JP2013225263A - Governor device - Google Patents

Governor device Download PDF

Info

Publication number
JP2013225263A
JP2013225263A JP2012098192A JP2012098192A JP2013225263A JP 2013225263 A JP2013225263 A JP 2013225263A JP 2012098192 A JP2012098192 A JP 2012098192A JP 2012098192 A JP2012098192 A JP 2012098192A JP 2013225263 A JP2013225263 A JP 2013225263A
Authority
JP
Japan
Prior art keywords
pressure
pilot
governor
venturi
fluid conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098192A
Other languages
Japanese (ja)
Other versions
JP6056057B2 (en
Inventor
Hiroo Shimada
廣夫 島田
Tomoaki Takeuchi
智朗 竹内
Toshiharu Kagawa
利春 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Gas Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Tokyo Institute of Technology NUC filed Critical Tokyo Gas Co Ltd
Priority to JP2012098192A priority Critical patent/JP6056057B2/en
Publication of JP2013225263A publication Critical patent/JP2013225263A/en
Application granted granted Critical
Publication of JP6056057B2 publication Critical patent/JP6056057B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a venturi-system pilot type governor device with high stability.SOLUTION: In a venturi-system pilot type governor device, a pilot flow passage 12 is provided with a venturi 12 V through which a constriction part 12 V1 communicates with a driving part 11A for a main governor 11, a pilot governor 13 which controls the flow rate of the pilot flow passage 12 on the basis of secondary pressure is provided, and capacity Vof a communication part between the venturi 12 V and pilot governor 13 is so set that control pressure becomes stable against load variation in primary pressure.

Description

本発明は、パイロット式の整圧装置に関するものである。   The present invention relates to a pilot-type pressure regulator.

パイプラインによる都市ガス等の流体供給方式としては、上流側の高圧流体を段階的に減圧して下流側に供給する方式が採用されている。この際、減圧のための各段階には流体導管に整圧装置(ガバナ)が装備され、下流側の圧力を設定圧力に調整することが行われている。以下の説明では、整圧装置の上流側流体導管内の圧力を一次圧といい、整圧装置によって設定される下流側流体導管内の圧力を二次圧という。   As a fluid supply system for city gas or the like using a pipeline, a system is adopted in which the high-pressure fluid on the upstream side is decompressed in stages and supplied to the downstream side. At this time, each stage for pressure reduction is equipped with a pressure regulator (governor) in the fluid conduit, and the pressure on the downstream side is adjusted to the set pressure. In the following description, the pressure in the upstream fluid conduit of the pressure regulator is referred to as primary pressure, and the pressure in the downstream fluid conduit set by the pressure regulator is referred to as secondary pressure.

整圧装置は、上流側流体導管の圧力変動や負荷流量に関係なく、下流側導管内の二次圧が設定圧力になるように調整する。この整圧装置は、一般的に、比較的小さい流量の流体導管に装備される簡易な構造のものとして直動式があり、比較的大きな流量の流体導管に装備されるものとしてパイロット式がある(例えば、下記特許文献1参照)。   The pressure regulator adjusts so that the secondary pressure in the downstream conduit becomes the set pressure regardless of the pressure fluctuation of the upstream fluid conduit and the load flow rate. This pressure regulator generally has a direct acting type as a simple structure equipped in a fluid conduit having a relatively small flow rate, and a pilot type as one equipped in a fluid conduit having a relatively large flow rate. (For example, refer to Patent Document 1 below).

