicinity of the surface of the current collector plate that is a cathode during electrolysis, and so-called plating burn is likely to occur. On the other hand, even if it becomes higher than 0.7 mol / L, there is no improvement in the performance of the obtained plating, and the amount of tin (II) ions that are brought out by adhering to the current collector plate is increased, which is economically disadvantageous. . A more preferable tin (II) ion concentration is 0.2 to 0.6 mol / L.

めっき浴にはレベリング作用のある有機添加剤(「平滑剤」とも呼ばれる)を実質的に含まないことが好ましい。レベリング作用とは、析出する金属を平滑にする作用のことであり、この作用のある有機添加剤がめっき浴に含まれると、錫めっきが平滑化して粒状めっきになりにくい。   It is preferable that the plating bath does not substantially contain an organic additive having a leveling action (also referred to as “smoothing agent”). The leveling action is an action of smoothing the deposited metal. When an organic additive having this action is contained in the plating bath, the tin plating is smoothed and hardly forms a granular plating.

前記めっき浴には、酸化防止剤を含有してもよい。酸化防止剤の添加は、めっき浴中の溶存酸素の酸化活性を抑制し、錫(II)イオンが酸化されて錫(IV)酸化物または水酸化物として沈殿するのを防ぐのが目的である。好ましい酸化防止剤はフェノール性ヒドロキシ基を2つ以上有し、それらの位置関係がo−位またはp−位である有機化合物で、例としてヒドロキノン、カテコール、没食子酸、没食子酸n−プロピル、ピロガロールなどが挙げられる。   The plating bath may contain an antioxidant. The purpose of the addition of the antioxidant is to suppress the oxidation activity of dissolved oxygen in the plating bath and prevent the tin (II) ions from being oxidized and precipitated as tin (IV) oxide or hydroxide. . Preferred antioxidants are organic compounds having two or more phenolic hydroxy groups, and their positional relationship is o-position or p-position, for example, hydroquinone, catechol, gallic acid, n-propyl gallate, pyrogallol Etc.

前記集電板を前記めっき浴に浸漬し、陰極電流密度5〜60A/dm2で陰極電解することで、集電板の少なくとも片面に粒状錫めっきを施す。5A/dm2未満ではめっき核生成が少なく、少ない粒が大きく成長してしまうため、錫による被覆面積率が小さくなってしまう。一方、60A/dm2を超える電解ではめっき核生成が多く、非常に小さい粒状錫となるため、十分な充放電容量を確保するに足る粒状錫めっき付着量が得にくい。より好ましい陰極電流密度は20〜60A/dm2である。
電解時間は特に限定しないが、適当な錫めっき量を得るため、0.8秒〜100秒が好ましい。
The current collector plate is immersed in the plating bath and subjected to cathodic electrolysis at a cathode current density of 5 to 60 A / dm 2 , thereby applying granular tin plating to at least one surface of the current collector plate. If it is less than 5 A / dm 2 , plating nucleation is small, and a small number of grains grow large, so that the coverage area ratio with tin becomes small. On the other hand, electrolysis exceeding 60 A / dm 2 produces many plating nuclei, resulting in very small granular tin, so that it is difficult to obtain a granular tin plating adhesion amount sufficient to ensure a sufficient charge / discharge capacity. A more preferable cathode current density is 20 to 60 A / dm 2 .
The electrolysis time is not particularly limited, but is preferably 0.8 seconds to 100 seconds in order to obtain an appropriate amount of tin plating.

