JP2008020102A - Fluid supply device - Google Patents

Fluid supply device Download PDF

Info

Publication number
JP2008020102A
JP2008020102A JP2006191031A JP2006191031A JP2008020102A JP 2008020102 A JP2008020102 A JP 2008020102A JP 2006191031 A JP2006191031 A JP 2006191031A JP 2006191031 A JP2006191031 A JP 2006191031A JP 2008020102 A JP2008020102 A JP 2008020102A
Authority
JP
Japan
Prior art keywords
pressure
flow rate
valve
fluid
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006191031A
Other languages
Japanese (ja)
Inventor
Ryuyu Iwata
竜祐 岩田
Naoki Ugawa
直樹 鵜川
Koji Okuda
浩司 奥田
Hiroaki Nakajima
宏明 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Daihen Corp
Original Assignee
Kansai Electric Power Co Inc
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Daihen Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2006191031A priority Critical patent/JP2008020102A/en
Publication of JP2008020102A publication Critical patent/JP2008020102A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that control of a flow rate becomes unstable when the flow rate of raw fuel supplied to a cogeneration system and a semiconductor manufacturing device is largely fluctuated. <P>SOLUTION: In this fluid supply device composed of a booster machine for raising a pressure of the fluid, a pressure adjustment valve for adjusting the pressure to a prescribed pressure, a flow rate control adjustment valve for automatically adjusting a flow rate of the fluid of the prescribed pressure according to a flow rate control signal, a flow rate sensor for detecting the flow rate of flowing fluid, and a flow rate control portion for controlling a flow rate control signal so that a value of the flow rate detecting signal becomes approximately equal to a value of a predetermined flow rate setting signal, and supplying the fluid of the desired flow rate, the pressure adjustment valve is substituted by a proportional control pressure adjusting machine, and the proportional control pressure adjusting machine adjusts a pressure of the pressure-raised fluid to the predetermined adjustment pressure according to the value of the flow rate setting signal so that differential pressure of a primary pressure and a secondary pressure of the flow rate control adjustment value is kept within a proper range. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、コージェネレーションシステムや半導体製造装置などに供給される原燃料の流量制御を調節する流体供給装置に関するものである。   The present invention relates to a fluid supply apparatus that adjusts flow control of raw fuel supplied to a cogeneration system, a semiconductor manufacturing apparatus, or the like.

図9は、従来技術のコージェネレーションシステムの原燃料の流体供給装置の構成図である。   FIG. 9 is a configuration diagram of a raw fuel fluid supply device of a conventional cogeneration system.

同図に示す流体供給装置は、原燃料(空気、都市ガス、窒素及び水素等)の流体を予め定めた圧力に昇圧する昇圧機2と、予め定めた複数個所の流体の圧力を計測する第1圧力計3、第2圧力計4及び第3圧力計5と、流量設定回路26によって設定される予め定めた流量設定信号S5の値に基づいて流量制御を行うマスフローコントローラ9と、上記流量が調節された流体を順方向に供給し逆方向への流れを阻止する逆止弁10で構成されている。   The fluid supply apparatus shown in FIG. 1 includes a booster 2 that boosts the fluid of raw fuel (air, city gas, nitrogen, hydrogen, etc.) to a predetermined pressure, and measures the pressure of the fluid at a plurality of predetermined locations. 1 pressure gauge 3, 2nd pressure gauge 4 and 3rd pressure gauge 5, mass flow controller 9 which performs flow control based on the value of predetermined flow setting signal S5 set by flow setting circuit 26, and said flow rate The check valve 10 is configured to supply the adjusted fluid in the forward direction and prevent the flow in the reverse direction.

同図において、燃料電池モジュール1は供給される原燃料の化学反応によって発電すると共に高温の排気ガスも発生する。また、上記排気ガスは排気用導管17から排出され図示省略の熱交換器に供給され、熱を回収し温水などに変換して利用される。
In the figure, the fuel cell module 1 generates power by a chemical reaction of the supplied raw fuel and also generates high-temperature exhaust gas. The exhaust gas is discharged from the exhaust pipe 17 and supplied to a heat exchanger (not shown), where the heat is recovered and converted into hot water or the like.

マスフローコントローラ9は、小流量から大流量の広い範囲において流量制御を行うことができる特性を有しているので、流量設定信号S5の広い設定範囲に対して充分対応ができる。   Since the mass flow controller 9 has a characteristic capable of performing flow rate control in a wide range from a small flow rate to a large flow rate, it can sufficiently cope with a wide setting range of the flow rate setting signal S5.

上述の流体供給装置において、起動及び停止や負荷変動時等原燃料の流量が大幅に増加又は減少するが、上記マスフローコントローラ9を用いることにより原燃料の流量が大幅に変動しても流量制御が可能となる。(例えば、特許文献1)   In the above-described fluid supply device, the flow rate of the raw fuel is greatly increased or decreased at the time of starting and stopping, load fluctuation, etc., but the flow control is possible even if the flow rate of the raw fuel fluctuates significantly by using the mass flow controller 9. It becomes possible. (For example, Patent Document 1)

また、上記マスフローコントローラ9よりも小さい入出力間の降下圧力(差圧)で流量制御を行う、図10に示す流量制御調節弁7を用いたコージェネレーションシステムも有る。   There is also a cogeneration system using the flow control valve 7 shown in FIG. 10 that performs flow control with a pressure drop (differential pressure) between the input and output that is smaller than that of the mass flow controller 9.

図10に示すコージェネレーションシステムは、上記マスフローコントローラ9を上記流量制御調節弁7に置換し、流量制御部18によって予め定めた流量設定信号S5の値と流量制御調節弁7を流れる流体の流量を流量センサ8によって検出した流量検出信号S1の値とに基づいて、この流量検出信号S1の値が上記流量設定信号S5の値と略等しくなるように流量制御信号S2を制御し、上記流量制御調節弁7を流れる流体の流量を制御する。よって精度の良い流量制御が可能となる。(例えば、特許文献1)   In the cogeneration system shown in FIG. 10, the mass flow controller 9 is replaced with the flow control valve 7, and the value of the flow rate setting signal S 5 determined by the flow controller 18 and the flow rate of the fluid flowing through the flow control valve 7 are obtained. Based on the value of the flow rate detection signal S1 detected by the flow rate sensor 8, the flow rate control signal S2 is controlled so that the value of the flow rate detection signal S1 is substantially equal to the value of the flow rate setting signal S5, and the flow rate control adjustment is performed. The flow rate of the fluid flowing through the valve 7 is controlled. Therefore, accurate flow rate control is possible. (For example, Patent Document 1)

特開2004−363456号公報JP 2004-363456 A

図9に示す従来技術のマスフローコントローラ9は、原燃料の流体を小流量から大流量の広いレンジで流量制御できる長所を有しているが、反面、入出力間の降下圧力が大きいという欠点も有している。このために、所定の個所に予め定めた圧力を供給するために昇圧能力を上げることが要求され、上記昇圧能力の大きい昇圧機が必要となる。また、流量制御範囲が広いマスフローコントローラ9はコストも高い。   The conventional mass flow controller 9 shown in FIG. 9 has the advantage that the flow rate of the raw fuel fluid can be controlled in a wide range from a small flow rate to a large flow rate, but has the disadvantage that the pressure drop between the input and output is large. Have. For this reason, it is required to increase the boosting capability in order to supply a predetermined pressure to a predetermined location, and a booster having a large boosting capability is required. Further, the mass flow controller 9 having a wide flow rate control range is expensive.