図1は、従来のパイロット式整圧装置の構成例を示した説明図(図1(a)が配管構成図であり、図1(b)が動作説明図)である。流体導管1に装備される整圧装置J10は、上流側流体導管1Aと下流側流体導管1Bの間に装備され、メインガバナ11、パイロット流路12、パイロットガバナ13を備えている。パイロット流路12は上流側流体導管1Aと下流側流体導管1Bとを連通する流路である。パイロットガバナ13は、パイロット流路12に設けられ、二次圧検出流路14を介して検出される二次圧P2に応じて開閉してパイロット流路12を流れる流体の流量を調整するものである。メインガバナ11は、パイロット流路12から分岐した制御圧流路15を介して制御圧力PCが駆動部11Aの制御圧室11A1に供給され、制御圧力PCが低下すると上流側流体導管1Aと下流側流体導管1Bとを連通する流通部の開度が大きくなるように作動する弁機構を備える。 FIG. 1 is an explanatory diagram (FIG. 1A is a piping configuration diagram, and FIG. 1B is an operation explanatory diagram) showing a configuration example of a conventional pilot pressure regulator. The pressure regulating device J10 provided in the fluid conduit 1 is provided between the upstream fluid conduit 1A and the downstream fluid conduit 1B, and includes a main governor 11, a pilot flow path 12, and a pilot governor 13. The pilot flow path 12 is a flow path that connects the upstream fluid conduit 1A and the downstream fluid conduit 1B. The pilot governor 13 is provided in the pilot flow path 12 and adjusts the flow rate of the fluid flowing through the pilot flow path 12 by opening and closing according to the secondary pressure P 2 detected through the secondary pressure detection flow path 14. It is. The main governor 11, the control pressure P C is fed to the control pressure chamber 11A1 of the driving unit 11A via the control pressure passage 15 branched from the pilot flow passage 12, the control pressure P C drops upstream fluid conduit 1A and the downstream A valve mechanism is provided that operates so as to increase the opening degree of the flow part communicating with the side fluid conduit 1B.

このような整圧装置J10によると、パイロット流路12で増幅された制御圧力PCによってメインガバナ11の開度を制御することができる。すなわち、下流側での流体消費によって二次圧P2が低下すると、パイロットガバナ13のダイヤフラムにかかる圧力が低下してパイロットガバナ13の弁が開き、パイロット流路12の流量が増加する。パイロット流路12には抵抗部(絞り)12Aが設けられているので、パイロット流路12の流量が増すと抵抗部12Aによる圧力損失が大きくなり、制御圧流路15によってメインガバナ11の駆動部11Aの制御圧室11A1に供給される制御圧力が低下する。これによってメインガバナ11の流通部の開度が大きくなり、この流通部を介して二次側に流れる流量が増加する。二次圧P2が設定圧まで上昇すると新たな定常状態に達し、二次圧P2が設定圧に保持される。 According to such a pressure regulator J10, the opening degree of the main governor 11 can be controlled by the control pressure P C amplified in the pilot flow path 12. That is, when the secondary pressure P 2 decreases due to fluid consumption on the downstream side, the pressure applied to the diaphragm of the pilot governor 13 decreases, the valve of the pilot governor 13 opens, and the flow rate of the pilot flow path 12 increases. Since the pilot passage 12 is provided with a resistance portion (throttle) 12A, the pressure loss due to the resistance portion 12A increases as the flow rate of the pilot passage 12 increases, and the control pressure passage 15 causes the drive portion 11A of the main governor 11 to move. The control pressure supplied to the control pressure chamber 11A1 decreases. Thereby, the opening degree of the circulation part of the main governor 11 is increased, and the flow rate flowing to the secondary side through this circulation part is increased. When the secondary pressure P 2 rises to the set pressure, a new steady state is reached, and the secondary pressure P 2 is held at the set pressure.

