JP2013223871A - Roll device - Google Patents

Roll device Download PDF

Info

Publication number
JP2013223871A
JP2013223871A JP2012097125A JP2012097125A JP2013223871A JP 2013223871 A JP2013223871 A JP 2013223871A JP 2012097125 A JP2012097125 A JP 2012097125A JP 2012097125 A JP2012097125 A JP 2012097125A JP 2013223871 A JP2013223871 A JP 2013223871A
Authority
JP
Japan
Prior art keywords
bearing portion
load
deflection
workpiece
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012097125A
Other languages
Japanese (ja)
Inventor
Keisuke Kimura
圭祐 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YURI ROLL KK
Original Assignee
YURI ROLL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YURI ROLL KK filed Critical YURI ROLL KK
Priority to JP2012097125A priority Critical patent/JP2013223871A/en
Publication of JP2013223871A publication Critical patent/JP2013223871A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Presses (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a roll device which can make the thickness of a processed object after processing constant.SOLUTION: A roll device includes: a first rolling roller 121 and a second rolling roller 122; pressing means 14A, B which depress first bearing portions 131A, B to second bearing portions 132A, B in a direction of coming close mutually; third bearing portions 161A, B which support rotatably a first supporting shaft 111 on the outside of the first bearing portions 131A, B; fourth bearing portions 162A, B which support rotatably a second supporting shaft 112 on the outside of the second bearing portions 132, being arranged axially in the same position as the third bearing portions 161A, B; deflection compensating means 17A, B which set apart the third bearing portions 131A, B and the fourth bearing portions 162A, B by the later described deflection compensation load; load measuring means 15A, B which measure the load of a processed object S sandwiched between the first rolling roller 121 and the second rolling roller 122; and a control means 18 which finds the deflection compensation load based on the load of the processed object S, and controls the deflection compensating means 17A, B based on the deflection compensation load.

Description

本発明は、例えばリチウムイオン2次電池の電極をプレス加工するために好適に用いることができるロール装置に関する。   The present invention relates to a roll device that can be suitably used for, for example, pressing an electrode of a lithium ion secondary battery.

リチウムイオン2次電池は、携帯電話、スマートフォン、タブレット型端末、ノート型パソコン、デジタルカメラ等の各種携帯型の機器において、小型且つ大容量(長持続時間)の電源として用いられている。リチウムイオン2次電池は一般に、LiCoO2やLiMn2O4等のリチウム化合物から成る正活物質をアルミニウム等の金属から成る板状の集電体に担持させた正極と、黒鉛等から成る負活物質をニッケル等の金属から成る板状の集電体に担持させた負極の間に、非水溶液系の電解質を配置した構成を有する。 Lithium ion secondary batteries are used as small-sized and large-capacity (long-duration) power sources in various portable devices such as mobile phones, smartphones, tablet terminals, notebook computers, and digital cameras. Lithium ion secondary batteries generally have a positive electrode in which a positive active material made of a lithium compound such as LiCoO 2 or LiMn 2 O 4 is supported on a plate-like current collector made of a metal such as aluminum, and a negative active material made of graphite or the like. It has a configuration in which a non-aqueous electrolyte is disposed between negative electrodes in which a substance is supported on a plate-like current collector made of a metal such as nickel.

正極及び負極を作製する際には、板状の集電体に正負の活物質を付着させた状態で、加熱しつつ圧延(ロール)することにより、集電体に活物質を確実に担持させるホットプレス処理が行われる。特許文献1には、そのようなホットプレス処理を行うためのロール装置が記載されている。   When producing a positive electrode and a negative electrode, a positive and negative active material is adhered to a plate-like current collector, and the active material is reliably supported on the current collector by rolling (rolling) while heating. A hot press process is performed. Patent Document 1 describes a roll apparatus for performing such hot press processing.

特許文献1に記載のロール装置は、互いに平行に配置され、被加工物(板状の集電体に活物質を付着させたもの)を間に挟んで圧延する1対のローラであって、両側に第1支軸を有する第1転圧ローラと、第1転圧ローラの上側に設けられ、両側に第2支軸を有する第2転圧ローラを備える。また、このロール装置は、第1支軸を回転可能に支持する1対の第1軸受部と、第2支軸を回転可能に支持する1対の第2軸受部と、第2軸受部に対して接離自在に、第1軸受部を下方から支持する支持機構を備える。そして、このロール装置はさらに、第1軸受部よりも外側で第1支軸を回転可能に支持する1対の第3軸受部、第2軸受部の外側で第2支軸を回転可能に支持する1対の第4軸受部、及び第3軸受部と第4軸受部を互いに離間させる方向に付勢する撓み補償機構を備えている。以下に、このような撓み補償機構が用いられる理由を説明する。   The roll apparatus described in Patent Document 1 is a pair of rollers that are arranged in parallel to each other and roll with a workpiece (a plate-like current collector attached with an active material) interposed therebetween, A first pressure roller having a first support shaft on both sides and a second pressure roller provided on the upper side of the first pressure roller and having a second support shaft on both sides are provided. In addition, the roll device includes a pair of first bearing portions that rotatably support the first support shaft, a pair of second bearing portions that rotatably support the second support shaft, and a second bearing portion. A support mechanism that supports the first bearing portion from below is provided so as to be freely contacted and separated. The roll device further supports a pair of third bearing portions that rotatably support the first support shaft outside the first bearing portion, and supports the second support shaft rotatably outside the second bearing portion. A pair of fourth bearing portions, and a deflection compensation mechanism that biases the third bearing portion and the fourth bearing portion in a direction in which they are separated from each other. The reason why such a deflection compensation mechanism is used will be described below.

被加工物を圧延する際には、第1転圧ローラ及び第2転圧ローラから被加工物に荷重が印加され、その反作用として被加工物からの反力が第1転圧ローラ及び第2転圧ローラに印加される。これにより、第1転圧ローラ及び第2転圧ローラは、両端よりも中央部の方が離間するように撓む。これに対して、撓み補償機構によって、第3軸受部と第4軸受部を互いに離間させる方向に付勢することにより、第1転圧ローラ及び第2転圧ローラに対しては、第1支軸及び第2支軸を介して、中央部を近接させるような力が作用し、撓みが打ち消されるように補償される。このように撓みを補償することにより、被加工物の厚みを幅方向に均一にすることができる。   When rolling the workpiece, a load is applied to the workpiece from the first rolling roller and the second rolling roller, and as a reaction, a reaction force from the workpiece is applied to the first rolling roller and the second rolling roller. Applied to the rolling roller. Thereby, the 1st pressure roller and the 2nd pressure roller bend so that the direction of a central part may estrange rather than both ends. On the other hand, the first bearing roller and the second roller are urged in the first support roller by urging the third bearing portion and the fourth bearing portion in the direction of separating them from each other by the deflection compensation mechanism. Through the shaft and the second support shaft, a force is applied to bring the center portion close to each other, and compensation is made so that the deflection is canceled. By compensating for the deflection in this way, the thickness of the workpiece can be made uniform in the width direction.

特開平11-260356号公報Japanese Patent Laid-Open No. 11-260356

撓み量は、転圧ローラに印加する荷重の大きさ、転圧ローラ及び支軸の材質・形状及び被加工物の材質や厚み等によって変化する。特許文献1に記載の装置では、例えば、被加工物の材質が異なると、被加工物からの反力が異なり、撓み量が変動してしまう。そのため、撓み補正機構によって第3軸受部と第4軸受部に印加する力がそのままでは、撓みを定量的に補償できなくなり、プレス後の被加工物の幅方向の厚みが不均一になってしまう。また、プレス前において搬送方向の厚みが一定でない被加工物をプレスする場合にも同様の問題が発生し、撓みを定量的に補償することができない。   The amount of bending varies depending on the magnitude of the load applied to the rolling roller, the material and shape of the rolling roller and the support shaft, the material and thickness of the workpiece, and the like. In the apparatus described in Patent Document 1, for example, when the material of the workpiece is different, the reaction force from the workpiece is different, and the amount of deflection is fluctuated. Therefore, if the force applied to the third bearing portion and the fourth bearing portion by the deflection correction mechanism remains as it is, the deflection cannot be quantitatively compensated, and the thickness in the width direction of the workpiece after pressing becomes non-uniform. . Moreover, the same problem also occurs when a workpiece having a constant thickness in the conveyance direction is pressed before pressing, and the deflection cannot be quantitatively compensated.

本発明が解決しようとする課題は、印加する荷重が何らかの要因で変動してしまった場合や、プレス前において被加工物の厚みが一定でない場合でも、加工後の被加工物の厚みを一定にすることができるロール装置を提供することである。   The problem to be solved by the present invention is that the thickness of the workpiece after processing is constant even when the applied load fluctuates for some reason or the thickness of the workpiece is not constant before pressing. It is providing the roll apparatus which can do.

