JP2013223759A - Eye axial length measuring device - Google Patents

Eye axial length measuring device Download PDF

Info

Publication number
JP2013223759A
JP2013223759A JP2013131907A JP2013131907A JP2013223759A JP 2013223759 A JP2013223759 A JP 2013223759A JP 2013131907 A JP2013131907 A JP 2013131907A JP 2013131907 A JP2013131907 A JP 2013131907A JP 2013223759 A JP2013223759 A JP 2013223759A
Authority
JP
Japan
Prior art keywords
eye
light
measurement
subject
axial length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013131907A
Other languages
Japanese (ja)
Other versions
JP5650810B2 (en
JP2013223759A5 (en
Inventor
Noriji Kawai
規二 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2013131907A priority Critical patent/JP5650810B2/en
Publication of JP2013223759A publication Critical patent/JP2013223759A/en
Publication of JP2013223759A5 publication Critical patent/JP2013223759A5/ja
Application granted granted Critical
Publication of JP5650810B2 publication Critical patent/JP5650810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eye axial length measuring device capable of precisely measuring an eye axial length even if there is alignment deviation to an examinee's eye.SOLUTION: An eye axial length measuring device includes an interference optical system which has a light source for emitting low coherent light, irradiates the cornea and fundus of the examinee's eye with at least a part of the light emitted from the light source, and receives the reflected light from the cornea and the reflected light from the fundus as interference light by a light receiving element, and also includes an arithmetic means for obtaining eye axial length data of the examinee's eye based on the output signal from the interference optical system. The measurement light axis of the interference optical system can be moved to the up, down, right and left directions in relation to the examinee's eye, can be moved to the position deviated from the cornea vortex of the examinee's eye, and is provided with a correction means which corrects the eye axial length data based on the alignment deviation amounts of the measurement light axis of the interference optical system and the cornea vortex of the examinee's eye in the up, down, right and left directions, acquired beforehand.

Description

本発明は、被験者眼の眼軸長を非接触にて光学的に測定する眼軸長測定装置に関する。   The present invention relates to an axial length measuring device that optically measures the axial length of a subject's eye without contact.

従来、被験者眼に測定光を投光しその反射光を受光する測定光学系を持ち、光干渉を用いて被験者眼の眼軸長を非接触にて光学的に測定する非接触式眼軸長測定装置が知られている。このような装置は、白内障眼等による水晶体の混濁がある被験者眼に対して測定を行う場合、混濁部分によって測定光束が遮光され測定精度が低下してしまうという欠点がある。また、特許文献1においては、水晶体の混濁部分を回避するべく、測定光束の入射位置を被験者眼の瞳孔上で移動させる構成を持つ眼軸長測定装置が開示されている。   Conventionally, it has a measurement optical system that projects measurement light onto the subject's eye and receives the reflected light, and uses optical interference to optically measure the axial length of the subject's eye in a non-contact manner. Measuring devices are known. Such an apparatus has a drawback in that when measurement is performed on a subject's eye with opacity of the crystalline lens due to a cataract eye or the like, the measurement light beam is blocked by the turbid portion and the measurement accuracy is lowered. Further, Patent Document 1 discloses an axial length measuring device having a configuration in which the incident position of the measurement light beam is moved on the pupil of the subject's eye in order to avoid the turbid portion of the crystalline lens.

特開平7−222716号公報JP-A-7-222716

しかしながら、前述した装置のように水晶体の混濁部分を回避するべく、測定光束の入射位置を被験者眼の瞳孔上で移動させて測定を行う場合、被験者眼の角膜頂点と測定光軸とのずれが大きくなればなるほど、測定誤差が大きくなってしまう。   However, when the measurement light beam is moved by moving the incident position of the measurement light beam on the pupil of the subject's eye in order to avoid the turbid portion of the crystalline lens as in the above-described apparatus, there is a deviation between the corneal apex of the subject's eye and the measurement optical axis. The larger the value, the larger the measurement error.

本発明は、上記問題点を鑑み、被験者眼とのアライメントずれがあっても精度よく眼軸長を測定できる眼軸長測定装置を提供することを技術課題とする。   In view of the above problems, it is an object of the present invention to provide an axial length measuring device that can accurately measure the axial length even if there is a misalignment with the subject's eye.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。   In order to solve the above problems, the present invention is characterized by having the following configuration.

(1) 低コヒーレント光を発する光源を有し、前記光源から出射された光の少なくとも一部を被検眼の角膜及び眼底に照射し、角膜からの反射光、眼底からの反射光を干渉光として受光素子により受光する干渉光学系を備え、
前記干渉光学系からの出力信号に基づいて被験者眼の眼軸長データを求める演算手段を備える眼軸長測定装置であって
干渉光学系の測定光軸は、被験者眼に対して上下左右方向に移動可能であって、被験者眼の角膜頂点からずらした位置に移動可能であり、
予め取得された干渉光学系の測定光軸と被験者眼の角膜頂点との上下左右方向におけるアライメントずれ量に基づいて前記眼軸長データを補正する補正手段を備えることを特徴とする。
(2) (1)の眼軸長測定装置において、
被験者眼角膜に対して角膜形状測定用の光を照射し、その反射光を受光して被験者眼の角膜形状を測定する角膜形状測定手段を備え、
前記補正手段は、
前記角膜形状測定光学系からの受光信号に基づいて被験者眼の角膜形状を計測し、
前記アライメントずれ量及び角膜形状測定の計測結果に基づいて前記眼軸長データを補正することを特徴とする。
(1) having a light source that emits low-coherent light, irradiating at least part of the light emitted from the light source on the cornea and fundus of the eye to be examined, and using reflected light from the cornea and reflected light from the fundus as interference light It has an interference optical system that receives light by the light receiving element,
A ocular axial length measurement apparatus comprising a calculating means for obtaining the axial length data of the subject eye based on the output signal from the interference optical system,
The measurement optical axis of the interference optical system can be moved in the vertical and horizontal directions with respect to the subject's eye, and can be moved to a position shifted from the corneal apex of the subject's eye,
And a correction unit that corrects the axial length data based on an amount of misalignment in the vertical and horizontal directions between the measurement optical axis of the interference optical system acquired in advance and the corneal apex of the subject's eye.
(2) In the axial length measuring device according to (1),
A corneal shape measuring means for irradiating the subject's eye cornea with light for corneal shape measurement, receiving the reflected light and measuring the corneal shape of the subject's eye,
The correction means includes
Measure the corneal shape of the subject's eye based on the light reception signal from the corneal shape measurement optical system,
The ocular axial length data is corrected based on a measurement result of the misalignment amount and corneal shape measurement.

本発明によれば、被験者眼とのアライメントずれがあっても精度よく眼軸長を測定できる。   According to the present invention, it is possible to accurately measure the axial length even when there is misalignment with the subject's eye.