特開2006−285660号公報JP 2006-285660 A

図1(b)に示すように、前述した従来の整圧装置では、メインガバナ11の開度を制御する制御圧力PCはパイロット流路12から出力される。そして、パイロット流路12に設ける抵抗部12Aによる圧力損失でどれだけ制御圧力PCを低下させることができるかで、メインガバナの開度を高めるための駆動力Fが確保されることになる。しかしながら、制御圧力PCは一次圧P1と二次圧P2の間の圧力になるので、一次圧P1が例えば常用圧力(=700kPaG)から設計最低圧力P1’(=300kPaG)に低下すると、一次圧P1’と二次圧P2(例えば、150kPaG)の差が小さくなり、パイロット流路12の流量を大きくできず、抵抗部12Aの圧力損失による制御圧力PC’を下げることができない。よって、駆動力F’が小さくなり、メインガバナ11を全開にするだけの十分な駆動力が得られない問題が生じる。 As shown in FIG. 1 (b), the conventional Sei圧apparatus described above, the control pressure P C for controlling the opening of the main governor 11 is output from the pilot channel 12. The driving force F for increasing the opening degree of the main governor is ensured depending on how much the control pressure P C can be reduced by the pressure loss due to the resistance portion 12A provided in the pilot flow path 12. However, since the control pressure P C is a pressure between the primary pressure P 1 and the secondary pressure P 2 , the primary pressure P 1 is reduced from, for example, the normal pressure (= 700 kPaG) to the design minimum pressure P 1 ′ (= 300 kPaG). Then, the difference between the primary pressure P 1 ′ and the secondary pressure P 2 (for example, 150 kPaG) becomes small, the flow rate of the pilot flow path 12 cannot be increased, and the control pressure P C ′ due to the pressure loss of the resistance portion 12A is lowered. I can't. Therefore, the driving force F ′ becomes small, and there arises a problem that a driving force sufficient to fully open the main governor 11 cannot be obtained.

これを解消するための低差圧整圧機構としては、図2に示すようなベンチュリ方式の整圧装置がある(図2(a)が配管構成図であり、図2(b)が動作説明図である。)。図2において図1と共通する部位は同一符号を付して重複説明を省略する。この方式は、パイロット流路12に設ける抵抗部にベンチュリ12Vを採用し、ベンチュリ12Vの狭窄部12V1に制御圧流路15を連通させている。これによると、ベンチュリ12Vの狭窄部12V1を高速で流体が通過することにより雰囲気圧力より低い圧力を発生させることができ、この低い圧力を制御圧力PC(PC’)として出力させることで、図2(b)に示すように、一次圧低下時(設定最低圧力P1’時)にも比較的大きな駆動力FV’を得ることができる(図示におけるFVは一次圧が比較的高い場合(常用圧力P1時)の駆動力を示している。)。 As a low differential pressure regulating mechanism for solving this problem, there is a venturi type pressure regulating device as shown in FIG. 2 (FIG. 2A is a piping configuration diagram, and FIG. 2B is an operation explanation). It is a figure.) In FIG. 2, the same parts as those in FIG. In this system, a venturi 12V is adopted as a resistance portion provided in the pilot flow path 12, and the control pressure flow path 15 is communicated with the narrowed portion 12V1 of the venturi 12V. According to this, it is possible to generate a pressure lower than the atmospheric pressure by the fluid passing through the narrow portion 12V1 of the venturi 12V at a high speed, and by outputting this low pressure as the control pressure P C (P C ′), As shown in FIG. 2B, a relatively large driving force F V ′ can be obtained even when the primary pressure is lowered (at the set minimum pressure P 1 ′) (F V in the figure has a relatively high primary pressure. In this case, the driving force in case of normal pressure P 1 is shown.)