上記課題を解決するために成された本発明に係るロール装置は、
a) 互いに平行に配置され、被加工物を間に挟んで圧延する第1転圧ローラ及び第2転圧ローラと、
b) 前記第1転圧ローラの両側に設けられ該第1転圧ローラの回転軸となる第1支軸を該第1転圧ローラの両側で回転可能に支持する1対の第1軸受部と、
c) 前記第2転圧ローラの回転軸である第2回転軸を該第2転圧ローラの両側で支持する1対の軸受部であって、一方が前記第1軸受部の一方と軸方向に同じ位置に配置され、他方が前記第1軸受部の他方と軸方向に同じ位置に配置された第2軸受部と、
d) 前記第1軸受部と前記第2軸受部を互いに接近させる方向に押圧する押圧手段と、
e) 前記1対の第1軸受部の外側で前記第1回転軸を回転可能に支持する1対の第3軸受部と、
f) 前記1対の第2軸受部の外側で前記第2回転軸を回転可能に支持する1対の軸受部であって、一方が前記第3軸受部の一方と軸方向に同じ位置に配置され、他方が前記第3軸受部の他方と軸方向に同じ位置に配置された第4軸受部と、
g) 前記一方の第3軸受部と前記一方の第4軸受部、及び前記他方の第3軸受部と前記他方の第4軸受部をそれぞれ、後記撓み補償荷重で離間させる1対の撓み補償手段と、
h) 前記押圧手段が第1軸受部及び第2軸受部を押圧する押圧荷重を測定する押圧荷重測定手段と、
i) 前記押圧荷重に基づいて撓み補償荷重を求め、該撓み補償荷重に基づいて前記撓み補償手段を制御する制御手段と、
を備えることを特徴とする。
The roll device according to the present invention made to solve the above problems is as follows.
a) a first rolling roller and a second rolling roller that are arranged in parallel to each other and roll with the workpiece sandwiched therebetween;
b) A pair of first bearing portions provided on both sides of the first pressure roller and supporting a first support shaft, which serves as a rotation shaft of the first pressure roller, so as to be rotatable on both sides of the first pressure roller. When,
c) A pair of bearing portions that support the second rotation shaft, which is the rotation shaft of the second pressure roller, on both sides of the second pressure roller, one of which is axially aligned with one of the first bearing portions. A second bearing portion disposed at the same position as the other of the first bearing portions and at the same position in the axial direction;
d) a pressing means for pressing the first bearing portion and the second bearing portion in a direction in which they approach each other;
e) a pair of third bearing portions that rotatably support the first rotating shaft outside the pair of first bearing portions;
f) A pair of bearing portions that rotatably support the second rotating shaft outside the pair of second bearing portions, one of which is disposed at the same axial position as one of the third bearing portions. A fourth bearing portion, the other of which is disposed at the same position in the axial direction as the other of the third bearing portion,
g) A pair of deflection compensation means for separating the one third bearing portion and the one fourth bearing portion, and the other third bearing portion and the other fourth bearing portion by a deflection compensation load described later. When,
h) a pressing load measuring means for measuring a pressing load by which the pressing means presses the first bearing portion and the second bearing portion;
i) obtaining a deflection compensation load based on the pressing load, and controlling the deflection compensation means based on the deflection compensation load;
It is characterized by providing.

本発明に係るロール装置では、第1転圧ローラと第2転圧ローラの間に被加工物が導入されると、第1転圧ローラ及び第2転圧ローラから荷重が印加され、その反作用として第1転圧ローラ及び第2転圧ローラに互いに離間するように作用する反力(以下、この反力を「被加工物反力」と呼ぶ)が作用する。一方、第1転圧ローラ及び第2転圧ローラの外側にある第1軸受部及び第2軸受部は、押圧手段によって互いに接近するように押圧される。このため、第1転圧ローラ及び第2転圧ローラは、中央部で被加工物反力によって互いに離間し、両端側では押圧手段によって互いに接近するように撓む。そこで、本発明に係るロール装置においては、被加工物反力は押圧手段によって印加する荷重の大きさと同一・逆方向であること(作用・反作用の法則)に基づいて、以下のように第1転圧ローラ及び第2転圧ローラの撓みを定量的に補償する。   In the roll device according to the present invention, when a workpiece is introduced between the first roller and the second roller, a load is applied from the first roller and the second roller, and the reaction thereof As a result, a reaction force (hereinafter referred to as “workpiece reaction force”) acting so as to be separated from each other acts on the first roller and the second roller. On the other hand, the first bearing portion and the second bearing portion outside the first rolling roller and the second rolling roller are pressed so as to approach each other by the pressing means. For this reason, the first roller and the second roller are separated from each other by the workpiece reaction force at the center, and are bent toward each other by the pressing means at both ends. Therefore, in the roll device according to the present invention, the workpiece reaction force is the same as the load applied by the pressing means and in the opposite direction (law of action / reaction), as described below. The bending of the pressure roller and the second pressure roller is quantitatively compensated.

まず、荷重測定手段は、押圧手段が第1軸受部及び第2軸受部を押圧する荷重を測定する(この荷重の大きさは被加工物反力と同一であり、以下「押圧荷重」と記載する)。制御手段は、押圧荷重に基づいて撓み補償荷重を求め、該撓み補償荷重を第3軸受部及び第4軸受部に印加して第3軸受部及び第4軸受部を離間させるよう、撓み補償手段を制御する。この撓み補正荷重により、第1転圧ローラ及び第2転圧ローラは、中央部では互いに接近し両端側では互いに離間するように撓もうとする。このように、押圧荷重及び被加工物反力による撓みと撓み補償荷重による撓みは逆方向になるため、重ね合わせの原理により両者の撓みが打ち消される。以上のように、押圧荷重に基づいて求めた撓み補正荷重を第3軸受部及び第4軸受部に印加することにより、撓みの定量的な補償が実現する。   First, the load measuring means measures the load by which the pressing means presses the first bearing portion and the second bearing portion (the magnitude of this load is the same as the workpiece reaction force, and hereinafter referred to as “pressing load”). To do). The control means obtains a deflection compensation load based on the pressing load and applies the deflection compensation load to the third bearing portion and the fourth bearing portion to separate the third bearing portion and the fourth bearing portion from each other. To control. With this deflection correction load, the first roller and the second roller try to bend so as to approach each other at the center and to separate from each other at both ends. In this way, since the deflection due to the pressing load and the workpiece reaction force and the deflection due to the deflection compensation load are in opposite directions, both the deflections are canceled by the principle of superposition. As described above, by applying the deflection correction load obtained based on the pressing load to the third bearing portion and the fourth bearing portion, quantitative compensation of the deflection is realized.

制御手段が撓み補償荷重を求める際には、押圧荷重(被加工物反力)による第1転圧ローラ及び第2転圧ローラの撓み量を押圧荷重の値から理論式で算出し、その撓み量に基づいて、別の理論式から撓み補償荷重を求めるという方法を採ることができる。あるいは、予め押圧荷重と撓み補償荷重の対応テーブルを作成しておき、その対応テーブルに基づいて、測定された押圧荷重から撓み補償荷重を求めるようにしてもよい。   When the control means obtains the deflection compensation load, the deflection amount of the first roller and the second roller according to the pressing load (workpiece reaction force) is calculated from the value of the pressing load by a theoretical formula, and the bending is performed. Based on the quantity, a method of obtaining the deflection compensation load from another theoretical formula can be adopted. Alternatively, a correspondence table between the pressing load and the deflection compensation load may be created in advance, and the deflection compensation load may be obtained from the measured pressing load based on the correspondence table.