本発明の一実施形態について図面に基づいて説明する。図1は、実施形態に係る眼軸長測定装置の外観構成図である。この装置は、いわゆる据え置き型の装置であって、基台1と、基台1に取り付けられた顔支持ユニット2と、基台1上に移動可能に設けられた移動台3と、移動台3に移動可能に設けられ、被験者眼に向けて測定光を照射し、被験者眼の眼軸長を非接触にて光学的に測定するための測定光学系を収納する測定部4と、を備える。測定部4は、移動台3に設けられたXYZ駆動部6により、被験者眼Eに対して左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)に移動される。検者によってジョイスティック5が操作されると、移動台3は、図示無き摺動機構により基台1上をX方向及びZ方向に移動される。また、検者によって回転ノブ5aが回転操作されると、測定部4がXYZ駆動部6のY駆動によりY方向に移動される。また、ジョイスティック5の頂部には、測定開始スイッチ5bが設けられている。移動台3には、表示モニタ9が設けられている。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external configuration diagram of an axial length measuring apparatus according to an embodiment. This device is a so-called stationary type device, and includes a base 1, a face support unit 2 attached to the base 1, a movable table 3 movably provided on the base 1, and a movable table 3. And a measurement unit 4 that irradiates measurement light toward the subject's eye and houses a measurement optical system for optically measuring the axial length of the subject's eye in a non-contact manner. The measuring unit 4 is moved in the left-right direction (X direction), the up-down direction (Y direction), and the front-rear direction (Z direction) with respect to the subject eye E by an XYZ driving unit 6 provided on the moving table 3. When the joystick 5 is operated by the examiner, the movable table 3 is moved in the X direction and the Z direction on the base 1 by a sliding mechanism (not shown). When the examiner rotates the rotary knob 5a, the measuring unit 4 is moved in the Y direction by the Y drive of the XYZ drive unit 6. A measurement start switch 5b is provided on the top of the joystick 5. A display monitor 9 is provided on the movable table 3.

図2、図3は、本実施形態に係る眼軸長測定装置の光学系について説明する図である。測定部4に収納される測定光学系は干渉光学系10を含み、干渉光学系10は、眼底照射光学系100a及び角膜照射光学系200a、眼底受光光学系100b及び角膜受光光学系200b、参照光光学系500、からなる。   2 and 3 are diagrams for explaining the optical system of the axial length measuring apparatus according to the present embodiment. The measurement optical system housed in the measurement unit 4 includes an interference optical system 10, and the interference optical system 10 includes a fundus irradiation optical system 100a and a cornea irradiation optical system 200a, a fundus light reception optical system 100b and a cornea light reception optical system 200b, and a reference light. An optical system 500.

眼底照射光学系100a及び角膜照射光学系200aは、低コヒーレント長の光束を出射する光源11を有し,光源11から出射した光束の一部を第1測定光(角膜測定光)及び第2測定光(眼底測定光)として被験者眼の角膜と眼底に各々に集光させる。   The fundus illumination optical system 100a and the cornea illumination optical system 200a have a light source 11 that emits a light beam having a low coherent length, and a part of the light beam emitted from the light source 11 is subjected to first measurement light (corneal measurement light) and second measurement light. Light (fundus measurement light) is condensed on the cornea and fundus of the subject's eye.

図2(a)に示すように、光源11から出射された光束の一部は、コリメーターレンズ12、ハーフミラー13、集光レンズ14、三角プリズム15、ハーフミラー13、リレーレンズ18、リレーレンズ19、ハーフミラー20、ダイクロイックミラー21、対物レンズ22を経て、被験者眼Eの眼底に照射される。すなわち、コリメーターレンズ12〜対物レンズ22との光路間に配置されたこれらの光学部材は、眼底照射光学系100aとして配置されている。そして、被験者眼Eの眼底からの反射光は、眼底に照射されるまでの眼底測定光の進行方向に対して眼底照射光学系100の対物レンズ22〜集光レンズ14までの光路を逆方向に進行し、ハーフミラー13、集光レンズ24を介して、光ファイバー25の端部25aに入射する。すなわち、対物レンズ22〜光ファイバー25の端部25aとの光路間に配置された光学部材は、眼底受光光学系100bとして配置されている。   As shown in FIG. 2A, a part of the light beam emitted from the light source 11 is a collimator lens 12, a half mirror 13, a condenser lens 14, a triangular prism 15, a half mirror 13, a relay lens 18, and a relay lens. 19, the fundus of the subject eye E is irradiated through the half mirror 20, the dichroic mirror 21, and the objective lens 22. That is, these optical members disposed between the optical path between the collimator lens 12 and the objective lens 22 are disposed as a fundus illuminating optical system 100a. Then, the reflected light from the fundus of the subject eye E is in the opposite direction of the optical path from the objective lens 22 to the condenser lens 14 of the fundus illumination optical system 100 with respect to the traveling direction of the fundus measurement light until the fundus is irradiated. The light travels and enters the end portion 25 a of the optical fiber 25 through the half mirror 13 and the condenser lens 24. In other words, the optical member disposed between the optical path between the objective lens 22 and the end 25a of the optical fiber 25 is disposed as the fundus light receiving optical system 100b.

また、図2(b)に示すように、光源11から出射された光束の一部は、コリメーターレンズ12、ハーフミラー13、可動三角プリズム23、ハーフミラー13、リレーレンズ18、リレーレンズ19、ハーフミラー20、ダイクロイックミラー21、対物レンズ22を経て、被験者眼Eの角膜付近に照射される。すなわち、コリメーターレンズ12〜対物レンズ22との光路間に配置されたこれらの光学部材は、角膜照射光学系200aとして配置されている。そして、被験者眼Eの角膜からの反射光は、角膜に照射されるまでの角膜測定光の進行方向に対して角膜照射光学系200の対物レンズ12〜可動三角プリズム23までの光路を逆方向に進行し、ハーフミラー13で反射される。その後、集光レンズ24にて集光された後、光ファイバー25の端部25aに入射される。すなわち、対物レンズ22〜光ファイバー25の端部25aとの光路間に配置されたこれらの光学部材は、角膜受光光学系200bとして配置されている。   Further, as shown in FIG. 2B, a part of the light beam emitted from the light source 11 is collimator lens 12, half mirror 13, movable triangular prism 23, half mirror 13, relay lens 18, relay lens 19, The light is irradiated near the cornea of the eye E through the half mirror 20, the dichroic mirror 21, and the objective lens 22. That is, these optical members disposed between the optical path between the collimator lens 12 and the objective lens 22 are disposed as a cornea irradiation optical system 200a. Then, the reflected light from the cornea of the subject's eye E reverses the optical path from the objective lens 12 to the movable triangular prism 23 of the cornea irradiation optical system 200 with respect to the traveling direction of the cornea measurement light until the cornea is irradiated. The light travels and is reflected by the half mirror 13. Thereafter, the light is condensed by the condenser lens 24 and then incident on the end 25 a of the optical fiber 25. That is, these optical members disposed between the optical path between the objective lens 22 and the end 25a of the optical fiber 25 are disposed as a corneal light receiving optical system 200b.