しかしながら、このベンチュリ方式のパイロット式整圧装置は、急激な負荷変動でメインガバナ11を急動作させる必要がある場合には、駆動部11Aに流出入する流量に遅れが生じて、制御圧力PC(PC’)が負荷変動に追従できず、動作が不安定になる傾向がある。このため、図2に示したベンチュリ方式のパイロット式整圧装置は、一次側の負荷変動が緩やかであること、或いは二次側の容量が大きく二次圧の不安定挙動が起こり難いことなど、使用条件に制限を設けざるを得ない問題があった。 However, in this venturi type pilot pressure regulator, when it is necessary to cause the main governor 11 to suddenly operate due to sudden load fluctuations, the flow rate flowing into and out of the drive unit 11A is delayed, and the control pressure P C (P C ') cannot follow the load fluctuation, and the operation tends to become unstable. For this reason, the venturi-type pilot pressure regulator shown in FIG. 2 is such that the load fluctuation on the primary side is moderate, or the secondary side capacity is large and unstable behavior of the secondary pressure is unlikely to occur. There was a problem that the use conditions had to be limited.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、メインガバナの開度を制御する制御圧力をパイロット流路から出力するパイロット式の整圧装置において、一次圧と二次圧の差が小さい場合であっても、メインガバナの開度を十分な駆動力で制御することができること、急激な負荷変動に対しても安定した二次圧を得ることができ、使用条件の汎用性を高めることができること、などが本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, in a pilot-type pressure regulator that outputs a control pressure for controlling the opening degree of the main governor from the pilot flow path, the opening degree of the main governor is sufficient even when the difference between the primary pressure and the secondary pressure is small. It is an object of the present invention to be able to control with a sufficient driving force, to obtain a stable secondary pressure even against a sudden load fluctuation, and to enhance the versatility of use conditions.

このような目的を達成するために、本発明による整圧装置は、以下の構成を少なくとも具備するものである。   In order to achieve such an object, a pressure regulator according to the present invention comprises at least the following configuration.

流体導管に装備され、上流側流体導管における一次圧を下流側流体導管における二次圧に整圧する整圧装置であって、前記上流側流体導管と前記下流側流体導管の間に装備されるメインガバナと、前記上流側流体導管と前記下流側流体導管とを連通するパイロット流路とを備え、前記メインガバナは、前記パイロット流路から出力される制御圧力によって開度調整を行う駆動部を備え、前記パイロット流路に、狭窄部が前記駆動部に連通するベンチュリを設けると共に、その下流側に当該パイロット流路の流量を前記二次圧に基づいて調整するパイロットガバナを設け、前記ベンチュリと前記パイロットガバナとの連通部容量を、前記一次圧の負荷変動に対して前記制御圧力が安定化するように設定したことを特徴とする整圧装置。   A pressure regulator that is provided in a fluid conduit and regulates a primary pressure in an upstream fluid conduit to a secondary pressure in a downstream fluid conduit, the main pressure device being provided between the upstream fluid conduit and the downstream fluid conduit. A governor, and a pilot channel that communicates the upstream fluid conduit and the downstream fluid conduit, and the main governor includes a drive unit that adjusts an opening degree by a control pressure output from the pilot channel. The pilot flow path is provided with a venturi in which the constriction portion communicates with the drive section, and further provided with a pilot governor for adjusting the flow rate of the pilot flow path on the downstream side based on the secondary pressure, The pressure regulating device, wherein a communication portion capacity with a pilot governor is set so that the control pressure is stabilized against a load fluctuation of the primary pressure.

本発明は、パイロット流路に設けたベンチュリによって制御圧力を出力するパイロット式整圧装置の制御系を現実動作に即してモデル化することを創案し、急激な負荷変動に対して二次圧を安定化させる有効な設定パラメータがベンチュリとパイロットガバナの連結部容量にあることを新たに見出したものである。本発明の整圧装置によると、ベンチュリとパイロットガバナの連結部容量を適正に設定することで、ベンチュリ方式のパイロット式整圧装置の二次圧を安定化させることができるので、一次圧と二次圧の差が小さい場合であっても、メインガバナの開度を十分な駆動力で安定的に制御することができる。これによって、ベンチュリ方式のパイロット式整圧装置の汎用性を高めることができる。   The present invention has been devised to model a control system of a pilot-type pressure regulator that outputs a control pressure by a venturi provided in a pilot flow path in accordance with an actual operation, and a secondary pressure against a sudden load fluctuation. It has been newly found that the effective setting parameter for stabilizing the pressure is the joint capacity of the venturi and the pilot governor. According to the pressure regulator of the present invention, the secondary pressure of the venturi-type pilot pressure regulator can be stabilized by appropriately setting the connecting portion capacity between the venturi and the pilot governor. Even when the difference in the secondary pressure is small, the opening degree of the main governor can be stably controlled with a sufficient driving force. Thereby, the versatility of the venturi type pilot pressure regulator can be enhanced.