制御手段において押圧荷重の値から撓み量及び撓み補償荷重の算出を行う場合には、例えば以下の簡略化された理論式を用いることができる。この例では、図1(a)に示すように、第1転圧ローラの両側に設けられた1対の第1軸受部(左第1軸受部93A、右第1軸受部93B)間の距離をL、左第1軸受部93Aとそれに近い方の被加工物Sの端部SAの距離をL1、右第1軸受部93Bとそれに近い方の被加工物Sの端部SBとの距離をL2、幅方向(上記軸方向と同じ方向)の被加工物Sの幅をL3とする(従って、L=L1+L2+L3である)。また、左第1軸受部93A及び右第1軸受部93Bの各々と該第1軸受部に近い方の第3軸受部(左第3軸受部96A及び右第3軸受部96B)の距離をいずれもL4とする。そして、被加工物反力(押圧荷重と大きさは同一)をW0とし、L3に亘って一様な等分布荷重であるものとする。さらに、第1転圧ローラと第1支軸を一体としたヤング率をE、断面2次モーメントをIとする。これらヤング率E及び断面2次モーメントIは、第1転圧ローラと第1支軸の材質及び形状により定まる値である。 When the control means calculates the deflection amount and the deflection compensation load from the value of the pressing load, for example, the following simplified theoretical formula can be used. In this example, as shown in FIG. 1 (a), the distance between a pair of first bearing portions (left first bearing portion 93A, right first bearing portion 93B) provided on both sides of the first rolling roller. distance of L, L 1 the distance of the end portion SA of the workpiece S closer to it and the left first bearing portion 93A, the end portion SB of the workpiece S closer to it and right first bearing portions 93B Is L 2 , and the width of the workpiece S in the width direction (the same direction as the axial direction) is L 3 (thus, L = L 1 + L 2 + L 3 ). Further, the distance between each of the left first bearing portion 93A and the right first bearing portion 93B and the third bearing portion closer to the first bearing portion (the left third bearing portion 96A and the right third bearing portion 96B) also with L 4. The workpiece reaction force (the pressure load and the magnitude is the same) is set to W 0, and the load is uniformly distributed over L 3 . Further, E is the Young's modulus that integrates the first rolling roller and the first spindle, and I is the secondary moment of section. The Young's modulus E and the secondary moment of section I are values determined by the materials and shapes of the first rolling roller and the first support shaft.

このような条件において、撓み補償を行うことなく第1転圧ローラと第2転圧ローラの間に被加工物を導入した時の第1転圧ローラの撓み量yは、第1転圧ローラの回転軸をx軸としその原点を左第1軸受部93Aとした場合、次の式により求められ、x=L/2において最大撓みとなり、x=0、Lにおいてゼロとなる。

Figure 2013223871
ただし、L1≦x≦(L1+ L3)である。
ここで、簡略化のためにL1=L2≡Lsとすると、L1+(L3/2)=L2+(L3/2)=(L/2)となり、上式は以下の式(1)に変形される。
Figure 2013223871
なお、第2転圧ローラと第2支軸も、第1のそれらと同一の大きさの被加工物反力を逆方向に受けるので、第2転圧ローラの撓み方向は逆であるが撓み量は式(1)と同一となる。 Under such conditions, the amount of deflection y of the first pressure roller when the workpiece is introduced between the first pressure roller and the second pressure roller without performing deflection compensation is the first pressure roller. When the x axis is the rotation axis and the origin is the left first bearing portion 93A, the maximum deflection is obtained by the following equation, and is zero at x = L / 2 and zero at x = 0 and L.
Figure 2013223871
However, L 1 ≦ x ≦ (L 1 + L 3 ).
Here, when L 1 = L 2 ≡L s for simplification, L 1 + (L 3/ 2) = L 2 + (L 3/2) = (L / 2) , and the above equation is less This is transformed into equation (1).
Figure 2013223871
The second roller and the second spindle also receive the workpiece reaction force having the same magnitude as the first roller in the opposite direction, so the second roller is bent in the opposite direction. The amount is the same as in equation (1).

次に、前記最大撓みを以下のように補償する。まず、1対の撓み補償手段からそれぞれ第3軸受部及び第4軸受部を離間させる荷重を印加すると、補償無しの場合と逆方向の撓みを生じ、重ね合わせの原理により全体として撓みが小さくなる。したがって、式(1)による最大撓みを打ち消すには、前記最大撓みと同一撓みを生じさせる撓み補償荷重W1を、第3軸受部及び第4軸受部を離間させる方向で撓み補償手段から印加すればよい。該撓み補償荷重W1は、図1(b)に示すように、所謂「両側突き出し梁」の構造における荷重W1と撓みyの関係式(2)を用いることで解くことができる。即ち、第3軸受部と第4軸受部を離間させるように撓み補償荷重W1を印加した図1(b)の場合、撓み補償荷重W1と撓みyとは式(2)の関係となるから、式(2)のyに、式(1)においてx=L/2を代入して求めた最大撓みy(x=L/2)を代入すれば、最大撓みを生じさせる撓み補償荷重W1を求めることができる。

Figure 2013223871
なお、ここではL1=L2=≡Lsとして(1)及び(2)式を求めたが、L1とL2が多少異なっていてもよい。実用上、十分に撓みを補正するためには、L1及びL2は、L3(すなわち被加工物の幅)の±5%の範囲内とすることが望ましく、L3の±2%の範囲内とすることがより望ましい。
また、以上では、転圧ローラ・回転軸のヤング率E、断面2次モーメントI等を幅方向に一様として近似し、撓み補償荷重W1も左右で同一と仮定しているが、実際にはさらに複雑化が必要な場合もある。このような場合には経験式や実験データ等で、式(1)や式(2)の増減調整を行えばよい。 Next, the maximum deflection is compensated as follows. First, when a load that separates the third bearing portion and the fourth bearing portion from a pair of deflection compensation means is applied, a deflection in the opposite direction to that in the case of no compensation is generated, and the deflection is reduced as a whole by the principle of superposition. . Therefore, in order to cancel the maximum deflection according to the formula (1), a deflection compensation load W 1 that causes the same deflection as the maximum deflection is applied from the deflection compensation means in the direction of separating the third bearing portion and the fourth bearing portion. That's fine. As shown in FIG. 1B, the deflection compensation load W 1 can be solved by using a relational expression (2) between the load W 1 and the deflection y in a so-called “both-side protruding beam” structure. That is, in the case of FIG. 1B in which the deflection compensation load W 1 is applied so that the third bearing portion and the fourth bearing portion are separated from each other, the deflection compensation load W 1 and the deflection y have the relationship of Expression (2). Therefore, if the maximum deflection y (x = L / 2) obtained by substituting x = L / 2 in Equation (1) is substituted for y in Equation (2), the deflection compensation load W that causes the maximum deflection is obtained. 1 can be sought.
Figure 2013223871
In this example, Equations (1) and (2) are obtained with L 1 = L 2 = ≡L s , but L 1 and L 2 may be slightly different. In practice, in order to compensate sufficiently deflection, L 1 and L 2, L 3 (i.e. the width of the workpiece) is desirably in the range of ± 5% of the L 3 ± 2% of It is more desirable to be within the range.
In the above, the Young's modulus E and the secondary moment of inertia I of the rolling roller / rotating shaft are approximated to be uniform in the width direction, and the deflection compensation load W 1 is assumed to be the same on the left and right. May require further complications. In such a case, the increase / decrease adjustment of the formula (1) or the formula (2) may be performed using an empirical formula or experimental data.

本発明に係るロール装置はさらに、加工前又は/及び加工後の被加工物の厚みの分布を測定する厚み分布測定手段を備え、前記制御手段は、厚み分布に応じて、前記一方の第3軸受部及び前記一方の第4軸受部に印加する撓み補償荷重と、前記他方の第3軸受部及び前記他方の第4軸受部に印加する撓み補償荷重とを独立に制御するように、撓み補償手段をフィードフォワード制御及び/又はフィードバック制御するようにしてもよい。この構成によれば、1対の撓み補償手段から第3軸受部及び第4軸受部に印加する撓み補償荷重を独立に制御することにより、被加工物の厚みの分布を小さくすることができる。被加工物の厚みの分布は、被加工物の幅に亘って測定してもよいが、両端の厚み、あるいはそれら両端に加えて中央の厚みの測定値を用いれば、実用上は十分である。   The roll device according to the present invention further includes a thickness distribution measuring unit that measures a thickness distribution of the workpiece before and / or after the processing, and the control unit is configured to control the third of the one according to the thickness distribution. Deflection compensation so that the deflection compensation load applied to the bearing portion and the one fourth bearing portion and the deflection compensation load applied to the other third bearing portion and the other fourth bearing portion are controlled independently. The means may be feedforward controlled and / or feedback controlled. According to this configuration, the thickness distribution of the workpiece can be reduced by independently controlling the deflection compensation load applied to the third bearing portion and the fourth bearing portion from the pair of deflection compensation means. The thickness distribution of the workpiece may be measured over the width of the workpiece, but it is practically sufficient to use the thickness at both ends, or the measured thickness at the center in addition to those ends. .

本発明によれば、荷重測定手段によって測定される押圧荷重に応じて第1転圧ローラ及び第2転圧ローラの撓みを補償するため、押圧荷重が何らかの要因で変動してしまった場合や、プレス前において被加工物の厚みが一定でない場合でも、加工後の被加工物の厚みを一定にすることができるロール装置を提供することができる。   According to the present invention, in order to compensate for the deflection of the first roller and the second roller according to the pressing load measured by the load measuring means, when the pressing load has fluctuated for some reason, Even when the thickness of the workpiece is not constant before pressing, it is possible to provide a roll device that can make the thickness of the workpiece after processing constant.