前述の眼底測定光や角膜測定光と合成される参照光を生成する参照光光学系500は、光源側から順に、光源11、コリメータレンズ12、可動三角プリズム23、ハーフミラー13、リレーレンズ18、リレーレンズ19、反射ミラー51、反射ミラー52、リレーレンズ53、参照ミラー54、を含む。なお、矢印A方向に移動する可動三角プリズム23は、駆動部82によって駆動され、参照光の光路長を変化させるために用いられる。なお、本実施形態の光学配置によれば、三角プリズム23の移動に伴い、角膜測定光の光路長と参照光の光路長が同時に変化する。光源11から出射された低コヒーレント光は、ハーフミラー20で透過されるまで角膜照射光学系200と同様の光路を進行する。そして、ハーフミラー20にて透過された光は、ミラー51、ミラー52、リレーレンズ53を経て、参照ミラー54に到達する。参照ミラー54に到達した光は、参照ミラー54にて折り返され、リレーレンズ53、ミラー52、ミラー51を経て、ハーフミラー20を透過する。ハーフミラー20を透過した反射光は、角膜反射光と合成され干渉光とされたのち、角膜受光光学系200bと同様の光路を経て、光ファイバー25の端部25aに入射される。この場合、可動三角プリズム23の位置が変化しても、角膜測定光の全光路長(光源11〜角膜、角膜〜光ファイバ25の端部25a)と参照光の全光路長(光源11〜参照ミラー54、参照ミラー54〜光ファイバ25の端部25a)は干渉が起こりうる範囲でほぼ等しい関係で維持される。   The reference light optical system 500 that generates the reference light combined with the fundus measurement light and the cornea measurement light described above, in order from the light source side, the light source 11, the collimator lens 12, the movable triangular prism 23, the half mirror 13, the relay lens 18, The relay lens 19, the reflection mirror 51, the reflection mirror 52, the relay lens 53, and the reference mirror 54 are included. The movable triangular prism 23 that moves in the direction of arrow A is driven by the drive unit 82 and used to change the optical path length of the reference light. Note that, according to the optical arrangement of the present embodiment, as the triangular prism 23 moves, the optical path length of the cornea measurement light and the optical path length of the reference light change simultaneously. The low-coherent light emitted from the light source 11 travels through the same optical path as that of the cornea irradiation optical system 200 until it is transmitted through the half mirror 20. Then, the light transmitted by the half mirror 20 reaches the reference mirror 54 through the mirror 51, the mirror 52, and the relay lens 53. The light that reaches the reference mirror 54 is turned back by the reference mirror 54, passes through the relay lens 53, the mirror 52, and the mirror 51, and passes through the half mirror 20. The reflected light transmitted through the half mirror 20 is combined with the corneal reflection light to be interference light, and then enters the end 25a of the optical fiber 25 through the same optical path as that of the corneal light receiving optical system 200b. In this case, even if the position of the movable triangular prism 23 changes, the total optical path length of the cornea measurement light (light source 11 to cornea, cornea to end 25a of the optical fiber 25) and the total optical path length of the reference light (light source 11 to reference) The mirror 54 and the reference mirror 54 to the end 25a of the optical fiber 25 are maintained in an approximately equal relationship within a range where interference can occur.

また、プリズム23の位置の移動によって参照光の光路長が変化されると、参照光光学系500による参照光の全光路長と,被験者眼の眼軸長によって変動する眼底測定光の全光路長(光源11〜眼底、眼底〜光ファイバ25の端部25a)とが干渉が起こりうる範囲でほぼ等しい関係となるときがある。この場合、参照ミラー54に到達した光は、可動三角プリズム23で折り返されてハーフミラー13で反射される際に、三角プリズム15にて折り返された眼底反射光と合成され干渉光とされたのち、光ファイバー25の端部25aに入射される。   Further, when the optical path length of the reference light is changed by the movement of the position of the prism 23, the total optical path length of the fundus measurement light that varies depending on the total optical path length of the reference light by the reference light optical system 500 and the axial length of the subject's eye. In some cases, the light sources 11 to the fundus and the fundus to the end 25a of the optical fiber 25 have substantially the same relationship within a range where interference can occur. In this case, the light that has reached the reference mirror 54 is folded by the movable triangular prism 23 and reflected by the half mirror 13, and then is combined with the fundus reflection light folded by the triangular prism 15 to be interference light. The light is incident on the end 25a of the optical fiber 25.

図3は本実施形態に係る測定部4が持つ分光光学系の概略構成図である。分光光学系600(スペクトロメータ部)は、コリメータレンズ60、グレーティングミラー(回折格子)61、集光レンズ62、円柱レンズ63、受光素子64にて構成されている。受光素子64は、赤外域に感度を有する一次元素子(ラインセンサ)を用いている。   FIG. 3 is a schematic configuration diagram of a spectroscopic optical system included in the measurement unit 4 according to the present embodiment. The spectroscopic optical system 600 (spectrometer unit) includes a collimator lens 60, a grating mirror (diffraction grating) 61, a condenser lens 62, a cylindrical lens 63, and a light receiving element 64. The light receiving element 64 is a one-dimensional element (line sensor) having sensitivity in the infrared region.

光ファイバー25の端部25aに入射した角膜測定光と参照光による干渉光及び眼底測定光と参照光による干渉光は、光ファイバ25を通じてもう一方の端部25bから出射される。そして、端部25bから出射された2つの干渉光は、コリメータレンズ60にて光束径を広げられた後、グレーティングミラー61にて周波数成分に分光される。周波数成分に分光された干渉光は、集光レンズ62、円柱レンズ63を経て、受光素子64の受光面に集光する。   Interfering light by the cornea measurement light and reference light and incident light by the fundus measurement light and reference light incident on the end portion 25 a of the optical fiber 25 are emitted from the other end portion 25 b through the optical fiber 25. Then, the two interference lights emitted from the end portion 25 b are spread by the collimator lens 60 and then split into frequency components by the grating mirror 61. The interference light split into frequency components is condensed on the light receiving surface of the light receiving element 64 through the condenser lens 62 and the cylindrical lens 63.

なお、被験者眼の眼軸長を非接触にて光学的に測定する測定光学系としては、これに限るものではなく、光源からの光の一部を測定光として被験者眼眼底に照射するとともに、該光源からの光の一部を参照光として参照面に照射し、該参照光と前記測定光の反射光との合成により得られる干渉光を受光する干渉光学系を含む測定光学系であればよい。例えば、被験者眼の角膜を参照面とし、光源からの光を被験者眼の眼底及び角膜に照射し、被験者眼の眼底及び角膜の反射光の合成により得られる干渉光を受光する干渉光学系を用いて眼軸長を求めるようにしてもよい(例えば、特開2005−348755号公報参照)。   The measurement optical system for optically measuring the axial length of the subject's eye in a non-contact manner is not limited to this, and irradiates a part of the light from the light source to the subject's eye fundus as measurement light, If the measurement optical system includes an interference optical system that irradiates a part of the light from the light source as a reference light to the reference surface and receives the interference light obtained by combining the reference light and the reflected light of the measurement light Good. For example, using an interference optical system that uses the cornea of the subject's eye as a reference surface, irradiates the fundus and cornea of the subject's eye with light from a light source, and receives the interference light obtained by combining the reflected light of the fundus and cornea of the subject's eye Thus, the axial length may be obtained (see, for example, JP-A-2005-348755).

図2の説明に戻る。700は被験者眼の前眼部を撮影する観察光学系であり、被験者眼前方から、対物レンズ22、ダイクロイックミラー21、リレーレンズ71、撮像レンズ72、赤外域に感度を有する撮像素子73、を含む。なお、被験者眼Eの瞳位置と撮像素子73は略共役な関係となっている。   Returning to the description of FIG. Reference numeral 700 denotes an observation optical system for photographing the anterior segment of the subject's eye, and includes an objective lens 22, a dichroic mirror 21, a relay lens 71, an imaging lens 72, and an imaging element 73 having sensitivity in the infrared region from the front of the subject's eye. . Note that the pupil position of the subject eye E and the image sensor 73 have a substantially conjugate relationship.