電気めっき法によって粒状錫めっきを施した後、集電板に到達温度180℃〜240℃の加熱処理を施す。これによって、粒状錫の下部が集電板基材の一部と合金化して、粒状錫の密着性が向上する。到達温度180℃未満では合金化があまり進まない。一方、到達温度240℃を超えると、錫の融点が232℃であるために溶融が進行し、合金錫量が多くなりすぎるとともに、粒状錫の形状が崩れやすい。より好ましい到達温度は200℃〜230℃である。
加熱時間は特に限定しないが、適当な合金量を得るため、180℃以上である時間が0.2秒以上、かつ、200℃以上である時間が200秒以下であることが好ましい。
After performing granular tin plating by the electroplating method, the current collector plate is subjected to a heat treatment at an ultimate temperature of 180 ° C. to 240 ° C. Thereby, the lower part of the granular tin is alloyed with a part of the current collector plate base material, and the adhesion of the granular tin is improved. When the ultimate temperature is less than 180 ° C., alloying does not progress much. On the other hand, when the ultimate temperature exceeds 240 ° C., the melting point of tin is 232 ° C., so that the melting proceeds, the amount of alloy tin is excessively increased, and the shape of the granular tin is easily broken. A more preferable reached temperature is 200 ° C to 230 ° C.
The heating time is not particularly limited, but in order to obtain an appropriate amount of alloy, it is preferable that the time of 180 ° C. or higher is 0.2 seconds or longer and the time of 200 ° C. or higher is 200 seconds or shorter.

以下、実施例によって、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

集電板として、厚さ15μmの鋼箔を用いた。めっき前処理として、10mass%水酸化ナトリウム溶液中で電解脱脂した後、5mass%希硫酸で酸洗した。   A steel foil having a thickness of 15 μm was used as a current collector plate. As a pretreatment for plating, electrolytic degreasing was carried out in a 10 mass% sodium hydroxide solution, followed by pickling with 5 mass% dilute sulfuric acid.

次いで集電板の片面に、酸性水溶液からなるめっき浴を用いた電気めっき法によって粒状錫めっきを施した。めっきの陽極には白金めっきしたチタン板を用いた。錫めっき浴は、錫(II)を含み、フェノールスルホン酸浴、またはメタンスルホン酸浴、または硫酸浴を用いた。錫(II)の濃度は40g/L(0.34mol/L)とした。酸成分は0.5mol/Lとした。メタンスルホン酸浴、および硫酸浴には錫(II)イオンの酸化を防止するため、ヒドロキノンを1g/L添加した。めっき浴温はいずれも45℃とした。   Next, granular tin plating was performed on one surface of the current collector plate by an electroplating method using a plating bath made of an acidic aqueous solution. A platinum-plated titanium plate was used as the plating anode. The tin plating bath contained tin (II), and a phenolsulfonic acid bath, a methanesulfonic acid bath, or a sulfuric acid bath was used. The concentration of tin (II) was 40 g / L (0.34 mol / L). The acid component was 0.5 mol / L. To prevent oxidation of tin (II) ions, 1 g / L of hydroquinone was added to the methanesulfonic acid bath and the sulfuric acid bath. The plating bath temperature was 45 ° C. for all.

めっきにおける電解条件は、電流密度5〜60A/dm2、電解時間2.5〜30秒の範囲で振った。 The electrolysis conditions in plating were a current density of 5 to 60 A / dm 2 and an electrolysis time of 2.5 to 30 seconds.

このようにして粒状めっきを施した金属箔から成る集電板を14mmφに打ち抜いて、これを負極とした。   The current collector plate made of the metal foil thus subjected to granular plating was punched out to 14 mmφ, and this was used as the negative electrode.

なお、比較のため、上記の範囲から外れた条件でめっきを施した負極も作製した。   For comparison, a negative electrode plated with conditions outside the above range was also produced.

全錫付着量は、集電板表面の錫の蛍光X線強度を測定し、予め作成した錫の検量線を用いて算出した。合金錫量は、5%水酸化ナトリウム溶液中でSUS304を陰極として、0.4V印加して負極集電板を陽極的に定電位電解した後、負極集電板に残存した合金錫の蛍光X線強度を測定し、予め作成した検量線を用いて算出した。   The total tin adhesion amount was calculated by measuring the fluorescent X-ray intensity of tin on the surface of the current collector plate and using a previously prepared tin calibration curve. The amount of tin alloy is Fluorescent X of alloy tin remaining in the negative electrode current collector plate after anodic constant potential electrolysis of the negative electrode current collector plate by applying 0.4 V with SUS304 as the cathode in 5% sodium hydroxide solution. The line intensity was measured and calculated using a calibration curve prepared in advance.