本発明に係るロール装置における最大撓みを算出する式(1)を説明するための模式図(a)と、撓み補償荷重を算出する式(2)を説明する模式図(b)。The schematic diagram (a) for explaining the formula (1) for calculating the maximum deflection in the roll device according to the present invention, and the schematic diagram (b) for explaining the formula (2) for calculating the deflection compensation load. 本発明に係るロール装置の第1実施例を示す概略正面図。The schematic front view which shows 1st Example of the roll apparatus which concerns on this invention. 第1実施例における左第3軸受部、左第4軸受部及び左補償用アクチュエータを示す左側面図。The left side view showing the left 3rd bearing part in the 1st example, the left 4th bearing part, and the actuator for left compensation. 実験1で求められた、加工後の被加工物における幅方向の位置による厚みの分布を示すグラフ。The graph which shows thickness distribution by the position of the width direction in the workpiece after a process calculated | required in Experiment 1. FIG. 実験2で求められた、加工後の被加工物における幅方向の位置による厚みの分布を示すグラフ。The graph which shows thickness distribution by the position of the width direction in the to-be-processed workpiece calculated | required in Experiment 2. FIG. 実験3で求められた、加工後の被加工物における幅方向の位置による厚みの分布を示すグラフ。The graph which shows thickness distribution by the position of the width direction in the to-be-processed workpiece calculated | required in Experiment 3. FIG. 本発明に係るロール装置の第2実施例を示す概略図(左側面図)。The schematic (left view) which shows 2nd Example of the roll apparatus which concerns on this invention. 第2実施例の変形例を示す概略図(左側面図)。Schematic which shows the modification of 2nd Example (left view).

図2〜図8を用いて、本発明に係るロール装置の実施例を説明する。   The Example of the roll apparatus based on this invention is described using FIGS.

(a) 第1実施例のロール装置の構成
第1実施例のロール装置10の構成を、図2及び図3を用いて説明する。本実施例のロール装置10は、第1転圧ローラ121と、第1転圧ローラ121の回転軸である第1支軸111と、第2転圧ローラ122と、第2転圧ローラ122の回転軸である第2支軸112を有する。第1転圧ローラ121と第2転圧ローラ122は、それらの間に板状の被加工物S(例えばリチウムイオン2次電池の電極材)を挟んで圧延するためのものであり、第1転圧ローラ121を下側として互いに対向するように配置されている。第1支軸111及び第2支軸112は、互いに逆方向に同じ回転速度で回転するように、歯車やクラッチ等を介してモータに接続されている(図示省略)。また、第1転圧ローラ121及び/又は第2転圧ローラ122には、被加工物Sを加熱するヒータが内蔵されている(図示省略)。
(a) Configuration of Roll Device of First Example The configuration of the roll device 10 of the first example will be described with reference to FIGS. 2 and 3. The roll device 10 of this embodiment includes a first pressure roller 121, a first support shaft 111 that is a rotation shaft of the first pressure roller 121, a second pressure roller 122, and a second pressure roller 122. It has the 2nd spindle 112 which is a rotating shaft. The first rolling roller 121 and the second rolling roller 122 are for rolling with a plate-shaped workpiece S (for example, an electrode material of a lithium ion secondary battery) sandwiched between them. It arrange | positions so that it may mutually oppose with the rolling roller 121 as a lower side. The first support shaft 111 and the second support shaft 112 are connected to a motor via gears, a clutch, and the like (not shown) so as to rotate in the opposite directions at the same rotational speed. Further, the first rolling roller 121 and / or the second rolling roller 122 includes a heater for heating the workpiece S (not shown).

また、ロール装置10には、第1軸受部131、第2軸受部132、メインアクチュエータ141、第2軸受部支持部142、ジャッキ装置143、荷重計15、第3軸受部161、第4軸受部162及び補償用アクチュエータ17が、それぞれ第1転圧ローラ121及び/又は第2転圧ローラ122の両側に1個ずつ設けられている。図2では、これら各構成要素について、第1転圧ローラ121及び/又は第2転圧ローラ122の左側にあるものには符号の末尾に「A」を付し、右側にあるものには符号の末尾に「B」を付して示す。例えば、第1軸受部131では、第1転圧ローラ121の左側にあるものには符号「131A」を付し、右側にあるものには符号「131B」を付す。以下、これら各構成要素について説明する。   The roll device 10 includes a first bearing portion 131, a second bearing portion 132, a main actuator 141, a second bearing portion support portion 142, a jack device 143, a load meter 15, a third bearing portion 161, and a fourth bearing portion. One 162 and one compensation actuator 17 are provided on both sides of the first roller 121 and / or the second roller 122, respectively. In FIG. 2, for each of these components, “A” is added to the end of the sign on the left side of the first and / or second pressure roller 121 and 122, and the sign on the right side is designated with “A”. Is shown with “B” appended to the end. For example, in the first bearing portion 131, a symbol “131 </ b> A” is attached to a component on the left side of the first rolling roller 121, and a symbol “131 </ b> B” is attached to a component on the right side. Hereinafter, each of these components will be described.

第1軸受部131は第1支軸111の両端側に、第2軸受部132は第2支軸112の両端側に、それぞれ設けられており、それら支軸を回転可能に支持するものである。第1軸受部131と第2軸受部132は軸方向に同じ位置に、上下に対向するように配置されている。   The first bearing portion 131 is provided on both end sides of the first support shaft 111, and the second bearing portion 132 is provided on both end sides of the second support shaft 112, and these shafts are rotatably supported. . The 1st bearing part 131 and the 2nd bearing part 132 are arrange | positioned so that it may oppose up and down at the same position in an axial direction.

メインアクチュエータ141は第1軸受部131の下部に設けられており、第1軸受部131を油圧で押し上げるアクチュエータである。メインアクチュエータ141は、ロール装置10の土台であるベース21に固定されている。第2軸受部支持部142は、ベース21に立設されたフレーム22に固定され、第2軸受部132を上方から支持(固定)するものである。なお、フレーム22も第2軸受部支持部142と同様に、左右1対(2本)設けられている。第1転圧ローラ121は、第1軸受部131がメインアクチュエータ141で押し上げられることによって上方に押し付けられるのに対して、第2転圧ローラ122は、第2軸受部132が第2軸受部支持部142によって固定されているため、上下方向に移動しない。これにより、第1転圧ローラ121と第2転圧ローラ122の間にある被加工物Sには荷重が印加される。このように、メインアクチュエータ141と第2軸受部支持部142を合わせて、被加工物Sに荷重を印加する押圧手段14が構成される。   The main actuator 141 is an actuator that is provided below the first bearing portion 131 and pushes up the first bearing portion 131 with hydraulic pressure. The main actuator 141 is fixed to the base 21 that is the base of the roll apparatus 10. The second bearing portion support portion 142 is fixed to the frame 22 erected on the base 21 and supports (fixes) the second bearing portion 132 from above. Similarly to the second bearing portion support portion 142, the frame 22 is also provided with a pair of left and right (two). The first rolling roller 121 is pressed upward by the first bearing portion 131 being pushed up by the main actuator 141, whereas the second rolling roller 122 is supported by the second bearing portion 132 by the second bearing portion. Since it is fixed by the portion 142, it does not move up and down. Thereby, a load is applied to the workpiece S between the first rolling roller 121 and the second rolling roller 122. Thus, the pressing means 14 that applies a load to the workpiece S is configured by combining the main actuator 141 and the second bearing portion support portion 142.

ジャッキ装置143は、第1軸受部131とメインアクチュエータ141の間に設けられており、第1軸受部131の高さを変更することにより、第1転圧ローラ121と第2転圧ローラ122の間隔を調整するためのものである。   The jack device 143 is provided between the first bearing portion 131 and the main actuator 141, and by changing the height of the first bearing portion 131, the first roller roller 121 and the second roller roller 122. This is for adjusting the interval.

荷重計15は、第1軸受部131とジャッキ装置143の間に設けられており、上記荷重測定手段に相当するものである。   The load meter 15 is provided between the first bearing portion 131 and the jack device 143 and corresponds to the load measuring means.

第3軸受部161は第1支軸111を回転可能に支持する軸受であって、第1軸受部131よりも外側に配置されている。また、第4軸受部162は第2支軸112を回転可能に支持する軸受であって、第2軸受部132よりも外側に配置されている。第3軸受部161と第4軸受部162は軸方向に同じ位置に、上下に対向するように配置されている。   The third bearing portion 161 is a bearing that rotatably supports the first support shaft 111, and is disposed outside the first bearing portion 131. The fourth bearing portion 162 is a bearing that rotatably supports the second support shaft 112, and is disposed outside the second bearing portion 132. The third bearing portion 161 and the fourth bearing portion 162 are arranged at the same position in the axial direction so as to face each other in the vertical direction.