さらに、眼Eの前眼部の前方には、眼Eの角膜Ecにリング指標を投影するための近赤外光であって光源11とは異なる波長の赤外光を発するリング指標投影光学系46が測定光軸L1を中心に配置されると共に、眼Eの角膜Ecに無限遠指標を投影することにより被験者眼に対する作動距離方向のアライメントずれを検出するための近赤外光を発する作動距離指標投影光学系45が測定光軸L1に対して左右対称に配置されている。なお、リング投影光学系46は、眼Eの前眼部を照明して観察する前眼部観察用照明光としても用いられると共に、角膜形状測定用の指標投影光学系として兼用される。すなわち、撮像素子73にて前眼部像と共に撮像されたリング指標像の形状に基づいて眼Eの角膜形状が測定される。   Further, in front of the anterior segment of the eye E, a ring index projection optical system that emits near-infrared light for projecting a ring index onto the cornea Ec of the eye E and having infrared light having a wavelength different from that of the light source 11. 46 is arranged with the measurement optical axis L1 as the center, and a working distance that emits near-infrared light for detecting misalignment in the working distance direction with respect to the subject's eye by projecting an infinity index onto the cornea Ec of the eye E The index projection optical system 45 is arranged symmetrically with respect to the measurement optical axis L1. The ring projection optical system 46 is used as illumination light for anterior ocular segment observation for illuminating and observing the anterior segment of the eye E, and is also used as an index projection optical system for corneal shape measurement. That is, the corneal shape of the eye E is measured based on the shape of the ring index image captured together with the anterior segment image by the image sensor 73.

図4は、本実施形態に係る眼科装置の制御系の構成について説明するための概略構成図である。装置全体の制御や測定値の演算等を行う制御部80は、測定部4に備わる各部材の他、前述の観察光学系700によって撮影された前眼部像や測定結果等を表示する表示モニタ9、XYZ駆動部6、測定結果等を記憶するメモリ85、回転ノブ5a、測定開始スイッチ5b、各種設定を行うためのスイッチが配置されたコントロール部86等が接続されている。ここで、メモリ85には、測定部4に設けられた測定光学系からの出力信号に基づく被験者眼の眼軸長データの算出、撮像素子73からの撮像(受光)信号に基づく被験者眼の角膜形状の計測、撮像素子73からの撮像信号に基づく測定光束の光軸と被験者眼との上下左右方向におけるアライメントずれ量の計測、等を行うための演算処理プログラムが格納されている。さらに、演算処理プログラムには、眼軸長測定時のアライメントずれ量及び角膜形状測定の計測結果に基づいて眼軸長データを補正するためのプログラムが含まれている。なお、制御部80は、前述の演算処理プログラムに基づきデータの演算処理等を行う。   FIG. 4 is a schematic configuration diagram for explaining the configuration of the control system of the ophthalmologic apparatus according to the present embodiment. The control unit 80 that controls the entire apparatus, calculates measurement values, and the like is a display monitor that displays the anterior segment image, measurement results, and the like taken by the observation optical system 700 in addition to the members provided in the measurement unit 4. 9, an XYZ drive unit 6, a memory 85 for storing measurement results, a rotary knob 5a, a measurement start switch 5b, a control unit 86 on which switches for performing various settings are arranged. Here, the memory 85 calculates the axial length data of the subject's eye based on the output signal from the measurement optical system provided in the measurement unit 4, and the cornea of the subject's eye based on the imaging (light reception) signal from the imaging element 73. An arithmetic processing program for measuring the shape, measuring the amount of misalignment in the vertical and horizontal directions between the optical axis of the measurement light beam based on the imaging signal from the imaging element 73 and the subject's eye, and the like are stored. Further, the arithmetic processing program includes a program for correcting the axial length data based on the alignment deviation amount at the time of measuring the axial length and the measurement result of the corneal shape measurement. Note that the control unit 80 performs data arithmetic processing based on the above-described arithmetic processing program.

以上のような構成を備える眼科装置において、その動作について説明する。検者は、被験者の顔を顔支持ユニット2に固定させ、図示なき固視標を固視するよう指示した後、被験者眼Eに対する測定部4のX,Y及びZ方向のアライメントを行う。検者は、モニタ9を観察しながらジョイスティック5及び回転ノブ5aを操作し、二次元撮像素子73に撮像される前眼部像がモニタ9に表示されるようにラフなアライメントを行う。これにより、被験者眼の前眼部が撮像素子73によって撮影され、表示モニタ40上には、前眼部像、レチクルマーク101、リング投影光学系46によって投影されたリング指標像R、作動距離投影光学系45によって投影された無限遠指標像Mなどが表示される(図5(a)参照)。   The operation of the ophthalmologic apparatus having the above configuration will be described. The examiner fixes the face of the subject to the face support unit 2 and instructs to fixate a fixation target (not shown), and then aligns the measurement unit 4 with respect to the subject eye E in the X, Y, and Z directions. The examiner operates the joystick 5 and the rotary knob 5 a while observing the monitor 9, and performs rough alignment so that the anterior segment image captured by the two-dimensional image sensor 73 is displayed on the monitor 9. As a result, the anterior segment of the subject's eye is photographed by the image sensor 73, and on the display monitor 40, the anterior segment image, the reticle mark 101, the ring index image R projected by the ring projection optical system 46, and the working distance projection. The infinity index image M projected by the optical system 45 is displayed (see FIG. 5A).

検者は、表示モニタ40に表示されるリング像Rを見ながらジョイスティック5を操作して、リング像Rとレチクルマーク101が同心円になるように測定部4の位置を上下左右方向に調整する(図5(b)参照)。その後、リング像Rが最も細くなるように、測定部4の作動距離方向の位置を調整する。そして、アライメントが完了して、検者から測定開始スイッチ5bが押されると、測定が行われる。   The examiner operates the joystick 5 while viewing the ring image R displayed on the display monitor 40, and adjusts the position of the measurement unit 4 in the vertical and horizontal directions so that the ring image R and the reticle mark 101 are concentric circles ( (Refer FIG.5 (b)). Thereafter, the position of the measuring unit 4 in the working distance direction is adjusted so that the ring image R becomes the thinnest. Then, when the alignment is completed and the measurement start switch 5b is pushed by the examiner, the measurement is performed.

ここで、制御部80は、撮像素子73からの撮像信号に基づいて被験者眼に対する測定部4のアライメントずれの検出が可能であり、その検出結果に基づいてXYZ駆動部6を駆動させ測定部4を移動させるようにしてもよいし(自動アライメント機能)、XY方向のアライメントずれ情報やZ方向のアライメントずれ情報(図5のインジケータ参照)をモニタ9上に表示させるようにしてもよい。なお、被験者眼に対する上下左右方向におけるアライメントずれの検出結果は、後述補正処理に用いられる。この場合、制御部80は、リング指標Rの中心座標(撮像素子73に受光されるリング視標像の中心座標)に基づいて被験者眼に対する測定部4の上下左右方向のアライメントずれを求める。また、制御部80は、測定部4が作動距離方向にずれた場合に、前述の無限遠指標Mの間隔がほとんど変化しないのに対して、リング指標の所定経線方向の像間隔が変化するという特性を利用して、被験者眼に対する作動距離方向のアライメントずれを求める(詳しくは、特開平6−46999号参照)。   Here, the control unit 80 can detect the misalignment of the measurement unit 4 with respect to the subject's eye based on the imaging signal from the imaging element 73, and drives the XYZ driving unit 6 based on the detection result to measure the measurement unit 4. May be moved (automatic alignment function), or misalignment information in the XY direction and misalignment information in the Z direction (see the indicator in FIG. 5) may be displayed on the monitor 9. In addition, the detection result of the alignment shift in the vertical and horizontal directions with respect to the subject's eye is used for correction processing described later. In this case, the control unit 80 obtains the vertical / horizontal misalignment of the measurement unit 4 with respect to the subject's eye based on the center coordinates of the ring index R (the center coordinates of the ring visual target image received by the image sensor 73). Further, when the measuring unit 4 is displaced in the working distance direction, the control unit 80 says that the image interval in the predetermined meridian direction of the ring index changes while the interval of the infinity index M hardly changes. Using the characteristic, the misalignment in the working distance direction with respect to the subject's eye is obtained (for details, refer to Japanese Patent Laid-Open No. 6-46999).