マスフローコントローラ9より降下圧力の小さい流量制御調節弁7を使用すると、昇圧能力の小さな昇圧機で済む。しかし、図10に示す流量制御調節弁7は圧力調節弁6の所定調節圧力Prに対して流量制御可能な安定差圧範囲ΔPdが狭いという欠点を有する。よって、上記欠点により下記に示す不具合が生じる。図11は、流体供給装置の原燃料の流量と流量制御調節弁7の圧力との関係を示すグラフである。L1は従来技術の原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、流量の増加に関係なく1次圧力は常に一定である。L2は原燃料の流量と流量制御調節弁7の2次圧力との関係を示し、流量の増加に応じて2次圧力が増加する。同図において、Prは圧力調節弁6の予め定めた調節圧力値を示し、Phは上記流量制御調節弁7の2次圧力の最大動作限界値を示し、PLは最小動作限界値を示す。Pr−Ph=ΔPsは上記流量制御調節弁7の最小動作差圧値を示し、Pr−PL=ΔPmは上記流量制御調節弁7の最大動作差圧値を示す。そして、ΔPs≦ΔPd≦ΔPmを満たすΔPdが上記流量制御調節弁7の安定差圧範囲を示し、この範囲に上記流量制御調節弁7の1次圧力と2次圧力との差圧が納まれば安定した流量制御を行う。   If the flow control valve 7 having a lower pressure drop than that of the mass flow controller 9 is used, a booster having a small boosting capability is sufficient. However, the flow control valve 7 shown in FIG. 10 has a drawback that the stable differential pressure range ΔPd in which the flow rate can be controlled with respect to the predetermined adjustment pressure Pr of the pressure control valve 6 is narrow. Therefore, the following defects occur due to the above-mentioned defects. FIG. 11 is a graph showing the relationship between the flow rate of the raw fuel of the fluid supply device and the pressure of the flow control valve 7. L1 shows the relationship between the flow rate of the raw fuel of the prior art and the primary pressure of the flow control valve 7, and the primary pressure is always constant regardless of the increase in the flow rate. L2 indicates the relationship between the flow rate of the raw fuel and the secondary pressure of the flow rate control regulating valve 7, and the secondary pressure increases as the flow rate increases. In the figure, Pr indicates a predetermined control pressure value of the pressure control valve 6, Ph indicates the maximum operation limit value of the secondary pressure of the flow control valve 7, and PL indicates the minimum operation limit value. Pr−Ph = ΔPs indicates the minimum operating differential pressure value of the flow control valve 7, and Pr−PL = ΔPm indicates the maximum operating differential pressure value of the flow control valve 7. Then, ΔPd satisfying ΔPs ≦ ΔPd ≦ ΔPm indicates a stable differential pressure range of the flow control valve 7. If the differential pressure between the primary pressure and the secondary pressure of the flow control valve 7 falls within this range, Stable flow control is performed.

つぎに、流量制御部18によって流量設定信号S5の値をLaに設定すると、図11に示すL2の交点Aの流量に対する流量制御調節弁7の2次圧力値はPaとなる。この2次圧力値Paは、1次圧力Prに対して安定差圧範囲ΔPdの範囲に納まるために安定した流量制御を行う。しかし、上記流量設定信号S5の値をLaからLbに変更すると、L2の交点Aから交点Bに移動し、この交点Bの流量に対する流量制御調節弁7の2次圧力の値はPbとなる。この2次圧力値Pbは、1次圧力Prに対して安定差圧範囲ΔPdの範囲から大きく外れてしまい安定した流量制御ができなくなる。よって、上記流量設定信号S5の値をLbで安定した流量制御を行うには圧力調節弁6の調節圧力Prを再度適性値に変更する必要がある。   Next, when the value of the flow rate setting signal S5 is set to La by the flow rate controller 18, the secondary pressure value of the flow rate control valve 7 with respect to the flow rate at the intersection A of L2 shown in FIG. Since the secondary pressure value Pa falls within the stable differential pressure range ΔPd with respect to the primary pressure Pr, stable flow rate control is performed. However, when the value of the flow rate setting signal S5 is changed from La to Lb, it moves from the intersection A of L2 to the intersection B, and the value of the secondary pressure of the flow control valve 7 for the flow rate of this intersection B becomes Pb. The secondary pressure value Pb deviates greatly from the range of the stable differential pressure range ΔPd with respect to the primary pressure Pr, and stable flow rate control cannot be performed. Therefore, in order to perform a stable flow rate control with the value of the flow rate setting signal S5 being Lb, it is necessary to change the adjustment pressure Pr of the pressure control valve 6 to an appropriate value again.

そこで、上記の課題を解決するコージェネレーションシステムや半導体製造装置などの流体供給装置を提供することにある。   Then, it is providing the fluid supply apparatuses, such as a cogeneration system and a semiconductor manufacturing apparatus, which solve said subject.

上述した課題を解決するために、第1の発明は、流体の圧力を昇圧する昇圧機と、この昇圧された流体の圧力を所定調節圧力にする圧力調節弁と、この所定圧力の流体の流量を流量制御信号に従って自動調節する流量制御調節弁と、この流量制御調節弁を流れる流体の流量を検出して流量検出信号を出力する流量センサと、この流量検出信号の値が予め定めた流量設定信号の値と略等しくなるように前記流量制御信号を制御する流量制御部とからなり、所望流量の流体を供給する流体供給装置において、前記圧力調節弁を比例制御圧力調節機に置換し、この比例制御圧力調節機は前記昇圧された流体の圧力を前記流量制御調節弁の1次圧力と2次圧力との差圧が適正範囲内になるように、前記流量設定信号の値に応じて予め設定された調節圧力に調節することを特徴とする流体供給装置である。   In order to solve the above-described problems, a first invention is a pressure booster that boosts the pressure of a fluid, a pressure control valve that sets the pressure of the boosted fluid to a predetermined control pressure, and a flow rate of the fluid at the predetermined pressure. A flow rate control valve that automatically adjusts the flow rate control signal according to the flow rate control signal, a flow rate sensor that detects the flow rate of the fluid flowing through the flow rate control control valve and outputs a flow rate detection signal, and a flow rate setting in which the value of the flow rate detection signal is predetermined. A flow rate control unit that controls the flow rate control signal so as to be substantially equal to the value of the signal. In a fluid supply device that supplies a fluid at a desired flow rate, the pressure control valve is replaced with a proportional control pressure regulator. The proportional control pressure regulator pre-adjusts the pressure of the boosted fluid in accordance with the value of the flow rate setting signal so that the differential pressure between the primary pressure and the secondary pressure of the flow control valve is within an appropriate range. Set control pressure A fluid supply apparatus characterized by adjusting the.

第2の発明は、請求項1記載の比例制御圧力調節機が第1圧力調節弁及び第1電磁弁及び第1逆止弁の直列接続から形成される第1圧力調節路を、第n圧力調節路まで並列接続した構成であり、前記流量設定信号の値に応じて前記第1電磁弁から前記第n電磁弁までいずれか1つを開にして前記各圧力調節路に流体を流し、前記第1圧力調節弁の第1調節圧力乃至第n圧力調節弁の第n調節圧力は、前記各圧力調節路を流体が流れたときの前記差圧が適正範囲内になるように昇順に高くなる予め設定された調節圧力であることを特徴とする流体供給装置である。   According to a second aspect of the present invention, the proportional control pressure regulator according to claim 1 has a first pressure regulating path formed by a series connection of a first pressure regulating valve, a first electromagnetic valve, and a first check valve, the nth pressure The control path is configured to be connected in parallel, and according to the value of the flow rate setting signal, any one of the first solenoid valve to the nth solenoid valve is opened to flow a fluid through each pressure control path, The first adjustment pressure of the first pressure adjustment valve to the nth adjustment pressure of the nth pressure adjustment valve increase in ascending order so that the differential pressure when the fluid flows through the pressure adjustment paths is within an appropriate range. The fluid supply device is characterized in that the pressure is set in advance.