補償用アクチュエータ17は、第3軸受部161と第4軸受部162の間に設けられており、上記撓み補償手段に相当するものである。この補償用アクチュエータ17は、第3軸受部161と第4軸受部162を離間させる方向に作用するアクチュエータであり、図3の側面図に示すように、第4軸受部162の下部に、被加工物の搬送方向に対して前後に1対(2個)取り付けられた油圧式のものである。   The compensation actuator 17 is provided between the third bearing portion 161 and the fourth bearing portion 162, and corresponds to the deflection compensation means. The compensation actuator 17 is an actuator that acts in a direction in which the third bearing portion 161 and the fourth bearing portion 162 are separated from each other. As shown in a side view of FIG. It is a hydraulic type in which one pair (two pieces) is attached to the front and rear with respect to the conveyance direction of the object.

また、本実施例のロール装置10は、制御部18を有する。制御部18は、左右の荷重計15からの荷重のデータ信号を入力する入力部と、左右の荷重計15により得られる荷重値に基づいて撓み補償荷重を決定する撓み補償荷重決定部と、決定された撓み補償荷重に基づいて補償用アクチュエータ17への制御信号を出力する出力部を有する。   In addition, the roll apparatus 10 of the present embodiment includes a control unit 18. The control unit 18 includes an input unit that inputs data signals of loads from the left and right load cells 15, a deflection compensation load determination unit that determines a deflection compensation load based on load values obtained by the left and right load cells 15, and a determination. An output unit is provided for outputting a control signal to the compensation actuator 17 based on the deflection compensation load.

(b) 第1実施例のロール装置の動作
第1実施例のロール装置10の動作を説明する。まず、プレス作業前の準備として、ジャッキ装置143により、第1転圧ローラ121と第2転圧ローラ122の隙間が加工前の被加工物Sの厚みよりも大きくなるように、第1転圧ローラ121を移動させる。そして、この時点の左右の荷重計15A及び15Bの値を0(ゼロ)にオフセットする。この操作により、荷重計15によって測定される荷重の値から、被加工物Sがローラに挟まれた時の反力、すなわちメインアクチュエータがローラを押圧する荷重を測定することができる。
(b) Operation of the roll apparatus of the first embodiment The operation of the roll apparatus 10 of the first embodiment will be described. First, as preparation before pressing work, the first rolling pressure is set by the jack device 143 so that the gap between the first rolling pressure roller 121 and the second rolling pressure roller 122 is larger than the thickness of the workpiece S before processing. The roller 121 is moved. Then, the values of the left and right load meters 15A and 15B at this time are offset to 0 (zero). By this operation, the reaction force when the workpiece S is sandwiched between the rollers, that is, the load by which the main actuator presses the rollers, can be measured from the load value measured by the load meter 15.

次に、メインアクチュエータ17により、第1転圧ローラ121と第2転圧ローラ122の隙間を被加工物Sの厚みよりも小さい所定値にする。そして、第1転圧ローラ121及び/又は第2転圧ローラ122をヒータで加熱しつつ、第1転圧ローラ121及び第2転圧ローラ122を互いに逆方向に同じ回転速度で回転させ、第1転圧ローラ121と第2転圧ローラ122の隙間に被加工物Sを導入し、押圧手段14、即ち、固定された第2軸受部142とメインアクチュエータ17で可動できる第1軸受部131より成る、押圧手段14によって被加工物Sに荷重を印加する。この時、第1転圧ローラ121及び第2転圧ローラ122は離間する方向の反力を被加工物Sから受けるので、該両転圧ローラの中央で最大撓みとなり、それより外側では撓みは次第に小さくなる。このままでは、第1転圧ローラ121と第2転圧ローラ122の隙間の大きさが幅方向の位置によって異なるので、加工後の被加工物Sの厚みにムラができてしまう。   Next, the main actuator 17 sets the gap between the first pressure roller 121 and the second pressure roller 122 to a predetermined value smaller than the thickness of the workpiece S. Then, while heating the first pressure roller 121 and / or the second pressure roller 122 with a heater, the first pressure roller 121 and the second pressure roller 122 are rotated in the opposite directions at the same rotational speed, The workpiece S is introduced into the gap between the first pressure roller 121 and the second pressure roller 122, and the pressing means 14, that is, the fixed second bearing portion 142 and the first bearing portion 131 that can be moved by the main actuator 17. A load is applied to the workpiece S by the pressing means 14. At this time, since the first rolling roller 121 and the second rolling roller 122 receive a reaction force in the separating direction from the workpiece S, the maximum deflection is caused at the center of the both rolling rollers, and the deflection is exerted on the outer side. It becomes smaller gradually. In this state, since the size of the gap between the first rolling roller 121 and the second rolling roller 122 varies depending on the position in the width direction, the thickness of the workpiece S after processing becomes uneven.

そこで、被加工物Sを押圧する荷重を左右の荷重計15A及び15Bで測定し、その測定データを制御部18の入力部に入力する。制御部18では、それら2つの荷重の測定データを合計して、押圧部が印加する荷重とし(被加工物からの反力と大きさは同じ)、それに基づいて最大撓みを計算し、続いて撓み補償荷重を決定する。この最大撓みと撓み補償荷重の決定方法には、押圧部が印加する荷重とそれに対応した撓み補償荷重を予備実験で求め、それを収録したテーブルを参照する方法や、所定の計算式(例えば上記(1)及び(2)式)に基づいて、押圧手段が印加する荷重から最大撓みを求め、次に撓み補償荷重を算出する方法などがある。制御部18は、算出した撓み補償荷重に基づいて補償用アクチュエータ17を制御する。   Therefore, the load pressing the workpiece S is measured by the left and right load meters 15A and 15B, and the measurement data is input to the input unit of the control unit 18. The control unit 18 adds the measurement data of these two loads to obtain a load applied by the pressing unit (the reaction force and the magnitude from the workpiece are the same), and calculates the maximum deflection based on the load. Determine the deflection compensation load. As a method for determining the maximum deflection and the deflection compensation load, a load applied by the pressing portion and a deflection compensation load corresponding to the load are obtained by a preliminary experiment, a table in which the load is recorded, a predetermined calculation formula (for example, the above-described formula) Based on the equations (1) and (2)), there is a method of obtaining the maximum deflection from the load applied by the pressing means and then calculating the deflection compensation load. The control unit 18 controls the compensation actuator 17 based on the calculated deflection compensation load.

これにより、補償用アクチュエータ17は、第3軸受部161及び第4軸受部162に撓み補償荷重を印加し、第1転圧ローラ121及び第2転圧ローラ122の撓みを補償する。すなわち、第3軸受部161及び第4軸受部162は、互いに離間する方向の荷重が印加されるので、第1転圧ローラ121及び第2転圧ローラ122は、中央よりも両端の方が互いに離間する方向に撓もうとする。この撓み補償荷重による撓みと、前述の押圧手段が印加する荷重による撓みが重ね合わさって、第1転圧ローラ121及び第2転圧ローラ122の撓みを解消できる。これにより、第1転圧ローラ121と第2転圧ローラ122の隙間の大きさが一定になるため、加工後の被加工物Sの厚みの均一性が高まる。   As a result, the compensation actuator 17 applies a deflection compensation load to the third bearing portion 161 and the fourth bearing portion 162 to compensate for the deflection of the first pressure roller 121 and the second pressure roller 122. That is, the third bearing portion 161 and the fourth bearing portion 162 are applied with a load in a direction away from each other, so that the first roller 121 and the second roller 122 have both ends closer to each other than the center. Try to bend in the direction of separation. The deflection due to the deflection compensation load and the deflection due to the load applied by the pressing means described above are superimposed, so that the deflection of the first rolling roller 121 and the second rolling roller 122 can be eliminated. Thereby, since the size of the gap between the first rolling roller 121 and the second rolling roller 122 becomes constant, the uniformity of the thickness of the workpiece S after processing is increased.