測定開始のトリガ信号に基づき、制御部80は、光源11から低コヒーレント光を出射させると、受光素子64上で干渉縞のスペクトル情報が記録される。そして、そのスペクトル情報が制御部80へと入力され、フーリエ変換を用いて解析することで、被験者眼の深さ方向における眼特性情報が計測可能となる。   When the control unit 80 emits low-coherent light from the light source 11 based on the trigger signal for starting measurement, spectrum information of interference fringes is recorded on the light receiving element 64. Then, the spectral information is input to the control unit 80 and analyzed using Fourier transform, whereby the eye characteristic information in the depth direction of the subject's eye can be measured.

ここで、被験者眼Eの眼軸長を求める場合、制御部80は、駆動部82を駆動させることにより可動プリズム23を移動させていき、受光素子64に受光されるスペクトル情報に基づいて得られる干渉信号と,プリズム23の移動によって変化される参照光の光路長(光路長可変手段の駆動結果),から被験者眼Eの眼軸長を求める。   Here, when obtaining the axial length of the subject eye E, the control unit 80 moves the movable prism 23 by driving the drive unit 82 and is obtained based on the spectrum information received by the light receiving element 64. The axial length of the subject eye E is obtained from the interference signal and the optical path length of the reference light that is changed by the movement of the prism 23 (the driving result of the optical path length varying means).

制御部80は、駆動部82を駆動させることにより可動三角プリズム23を実線で示す基準位置(ここでは角膜照射光学系の光路が最も短くなる位置)から矢印A方向に移動させ、角膜測定光と参照光が通る光学系の光路長を変化させていく。   The control unit 80 drives the driving unit 82 to move the movable triangular prism 23 from the reference position indicated by a solid line (here, the position where the optical path of the corneal irradiation optical system is the shortest) in the direction of arrow A, and The optical path length of the optical system through which the reference light passes is changed.

ここで、可動三角プリズム23が矢印方向に移動されることによって参照光の光路長が長くなっていき、眼底測定光の光路長と参照光との光路長との光路差が少なくなると、眼底測定光と参照光との干渉光が発生するようになる。図6は、角膜測定光と参照光による干渉信号と,眼底測定光と参照光による干渉信号が検出されたときの被験者眼の深さ方向における干渉信号の強度を示す例である。なお、ACは角膜前面からの反射光による干渉信号、PCは角膜後面からの反射光による干渉信号、ARは被験者眼の網膜前面からの反射光による干渉信号であり、PRは被験者眼の網膜後面からの反射光による干渉信号である。   Here, when the movable triangular prism 23 is moved in the direction of the arrow, the optical path length of the reference light becomes longer, and when the optical path difference between the optical path length of the fundus measurement light and the optical path length of the reference light decreases, the fundus measurement Interference light between the light and the reference light is generated. FIG. 6 is an example showing the intensity of the interference signal in the depth direction of the subject's eye when the interference signal by the cornea measurement light and the reference light and the interference signal by the fundus measurement light and the reference light are detected. AC is an interference signal due to reflected light from the front surface of the cornea, PC is an interference signal due to reflected light from the back surface of the cornea, AR is an interference signal due to reflected light from the front surface of the retina of the subject's eye, and PR is the back surface of the subject's eye. It is an interference signal by the reflected light from.

ここで、干渉信号ACと干渉信号PRの両方が検出されるときのプリズム23の位置は、被験者眼の眼軸長によって異なる。そこで、制御部80は、プリズム23の移動位置毎にメモリ85に記憶されるスペクトル情報の中から干渉信号ACと干渉信号PRが検出されているスペクトル情報Sを特定する。そして、特定されたスペクトル情報Sが得られたときのプリズム23の位置情報(例えば、プリズム23の基準位置からの移動量(又は駆動部82の駆動量))を求める。さらに、制御部80は、干渉信号ACと干渉信号PRが検出されたときのスペクトル情報Sに基づいて深さ方向における干渉信号ACと干渉信号PRの位置情報を求める。   Here, the position of the prism 23 when both the interference signal AC and the interference signal PR are detected differs depending on the axial length of the subject's eye. Therefore, the control unit 80 specifies the spectrum information S in which the interference signal AC and the interference signal PR are detected from the spectrum information stored in the memory 85 for each movement position of the prism 23. Then, the position information of the prism 23 (for example, the movement amount of the prism 23 from the reference position (or the driving amount of the driving unit 82)) when the specified spectrum information S is obtained is obtained. Further, the control unit 80 obtains position information of the interference signal AC and the interference signal PR in the depth direction based on the spectrum information S when the interference signal AC and the interference signal PR are detected.

より具体的には、制御部80は、干渉信号ACと干渉信号PRが検出されたスペクトル情報Sに基づいて干渉信号ACから干渉信号PRまでの深さ方向の寸法Laを求める。そして、スペクトル情報Sを取得した際のプリズム23の基準位置からの移動量に基づいて寸法Lbを求める。そして、制御部80は、寸法Laと寸法Lbを足し合わせることにより被験者眼の眼軸長を求める(眼軸長=La+Lb)。   More specifically, the control unit 80 obtains a dimension La in the depth direction from the interference signal AC to the interference signal PR based on the spectrum information S from which the interference signal AC and the interference signal PR are detected. Then, the dimension Lb is obtained based on the amount of movement of the prism 23 from the reference position when the spectrum information S is acquired. And the control part 80 calculates | requires the axial length of a test subject's eye by adding the dimension La and the dimension Lb (eye axial length = La + Lb).

また、制御部80は、眼軸長測定時における撮像素子73からの撮像信号に基づいて測定光束の光軸L1と被験者眼との上下左右方向におけるアライメントずれ量を計測することにより、眼軸長測定時におけるアライメントずれ量を取得する。より具体的には、制御部80は、眼軸長測定のトリガ信号が入力されて測定光源が発光されているとき、もしくはその前後に撮像素子73によって撮像された前眼部像に基づいて、撮像素子73の撮像面上における所定のアライメント基準位置(撮像素子73の撮像面における測定光軸L1の位置)とリング指標Rの中心座標との距離(アライメントずれ量)及びずれ方向を検出し、その検出結果をメモリ85に記憶させる。   In addition, the control unit 80 measures the amount of misalignment in the vertical and horizontal directions between the optical axis L1 of the measurement light beam and the subject's eye based on the imaging signal from the imaging device 73 at the time of measuring the axial length, thereby determining the axial length. Get the amount of misalignment at the time of measurement. More specifically, the control unit 80 receives the trigger signal for measuring the axial length and emits the measurement light source, or based on the anterior segment image captured by the imaging element 73 before and after the measurement light source. Detecting a distance (alignment deviation amount) and a deviation direction between a predetermined alignment reference position (position of the measurement optical axis L1 on the imaging surface of the imaging element 73) and the center coordinate of the ring index R on the imaging surface of the imaging element 73; The detection result is stored in the memory 85.