電子線マイクロアナライザー(EPMA)による集電板表面の錫の分布画像を60μm×80μmの視野で5視野コンピューターに取り込み、画像処理により各視野ごとに求めた粒状めっきの5つの平均径と被覆面積率をさらに平均して、粒状錫めっきの平均径と被覆面積率を算出した。   The distribution image of tin on the surface of the current collector plate by an electron beam microanalyzer (EPMA) was captured in a computer with five fields of view with a field of 60 μm × 80 μm, and the five average diameters and the coating area ratio of the granular plating obtained for each field by image processing Were further averaged to calculate the average diameter and coverage area ratio of the granular tin plating.

上記のように作製した負極の評価は、対極に金属リチウムを用いた2極セルで実施した。電解液は、エチレンカーボネートとジエチルカーボネートを50:50vol%で混合した溶媒にLiPF6 を1.0mol/L溶解したものを用いた。セパレーターは、25μm厚のポリオレフィン製の微細多孔膜を用いた。 The negative electrode produced as described above was evaluated in a two-electrode cell using metallic lithium as a counter electrode. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in an amount of 1.0 mol / L in a solvent obtained by mixing ethylene carbonate and diethyl carbonate at 50:50 vol% was used. As the separator, a polyolefin microporous film having a thickness of 25 μm was used.

これらをコイン形の電池缶に組み込み、25℃の恒温室内で連続充放電装置を用いて充放電試験を行った。充放電の電流密度は0.5mA/cmおよび5mA/cmとし、0V(vsLi/Li)まで充電した後、1.5V(vsLi/Li)まで放電させ、これを下記のサイクル数繰り返した。 These were assembled in a coin-shaped battery can, and a charge / discharge test was conducted using a continuous charge / discharge device in a constant temperature room at 25 ° C. The charge / discharge current density was 0.5 mA / cm 2 and 5 mA / cm 2, and after charging to 0 V (vs Li + / Li), the battery was discharged to 1.5 V (vs Li + / Li). Repeated.

電流密度0.5mA/cmでの50サイクルの充放電サイクルにおける集電板の単位面積当たりの放電容量が0.20mAh/cm以上を○、0.20mAh/cm未満を×とし、×のものは他の評価結果に関わらず総合評価D(不合格とした)。 The discharge capacity per unit area of the current collector plate in 50 charge / discharge cycles at a current density of 0.5 mA / cm 2 is 0.20 mAh / cm 2 or more, and less than 0.20 mAh / cm 2 is ×, The overall evaluation D (failed) regardless of other evaluation results.

電流密度0.5mA/cmでは、50サイクルにおける放電容量600mAh/g(Sn)かつ1サイクル目の放電容量の90%以上の放電容量を維持した場合を◎、放電容量500mAh/g(Sn)以上かつ1サイクル目の放電容量の80%以上の放電容量を維持し、前記◎に当てはまらない場合を○、放電容量450mAh/g(Sn)以上かつ1サイクル目の放電容量の70%以上の放電容量を維持し、前記◎、○に当てはまらない場合を△、放電容量450mAh/g(Sn)未満または1サイクル目の放電容量の70%未満の放電容量となった場合を×とした。 When the current density is 0.5 mA / cm 2 , the discharge capacity is 600 mAh / g (Sn) at 50 cycles and the discharge capacity is 90% or more of the discharge capacity at the first cycle, and the discharge capacity is 500 mAh / g (Sn). A discharge capacity of 80% or more of the discharge capacity of the first cycle is maintained, and a case where the above does not apply to ◯, ○, a discharge capacity of 450 mAh / g (Sn) or more and a discharge capacity of 70% or more of the discharge capacity of the first cycle The case where the capacity was maintained and the case where the above-mentioned ◎ and ○ were not satisfied was Δ, and the case where the discharge capacity was less than 450 mAh / g (Sn) or less than 70% of the discharge capacity at the first cycle was rated as x.