第3の発明は、請求項1記載の圧力調節弁と流量制御調節弁との間に請求項2記載の第1乃至第n圧力調節弁を第1乃至第n圧力降圧体に置換した比例制御圧力調節機を設け、この第1圧力降圧体は第1流量の流体が流れたときに第1降圧値だけ降圧し、前記第n圧力降圧体は第n流量の流体が流れたときに第n降圧値だけ降圧し、前記第1乃至第n流量は昇順に大きくなる値であり、前記第1乃至第n降圧値は昇順に低くなる値であることを特徴とする流体供給装置である。   A third aspect of the invention is a proportional control in which the first to nth pressure regulators are replaced with the first to nth pressure step-down bodies between the pressure control valve according to claim 1 and the flow control valve. A pressure regulator is provided, and the first pressure step-down body lowers the pressure by a first step-down value when a first flow rate of fluid flows, and the nth pressure step-down body is nth when a fluid of the n-th flow rate flows. The fluid supply device is characterized in that the pressure is reduced by a step-down value, the first to n-th flow rates increase in ascending order, and the first to n-th step-down values decrease in ascending order.

第4の発明は、流体の圧力を昇圧する昇圧機と、この昇圧された流体の圧力を所定調節圧力にする圧力調節弁と、この所定圧力の流体の流量を流量制御信号に従って自動調節する流量制御調節弁と、この流量制御調節弁を流れる流体の流量を検出して流量検出信号を出力する流量センサと、この流量検出信号の値が予め定めた流量設定信号の値と略等しくなるように前記流量制御信号を制御する流量制御部とからなり、所望流量の流体を供給する流体供給装置において、前記流量制御調節弁の2次側に背圧弁を設け、この背圧弁によって前記流量制御調節弁の2次圧力を所定値に保つことを特徴とする流体供給装置である。   According to a fourth aspect of the present invention, there is provided a booster that boosts the pressure of the fluid, a pressure control valve that sets the pressure of the boosted fluid to a predetermined control pressure, and a flow rate that automatically adjusts the flow rate of the fluid at the predetermined pressure according to a flow control signal A control valve, a flow sensor for detecting the flow rate of the fluid flowing through the flow control valve and outputting a flow detection signal, and a value of the flow detection signal so as to be substantially equal to a predetermined flow rate setting signal value. A fluid supply apparatus that supplies a fluid having a desired flow rate, and a back pressure valve is provided on a secondary side of the flow control valve, and the flow control valve is provided by the back pressure valve. The fluid supply device is characterized in that the secondary pressure is maintained at a predetermined value.

第1の発明によれば、圧力調節弁を比例制御圧力調節機に置換することにより、流量設定信号の値に応じて流量制御調節弁の安定差圧範囲ΔPdに納まるように1次圧力を自動調節するので、安定差圧範囲が狭い流量制御調節弁を使用しても小流量から大流量の広い範囲で流量制御を行うことが可能となる。さらに、流量制御調節弁の1次圧力と2次圧力との間の降下圧力が小さくなるので昇圧能力の小さい小型の昇圧機が使用できる。   According to the first invention, by replacing the pressure control valve with a proportional control pressure regulator, the primary pressure is automatically adjusted so as to be within the stable differential pressure range ΔPd of the flow control valve according to the value of the flow setting signal. Therefore, even if a flow control valve having a narrow stable differential pressure range is used, it is possible to perform flow control over a wide range from a small flow rate to a large flow rate. Furthermore, since the pressure drop between the primary pressure and the secondary pressure of the flow control valve is reduced, a small booster with a small boosting capability can be used.

第2の発明によれば、上記第1の発明の効果はもとより、専用の比例制御圧力調節機を使用しないで一般的な圧力調節弁を複数個用いて構成されるので、流量設定信号の値に応じた圧力調節弁を動作させるだけで流量制御調節弁の1次圧力を簡単に最適調節できる。   According to the second invention, in addition to the effects of the first invention, it is configured by using a plurality of general pressure control valves without using a dedicated proportional control pressure regulator. The primary pressure of the flow control valve can be easily and optimally adjusted simply by operating the pressure control valve according to the above.

第3の発明によれば、上記第1の発明の効果はもとより、一般的な圧力降圧体を複数個用いて比例制御圧力調節機を構成することで、コストを下げることができる。   According to the third invention, in addition to the effects of the first invention, the cost can be reduced by configuring the proportional control pressure regulator using a plurality of general pressure drop bodies.

第4の発明によれば、流量制御調節弁の2次側に背圧弁を設けることにより、上記第1の発明の効果と同等の効果が期待できる。   According to the fourth invention, by providing the back pressure valve on the secondary side of the flow control valve, an effect equivalent to the effect of the first invention can be expected.

[実施の形態1]
図1は、本発明の実施形態1のコージェネレーションシステムに原燃料を供給する流体供給装置の構成図である。同図において、図9及び図10に示す従来技術のコージェネレーションシステムの流体供給装置の構成図と、同一符号は同一動作を行うので説明は省略し符号が相違する構成について説明する。
[Embodiment 1]
FIG. 1 is a configuration diagram of a fluid supply apparatus that supplies raw fuel to the cogeneration system according to the first embodiment of the present invention. In the same figure, since the same code | symbol performs the same operation | movement as the block diagram of the fluid supply apparatus of the prior art cogeneration system shown in FIG.9 and FIG.10, description is abbreviate | omitted and the structure from which a code | symbol differs is demonstrated.

図1において、流量制御部18は、予め定めた流量設定信号S5の値と流量制御調節弁7を流れる流体の流量を流量センサ8によって検出した流量検出信号S1の値とを略等しくなるように流量制御信号S2を制御すると共に上記流量設定信号S5を圧力設定回路27に入力する。   In FIG. 1, the flow rate control unit 18 makes the value of the predetermined flow rate setting signal S <b> 5 and the value of the flow rate detection signal S <b> 1 detected by the flow rate sensor 8 the flow rate of the fluid flowing through the flow rate control regulating valve 7 substantially equal. The flow rate control signal S2 is controlled and the flow rate setting signal S5 is input to the pressure setting circuit 27.

圧力設定回路27は、流量設定信号S5の値によって決まる流量制御調節弁7の2次圧力の値に対して1次圧力が安定差圧範囲ΔPdの中心値となる((ΔPs+ΔPm)/2)だけ昇圧する圧力設定信号S3に変換して出力する。   In the pressure setting circuit 27, the primary pressure becomes the center value of the stable differential pressure range ΔPd with respect to the secondary pressure value of the flow control valve 7 determined by the value of the flow rate setting signal S5 ((ΔPs + ΔPm) / 2. ) Is converted into a pressure setting signal S3 for boosting and output.

比例制御圧力調節機21は、流量制御調節弁7の1次圧力を制御する装置であり、圧力設定信号S3に基づいて上記流量制御調節弁7の1次圧力が2次圧力に対して((ΔPs+ΔPm)/2)昇圧された圧力に自動調節する。   The proportional control pressure regulator 21 is a device for controlling the primary pressure of the flow control valve 7, and the primary pressure of the flow control valve 7 with respect to the secondary pressure ((( ΔPs + ΔPm) / 2) Automatic adjustment to the increased pressure.