(c) 実験結果
以下、第1実施例のロール装置10を用いて第1転圧ローラ121及び第2転圧ローラ122の撓みの補償を行った実験の結果を説明する。この実験で用いたロール装置10の第1転圧ローラ121及び第2転圧ローラ122はいずれも、直径が400mm、幅が770mmである。また、各実験では、被加工物の幅方向の中心が、第1転圧ローラ121及び第2転圧ローラ122の幅方向の中心にできるだけ近くなるように、すなわち、図1に示した距離Lと距離L2ができるだけ近くなるようにした。
(c) Experimental Result Hereinafter, the result of the experiment in which the deflection of the first pressure roller 121 and the second pressure roller 122 is compensated using the roll device 10 of the first embodiment will be described. The first rolling roller 121 and the second rolling roller 122 of the roll device 10 used in this experiment both have a diameter of 400 mm and a width of 770 mm. In each experiment, the center of the workpiece in the width direction is as close as possible to the center of the first roller 121 and the second roller 122 in the width direction, that is, the distance L shown in FIG. 1 and the distance L 2 were made as close as possible.

(c-1) 実験1
実験1では、加工前の幅が465mm、平均の厚みが465μmであるオレフィン系のフィルムを被加工物として実験を行った。
まず、補償用アクチュエータ17及び制御部18を動作させることなく(以下、これらを動作させないことを「撓み補償無し」と呼ぶ)、押圧荷重W0を120kN(左右の荷重計15A及び15Bがそれぞれ60kNを検出)として加工を行った。加工後の被加工物の厚みを測定したところ、幅方向の中心において最も厚い、という結果が得られた(図4)。これは、上述のように、押圧荷重によって幅方向の中心の方が両端よりも第1転圧ローラ121と第2転圧ローラ122が離間するように撓んだことを反映している。また、厚みは幅方向に131〜138μm(分布幅7μm)の範囲で分布している。
(c-1) Experiment 1
In Experiment 1, an olefin film having a width before processing of 465 mm and an average thickness of 465 μm was used as an object to be processed.
First, without operating the compensation actuator 17 and the control unit 18 (hereinafter referred to as “no deflection compensation”), the pressing load W 0 is 120 kN (the left and right load meters 15A and 15B are 60 kN, respectively). Was detected). When the thickness of the workpiece after processing was measured, the result that it was the thickest at the center in the width direction was obtained (FIG. 4). As described above, this reflects that the center in the width direction is bent by the pressing load so that the first roller 230 and the second roller 122 are separated from each other. The thickness is distributed in the range of 131 to 138 μm (distribution width: 7 μm) in the width direction.

次に、補償用アクチュエータ17及び制御部18を動作させ(撓み補償有り)、押圧荷重W0を、撓み補償無しの場合と同じ120kNとして加工を行った。撓み補償荷重W1は、左側の補償用アクチュエータ17A及び右側の補償用アクチュエータ17Bからそれぞれ、160kNずつ印加された。加工後の被加工物の厚みを測定したところ、幅方向の分布が135〜138μm(分布幅3μm)の範囲となった(図4)。このように、撓み補償を行うことによって、この補償を行わない場合よりも厚みの分布幅を小さくできることが確認できた。 Next, the compensation actuator 17 and the control unit 18 were operated (with deflection compensation), and the pressing load W 0 was set to 120 kN as in the case without deflection compensation. The deflection compensation load W 1 was applied by 160 kN from the left compensation actuator 17A and the right compensation actuator 17B. When the thickness of the workpiece after processing was measured, the distribution in the width direction was in the range of 135 to 138 μm (distribution width: 3 μm) (FIG. 4). As described above, it was confirmed that the thickness distribution width can be made smaller by performing the deflection compensation than when the compensation is not performed.

(c-2) 実験2
実験2では、加工前の幅が346mm、平均の厚みが261μmである正極材を被加工物として実験を行った。
まず、押圧荷重W0を127kNとし、撓み補償を有りとして加工を行った。撓み補償荷重W1は、左側の補償用アクチュエータ17A及び右側の補償用アクチュエータ17Bからそれぞれ650kNずつ印加された。その結果、被加工物の幅方向の厚みの分布は208〜212μm(分布幅4μm)の範囲となったが、幅方向の両端よりも中心の方が薄くなった(図5)。これは、必要以上に大きな撓み補償荷重が印加されたためである。
(c-2) Experiment 2
In Experiment 2, an experiment was performed using a positive electrode material having a width before processing of 346 mm and an average thickness of 261 μm as a workpiece.
First, the processing was carried out with a pressing load W 0 of 127 kN and with deflection compensation. Deflection compensation load W 1 each from the left of the compensation actuator 17A and the right side of the compensation actuator 17B is applied by 650KN. As a result, the thickness distribution in the width direction of the workpiece was in the range of 208 to 212 μm (distribution width 4 μm), but the center was thinner than both ends in the width direction (FIG. 5). This is because an unnecessarily large deflection compensation load is applied.

そこで、撓み補償荷重を弱めるように制御部18の設定を変更した。撓み補償荷重を弱めると加工後の被加工物がより厚くなるため、併せて、押圧荷重を強めるようにメインアクチュエータ141を調整した。こうして、押圧荷重W0が137kN、撓み補償荷重W1が左右の補償用アクチュエータ17A及び17Bからそれぞれ455kNずつ印加される条件で加工を行ったところ、被加工物の幅方向の厚みの分布は202〜203μm(分布幅1μm)となり、調整前よりも分布幅が小さくなり、かつ加工後の厚さの絶対値も所定の許容範囲とすることができた。 Therefore, the setting of the control unit 18 is changed so as to weaken the deflection compensation load. When the deflection compensation load is weakened, the workpiece after processing becomes thicker. Accordingly, the main actuator 141 is adjusted to increase the pressing load. In this way, when the machining was performed under the condition that the pressing load W 0 was 137 kN and the deflection compensation load W 1 was applied 455 kN from the left and right compensation actuators 17A and 17B, the thickness distribution in the width direction of the workpiece was 202. It was ˜203 μm (distribution width 1 μm), the distribution width was smaller than that before adjustment, and the absolute value of the thickness after processing could be within a predetermined allowable range.

(c-3) 実験3
実験3では、加工前の幅が450mm、平均の厚みが252μmであり、材料が実験2のものと同じである電極材を被加工物として実験を行った。
この実験は、押圧荷重W0を450kNとし、撓み補償荷重W1が(i)0(撓み補償無し)、(ii)280kN、(iii)400kNである3種の条件で行った。その結果、被加工物の幅方向の厚みの分布は、(i)では175〜183μm(分布幅8μm)、(ii)では177〜182μm(分布幅5μm)、(iii)では179〜182μm(分布幅3μm)となり、(i)から(iii)の順で厚みの分布幅が小さくなった。
(c-3) Experiment 3
In Experiment 3, an experiment was performed using an electrode material having a width before processing of 450 mm, an average thickness of 252 μm, and the same material as that of Experiment 2 as a workpiece.
This experiment was performed under three conditions: the pressing load W 0 was 450 kN, and the deflection compensation load W 1 was (i) 0 (no deflection compensation), (ii) 280 kN, and (iii) 400 kN. As a result, the thickness distribution in the width direction of the workpiece is 175 to 183 μm (distribution width 8 μm) in (i), 177 to 182 μm (distribution width 5 μm) in (ii), and 179 to 182 μm (distribution in (iii)). The width of thickness distribution was reduced in the order of (i) to (iii).

これら実験2及び3のように、被加工物の幅方向の厚みの分布幅を小さくする条件を求める実験を多数行い、その結果を制御部18による制御に反映させることにより、加工の精度を高めることができる。   As in Experiments 2 and 3, many experiments for obtaining conditions for reducing the thickness distribution width in the width direction of the workpiece are performed, and the results are reflected in the control by the control unit 18 to improve the processing accuracy. be able to.

図7及び図8を用いて、第2実施例のロール装置を説明する。第2実施例のロール装置30は、図7の概略図(側面図)に示すように、第1実施例のロール装置10に厚み分布測定装置31を加えたものである。厚み分布測定装置31は、帯状の試料をその長さ方向に導入しつつ、幅方向の厚み分布を連続的に測定するものである。厚み分布測定装置31は、加工後の被加工物Sの厚み分布を測定するように、第1転圧ローラ121と第2転圧ローラ122よりも、被加工物Sの搬送方向の下流側に配置されている。   The roll apparatus of 2nd Example is demonstrated using FIG.7 and FIG.8. As shown in the schematic diagram (side view) of FIG. 7, the roll device 30 of the second embodiment is obtained by adding a thickness distribution measuring device 31 to the roll device 10 of the first embodiment. The thickness distribution measuring device 31 continuously measures the thickness distribution in the width direction while introducing a strip-shaped sample in the length direction. The thickness distribution measuring device 31 is located downstream of the first rolling roller 121 and the second rolling roller 122 in the conveying direction of the workpiece S so as to measure the thickness distribution of the workpiece S after processing. Has been placed.