電流密度5mA/cmでは、30サイクルにおける放電容量500mAh/g(Sn)かつ1サイクル目の放電容量の80%以上の放電容量を維持した場合を◎、放電容量400mAh/g(Sn)以上かつ1サイクル目の放電容量の70%以上の放電容量を維持し、前記◎に当てはまらない場合を○、放電容量350mAh/g(Sn)以上かつ1サイクル目の放電容量の60%以上の放電容量を維持し、前記◎、○に当てはまらない場合を△、放電容量350mAh/g(Sn)未満または1サイクル目の放電容量の60%未満の放電容量となった場合を×とした。 When the current density is 5 mA / cm 2 , the discharge capacity of 500 mAh / g (Sn) in 30 cycles and the discharge capacity of 80% or more of the discharge capacity in the first cycle are maintained as ◎, and the discharge capacity is 400 mAh / g (Sn) or more. A discharge capacity of 70% or more of the discharge capacity of the first cycle is maintained, a case where the above is not true, ○, a discharge capacity of 350 mAh / g (Sn) or more and a discharge capacity of 60% or more of the discharge capacity of the first cycle In the case where the discharge capacity was not maintained as 、 or ◯, the case where the discharge capacity was less than 350 mAh / g (Sn) or less than 60% of the discharge capacity at the first cycle was evaluated as x.

これらの結果から、以下の基準で総合評価を決定した。電流密度0.5mA/cmでの50サイクルの充放電サイクルにおける集電板の単位面積当たりの放電容量が○の評価のもののうち、電流密度0.5mA/cmおよび5mA/cmの双方の充放電試験で◎のものを評価A(優)、一方が◎または○で他方が○のものをB(良)、一方が◎または○で他方が△のものをC(可)、双方が△または少なくとも一方が×のものをD(劣)とし、A、B、Cを合格レベル、Dを不合格レベルとした。 From these results, comprehensive evaluation was determined according to the following criteria. Among the discharge capacity per unit area of the current collector plate at 50 cycles of charge and discharge cycles at a current density of 0.5 mA / cm 2 those evaluation of ○, both current density 0.5 mA / cm 2 and 5 mA / cm 2 In the charge / discharge test of ◎, A is evaluated as A (excellent), one is ◎ or ○ and the other is ○ B (good), one is ◎ or ○ and the other is C (good), both △ or at least one of × is D (poor), A, B and C are acceptable levels, and D is an unacceptable level.

表1に詳細な負極作製条件を、表2に充放電サイクル評価結果を示す。   Table 1 shows detailed negative electrode preparation conditions, and Table 2 shows charge / discharge cycle evaluation results.

Figure 2013225437
Figure 2013225437

Figure 2013225437
Figure 2013225437

Figure 2013225437
Figure 2013225437

Figure 2013225437
Figure 2013225437

Figure 2013225437
Figure 2013225437

Figure 2013225437
Figure 2013225437

本発明の実施例1〜82は、いずれも総合評価がA〜Cで合格レベルであった。   In each of Examples 1 to 82 of the present invention, the overall evaluation was A to C, which was an acceptable level.

比較例1は錫めっき浴に平滑剤を添加してめっきした結果、錫めっきが粒状ではなく平滑で、被覆面積率が高かった例である。充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 1 is an example in which the tin plating was smooth, not granular, and the coverage area ratio was high as a result of adding a smoothing agent to the tin plating bath and plating. The decay of tin plating occurred due to the charge / discharge cycle, and the capacity retention rate was low.

比較例2は粒状錫めっきの電流密度が高く、粒状錫めっきが細かく、集電板の面方向のサイズ、錫めっき被覆率が小さかった例である。単位面積当たりの放電容量が小さかった。   Comparative Example 2 is an example in which the current density of the granular tin plating is high, the granular tin plating is fine, the size in the surface direction of the current collector plate, and the tin plating coverage is small. The discharge capacity per unit area was small.

比較例3は低い電流密度で長時間電解して粒状錫めっきをした結果、集電板の面方向のサイズが大きかった例である。充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 3 is an example in which the size in the surface direction of the current collector plate was large as a result of electrolysis at a low current density for a long time and granular tin plating. The decay of tin plating occurred due to the charge / discharge cycle, and the capacity retention rate was low.