図2は、実施の形態1の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。同図において、L1は従来技術の原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、流量の増加に関係なく1次圧力は常に一定である。L2は原燃料の流量と流量制御調節弁7の2次圧力との関係を示し、流量の増加に応じて2次圧力が増加する。L3はL5とL6の中心に位置し、流量設定信号S5の値に応じて比例制御圧力調節機21が流量制御調節弁7の1次圧力を2次圧力に対して((ΔPs+ΔPm)/2)昇圧する状態を示す。L5は上記流量設定信号S5の値に応じて比例制御圧力調節機21が流量制御調節弁7の1次圧力を2次圧力に対してΔPm昇圧する状態を示し、上記流量制御調節弁7の1次圧力の最大昇圧限界領域を示す。L6は上記流量設定信号S5の値に応じて比例制御圧力調節機21が流量制御調節弁7の1次圧力を2次圧力に対してΔPs昇圧する状態を示し、上記流量制御調節弁7の1次圧力の最小昇圧限界領域を示す。   FIG. 2 is a graph showing the relationship between the flow rate of raw fuel and the pressure of the flow control valve in the fluid supply device of the first embodiment. In the same figure, L1 shows the relationship between the flow rate of the raw fuel of the prior art and the primary pressure of the flow rate control valve 7, and the primary pressure is always constant regardless of the increase of the flow rate. L2 indicates the relationship between the flow rate of the raw fuel and the secondary pressure of the flow rate control regulating valve 7, and the secondary pressure increases as the flow rate increases. L3 is located at the center of L5 and L6, and in accordance with the value of the flow rate setting signal S5, the proportional control pressure regulator 21 changes the primary pressure of the flow rate control valve 7 relative to the secondary pressure ((ΔPs + ΔPm) / 2) Indicates the state of boosting. L5 indicates a state in which the proportional control pressure regulator 21 increases the primary pressure of the flow control control valve 7 by ΔPm with respect to the secondary pressure according to the value of the flow rate setting signal S5. The maximum pressure increase limit region of the next pressure is shown. L6 indicates a state in which the proportional control pressure regulator 21 increases the primary pressure of the flow control control valve 7 by ΔPs with respect to the secondary pressure in accordance with the value of the flow rate setting signal S5. The minimum pressure increase limit region of the next pressure is shown.

図2において、流量設定信号S5の値をLaに設定すると、比例制御圧力調節機21は、L2の交点Aの流量に対する流量制御調節弁7の2次圧力Paに対して、((ΔPs+ΔPm)/2)昇圧したL3の交点Cに示す圧力になるように上記流量制御調節弁7の1次圧力を調節する。このとき、上記流量制御調節弁7の1次圧力と2次圧力との差圧値は安定差圧範囲ΔPdに納まり安定した流量制御を行う。   In FIG. 2, when the value of the flow rate setting signal S5 is set to La, the proportional control pressure regulator 21 ((ΔPs + ΔPm) with respect to the secondary pressure Pa of the flow rate control valve 7 with respect to the flow rate at the intersection A of L2. ) / 2) The primary pressure of the flow control valve 7 is adjusted so as to be the pressure shown at the intersection C of the increased L3. At this time, the differential pressure value between the primary pressure and the secondary pressure of the flow control valve 7 is within the stable differential pressure range ΔPd, and stable flow control is performed.

続いて、上記流量設定信号S5の値をLaからLbに変更すると、比例制御圧力調節機21は、L2の交点Bの流量に対する流量制御調節弁7の2次圧力Pbに対して、再度((ΔPs+ΔPm)/2)昇圧したL3の交点Dに示す圧力になるように上記流量制御調節弁7の1次圧力を調節する。このときも、上記流量制御調節弁7の1次圧力と2次圧力との差圧値は安定差圧範囲ΔPdの範囲に納まる。   Subsequently, when the value of the flow rate setting signal S5 is changed from La to Lb, the proportional control pressure regulator 21 again applies ((() to the secondary pressure Pb of the flow rate control valve 7 for the flow rate at the intersection B of L2. ΔPs + ΔPm) / 2) The primary pressure of the flow control valve 7 is adjusted so as to be the pressure indicated by the intersection D of the increased L3. Also at this time, the differential pressure value between the primary pressure and the secondary pressure of the flow control valve 7 is within the stable differential pressure range ΔPd.

上述より、比例制御圧力調節機21は、流量設定信号S5の値の変化に応じて、流量制御調節弁7の1次圧力が2次圧力に対して常に(ΔPs+ΔPm)/2)昇圧した値に調節するので小流量から大流量の広いレンジで流量制御できる。   From the above, in the proportional control pressure regulator 21, the primary pressure of the flow control valve 7 is always increased (ΔPs + ΔPm) / 2) relative to the secondary pressure in accordance with the change in the value of the flow rate setting signal S5. Since the value is adjusted, the flow rate can be controlled in a wide range from a small flow rate to a large flow rate.

[実施の形態2]
図3は実施形態2の比例制御圧力調節機であって、圧力調節弁を用いて構成した比例制御圧力調節機の詳細図である。同図において、図1及び図10に示す流体供給装置の構成図と同一符号は、同一動作を行うので説明は省略し符号が相違する構成について説明する。
[Embodiment 2]
FIG. 3 is a detailed view of the proportional control pressure regulator according to the second embodiment, which is configured using a pressure control valve. In the same figure, the same reference numerals as those in the configuration diagrams of the fluid supply apparatus shown in FIGS.

図3に示す、比例制御圧力調節機21aは、調節圧力の低い第1圧力調節弁6−1から順に調節圧力の高い第5圧力調節弁6−5を用いて、第1圧力調節弁6−1、第1電磁弁19−1及び第1逆止弁24−1の直列接続から形成される第1圧力調節路と、第2圧力調節弁6−2、第2電磁弁19−2及び第2逆止弁24−2の直列接続から形成される第2圧力調節路と、第3圧力調節弁6−3、第3電磁弁19−3及び第3逆止弁24−3の直列接続から形成される第3圧力調節路と、第4圧力調節弁6−4、第4電磁弁19−4及び第4逆止弁24−4の直列接続から形成される第4圧力調節路と、第5圧力調節弁6−5、第5電磁弁19−5及び第5逆止弁24−5の直列接続から形成される第5圧力調節路とを並列接続し、各圧力調節弁の調節圧力は、流量制御調節弁7の1次圧力と2次圧力との差圧が流量制御可能な安定差圧範囲ΔPdに納まるように調節されている。   The proportional control pressure regulator 21a shown in FIG. 3 uses a first pressure regulating valve 6-5 using a fifth pressure regulating valve 6-5 having a higher regulated pressure in order from a first pressure regulating valve 6-1 having a lower regulated pressure. 1, a first pressure regulating path formed from a series connection of a first electromagnetic valve 19-1 and a first check valve 24-1, a second pressure regulating valve 6-2, a second electromagnetic valve 19-2, and a first From the series connection of the second pressure regulation path formed from the series connection of the two check valves 24-2 and the third pressure regulation valve 6-3, the third electromagnetic valve 19-3 and the third check valve 24-3 A third pressure regulating path formed, a fourth pressure regulating path formed from a series connection of a fourth pressure regulating valve 6-4, a fourth electromagnetic valve 19-4, and a fourth check valve 24-4; 5 pressure control valve 6-5, 5th solenoid valve 19-5, and 5th pressure control path formed from the serial connection of 5th check valve 24-5 are connected in parallel, and each pressure control Adjusting the pressure of the valve, the differential pressure between the primary pressure and the secondary pressure of the flow control regulating valve 7 is adjusted to fit the flow control, stable differential pressure range .DELTA.Pd.

電磁弁制御回路25は、流量制御部18によって設定された流量設定信号S5の値に応じた電磁弁を選択し、流量設定値が小さいときは、第1電磁弁19−1を開にして調節圧力の低い第1圧力調節路を選択し、逆に流量設定値が大きいときは、第5電磁弁19−5を開にして調節圧力の高い第5圧力調節路を選択する。   The solenoid valve control circuit 25 selects a solenoid valve according to the value of the flow rate setting signal S5 set by the flow rate control unit 18, and when the flow rate set value is small, the first solenoid valve 19-1 is opened and adjusted. When the first pressure adjustment path with low pressure is selected and the flow rate set value is large, the fifth electromagnetic valve 19-5 is opened and the fifth pressure adjustment path with high adjustment pressure is selected.