また、ロール装置30は、第1実施例のロール装置10における制御部18の代わりに、制御部18Aを有する。制御部18Aは、左右の荷重計15からの荷重のデータ信号及び厚み分布測定装置31からの厚み分布のデータ信号を入力する入力部と、押圧荷重及び厚み分布に基づいて撓み補償荷重を決定する撓み補償荷重決定部と、決定された撓み補償荷重に基づいて補償用アクチュエータ17への制御信号を出力する出力部を有する。   Moreover, the roll apparatus 30 has a control unit 18A instead of the control unit 18 in the roll apparatus 10 of the first embodiment. The control unit 18A determines the deflection compensation load based on the input unit for inputting the load data signal from the left and right load cells 15 and the thickness distribution data signal from the thickness distribution measuring device 31, and the pressing load and the thickness distribution. A deflection compensation load determination unit and an output unit that outputs a control signal to the compensation actuator 17 based on the determined deflection compensation load.

第2実施例のロール装置30の動作を説明する。
被加工物Sの圧延は、第1転圧ローラ121及び/又は第1転圧ローラ122をヒータで加熱しつつ、第1転圧ローラ121及び第2転圧ローラ122を互いに逆方向に同じ回転速度で回転させ、第1転圧ローラ121と第2転圧ローラ122の隙間に被加工物Sを導入し、押圧手段14によって被加工物Sの表面に押圧荷重を印加する。圧延された被加工物Sは厚み分布測定装置31に導入され、幅方向の厚み分布が測定される。
Operation | movement of the roll apparatus 30 of 2nd Example is demonstrated.
For rolling the workpiece S, the first roller 121 and / or the first roller 122 are heated by a heater, and the first roller 121 and the second roller 122 are rotated in the same direction in the opposite directions. The workpiece S is rotated at a speed, the workpiece S is introduced into the gap between the first rolling roller 121 and the second rolling roller 122, and a pressing load is applied to the surface of the workpiece S by the pressing means 14. The rolled workpiece S is introduced into the thickness distribution measuring device 31, and the thickness distribution in the width direction is measured.

制御部18Aは、荷重計15で測定される押圧荷重に基づいて撓み補償荷重を求め、得られた撓み補償荷重に基づいて補償用アクチュエータ17を制御する。そして、制御部18Aは、厚み分布測定装置31が測定した厚み分布のデータ信号を入力部から随時取得する。ここで、加工後の被加工物Sが両端よりも中央部の方が厚ければ、撓み補償荷重が不足しており、両端部よりも中央部の方が薄ければ、撓み補償荷重が過剰である。そのため、制御部18Aは、厚み分布のデータに基づいて、撓み補償荷重を修正し、修正後の撓み補償荷重に基づいて補償用アクチュエータ17をフィードバック制御する。これにより、両端部と中央部の厚みの差を小さくすることができる。   The control unit 18A obtains a deflection compensation load based on the pressing load measured by the load meter 15, and controls the compensation actuator 17 based on the obtained deflection compensation load. And control part 18A acquires the data signal of the thickness distribution which thickness distribution measuring device 31 measured from the input part at any time. Here, if the processed workpiece S is thicker at the center than at both ends, the deflection compensation load is insufficient. If the center is thinner than both ends, the deflection compensation load is excessive. It is. Therefore, the control unit 18A corrects the deflection compensation load based on the thickness distribution data, and feedback-controls the compensation actuator 17 based on the corrected deflection compensation load. Thereby, the difference of the thickness of a both-ends part and a center part can be made small.

また、加工前の被加工物Sが、一方の端部よりも他方の端部の方が厚い、という厚み分布を有する場合には、加工後の被加工物Sも同様の厚み分布が生じる場合が多い。そのような厚み分布のデータが厚み分布測定装置31から得られた場合には、制御部18Aは、幅方向に左右1対設けられた補償用アクチュエータ17A及び17Bのうち、加工後の被加工物Sが厚い端部側に設けられた補償用アクチュエータから印加される撓み補償荷重を小さくし、その反対側の補償用アクチュエータから印加される撓み補償荷重を大きくする。これにより、被加工物Sが厚い端部側がより強く押圧され、厚み分布を小さくすることができる。   In addition, when the workpiece S before processing has a thickness distribution that the other end is thicker than one end, the same thickness distribution occurs in the processed workpiece S. There are many. When such thickness distribution data is obtained from the thickness distribution measuring device 31, the control unit 18A has a workpiece after processing among the compensating actuators 17A and 17B provided in a pair in the width direction. The deflection compensation load applied from the compensation actuator provided on the end portion side where S is thick is reduced, and the deflection compensation load applied from the compensation actuator on the opposite side is increased. Thereby, the edge part side where the workpiece S is thick is pressed more strongly, and thickness distribution can be made small.

上記のロール装置30では、加工後の被加工物Sの厚みを測定することで撓み補償荷重をフィードバック制御したが、加工前の被加工物Sの厚み分布が問題となる場合には、図8に示すロール装置30Aのように、厚み分布測定装置31を第1転圧ローラ121と第2転圧ローラ122よりも被加工物Sの搬送方向の上流側に配置し、加工前の被加工物Sの厚み分布に基づいて撓み補償荷重をフィードフォワード制御するようにしてもよい。また、ロール装置30Aには、加工後の被加工物Sの厚み分布を測定する第2の厚み分布測定装置32を設けている。図8に示す例では、第2の厚み分布測定装置32はその測定結果に基づく撓み補償荷重の修正は通常行わないで、加工後の被加工物Sの厚み分布の確認を行うために設けられている。しかし、第2の厚み分布測定装置32の測定結果を用いて、さらに撓み補償荷重のフィードバック制御を行うようにしてもよい。   In the roll device 30 described above, the deflection compensation load is feedback controlled by measuring the thickness of the workpiece S after processing. However, when the thickness distribution of the workpiece S before processing becomes a problem, FIG. The thickness distribution measuring device 31 is arranged on the upstream side in the conveying direction of the workpiece S with respect to the first rolling roller 121 and the second rolling roller 122, as in the roll device 30A shown in FIG. The deflection compensation load may be feedforward controlled based on the thickness distribution of S. In addition, the roll device 30A is provided with a second thickness distribution measuring device 32 that measures the thickness distribution of the workpiece S after processing. In the example shown in FIG. 8, the second thickness distribution measuring device 32 is provided to check the thickness distribution of the workpiece S after processing without normally correcting the deflection compensation load based on the measurement result. ing. However, feedback control of the deflection compensation load may be further performed using the measurement result of the second thickness distribution measuring device 32.

10、30、30A…ロール装置
111…第1支軸
112…第2支軸
121…第1転圧ローラ
122…第2転圧ローラ
131…第1軸受部
132…第2軸受部
14…押圧手段
141…メインアクチュエータ
142…第2軸受部支持部
143…ジャッキ装置
15…荷重計(荷重測定手段)
161…第3軸受部
162…第4軸受部
17…補償用アクチュエータ(撓み補償手段)
18…制御部
21…ベース
22…フレーム
31、32…厚み分布測定装置
93A…左第1軸受部
93B…右第1軸受部
96A…左第3軸受部
96B…右第3軸受部
DESCRIPTION OF SYMBOLS 10, 30, 30A ... Roll apparatus 111 ... 1st spindle 112 ... 2nd spindle 121 ... 1st rolling roller 122 ... 2nd rolling roller 131 ... 1st bearing part 132 ... 2nd bearing part 14 ... Pressing means 141 ... main actuator 142 ... second bearing portion support portion 143 ... jack device 15 ... load meter (load measuring means)
161 ... third bearing portion 162 ... fourth bearing portion 17 ... actuator for compensation (deflection compensation means)
18 ... Control unit 21 ... Base 22 ... Frames 31, 32 ... Thickness distribution measuring device 93A ... Left first bearing portion 93B ... Right first bearing portion 96A ... Left third bearing portion 96B ... Right third bearing portion