比較例4は粒状錫めっきの電解時間が短く、錫付着量が少なかった例である。集電板の単位面積当たりの活物質の量が少なく、単位面積当たりの充放電容量が不十分だった。   Comparative Example 4 is an example in which the electrolytic time of granular tin plating was short and the amount of tin adhesion was small. The amount of active material per unit area of the current collector plate was small, and the charge / discharge capacity per unit area was insufficient.

比較例5は粒状錫めっきの電解時間が長く、錫付着量が多かった例である。充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 5 is an example in which the electrolytic time of granular tin plating was long and the amount of tin deposited was large. The decay of tin plating occurred due to the charge / discharge cycle, and the capacity retention rate was low.

比較例6は粒状錫めっき後に加熱処理を施さなかった例である。合金層がほどんど形成されず、充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 6 is an example in which no heat treatment was performed after granular tin plating. The alloy layer was hardly formed, and the tin plating collapsed by the charge / discharge cycle, and the capacity retention rate was low.

比較例7は粒状錫めっき後の加熱到達温度が低かった例である。合金層量が少なく、充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 7 is an example in which the temperature reached by heating after the granular tin plating was low. The amount of the alloy layer was small, the tin plating collapsed by the charge / discharge cycle, and the capacity retention rate was low.

比較例8は粒状錫めっき後の加熱到達温度が高かった例である。合金層量が多く、充放電のサイクルによって錫めっきの崩壊が生じ、容量維持率が低かった。   Comparative Example 8 is an example in which the temperature reached by heating after the granular tin plating was high. The amount of the alloy layer was large, the tin plating collapsed by the charge / discharge cycle, and the capacity retention rate was low.

Claims (3)

少なくとも片面に不連続な粒状錫めっきを有する金属箔から成る集電板であって、
該粒状錫めっきの集電板面方向の平均径が0.5μm以上、20μm以下であり、かつ、粒状錫めっき下部が集電板を構成する金属との合金層を形成していること、
前記粒状錫めっきによる集電板の被覆面積率が、60%以上、90%以下であること、
前記粒状錫めっきの全付着量が3g/m2を超え、20g/m2以下、うち合金化した錫の付着量が0.2g/m2以上、2g/m2以下であることを特徴とするリチウムイオン二次電池用負極。
A current collector plate made of a metal foil having discontinuous granular tin plating on at least one side,
The average diameter in the direction of the current collector plate of the granular tin plating is 0.5 μm or more and 20 μm or less, and the lower part of the granular tin plating forms an alloy layer with the metal constituting the current collector plate;
The coverage area ratio of the current collector plate by the granular tin plating is 60% or more and 90% or less,
The total adhesion amount of the granular tin plating is more than 3 g / m 2 and not more than 20 g / m 2 , and the adhesion amount of alloyed tin is not less than 0.2 g / m 2 and not more than 2 g / m 2. A negative electrode for a lithium ion secondary battery.
少なくとも片面に不連続な粒状錫めっきを有する金属箔から成る集電板であり、該粒状錫めっきの集電板面方向の平均径が0.5μm以上、20μm以下であり、かつ、粒状錫めっき下部が集電板を構成する金属との合金層を形成し、前記粒状錫めっきによる集電板の被覆面積率が、60%以上、90%以下であり、前記粒状錫めっきの全付着量が3g/m2を超え、20g/m2以下、うち合金化した錫の付着量が0.2g/m2以上、2g/m2以下であるリチウムイオン二次電池用負極を製造する方法であって、金属箔から成る集電板の少なくとも片面に、酸成分を0.1〜0.6mol/L、錫(II)イオンを0.1〜0.7mol/L含み、レベリング作用のある有機添加剤を含まない酸性水溶液からなるめっき浴を用いて陰極電流密度5〜60A/dm2で陰極電解することで粒状錫めっきを施した後、到達温度180℃〜240℃の加熱処理を施すことを特徴とするリチウムイオン二次電池用負極の製造方法。 It is a current collector plate made of a metal foil having discontinuous granular tin plating on at least one surface, the average diameter of the granular tin plating in the current collector plate surface direction is 0.5 μm or more and 20 μm or less, and granular tin plating The lower part forms an alloy layer with the metal constituting the current collector plate, the coverage area ratio of the current collector plate by the granular tin plating is 60% or more and 90% or less, and the total amount of the granular tin plating is It is a method for producing a negative electrode for a lithium ion secondary battery that exceeds 3 g / m 2 and is 20 g / m 2 or less, of which the adhesion amount of alloyed tin is 0.2 g / m 2 or more and 2 g / m 2 or less. In addition, at least one surface of a current collector plate made of metal foil contains 0.1 to 0.6 mol / L of an acid component and 0.1 to 0.7 mol / L of tin (II) ions, and an organic additive having a leveling action Cathode current using a plating bath consisting of an acidic aqueous solution containing no agent After applying granular tin plating by cathodic electrolysis in degrees 5 to 60 A / dm 2, method for producing a negative electrode for a lithium ion secondary battery, characterized by performing heat treatment temperature reached 180 ° C. to 240 ° C.. 前記めっき浴が、酸化防止剤を含有することを特徴とする請求項2に記載のリチウムイオン二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium ion secondary battery according to claim 2, wherein the plating bath contains an antioxidant.
JP2012097683A 2012-04-23 2012-04-23 Negative electrode for lithium ion secondary battery and method of manufacturing the same Pending JP2013225437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012097683A JP2013225437A (en) 2012-04-23 2012-04-23 Negative electrode for lithium ion secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012097683A JP2013225437A (en) 2012-04-23 2012-04-23 Negative electrode for lithium ion secondary battery and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2013225437A true JP2013225437A (en) 2013-10-31