また、制御部80は、上記眼軸長測定の前後に、観察光学系700の撮像素子73によって撮像されたリング指標像Rの形状に基づいて被験者眼の角膜曲率を計測しておく。より具体的には、制御部80は、リング像Rのエッジ座標から中心座標を算出し、所定角度(例えば、1度毎)の経線毎に中心座標からリングまでの距離を算出する。そして、中心座標からリングまでの所定角度の経線毎の距離が得られたら、これらのデータと既知の曲率球から得られ記憶されているデータとを比較して各経線毎の角膜曲率データを得る。これにより、各経線方向毎の角膜曲率を求めることができる。なお、被験者眼の角膜頂点と測定光軸のずれが大きい状態で上記眼軸長測定がされても、角膜曲率の測定は被験者眼の角膜頂点と測定光軸L1を一致させた状態で測定を行うのが好ましい。この場合、角膜曲率測定専用のスイッチを機械的もしくは電気的に設け、眼軸長測定時とは独立したアライメント調整を行った後に、専用のスイッチからのトリガ信号(眼軸長測定開始のトリガ信号とは別)に基づいて角膜曲率を測定するようにしてもよい。   Further, the control unit 80 measures the corneal curvature of the subject's eye based on the shape of the ring index image R imaged by the imaging element 73 of the observation optical system 700 before and after the measurement of the axial length. More specifically, the control unit 80 calculates center coordinates from the edge coordinates of the ring image R, and calculates a distance from the center coordinates to the ring for each meridian at a predetermined angle (for example, every 1 degree). Then, when the distance for each meridian at a predetermined angle from the center coordinate to the ring is obtained, the data is obtained from a known curvature sphere and stored, and corneal curvature data for each meridian is obtained. . Thereby, the corneal curvature for each meridian direction can be obtained. Note that, even if the axial length measurement is performed in a state where the deviation between the corneal apex of the subject's eye and the measurement optical axis is large, the corneal curvature is measured with the corneal apex of the subject's eye and the measurement optical axis L1 being matched. It is preferred to do so. In this case, a switch dedicated to corneal curvature measurement is provided mechanically or electrically, and after adjusting the alignment independently of the measurement of the axial length, a trigger signal from the dedicated switch (trigger signal for starting the axial length measurement) The corneal curvature may be measured based on the above.

以上のようにして各経線毎の被験者眼の角膜曲率が計測されたら、制御部80は、前述のように検出されるアライメントずれの方向に対応する経線方向の角膜曲率データを補正用角膜曲率データrとして得る。図7は、被験者眼角膜がトーリック面の場合の各経線毎の曲率半径を表す分布図である。ここで、制御部80は、前述のように検出されるアライメントずれ方向が水平方向に対して45度の方向であった場合(図中矢印D参照)、水平方向に対して45度の経線方向における角膜曲率データを補正用データrとして得る。   When the corneal curvature of the subject's eye for each meridian is measured as described above, the control unit 80 corrects the corneal curvature data in the meridian direction corresponding to the direction of misalignment detected as described above as correction corneal curvature data. Get as r. FIG. 7 is a distribution diagram showing the radius of curvature for each meridian when the subject's cornea is a toric surface. Here, when the misalignment direction detected as described above is 45 degrees with respect to the horizontal direction (see arrow D in the figure), the control unit 80 performs a meridian direction of 45 degrees with respect to the horizontal direction. Is obtained as correction data r.

以上のようにして、眼軸長測定データと、眼軸長測定時の被験者眼に対するアライメントずれ量と、補正用の角膜曲率データが得られたら、制御部80は、アライメントずれによる測定誤差を補正するべく、補正処理を行う。   When the axial length measurement data, the amount of misalignment with respect to the subject's eye at the time of measuring the axial length, and the correction corneal curvature data are obtained as described above, the control unit 80 corrects the measurement error due to the misalignment. Therefore, correction processing is performed.

図8は、本実施形態に係る補正処理について説明する図である。図8において、ERは測定時に得られる補正前の眼軸長測定データに対応し、測定光軸L1と角膜Ecとの交点aから被験者眼Eの光軸ESと網膜(眼底)Efとの交点fまでの距離を表す。ELは後述する補正処理によって求める眼軸長測定データに対応し、被験者眼Eの光軸ES上に形成される被験者眼Eの角膜頂点Evから網膜上の交点fまでの距離を表す。また、rは被験者眼Eの角膜曲率半径、Ccは角膜曲率中心、hは前述のように求められるアライメントずれ量に対応し測定光軸L1と被験者眼Eの光軸ESとの上下左右方向における光軸ずれ量を表す。また、θは光軸Esに対する線分aCcの傾斜角を表し、以下の式によって求められる。   FIG. 8 is a diagram for explaining the correction processing according to the present embodiment. In FIG. 8, ER corresponds to the uncorrected ocular axial length measurement data obtained at the time of measurement, and the intersection of the optical axis ES of the subject eye E and the retina (fundus) Ef from the intersection a of the measurement optical axis L1 and the cornea Ec. Represents the distance to f. EL corresponds to the axial length measurement data obtained by correction processing described later, and represents the distance from the corneal vertex Ev of the subject eye E formed on the optical axis ES of the subject eye E to the intersection point f on the retina. Further, r corresponds to the corneal curvature radius of the subject eye E, Cc corresponds to the center of corneal curvature, h corresponds to the amount of misalignment obtained as described above, and the measurement optical axis L1 and the optical axis ES of the subject eye E in the vertical and horizontal directions. Represents the amount of optical axis deviation. Further, θ represents the inclination angle of the line segment aCc with respect to the optical axis Es, and is obtained by the following equation.

Figure 2013223759
Figure 2013223759

φは光軸Esに対する線分afの傾斜角を表し、以下の式によって求められる。 φ represents the inclination angle of the line segment af with respect to the optical axis Es, and is obtained by the following equation.

Figure 2013223759
Figure 2013223759

そして、交点aから光軸ESへ下ろした垂線の交点bと角膜曲率中心Ccとの距離tは、式t=rcosθによって求めることができる。これにより、角膜頂点Evから交点bまでの距離EL1が、式EL1=r−tによって求められる。また、交点bと交点fとの距離EL2は、式EL2=ERcosφによって求めることができる。   The distance t between the intersection point b of the perpendicular drawn from the intersection point a to the optical axis ES and the corneal curvature center Cc can be obtained by the equation t = r cos θ. Thereby, the distance EL1 from the corneal apex Ev to the intersection point b is obtained by the expression EL1 = rt. Further, the distance EL2 between the intersection point b and the intersection point f can be obtained by the expression EL2 = ERcosφ.

ここで、上記のように求められるEL1とEL2を足し合わせると、距離ELを求めることができる(EL=EL1+EL2)。すなわち、本実施形態では、アライメントずれ量hと角膜形状データrに基づいて、被験者眼角膜Ecと干渉光学系10との測定光軸L1との交点aより被験者眼光軸ESに垂線を引いた場合の交点bから角膜頂点Evまでの距離EL1を第1の距離として求め、アライメントずれ量hと補正前の眼軸長データERに基づいて、被験者眼角膜Ecと干渉光学系10との測定光軸L1との交点aより被験者眼光軸ESに垂線を引いた場合の交点bから被験者眼の光軸ESと被験者眼眼底との交点fまでの距離を第2の距離EL2として求め、第1の距離EL1と第2の距離EL2を足し合わせることにより被験者眼の角膜頂点から被験者眼の光軸と被験者眼眼底との交点までの距離ELを補正後の眼軸長データとして演算する。   Here, when EL1 and EL2 obtained as described above are added together, the distance EL can be obtained (EL = EL1 + EL2). That is, in the present embodiment, a perpendicular line is drawn on the subject eye optical axis ES from the intersection point a between the subject eye cornea Ec and the measurement optical axis L1 of the interference optical system 10 based on the misalignment amount h and the cornea shape data r. The distance EL1 from the intersection point b to the corneal apex Ev is obtained as a first distance, and the measurement optical axis between the subject's cornea Ec and the interference optical system 10 is determined based on the misalignment amount h and the uncorrected axial length data ER. The distance from the intersection point b when the perpendicular line is drawn to the subject eye optical axis ES from the intersection point a with the L1 to the intersection point f between the optical axis ES of the subject eye and the fundus eye fundus is obtained as the second distance EL2. By adding EL1 and the second distance EL2, the distance EL from the corneal apex of the subject's eye to the intersection of the optical axis of the subject's eye and the fundus of the subject's eye is calculated as corrected axial length data.