従来のパイロット式整圧装置の構成例を示した説明図(図1(a)が配管構成図であり、図1(b)が動作説明図)である。FIG. 1 is an explanatory diagram showing a configuration example of a conventional pilot pressure regulator (FIG. 1A is a piping configuration diagram, and FIG. 1B is an operation explanatory diagram). ベンチュリ方式のパイロット式整圧装置の構成例を示した説明図(図2(a)が配管構成図であり、図2(b)が動作説明図)である。FIG. 2A is an explanatory diagram showing a configuration example of a venturi type pilot pressure regulator (FIG. 2A is a piping configuration diagram, and FIG. 2B is an operation explanatory diagram). 本発明の実施形態に係る整圧装置の制御系モデルを説明する説明図である。It is explanatory drawing explaining the control system model of the pressure regulating apparatus which concerns on embodiment of this invention. 図3に示した制御系モデルの動作を示すブロック線図及び伝達関数である。4 is a block diagram and a transfer function showing the operation of the control system model shown in FIG. 図4(b)に示した伝達関数の周波数特性を示したボード線図である。FIG. 5 is a Bode diagram showing frequency characteristics of the transfer function shown in FIG.

以下、図面を参照しながら本発明の実施形態を説明する。図3は、本発明の実施形態に係る整圧装置の制御系モデルを説明する説明図であり、図4は、図3に示した制御系モデルの動作を示すブロック線図及び伝達関数である。前述した説明と共通する部位は同一符号を付して重複説明を一部省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is an explanatory diagram for explaining a control system model of the pressure regulator according to the embodiment of the present invention, and FIG. 4 is a block diagram and a transfer function showing the operation of the control system model shown in FIG. . The same parts as those described above are denoted by the same reference numerals, and a part of the overlapping description is omitted.

図3に示すように、本発明の実施形態に係る整圧装置の制御系は、パイロット流路12、ベンチュリ12V、パイロットガバナ13、制御圧室11A1、制御圧流路15、ベンチュリ12Vとパイロットガバナ13の連結部20を制御要素として備えている。また、パイロットガバナ13はパイロットガバナ13の開度を調整するためのノズル13aとフラッパ13bを備えている。ここで、x:フラッパ13bの変位、CPG:パイロットガバナ13の開度、P1:一次圧、PM:連結部圧力、PC:制御圧力、P2:二次圧、g1:ベンチュリ12Vの上流通過流量、gM:ベンチュリ12Vの下流通過流量、g2:パイロットガバナ13の通過流量、gC:制御流量(=g1−gM)、VM:連結部容量、VC:制御圧流路15の容積をそれぞれ示している。 As shown in FIG. 3, the control system of the pressure regulator according to the embodiment of the present invention includes a pilot flow path 12, a venturi 12V, a pilot governor 13, a control pressure chamber 11A1, a control pressure flow path 15, a venturi 12V and a pilot governor 13. The connecting portion 20 is provided as a control element. The pilot governor 13 includes a nozzle 13 a and a flapper 13 b for adjusting the opening degree of the pilot governor 13. Here, x: displacement of the flapper 13b, C PG: opening of the pilot governor 13, P 1: primary pressure, P M: connection unit pressure, P C: control pressure, P 2: the secondary pressure, g 1: Venturi 12 V upstream flow rate, g M : downstream flow rate of venturi 12 V, g 2 : flow rate of pilot governor 13, g C : control flow rate (= g 1 -g M ), V M : connection capacity, V C : The volume of the control pressure channel 15 is shown.