図4は、実施形態2の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。同図において、L1は上述した従来技術の原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、流量の増加に関係なく1次圧力は常に一定である。L2は原燃料の流量と流量制御調節弁7の2次圧力との関係を示し、流量の増加に応じて2次圧力が増加する。L4は原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、小流量の流量設定範囲ΔK1では、第1圧力調節弁6−1の調節圧力である低圧のP1に調節し、大流量の流量設定範囲ΔK5では、第5圧力調節弁6−5の調節圧力である高圧のP5に調節され、流量の増加に応じて上記1次圧力が階段状に増加する。また、流量設定範囲ΔK3において、流量設定値がLcの時、流量制御調節弁7の1次圧力と2次圧力との差圧は最小動作差圧値ΔPsであり、流量設定値がLdの時、前記差圧(P3−P2+ΔPs)は最大動作差圧値ΔPmより小さくなるように流量設定範囲ΔK3の範囲が決められている。その他のΔK1、ΔK2、ΔK4及びΔK5も上記と同様である。   FIG. 4 is a graph showing the relationship between the flow rate of raw fuel and the pressure of the flow control valve in the fluid supply device of the second embodiment. In the same figure, L1 shows the relationship between the flow rate of the raw fuel of the prior art and the primary pressure of the flow control valve 7 described above, and the primary pressure is always constant regardless of the increase of the flow rate. L2 indicates the relationship between the flow rate of the raw fuel and the secondary pressure of the flow rate control regulating valve 7, and the secondary pressure increases as the flow rate increases. L4 indicates the relationship between the flow rate of the raw fuel and the primary pressure of the flow rate control regulating valve 7, and in the small flow rate setting range ΔK1, the pressure is adjusted to the low pressure P1 that is the regulated pressure of the first pressure regulating valve 6-1. In the large flow rate setting range ΔK5, the pressure is adjusted to the high pressure P5 that is the adjustment pressure of the fifth pressure control valve 6-5, and the primary pressure increases stepwise as the flow rate increases. In the flow rate setting range ΔK3, when the flow rate set value is Lc, the differential pressure between the primary pressure and the secondary pressure of the flow control valve 7 is the minimum operating differential pressure value ΔPs, and when the flow rate set value is Ld. The range of the flow rate setting range ΔK3 is determined so that the differential pressure (P3−P2 + ΔPs) is smaller than the maximum operating differential pressure value ΔPm. The other ΔK1, ΔK2, ΔK4, and ΔK5 are the same as described above.

図4において、流量設定信号S5の値をLaに設定すると、電磁弁制御回路25は流量設定信号S5の値Laが、図4に示す予め定めた流量設定範囲のどの範囲に入るか判別し、上記Laが流量設定範囲ΔK5に入ると、上記電磁弁制御回路25は流量設定範囲ΔK5に対応する第5電磁弁19−5に電磁弁制御信号S4を入力して開にし、第5圧力調節路を開路して流量制御調節弁7の1次圧力をP5に調節する。このとき、L2の交点Aの流量に対する流量制御調節弁7の2次圧力Paは調節された1次圧力P5に対して安定差圧範囲ΔPdに納まり安定した流量制御を行う。   In FIG. 4, when the value of the flow rate setting signal S5 is set to La, the solenoid valve control circuit 25 determines which range of the predetermined flow rate setting range shown in FIG. When the La enters the flow rate setting range ΔK5, the electromagnetic valve control circuit 25 inputs the electromagnetic valve control signal S4 to the fifth electromagnetic valve 19-5 corresponding to the flow rate setting range ΔK5 to open it, and the fifth pressure adjustment path Is opened to adjust the primary pressure of the flow control valve 7 to P5. At this time, the secondary pressure Pa of the flow control valve 7 with respect to the flow rate at the intersection point A of L2 falls within the stable differential pressure range ΔPd with respect to the adjusted primary pressure P5, and stable flow control is performed.

続いて、流量設定信号S5の値をLaからLbに変更すると、電磁弁制御回路25は流量設定信号S5の値Lbが、図4に示す予め定めた流量設定範囲のどの範囲に入るか再度判別し、上記Lbが流量設定範囲ΔK3に入ると上記電磁弁制御回路25は第5電磁弁19−5を閉にして第5圧力調節路を閉路すると共に流量設定範囲ΔK3に対応する第3電磁弁19−3を開にし、第3圧力調節路を開路して流量制御調節弁7の1次圧力P5からP3に再調節する。このとき、L2の交点Bの流量に対する流量制御調節弁7の2次圧力Pbは降圧された1次圧力P3に対して安定差圧範囲ΔPdに納まり安定した流量制御を行う。上述より流量を小流量から大流量に広く変化させても、安定した流量制御が可能となる。   Subsequently, when the value of the flow rate setting signal S5 is changed from La to Lb, the solenoid valve control circuit 25 again determines in which range of the predetermined flow rate setting range shown in FIG. 4 the value Lb of the flow rate setting signal S5 falls. When Lb enters the flow rate setting range ΔK3, the solenoid valve control circuit 25 closes the fifth solenoid valve 19-5 and closes the fifth pressure adjustment path, and the third solenoid valve corresponding to the flow rate setting range ΔK3. 19-3 is opened, the third pressure adjustment path is opened, and the primary pressure P5 of the flow control valve 7 is adjusted again from P5 to P3. At this time, the secondary pressure Pb of the flow control valve 7 with respect to the flow rate at the intersection B of L2 is within the stable differential pressure range ΔPd with respect to the reduced primary pressure P3, and the stable flow control is performed. As described above, stable flow rate control is possible even if the flow rate is changed widely from a small flow rate to a large flow rate.

[実施の形態3]
図5は、実施形態3の比例制御圧力調節機であって、圧力降圧体を用いて構成した比例制御圧力調節機の詳細図である。同図において、図1、図3及び図10に示す流体供給装置の構成図と同一符号は、同一動作を行うので説明は省略し符号が相違する構成について説明する。
[Embodiment 3]
FIG. 5 is a detailed view of the proportional control pressure regulator according to the third embodiment, which is configured using a pressure step-down body. In the figure, the same reference numerals as those in the configuration diagrams of the fluid supply device shown in FIGS.

図5に示す、比例制御圧力調節機21bは、上記比例制御圧力調節機21aの調節圧力の低い第1圧力調節弁6−1から調節圧力の高い第5圧力調節弁6−5を流路抵抗(降下圧力)の大きい第1圧力降圧体20−1から流路抵抗の小さい第5圧力降圧体20−5に置換して形成し、上記比例制御圧力調節機21bを圧力調節弁6と流量制御調節弁7との間に配置している。   The proportional control pressure regulator 21b shown in FIG. 5 has a flow resistance from the first pressure regulation valve 6-1 having a lower regulation pressure to the fifth pressure regulation valve 6-5 having a higher regulation pressure. The first pressure step-down body 20-1 having a large (falling pressure) is replaced with a fifth pressure step-down body 20-5 having a small channel resistance, and the proportional control pressure regulator 21b is controlled by the pressure control valve 6 and the flow rate control. It arrange | positions between the control valves 7. FIG.