Family

ID=49595367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012097683A Pending JP2013225437A (en) 2012-04-23 2012-04-23 Negative electrode for lithium ion secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2013225437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073330A1 (en) 2015-10-27 2017-05-04 新日鐵住金株式会社 Method for producing silicon-plated metal plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073330A1 (en) 2015-10-27 2017-05-04 新日鐵住金株式会社 Method for producing silicon-plated metal plate
KR20170066444A (en) 2015-10-27 2017-06-14 신닛테츠스미킨 카부시키카이샤 Method for manufacturing a silicon plated metal plate

Similar Documents

Publication Publication Date Title
US8206569B2 (en) Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
JP4642835B2 (en) Current collector for electrode
KR101733134B1 (en) Porous three dimensional copper, tin, copper-tin, copper-tin-cobalt, and copper-tin-cobalt-titanium electrodes for batteries and ultra capacitors
EP2644721B1 (en) Method for producing highly corrosion-resistant porous Ni-Sn body
JP5369050B2 (en) Metal porous body with high corrosion resistance
EP2587574A1 (en) Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP2002289178A (en) Lithium secondary battery and electrode for it
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP6260860B2 (en) Electrolytic aluminum foil, battery electrode and storage device using the same, and method for producing electrolytic aluminum foil
JP2011174184A (en) Porous metal foil and method for producing the same
JP2006269362A (en) Negative electrode for lithium ion secondary battery
JP2008047308A (en) Nonaqueous electrolyte secondary battery
JP2015523674A (en) Textured current collector foil
JP4653510B2 (en) Anode material for lithium secondary battery
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
Yuan et al. Boosting ultra-long cycling and shelf life of nickel− zinc battery via guiding oriented zinc deposition and suppressing [Zn (OH) 4] 2− diffusion
JP6127289B2 (en) Negative electrode material for lithium ion battery and method for producing the same
US11519090B2 (en) Method and apparatus for producing electrolytic aluminum foil
JP2013077462A (en) COPPER FOIL FOR Li BATTERY COLLECTOR, ELECTRODE FOR Li BATTERY USING THE SAME, AND Li BATTERY
JP2013225437A (en) Negative electrode for lithium ion secondary battery and method of manufacturing the same
JP2013008540A (en) Collector for nonaqueous electrolyte secondary battery and electrode using the same
JP2009272086A (en) Copper foil and method of manufacturing the same, and current collecting copper foil for lithium ion secondary battery and method of manufacturing the same
JPH0290461A (en) Paste type cadmium negative electrode and its manufacture
JP2013187114A (en) Copper foil for lithium secondary battery collector, and display method thereof, negative electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP2008066272A (en) Anode for nonaqueous electrolyte secondary battery