すなわち、測定時に求められた眼軸長測定データERを眼軸長測定時におけるアライメントずれ量及び角膜形状測定の計測結果に基づいて補正することにより正しい眼軸長測定データELを求めることができる。したがって、被験者眼の光軸ESと測定光軸L1との間で位置ずれがあっても、測定誤差を解消することができる。これにより、白内障による水晶体の混濁を避けるべく、被験者眼の角膜頂点からずらした位置に測定光軸L1が置かれた状態で測定が行われても、測定誤差の少ない測定結果を得ることができる。また、必ずしも被験者眼に対する位置合わせを厳密に行う必要が無くなるため、アライメントの許容範囲が広がり、被験者眼に対する位置合わせの手間が軽減される。   In other words, correct ocular length measurement data EL can be obtained by correcting the axial length measurement data ER obtained at the time of measurement based on the amount of misalignment at the time of measuring the axial length and the measurement result of the corneal shape measurement. Therefore, even if there is a positional deviation between the optical axis ES of the subject's eye and the measurement optical axis L1, the measurement error can be eliminated. Thereby, in order to avoid opacity of the crystalline lens due to cataract, even if measurement is performed in a state where the measurement optical axis L1 is placed at a position shifted from the corneal apex of the subject's eye, a measurement result with little measurement error can be obtained. . In addition, since it is not always necessary to strictly align with the subject's eye, the allowable range of alignment is widened, and the labor for alignment with the subject's eye is reduced.

以上のようにして、演算された眼軸長データは、モニタ9、図示無きプリンタによって表示される他、他の機器にデータとして通信される。この場合、角膜上における複数の位置にて測定が行われ補正された眼軸長データが複数得られた場合には、複数のデータから平均して眼軸長値を求めるようにすれば、信頼性の高いデータを得ることができる。   As described above, the calculated axial length data is displayed by the monitor 9 and a printer (not shown), and communicated as data to other devices. In this case, when a plurality of corrected axial length data are obtained by measuring at a plurality of positions on the cornea, an average of the axial length values can be obtained from the plurality of data. High-quality data can be obtained.

なお、以上の説明においては、1つのリング状指標を被験者眼角膜上に投影するような構成とし、交点aから角膜中心Ccまでの距離と、角膜頂点Evから角膜中心Ccまでの距離を1つのリング状指標によって求められた角膜曲率半径rと近似して補正処理を行うようにしたが、これに限るものではない。すなわち、複数のリング状指標を被験者眼角膜上に投影し、経線方向の複数位置での角膜曲率を測定することにより被験者眼の角膜頂点付近から角膜周辺部までの全体的な角膜曲率分布の測定データを得る構成であってもよい。このような測定データが得られれば、交点a付近における角膜曲率に基づいて交点aから角膜中心Ccまでの距離Gが、角膜頂点Ev付近における角膜曲率に基づいて角膜頂点Evから角膜中心Ccまでの距離Hが求められる。この場合、角膜頂点Evから交点bまでの距離EL1は、EL1=H−Gcosθにより求められる。これにより、角膜頂点Evから交点bまでの距離EL1をより正確に求めることができるため、より精度の高い補正が可能となる。なお、以上の説明においては、被験者眼の角膜曲率を求めたが、被験者眼の角膜形状を測定できるものであればよく、被験者眼の光軸ES方向における被験者眼角膜の高さ情報を複数のリング状指標の像位置に基づいて演算し、被験者眼の角膜頂点から交点aまでの光軸ES方向における高低差から距離EL1を求めるようにしてもよい。   In the above description, one ring index is projected onto the subject's ocular cornea, and the distance from the intersection point a to the corneal center Cc and the distance from the corneal vertex Ev to the corneal center Cc are set to one. Although the correction processing is performed by approximating the corneal curvature radius r obtained by the ring-shaped index, it is not limited to this. In other words, projecting multiple ring-shaped indicators onto the subject's eye cornea and measuring the corneal curvature at multiple positions in the meridian direction to measure the overall corneal curvature distribution from the vicinity of the corneal apex to the periphery of the cornea The structure which acquires data may be sufficient. If such measurement data is obtained, the distance G from the intersection point a to the corneal center Cc based on the corneal curvature in the vicinity of the intersection point a, and the distance G from the corneal vertex Ev to the corneal center Cc based on the corneal curvature in the vicinity of the corneal vertex Ev. A distance H is determined. In this case, the distance EL1 from the corneal apex Ev to the intersection point b is obtained by EL1 = H−Gcos θ. As a result, the distance EL1 from the corneal apex Ev to the intersection point b can be obtained more accurately, so that correction with higher accuracy is possible. In the above description, the corneal curvature of the subject's eye has been obtained. However, any corneal shape that can measure the corneal shape of the subject's eye may be used. It may be calculated based on the image position of the ring-shaped index, and the distance EL1 may be obtained from the height difference in the optical axis ES direction from the corneal apex of the subject eye to the intersection point a.

なお、以上の説明においては、被験者眼の角膜上に指標を投影することにより被験者眼の角膜形状(例えば、角膜曲率)を求めるような構成としたが、これに限るものではなく、被験者眼角膜に対して角膜形状測定用の光を照射し、その反射光を受光して被験者眼の角膜形状を測定する構成であればよい。例えば、被験者眼前眼部をスリット光により光切断しシャインプルーフの原理に基づいて配置された撮影光学系により前眼部断面を得て、得られた前眼部断面画像に基づいて被験者眼の角膜形状を測定するようにしてもよい。また、被験者眼前眼部の断面画像を撮影する前眼部OCT装置を用い、取得された前眼部OCT画像に基づいて被験者眼角膜の角膜形状を測定するようにしてもよい。   In the above description, the corneal shape (for example, corneal curvature) of the subject's eye is obtained by projecting an index on the cornea of the subject's eye. However, the present invention is not limited to this. However, it may be configured to irradiate the corneal shape measurement light and receive the reflected light to measure the corneal shape of the subject's eye. For example, the anterior segment of the subject's eye is optically cut by slit light, and a cross section of the anterior segment is obtained by a photographing optical system arranged based on the principle of Scheinproof, and the cornea of the subject's eye is obtained based on the obtained sectional image of the anterior segment of the eye The shape may be measured. Moreover, you may make it measure the cornea shape of a test subject's cornea based on the acquired anterior segment OCT image using the anterior segment OCT apparatus which image | photographs the cross-sectional image of a test subject's anterior segment.

また、以上の説明においては、被験者眼の角膜形状データを眼軸長データの補正に用いるようにしたが、これに限るものではなく、予め設定された角膜形状データ(例えば、上記補正式において、r=8mmとして設定する)を用いるようにしてもよい。これにより、眼軸長測定時のアライメントずれ量に基づいて眼軸長データを補正することが可能となる。この場合、予め設定された角膜形状データを用いて,補正前の眼軸長測定データとアライメントずれ量の組み合わせに対応する補正値のテーブルを予め作成し、メモリ85に記憶させておくようにしてもよい。   Further, in the above description, the corneal shape data of the subject's eye is used for correcting the axial length data, but the present invention is not limited to this. Pre-set corneal shape data (for example, in the above correction formula, r = 8 mm) may be used. Thereby, it is possible to correct the axial length data based on the amount of misalignment when measuring the axial length. In this case, a table of correction values corresponding to the combination of the axial length measurement data before correction and the amount of misalignment is created in advance using corneal shape data set in advance, and stored in the memory 85. Also good.