Claims (4)

a) 互いに平行に配置され、被加工物を間に挟んで圧延する第1転圧ローラ及び第2転圧ローラと、
b) 前記第1転圧ローラの両側に設けられ該第1転圧ローラの回転軸となる第1支軸を該第1転圧ローラの両側で回転可能に支持する1対の第1軸受部と、
c) 前記第2転圧ローラの回転軸である第2回転軸を該第2転圧ローラの両側で支持する1対の軸受部であって、一方が前記第1軸受部の一方と軸方向に同じ位置に配置され、他方が前記第1軸受部の他方と軸方向に同じ位置に配置された第2軸受部と、
d) 前記第1軸受部と前記第2軸受部を互いに接近させる方向に押圧する押圧手段と、
e) 前記1対の第1軸受部の外側で前記第1回転軸を回転可能に支持する1対の第3軸受部と、
f) 前記1対の第2軸受部の外側で前記第2回転軸を回転可能に支持する1対の軸受部であって、一方が前記第3軸受部の一方と軸方向に同じ位置に配置され、他方が前記第3軸受部の他方と軸方向に同じ位置に配置された第4軸受部と、
g) 前記一方の第3軸受部と前記一方の第4軸受部、及び前記他方の第3軸受部と前記他方の第4軸受部をそれぞれ、後記撓み補償荷重で離間させる1対の撓み補償手段と、
h) 前記押圧手段が第1軸受部及び第2軸受部を押圧する押圧荷重を測定する押圧荷重測定手段と、
i) 前記押圧荷重に基づいて撓み補償荷重を求め、該撓み補償荷重に基づいて前記撓み補償手段を制御する制御手段と、
を備えることを特徴とするロール装置。
a) a first rolling roller and a second rolling roller that are arranged in parallel to each other and roll with the workpiece sandwiched therebetween;
b) A pair of first bearing portions provided on both sides of the first pressure roller and supporting a first support shaft, which serves as a rotation shaft of the first pressure roller, so as to be rotatable on both sides of the first pressure roller. When,
c) A pair of bearing portions that support the second rotation shaft, which is the rotation shaft of the second pressure roller, on both sides of the second pressure roller, one of which is axially aligned with one of the first bearing portions. A second bearing portion disposed at the same position as the other of the first bearing portions and at the same position in the axial direction;
d) a pressing means for pressing the first bearing portion and the second bearing portion in a direction in which they approach each other;
e) a pair of third bearing portions that rotatably support the first rotating shaft outside the pair of first bearing portions;
f) A pair of bearing portions that rotatably support the second rotating shaft outside the pair of second bearing portions, one of which is disposed at the same axial position as one of the third bearing portions. A fourth bearing portion, the other of which is disposed at the same position in the axial direction as the other of the third bearing portion,
g) A pair of deflection compensation means for separating the one third bearing portion and the one fourth bearing portion, and the other third bearing portion and the other fourth bearing portion by a deflection compensation load described later. When,
h) a pressing load measuring means for measuring a pressing load by which the pressing means presses the first bearing portion and the second bearing portion;
i) obtaining a deflection compensation load based on the pressing load, and controlling the deflection compensation means based on the deflection compensation load;
A roll apparatus comprising:
前記制御手段が、前記被加工物に印加する荷重に基づいて前記被加工物の撓み量を求め、該撓み量に基づいて前記撓み補償荷重を求めることを特徴とする請求項1に記載のロール装置。   2. The roll according to claim 1, wherein the control unit obtains a deflection amount of the workpiece based on a load applied to the workpiece, and obtains the deflection compensation load based on the deflection amount. apparatus. 1対の前記第1軸受部の距離をL、一方の第1軸受部と該第1軸受部に近い方の前記被加工物の端部との距離及び他方の第1軸受部と該第1軸受部に近い方の前記被加工物の端部との距離をL、前記被加工物の幅をL3、1対の第1軸受部の各々と該第1軸受部に近い方の第3軸受部の距離をL4、前記被加工物のL3に亘って一様な等分布荷重をW0、前記撓み補償荷重をW1、第1転圧ローラと第1支軸を一体としたヤング率をE、断面2次モーメントをIとし、
前記第1支軸の最大撓みymaxを、式(1)
Figure 2013223871
(ただし、Ls≦x≦(Ls+ L3))
においてx=L/2を代入して求め、前記撓み補償荷重W1を、式(2)
Figure 2013223871
において前記最大撓みy=ymaxを代入することで求めることを特徴とする請求項2に記載のロール装置。
The distance between the pair of first bearing portions is L, the distance between one first bearing portion and the end of the workpiece closer to the first bearing portion, and the other first bearing portion and the first. The distance from the end of the workpiece closer to the bearing portion is L s , the width of the workpiece is L 3 , and each of the pair of first bearing portions and the first bearing portion closer to the first bearing portion. 3 The distance of the bearing portion is L 4 , the uniformly distributed load over L 3 of the workpiece is W 0 , the deflection compensation load is W 1 , and the first roller and the first support shaft are integrated. E is the Young's modulus and I is the moment of inertia
The maximum deflection y max of the first support shaft is expressed by equation (1).
Figure 2013223871
(However, L s ≤ x ≤ (L s + L 3 ))
And substituting x = L / 2 to obtain the deflection compensation load W 1 according to equation (2)
Figure 2013223871
The roll device according to claim 2, wherein the maximum deflection y = y max is substituted into the roll device.
さらに、加工前及び/又は加工後の被加工物の厚みの分布を測定する厚み分布測定手段を備え、
前記制御手段が、厚み分布に応じて、前記一方の第3軸受部及び前記一方の第4軸受部に印加する撓み補償荷重と、前記他方の第3軸受部及び前記他方の第4軸受部に印加する撓み補償荷重を独立に制御するように、前記撓み補償手段をフィードフォワード制御及び/又はフィードバック制御する
ことを特徴とする請求項1〜3のいずれかに記載のロール装置。
Furthermore, it comprises a thickness distribution measuring means for measuring the thickness distribution of the workpiece before and / or after processing,
The control means applies a deflection compensation load applied to the one third bearing portion and the one fourth bearing portion according to a thickness distribution, and the other third bearing portion and the other fourth bearing portion. The roll device according to any one of claims 1 to 3, wherein the deflection compensation means is feedforward controlled and / or feedback controlled so as to independently control the deflection compensation load to be applied.
JP2012097125A 2012-04-20 2012-04-20 Roll device Pending JP2013223871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012097125A JP2013223871A (en) 2012-04-20 2012-04-20 Roll device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012097125A JP2013223871A (en) 2012-04-20 2012-04-20 Roll device

Publications (1)

Publication Number Publication Date
JP2013223871A true JP2013223871A (en) 2013-10-31

Family

ID=49594334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012097125A Pending JP2013223871A (en) 2012-04-20 2012-04-20 Roll device

Country Status (1)

Country Link
JP (1) JP2013223871A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103640241A (en) * 2013-11-15 2014-03-19 南京沃联科技有限公司 Shaping attachment jig
CN108000921A (en) * 2017-12-15 2018-05-08 济源市华中冶金机械有限公司 A kind of adjustment equipment of extruder extrusion cylinder
CN113733438A (en) * 2021-10-12 2021-12-03 深圳市鸿富诚屏蔽材料有限公司 Calendering equipment and calendering process applying same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103640241A (en) * 2013-11-15 2014-03-19 南京沃联科技有限公司 Shaping attachment jig
CN103640241B (en) * 2013-11-15 2015-10-28 南京沃联科技有限公司 A kind of shaping joint tool
CN108000921A (en) * 2017-12-15 2018-05-08 济源市华中冶金机械有限公司 A kind of adjustment equipment of extruder extrusion cylinder
CN113733438A (en) * 2021-10-12 2021-12-03 深圳市鸿富诚屏蔽材料有限公司 Calendering equipment and calendering process applying same

Similar Documents

Publication Publication Date Title
CN103128987B (en) Rolling equipment
KR101508711B1 (en) Roller leveller and metal plate leveling method
CN109562586B (en) Rolling method and rolling system
CN102989841B (en) Roller leveler and method for leveling plate using same
JP5411371B1 (en) Roll press equipment and thickness measurement system
JP5797171B2 (en) Roll press machine and roll press method
TWI249443B (en) A method and an apparatus for rolling a metal plate
JP2013223871A (en) Roll device
JP5801464B1 (en) Roll press equipment
CN103209824A (en) Roll-press device
JP6082885B2 (en) Method and apparatus for manufacturing battery electrode sheet
WO2014003014A1 (en) Sheet metal rolling device
JP2014004599A (en) Meandering control method and meandering control device
JP5742703B2 (en) Metal plate rolling machine and rolling method
JP6904230B2 (en) Roll press equipment
CN203002856U (en) Roller leveler
JP2009063499A (en) Method and device for measuring bending amount of sheet-like material
JP6025621B2 (en) Roll shape measuring method and roll shape measuring apparatus for roll press equipment used in roll press equipment
JP2020041844A (en) Gravity compensation jig and steel-plate shape correction device
JP2014042922A (en) Heating roller, roll press machine, and roll press method
JP2018026295A (en) Electrode plate manufacturing apparatus
CN105013895A (en) Torsional four-roll bending machine
JP2016112872A (en) Rolling device, and gap adjustment method of rolling device
JP2002346615A (en) Plate rolling mill with zero adjustment method
JP4214069B2 (en) Rolling method and rolling apparatus for metal sheet