図6は、実施形態3の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。同図において、圧力調節弁6の調節圧力は予め定めた値P6に調節されている。L2は原燃料の流量と流量制御調節弁7の2次圧力との関係を示し、流量の増加に応じて2次圧力が増加する。L5は原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、小流量の流量設定範囲ΔK1では、流路抵抗の大きい第1圧力降圧体20−1により、上記範囲ΔK1内の流量によって決まる圧力P1aからP1bの範囲に降圧され、大流量の流量設定範囲ΔK5では、流路抵抗の小さい第5圧力降圧体20−5により、上記範囲ΔK5内の流量によって決まる圧力P5aからP5bの範囲に降圧され、流量の増加に応じて上記1次圧力が階段状に増加する。実施形態3においては、圧力降圧体を用いているため、各々の流量設定範囲内において、流量制御調節弁7の1次圧力は一定ではなく、流量に伴いL5で示すように変動する。また、流量設定範囲ΔK3において、流量設定値がLcの時、流量制御調節弁7の1次圧力と2次圧力との差圧は最小動作差圧値ΔPsであり、流量設定値がLdの時、前記差圧(P3b−P2a+ΔPs)は最大動作差圧値ΔPmより小さくなるように流量設定範囲ΔK3の範囲が決められている。その他のΔK1、ΔK2、ΔK4及びΔK5も上記と同様である。   FIG. 6 is a graph showing the relationship between the flow rate of raw fuel and the pressure of the flow control valve of the fluid supply device according to the third embodiment. In the figure, the adjustment pressure of the pressure adjustment valve 6 is adjusted to a predetermined value P6. L2 indicates the relationship between the flow rate of the raw fuel and the secondary pressure of the flow rate control regulating valve 7, and the secondary pressure increases as the flow rate increases. L5 indicates the relationship between the flow rate of the raw fuel and the primary pressure of the flow rate control regulating valve 7, and in the flow rate setting range ΔK1 with a small flow rate, the first pressure step-down body 20-1 having a large flow path resistance causes the range ΔK1 In the large flow rate setting range ΔK5, the pressure P5a to P5b determined by the flow rate in the range ΔK5 is reduced by the fifth pressure step-down body 20-5 having a small flow resistance. The primary pressure increases stepwise as the flow rate increases. In the third embodiment, since the pressure step-down body is used, the primary pressure of the flow control valve 7 is not constant within each flow rate setting range, but varies as indicated by L5 with the flow rate. Further, in the flow rate setting range ΔK3, when the flow rate set value is Lc, the differential pressure between the primary pressure and the secondary pressure of the flow control valve 7 is the minimum operating differential pressure value ΔPs, and when the flow rate set value is Ld. The range of the flow rate setting range ΔK3 is determined so that the differential pressure (P3b−P2a + ΔPs) is smaller than the maximum operating differential pressure value ΔPm. The other ΔK1, ΔK2, ΔK4, and ΔK5 are the same as described above.

つぎに、図6を用いて動作について説明する。流量設定信号S5の値をLaに設定すると、電磁弁制御回路25は流量設定信号S5の値Laが流量設定範囲ΔK5に入ると判別し、第5電磁弁19−5に電磁弁制御信号S4を入力して開にし、第5圧力調節路を開路して流量制御調節弁7の1次圧力をL5の交点Cの圧力に調節する。このとき、L2の交点Aの流量に対する流量制御調節弁7の2次圧力Paは調節された1次圧力に対して安定差圧範囲ΔPdに納まり安定した流量制御を行う。   Next, the operation will be described with reference to FIG. When the value of the flow rate setting signal S5 is set to La, the solenoid valve control circuit 25 determines that the value La of the flow rate setting signal S5 enters the flow rate setting range ΔK5, and sends the solenoid valve control signal S4 to the fifth solenoid valve 19-5. Input to open, open the fifth pressure adjustment path, and adjust the primary pressure of the flow control valve 7 to the pressure at the intersection C of L5. At this time, the secondary pressure Pa of the flow control valve 7 with respect to the flow rate at the intersection A of L2 is within the stable differential pressure range ΔPd with respect to the adjusted primary pressure, and stable flow control is performed.

続いて、上記流量設定信号S5の値をLaからLbに変更すると、電磁弁制御回路25は流量設定信号S5の値Lbが流量設定範囲ΔK3に入ると判別し、上記電磁弁制御回路25は第5電磁弁19−5を閉にして第5圧力調節路を閉路すると共に流量設定範囲ΔK3に対応する第3電磁弁19−3に電磁弁制御信号S4を入力して開にし、第3圧力調節路を開路して流量制御調節弁7の1次圧力をL5の交点Dの圧力に再調節する。このとき、L2の交点Bの流量に対する流量制御調節弁7の2次圧力Pbは降圧された1次圧力に対して安定差圧範囲ΔPdに納まり安定した流量制御を行う。   Subsequently, when the value of the flow rate setting signal S5 is changed from La to Lb, the solenoid valve control circuit 25 determines that the value Lb of the flow rate setting signal S5 falls within the flow rate setting range ΔK3, and the solenoid valve control circuit 25 The fifth solenoid valve 19-5 is closed to close the fifth pressure control path, and the third solenoid valve 19-3 corresponding to the flow rate setting range ΔK3 is input to open the solenoid valve control signal S4 to open it. The path is opened and the primary pressure of the flow control valve 7 is readjusted to the pressure at the intersection D of L5. At this time, the secondary pressure Pb of the flow control valve 7 with respect to the flow rate at the intersection B of L2 is within the stable differential pressure range ΔPd with respect to the reduced primary pressure, and the stable flow control is performed.

上記圧力降圧体の代わりに、手動で降下圧力を調節できる圧力降下弁を用いてもよい。   Instead of the pressure reducing body, a pressure drop valve capable of manually adjusting the drop pressure may be used.

[実施の形態4]
図7は、実施形態4のコージェネレーションシステムに原燃料を供給する流体供給装置の構成図である。同図において、図10に示す流体供給装置の構成図と同一符号は、同一動作を行うので説明は省略し符号が相違する構成について説明する。
[Embodiment 4]
FIG. 7 is a configuration diagram of a fluid supply apparatus that supplies raw fuel to the cogeneration system according to the fourth embodiment. In this figure, the same reference numerals as those in the configuration diagram of the fluid supply apparatus shown in FIG.

実施形態4は、流量制御調節弁7の2次側に背圧弁22を設け、この背圧弁22によって流量制御調節弁7の2次圧力を流量の変化に関係なく予め定めた値を保持するように調節している。   In the fourth embodiment, a back pressure valve 22 is provided on the secondary side of the flow control valve 7 so that the secondary pressure of the flow control valve 7 is maintained at a predetermined value regardless of changes in flow rate. It is adjusted to.

図8は、実施の形態4の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。同図において、L1は上述した従来技術の原燃料の流量と流量制御調節弁7の1次圧力との関係を示し、流量の増加に関係なく1次圧力は常に一定である。L2は原燃料の流量と背圧弁22の2次圧力との関係を示し、流量の増加に応じて2次圧力が増加する。L6は流量の増加と背圧弁22の1次圧力との関係を示す。   FIG. 8 is a graph showing the relationship between the flow rate of raw fuel and the pressure of the flow control valve in the fluid supply device of the fourth embodiment. In the same figure, L1 shows the relationship between the flow rate of the raw fuel of the prior art and the primary pressure of the flow control valve 7 described above, and the primary pressure is always constant regardless of the increase of the flow rate. L2 indicates the relationship between the flow rate of the raw fuel and the secondary pressure of the back pressure valve 22, and the secondary pressure increases as the flow rate increases. L6 indicates the relationship between the increase in flow rate and the primary pressure of the back pressure valve 22.

図8において、背圧弁22の1次圧力は、図8に示す圧力調節弁の調節圧力Prに対して流量制御調節弁7が安定動作する安定差圧範囲ΔPdに納まるように調節されているため、上記背圧弁22の1次圧力の効果により流量が変化しても流量制御調節弁7の2次圧力は上記調節圧力Prに対して安定差圧範囲ΔPdから外れることはない。   In FIG. 8, the primary pressure of the back pressure valve 22 is adjusted so as to be within a stable differential pressure range ΔPd in which the flow control valve 7 stably operates with respect to the adjustment pressure Pr of the pressure control valve shown in FIG. Even if the flow rate changes due to the effect of the primary pressure of the back pressure valve 22, the secondary pressure of the flow rate control regulating valve 7 does not deviate from the stable differential pressure range ΔPd with respect to the regulating pressure Pr.