図4(a)に示したブロック線図の各制御要素について説明する。制御要素e1は、パイロットガバナ13の開度CPGの変化要素であり、フラッパ13bの変位xが開くとパイロットガバナ13の開度CPGが開く。制御要素e2は、パイロットガバナ13の通過流量g2の変化要素であり、パイロットガバナ13の通過流量g2はパイロットガバナ13の開度CPGによって変化する。制御要素e3は、連結部圧力PMを求める伝達要素であり、連結部圧力PMは連結部容量VMに流出入する流量の積分で求められる。制御要素e4は、ベンチュリ12Vの下流通過流量gMの変化要素であり、ベンチュリ12Vの下流通過流量gMは、連結部圧力PMによって変化する。制御要素e5は、制御圧力PCを求める伝達要素であり、制御圧力PCは制御圧流路15の容積VCに流出入する流量の積分で求められる。制御要素e6は、ベンチュリ12Vの上流通過流量g1の変化要素であり、ベンチュリ12Vの上流通過流量g1はベンチュリ出力圧力(制御圧力)PCによって変化する。制御要素e7は、ベンチュリ12Vの下流通過流量gMの変化要素であり、ベンチュリ12Vの下流通過流量gMはベンチュリ出力圧力(制御圧力)PCによって変化する。制御要素e8は、パイロットガバナ13の通過流量g2の変化要素であり、パイロットガバナ13の通過流量g2はパイロットガバナ13の上流圧力(連結部圧力)PMによって変化する。 Each control element of the block diagram shown in FIG. Control element e1 is the change elements of the opening C PG Pilot governor 13, the opening C PG Pilot governor 13 is opened to open the displacement x of the flapper 13b. Control element e2 is the change elements of the passing flow g 2 pilot governor 13, the flow rate through g 2 pilot governor 13 is changed by opening C PG pilot governor 13. Control element e3 is a transfer element for obtaining the connecting portion pressure P M, connecting portion pressure P M is obtained by the integral of the flow rate to and from the flow to the connecting unit volume V M. Control element e4 is the change elements of the downstream flow rate through g M of the venturi 12V, downstream flow rate through g M of the venturi 12V varies by the connecting portion pressure P M. Control element e5 is a transfer element for obtaining the control pressure P C, the control pressure P C is calculated by the integral of the flow rate to and from the flow to the volume V C of the control pressure passage 15. Control elements e6 is the change elements of the upstream passing flow g 1 venturi 12V, upstream passing flow g 1 of the venturi 12V varies with venturi output pressure (control pressure) P C. Control element e7 is the change elements of the downstream flow rate through g M of the venturi 12V, downstream flow rate through g M of the venturi 12V varies with venturi output pressure (control pressure) P C. Control elements e8 is the change elements of the passing flow g 2 pilot governor 13, varies with the passing flow g 2 upstream pressure of the pilot governor 13 (coupling portion pressure) P M pilot governor 13.

図4(a)に示したブロック線図を式変形すると、図4(b)に示した二次遅れ伝達関数が得られる。ここで、TPは下記式(a)、KVCは下記式(b)で表すことができる(ここで、Rは気体定数、θはガス温度である。)、なお、図4(b)の式を求めるに際しては、ベンチュリ12Vの圧力流量挙動が下記の実験式(1),(2)で表現できることを確認している。 When the block diagram shown in FIG. 4A is transformed into a formula, the second-order lag transfer function shown in FIG. 4B is obtained. Here, T P can be expressed by the following formula (a), and K VC can be expressed by the following formula (b) (where R is a gas constant, θ is a gas temperature), and FIG. It is confirmed that the pressure flow behavior of the Venturi 12V can be expressed by the following empirical formulas (1) and (2).