流量設定信号S5の値をLaに設定すると、上記背圧弁22を設けない場合には、L2の交点Aの流量に対する流量制御調節弁7の2次圧力はPaとなる。そして、上記背圧弁22を設けた場合には、L6の交点Eの圧力が流量制御調節弁7の2次圧力になる。このとき、上記流量制御調節弁7の2次圧力は1次圧力Prに対して安定差圧範囲ΔPdを外れることはない。   When the value of the flow rate setting signal S5 is set to La, when the back pressure valve 22 is not provided, the secondary pressure of the flow control valve 7 with respect to the flow rate at the intersection A of L2 is Pa. When the back pressure valve 22 is provided, the pressure at the intersection E of L6 becomes the secondary pressure of the flow control valve 7. At this time, the secondary pressure of the flow control valve 7 does not deviate from the stable differential pressure range ΔPd with respect to the primary pressure Pr.

続いて、流量設定信号S5の値をLaがLbに変更すると、上記背圧弁22を設けない場合には、L2の交点Bの流量に対する流量制御調節弁7の2次圧力はPbとなり、1次圧力Prに対して安定差圧範囲ΔPdの範囲には納まらなくなる。しかし、設けた場合には、L6の交点Fの圧力が流量制御調節弁7の2次圧力となるために、1次圧力Prに対して安定差圧範囲ΔPdに納まるようになる。   Subsequently, when the value of the flow rate setting signal S5 is changed from La to Lb, when the back pressure valve 22 is not provided, the secondary pressure of the flow control valve 7 with respect to the flow rate at the intersection B of L2 becomes Pb. It does not fall within the range of the stable differential pressure range ΔPd with respect to the pressure Pr. However, when it is provided, the pressure at the intersection F of L6 becomes the secondary pressure of the flow control valve 7, so that it falls within the stable differential pressure range ΔPd with respect to the primary pressure Pr.

上記実施の形態の説明では、コージェネレーションシステムを例として説明したが、半導体製造装置など流体供給装置を必要とする装置に対しても適用でき、同様な効果が得られるものである。   In the description of the above embodiment, the cogeneration system has been described as an example. However, the present invention can be applied to an apparatus that requires a fluid supply apparatus such as a semiconductor manufacturing apparatus, and the same effect can be obtained.

本発明の実施形態1のコージェネレーションシステムに原燃料を供給する流供給装置の構成図である。It is a block diagram of the flow supply apparatus which supplies raw fuel to the cogeneration system of Embodiment 1 of this invention. 実施形態1の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the raw fuel of the fluid supply apparatus of Embodiment 1, and the pressure of a flow control control valve. 実施形態2の比例制御圧力調節機であって、圧力調節弁を用いて構成した第2比例制御圧力調節機の詳細図である。It is a proportional control pressure regulator of Embodiment 2, Comprising: It is detail drawing of the 2nd proportional control pressure regulator comprised using the pressure control valve. 実施形態2の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the raw fuel of the fluid supply apparatus of Embodiment 2, and the pressure of a flow control control valve. 実施形態3の比例制御圧力調節機であって、圧力降圧弁を用いて構成した第3比例制御圧力調節機の詳細図である。It is a proportional control pressure regulator of Embodiment 3, Comprising: It is a detailed view of the 3rd proportional control pressure regulator comprised using the pressure pressure-reduction valve. 実施形態3の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the raw fuel of the fluid supply apparatus of Embodiment 3, and the pressure of a flow control control valve. 実施形態4のコージェネレーションシステムに原燃料の流体供給装置の構成図である。It is a block diagram of the fluid supply apparatus of raw fuel to the cogeneration system of Embodiment 4. 実施形態4の流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the raw fuel of the fluid supply apparatus of Embodiment 4, and the pressure of a flow control valve. 従来技術のコージェネレーションシステム原燃料の流体供給装置の構成図である。It is a block diagram of the fluid supply apparatus of the cogeneration system raw fuel of a prior art. 従来技術2のコージェネレーションシステムに原燃料を供給する流体供給装置の構成図である。It is a block diagram of the fluid supply apparatus which supplies raw fuel to the cogeneration system of the prior art 2. 図9に示す流体供給装置の原燃料の流量と流量制御調節弁の圧力との関係を示すグラフである。It is a graph which shows the relationship between the flow volume of the raw fuel of the fluid supply apparatus shown in FIG. 9, and the pressure of a flow control control valve.

符号の説明Explanation of symbols

1 燃料電池モジュール
2 昇圧機
3 第1圧力計
4 第2圧力計
5 第3圧力計
6 圧力調節弁
6−1 第1圧力調節弁
6−2 第2圧力調節弁
6−3 第3圧力調節弁
6−4 第4圧力調節弁
6−5 第5圧力調節弁
7 流量制御調節弁
8 流量センサ
9 マスフローコントローラ
10 逆止弁
11、12 配管
13、14 配管
15、16 配管
17 排気用導管
18 流量制御部
19−1 第1電磁弁
19−2 第2電磁弁
19−3 第3電磁弁
19−4 第4電磁弁
19−5 第5電磁弁
20−1 第1圧力降圧体
20−2 第2圧力降圧体
20−3 第3圧力降圧体
20−4 第4圧力降圧体
20−5 第5圧力降圧体
21 比例制御圧力調節機
21a 比例制御圧力調節機
21b 比例制御圧力調節機
22 背圧弁
23 第4圧力計
24−1 第1逆止弁
24−2 第2逆止弁
24−3 第3逆止弁
24−4 第4逆止弁
24−5 第5逆止弁
25 電磁弁制御回路
26 流量設定回路
27 圧力設定回路

S1 流量検出信号
S2 流量制御信号
S3 圧力設定信号
S4 電磁弁制御信号
S5 流量設定信号








DESCRIPTION OF SYMBOLS 1 Fuel cell module 2 Booster 3 1st pressure gauge 4 2nd pressure gauge 5 3rd pressure gauge 6 Pressure regulating valve 6-1 1st pressure regulating valve 6-2 2nd pressure regulating valve 6-3 3rd pressure regulating valve 6-4 Fourth pressure regulating valve 6-5 Fifth pressure regulating valve 7 Flow control regulating valve 8 Flow rate sensor 9 Mass flow controller 10 Check valve 11, 12 Piping 13, 14 Piping 15, 16 Piping 17 Exhaust conduit 18 Flow control Part 19-1 1st solenoid valve 19-2 2nd solenoid valve 19-3 3rd solenoid valve 19-4 4th solenoid valve 19-5 5th solenoid valve 20-1 1st pressure pressure-reducing body 20-2 2nd pressure Step-down body 20-3 Third pressure step-down body 20-4 Fourth pressure step-down body 20-5 Fifth pressure step-down body 21 Proportional control pressure regulator 21a Proportional control pressure regulator 21b Proportional control pressure regulator 22 Back pressure valve 23 Fourth Pressure gauge 24-1 First check 24-2 second check valve 24-3 third check valve 24-4 fourth check valve 24-5 fifth check valve 25 solenoid valve control circuit 26 flow rate setting circuit 27 pressure setting circuit

S1 Flow detection signal S2 Flow control signal S3 Pressure setting signal S4 Solenoid valve control signal S5 Flow setting signal








Claims (4)

流体の圧力を昇圧する昇圧機と、この昇圧された流体の圧力を所定調節圧力にする圧力調節弁と、この所定圧力の流体の流量を流量制御信号に従って自動調節する流量制御調節弁と、この流量制御調節弁を流れる流体の流量を検出して流量検出信号を出力する流量センサと、この流量検出信号の値が予め定めた流量設定信号の値と略等しくなるように前記流量制御信号を制御する流量制御部とからなり、所望流量の流体を供給する流体供給装置において、前記圧力調節弁を比例制御圧力調節機に置換し、この比例制御圧力調節機は前記昇圧された流体の圧力を前記流量制御調節弁の1次圧力と2次圧力との差圧が適正範囲内になるように、前記流量設定信号の値に応じて予め設定された調節圧力に調節することを特徴とする流体供給装置。   A pressure booster that boosts the pressure of the fluid; a pressure control valve that sets the pressure of the boosted fluid to a predetermined control pressure; a flow control valve that automatically adjusts the flow rate of the fluid at the predetermined pressure in accordance with a flow control signal; A flow rate sensor that detects the flow rate of the fluid flowing through the flow rate control valve and outputs a flow rate detection signal, and controls the flow rate control signal so that the value of the flow rate detection signal is substantially equal to the value of a predetermined flow rate setting signal A fluid supply device for supplying a fluid having a desired flow rate, wherein the pressure control valve is replaced with a proportional control pressure regulator, and the proportional control pressure regulator converts the pressure of the boosted fluid to the pressure control valve. Fluid supply characterized by adjusting to a control pressure set in advance according to the value of the flow rate setting signal so that the differential pressure between the primary pressure and the secondary pressure of the flow control valve is within an appropriate range. apparatus. 請求項1記載の比例制御圧力調節機が第1圧力調節弁及び第1電磁弁及び第1逆止弁の直列接続から形成される第1圧力調節路を、第n圧力調節路まで並列接続した構成であり、前記流量設定信号の値に応じて前記第1電磁弁から前記第n電磁弁までいずれか1つを開にして前記各圧力調節路に流体を流し、前記第1圧力調節弁の第1調節圧力乃至第n圧力調節弁の第n調節圧力は、前記各圧力調節路を流体が流れたときの前記差圧が適正範囲内になるように昇順に高くなる予め設定された調節圧力であることを特徴とする流体供給装置。   The proportional control pressure regulator according to claim 1, wherein the first pressure regulation path formed from the series connection of the first pressure regulation valve, the first electromagnetic valve, and the first check valve is connected in parallel to the nth pressure regulation path. And opening one of the first solenoid valve to the nth solenoid valve in accordance with the value of the flow rate setting signal to flow a fluid through each pressure control path, The first adjustment pressure to the nth adjustment pressure of the nth pressure adjustment valve are preset adjustment pressures that increase in ascending order so that the differential pressure when the fluid flows through each of the pressure adjustment paths is within an appropriate range. A fluid supply apparatus characterized by the above. 請求項1記載の圧力調節弁と流量制御調節弁との間に請求項2記載の第1乃至第n圧力調節弁を第1乃至第n圧力降圧体に置換した比例制御圧力調節機を設け、この第1圧力降圧体は第1流量の流体が流れたときに第1降圧値だけ降圧し、前記第n圧力降圧体は第n流量の流体が流れたときに第n降圧値だけ降圧し、前記第1乃至第n流量は昇順に大きくなる値であり、前記第1乃至第n降圧値は昇順に低くなる値であることを特徴とする流体供給装置。   A proportional control pressure regulator is provided between the pressure regulating valve according to claim 1 and the flow rate regulating valve, wherein the first to nth pressure regulating valves according to claim 2 are replaced with first to nth pressure reducing bodies, When the first flow rate fluid flows, the first pressure step-down body decreases the pressure by a first step-down value, and the n-th pressure step-down body decreases the n-th step-down value when the n-th flow rate fluid flows, The fluid supply apparatus according to claim 1, wherein the first to n-th flow rates are values that increase in ascending order, and the first to n-th step-down values are values that decrease in ascending order. 流体の圧力を昇圧する昇圧機と、この昇圧された流体の圧力を所定調節圧力にする圧力調節弁と、この所定圧力の流体の流量を流量制御信号に従って自動調節する流量制御調節弁と、この流量制御調節弁を流れる流体の流量を検出して流量検出信号を出力する流量センサと、この流量検出信号の値が予め定めた流量設定信号の値と略等しくなるように前記流量制御信号を制御する流量制御部とからなり、所望流量の流体を供給する流体供給装置において、前記流量制御調節弁の2次側に背圧弁を設け、この背圧弁によって前記流量制御調節弁の2次圧力を所定値に保つことを特徴とする流体供給装置。











A pressure booster that boosts the pressure of the fluid; a pressure control valve that sets the pressure of the boosted fluid to a predetermined control pressure; a flow control valve that automatically adjusts the flow rate of the fluid at the predetermined pressure in accordance with a flow control signal; A flow rate sensor that detects the flow rate of the fluid flowing through the flow rate control valve and outputs a flow rate detection signal, and controls the flow rate control signal so that the value of the flow rate detection signal is substantially equal to the value of a predetermined flow rate setting signal In a fluid supply device that supplies a fluid having a desired flow rate, a back pressure valve is provided on the secondary side of the flow control valve, and the secondary pressure of the flow control valve is set to a predetermined value by the back pressure valve. A fluid supply device characterized by maintaining the value.











JP2006191031A 2006-07-12 2006-07-12 Fluid supply device Pending JP2008020102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006191031A JP2008020102A (en) 2006-07-12 2006-07-12 Fluid supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006191031A JP2008020102A (en) 2006-07-12 2006-07-12 Fluid supply device

Publications (1)

Publication Number Publication Date
JP2008020102A true JP2008020102A (en) 2008-01-31

Family

ID=39076177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006191031A Pending JP2008020102A (en) 2006-07-12 2006-07-12 Fluid supply device

Country Status (1)

Country Link
JP (1) JP2008020102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460978A (en) * 2022-01-14 2022-05-10 卓外(上海)医疗电子科技有限公司 Large-range high-precision fluid adjusting device and method
CN116212229A (en) * 2023-04-24 2023-06-06 深圳核心医疗科技股份有限公司 Pressure control method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156106U (en) * 1980-04-18 1981-11-21
JPS60208607A (en) * 1984-03-30 1985-10-21 Tokyo Keiki Co Ltd Flow rate/pressure controlling circuit
JPS62155276U (en) * 1986-03-25 1987-10-02

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156106U (en) * 1980-04-18 1981-11-21
JPS60208607A (en) * 1984-03-30 1985-10-21 Tokyo Keiki Co Ltd Flow rate/pressure controlling circuit
JPS62155276U (en) * 1986-03-25 1987-10-02

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460978A (en) * 2022-01-14 2022-05-10 卓外(上海)医疗电子科技有限公司 Large-range high-precision fluid adjusting device and method
CN116212229A (en) * 2023-04-24 2023-06-06 深圳核心医疗科技股份有限公司 Pressure control method and device
CN116212229B (en) * 2023-04-24 2023-07-25 深圳核心医疗科技股份有限公司 Pressure control method and device

Similar Documents

Publication Publication Date Title
US9169558B2 (en) Fluid control apparatus
JP4399227B2 (en) Chamber internal pressure control device and internal pressure controlled chamber
US10184671B2 (en) Method for limiting a supply flow in a heat transfer system
US9477232B2 (en) Apparatus for dividing and supplying gas and method for dividing and supplying gas
US8642224B2 (en) Fuel cell system with a learning capability to readjust the driving characteristic of a gas supply device and vehicle
KR102551338B1 (en) Control system for compressor and method of controlling the compressor
US8195312B2 (en) Multi-mode control loop with improved performance for mass flow controller
US9664415B2 (en) Hot-water heat pump and method of controlling the same
US10386863B2 (en) Pressure-type flow controller
KR102421587B1 (en) Flow control method and flow control device
US6418956B1 (en) Pressure controller
US10358985B2 (en) Control device and control method
JP2000077394A (en) Semiconductor manufacture device
JP2008020102A (en) Fluid supply device
US7059132B2 (en) Steam generator feedwater control system for power plant
JP2002184444A (en) Method for actuating fuel cell battery having control system and plant including them
CN210688183U (en) Water supply system and nuclear power plant
JP6485324B2 (en) Abnormality detection method for sensor for fuel cell system
JP4582396B2 (en) Water pump control system
JP2009301257A (en) Control system for pressure regulator of multiple line
JPH0142167Y2 (en)
JP2007026056A (en) Fluid pressure adjusting device
CN112524597B (en) Water supply system, working method thereof and nuclear power station
JP2012099019A (en) Pressure governing device
JP2006285665A (en) Pressure governing device and characteristic adjustment method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327