Figure 2013225263
Figure 2013225263

Figure 2013225263
Figure 2013225263

1=C・{PC・(P1−PC)}1/2 (1)
ただし、Cはベンチュリ上流側形状に応じた係数
g 1 = C · {P C · (P 1 −P C )} 1/2 (1)
Where C is a coefficient corresponding to the upstream shape of the venturi

Figure 2013225263
ただし、a〜fはベンチュリ形状に応じた係数
Figure 2013225263
Where a to f are coefficients corresponding to the venturi shape

図5は、図4(b)に示した開ループの伝達関数の周波数特性を示したボード線図である。ここでは、連結部容量VMを変化させた場合の周波数特性の違いを示している。先ず、連結部容量VM=24mlとした整圧装置の例では、ゲイン=0dBにおける位相が−180°より小さくなっており、この場合の周波数特性が不安定であることを示している。これに対して、連結部容量VM=0.8mlとした整圧装置の例では、ゲイン=0dBにおける位相が−180°より大きくなっており、この場合の周波数特性が安定になっていることを示している。 FIG. 5 is a Bode diagram showing frequency characteristics of the transfer function of the open loop shown in FIG. Here it is shown a difference in frequency characteristics when changing the connection portion capacitance V M. First, in the example of the pressure regulator in which the coupling portion capacity V M = 24 ml, the phase at the gain = 0 dB is smaller than −180 °, which indicates that the frequency characteristic in this case is unstable. On the other hand, in the example of the pressure regulator in which the coupling portion capacity V M = 0.8 ml, the phase at the gain = 0 dB is larger than −180 °, and the frequency characteristic in this case is stable. Is shown.

このように、図4(b)に示した伝達関数の周波数特性は、他の条件を一致させて連結部容量VMを変化させた場合に、連結部容量VMを小さくするほど、ゲイン=0dBにおける位相は大きく(位相遅れは小さく)なって、位相余裕が大きくなることを確認することができる。このことから明らかなように、一次圧P1の急激な負荷変動が生じる場合であっても、連結部容量VMの設定によって、制御圧力PC及び二次圧P2を安定化させることが可能になる。特に、連結部容量VMを微小化すること、具体的には、ベンチュリ12Vの出力側とパイロットガバナ13の入力側を直結させることで、安定性の高いベンチュリ方式のパイロット式整圧装置を得ることができる。 Thus, the frequency characteristic of the transfer function shown in FIG. 4 (b), in the case of changing the connecting portion capacitance V M to match the other conditions, the smaller the coupling portion capacitance V M, gain = It can be confirmed that the phase at 0 dB is large (the phase delay is small) and the phase margin is large. As apparent from this, even if a sudden load change of the primary pressure P1 is generated by setting the connecting portion capacitance V M, the control pressure P C and the secondary pressure P 2 can be stabilized become. In particular, to miniaturize the connecting portion capacitance V M, specifically, by directly connecting the input side of the output side and the pilot governor 13 of the venturi 12V, obtain pilots ShikiSei圧apparatus having high stability venturi system be able to.

1:流体導管,1A:上流側流体導管,1B:下流側流体導管,
11:メインガバナ,11A:駆動部,11A1:制御圧室,
12:パイロット流路,12A:抵抗部,
12V:ベンチュリ,12V1:狭窄部,
13:パイロットガバナ,13a:ノズル,13b:フラッパ,
14:二次圧検出流路,15:制御圧流路,
20:連結部,VM:連結部容量
1: fluid conduit, 1A: upstream fluid conduit, 1B: downstream fluid conduit,
11: main governor, 11A: drive unit, 11A1: control pressure chamber,
12: Pilot flow path, 12A: Resistance section,
12V: Venturi, 12V1: Stenosis,
13: Pilot governor, 13a: Nozzle, 13b: Flapper,
14: secondary pressure detection flow path, 15: control pressure flow path,
20: connecting portion, V M: connecting portion capacity

Claims (3)

流体導管に装備され、上流側流体導管における一次圧を下流側流体導管における二次圧に整圧する整圧装置であって、
前記上流側流体導管と前記下流側流体導管の間に装備されるメインガバナと、前記上流側流体導管と前記下流側流体導管とを連通するパイロット流路とを備え、
前記メインガバナは、前記パイロット流路から出力される制御圧力によって開度調整を行う駆動部を備え、
前記パイロット流路に、狭窄部が前記駆動部に連通するベンチュリを設けると共に、その下流側に当該パイロット流路の流量を前記二次圧に基づいて調整するパイロットガバナを設け、
前記ベンチュリと前記パイロットガバナとの連通部容量を、前記一次圧の負荷変動に対して前記制御圧力が安定化するように設定したことを特徴とする整圧装置。
A pressure regulator that is mounted on the fluid conduit and regulates the primary pressure in the upstream fluid conduit to the secondary pressure in the downstream fluid conduit;
A main governor provided between the upstream fluid conduit and the downstream fluid conduit; and a pilot flow path communicating the upstream fluid conduit and the downstream fluid conduit;
The main governor includes a drive unit that adjusts an opening degree by a control pressure output from the pilot flow path,
A pilot governor that adjusts the flow rate of the pilot flow path based on the secondary pressure on the downstream side of the pilot flow path is provided with a venturi in which the constriction portion communicates with the drive unit,
2. A pressure regulator according to claim 1, wherein a communicating portion capacity between the venturi and the pilot governor is set so that the control pressure is stabilized against a load fluctuation of the primary pressure.
前記連結部容量を微小化することを特徴とする請求項1記載の整圧装置。   The pressure regulating device according to claim 1, wherein the capacity of the connecting portion is miniaturized. 前記ベンチュリの出力側と前記パイロットガバナの入力側を直結したことを特徴とする請求項1又は2記載の整圧装置。   3. The pressure regulating device according to claim 1, wherein an output side of the venturi and an input side of the pilot governor are directly connected.
JP2012098192A 2012-04-23 2012-04-23 Stabilizing method of pressure regulator Active JP6056057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098192A JP6056057B2 (en) 2012-04-23 2012-04-23 Stabilizing method of pressure regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098192A JP6056057B2 (en) 2012-04-23 2012-04-23 Stabilizing method of pressure regulator

Publications (2)

Publication Number Publication Date
JP2013225263A true JP2013225263A (en) 2013-10-31
JP6056057B2 JP6056057B2 (en) 2017-01-11

Family

ID=49595274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098192A Active JP6056057B2 (en) 2012-04-23 2012-04-23 Stabilizing method of pressure regulator

Country Status (1)

Country Link
JP (1) JP6056057B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249300A (en) * 1999-03-02 2000-09-12 Tokyo Gas Co Ltd Pressure governor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249300A (en) * 1999-03-02 2000-09-12 Tokyo Gas Co Ltd Pressure governor

Also Published As

Publication number Publication date
JP6056057B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP3801570B2 (en) Flow control device
EP1126348A2 (en) Intelligent valve flow linearization
CN107178516B (en) Compressor control system and control method of compressor
US10358985B2 (en) Control device and control method
US11269362B2 (en) Flow rate control method and flow rate control device
CA2814017C (en) Fuel metering system
KR20190142721A (en) Fluid control apparatus and flow rate ratio control apparatus
EP4063654A2 (en) Variable displacement pump with active bypass feedback control
JP4658262B2 (en) Liquid supply system
JP6056057B2 (en) Stabilizing method of pressure regulator
JP4875989B2 (en) Flow control device
JP5547608B2 (en) Pressure regulator
US20190044166A1 (en) Pressure control system, fuel cell assembly and use of said control system
CN201152385Y (en) Self-operated type flow control valve
JP5547609B2 (en) Pressure regulator
JP6335757B2 (en) Gas pressure regulator
JP5698545B2 (en) Gas governor
JP3602822B2 (en) Pressure regulator
CN113156810A (en) Natural gas pressure regulating system based on fuzzy PID control
JP2006285660A (en) Pressure governing device and characteristic adjustment method therefor
KR20160060388A (en) Control system for compressor and method of controlling the compressor
JP7232506B2 (en) flow pressure controller
JP2008275041A (en) Load sensing control circuit
JP2017054181A (en) regulator
JP2008020102A (en) Fluid supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161115

R150 Certificate of patent or registration of utility model

Ref document number: 6056057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250