また、上記のような角膜形状測定光学系を持つ他の眼科装置によって取得された被験者眼の角膜形状測定データをメモリ85に記憶させておき、眼軸長データの補正の際にメモリ85に記憶された角膜形状測定データを用いるようにしてもよい。また、前述のような眼軸長データを補正するためのプログラムを外部PCのメモリに記憶させ、眼軸長測定光学系と前眼部撮像光学系を有する装置本体から得られる眼軸長データとアライメントずれ量に基づいて眼軸長データの補正を行うようにしてもよい。   Further, the corneal shape measurement data of the subject's eye acquired by another ophthalmologic apparatus having the corneal shape measurement optical system as described above is stored in the memory 85 and stored in the memory 85 when correcting the axial length data. The measured corneal shape measurement data may be used. In addition, a program for correcting the axial length data as described above is stored in the memory of the external PC, and the axial length data obtained from the apparatus main body having the axial length measuring optical system and the anterior ocular segment imaging optical system; Correction of the axial length data may be performed based on the amount of misalignment.

実施形態に係る眼軸長測定装置の外観構成図である。It is an external appearance block diagram of the axial length measuring apparatus which concerns on embodiment. 本実施形態に係る眼軸長測定装置の光学系について説明する図である。It is a figure explaining the optical system of the optic axis length measuring device concerning this embodiment. 本実施形態に係る測定光学系が持つ分光光学系の概略構成図である。It is a schematic block diagram of the spectroscopic optical system which the measurement optical system which concerns on this embodiment has. 本実施形態に係る眼科装置の制御系の構成について説明するための概略構成図である。It is a schematic block diagram for demonstrating the structure of the control system of the ophthalmologic apparatus which concerns on this embodiment. 表示モニタの画面上に表示された前眼部像を示す図である。It is a figure which shows the anterior eye part image displayed on the screen of a display monitor. 角膜測定光と参照光による干渉信号と,眼底測定光と参照光による干渉信号が検出されたときの被験者眼の深さ方向における干渉信号の強度を示す例である。It is an example which shows the intensity | strength of the interference signal in the depth direction of a test subject eye when the interference signal by a cornea measurement light and a reference light and the interference signal by a fundus measurement light and a reference light are detected. 被験者眼角膜がトーリック面の場合の各経線毎の曲率半径を表す分布図である。It is a distribution map showing the curvature radius for every meridian when a subject's cornea is a toric surface. 本実施形態に係る補正処理について説明する図である。It is a figure explaining the correction process concerning this embodiment.

4 測定部
10 干渉光学系
80 制御部
700 前眼部観察光学系
ER 補正前の眼軸長測定データ
EL 補正処理によって求める眼軸長測定データ
h 光軸ずれ量
r 角膜形状データ
4 Measurement unit 10 Interferometric optical system 80 Control unit 700 Anterior ocular segment observation optical system ER Axis length measurement data before correction EL Axis length measurement data obtained by correction processing h Optical axis shift amount r Corneal shape data

Claims (2)

低コヒーレント光を発する光源を有し、前記光源から出射された光の少なくとも一部を被検眼の角膜及び眼底に照射し、角膜からの反射光、眼底からの反射光を干渉光として受光素子により受光する干渉光学系を備え、
前記干渉光学系からの出力信号に基づいて被験者眼の眼軸長データを求める演算手段を備える眼軸長測定装置であって
干渉光学系の測定光軸は、被験者眼に対して上下左右方向に移動可能であって、被験者眼の角膜頂点からずらした位置に移動可能であり、
予め取得された干渉光学系の測定光軸と被験者眼の角膜頂点との上下左右方向におけるアライメントずれ量に基づいて前記眼軸長データを補正する補正手段を備えることを特徴とする眼軸長測定装置。
A light source that emits low-coherent light, irradiates at least part of the light emitted from the light source to the cornea and fundus of the eye to be examined, and receives light reflected from the cornea and reflected from the fundus as interference light by a light receiving element With interference optical system to receive light,
A ocular axial length measurement apparatus comprising a calculating means for obtaining the axial length data of the subject eye based on the output signal from the interference optical system,
The measurement optical axis of the interference optical system can be moved in the vertical and horizontal directions with respect to the subject's eye, and can be moved to a position shifted from the corneal apex of the subject's eye,
Axial length measurement characterized by comprising correction means for correcting the axial length data based on the amount of misalignment in the vertical and horizontal directions between the measurement optical axis of the interference optical system acquired in advance and the corneal apex of the subject's eye apparatus.
請求項1の眼軸長測定装置において、
被験者眼角膜に対して角膜形状測定用の光を照射し、その反射光を受光して被験者眼の角膜形状を測定する角膜形状測定手段を備え、
前記補正手段は、
前記角膜形状測定光学系からの受光信号に基づいて被験者眼の角膜形状を計測し、
前記アライメントずれ量及び角膜形状測定の計測結果に基づいて前記眼軸長データを補正することを特徴とする眼軸長測定装置。
In the axial length measuring device according to claim 1,
A corneal shape measuring means for irradiating the subject's eye cornea with light for corneal shape measurement, receiving the reflected light and measuring the corneal shape of the subject's eye,
The correction means includes
Measure the corneal shape of the subject's eye based on the light reception signal from the corneal shape measurement optical system,
An ocular length measurement apparatus that corrects the ocular length data based on the alignment deviation amount and a measurement result of corneal shape measurement.
JP2013131907A 2013-06-24 2013-06-24 Axial length measuring device Active JP5650810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131907A JP5650810B2 (en) 2013-06-24 2013-06-24 Axial length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131907A JP5650810B2 (en) 2013-06-24 2013-06-24 Axial length measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007022245A Division JP5586823B2 (en) 2007-01-31 2007-01-31 Axial length measuring device

Publications (3)

Publication Number Publication Date
JP2013223759A true JP2013223759A (en) 2013-10-31
JP2013223759A5 JP2013223759A5 (en) 2014-06-26
JP5650810B2 JP5650810B2 (en) 2015-01-07

Family

ID=49594247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131907A Active JP5650810B2 (en) 2013-06-24 2013-06-24 Axial length measuring device

Country Status (1)

Country Link
JP (1) JP5650810B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167423A (en) * 2016-11-07 2019-08-23 卡尔蔡司医疗技术股份公司 Method and ophthalmology self-checking unit for eyes self-test

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365842A (en) * 1986-09-06 1988-03-24 株式会社トプコン Non-contact type tonometer
JPH03111027A (en) * 1989-09-26 1991-05-10 Topcon Corp Dimension measuring instrument for living body eye
JPH09108185A (en) * 1995-10-18 1997-04-28 Topcon Corp Ophthalmological device
JPH10216089A (en) * 1997-02-10 1998-08-18 Nidek Co Ltd Opthalmonogy device
JP2002531205A (en) * 1998-12-10 2002-09-24 カール ツァイス イェナ ゲーエムベーハー System and method for non-contact measurement of axial length of the eye and / or curvature of the cornea and / or anterior chamber depth suitable for calculation of intraocular lenses
US20050068497A1 (en) * 2003-09-30 2005-03-31 Nidek Co., Ltd. Eye refractive power measurement apparatus
EP1602320A1 (en) * 2004-06-03 2005-12-07 Nidek Co., Ltd. Ophtalmic apparatus
JP2005348755A (en) * 2004-06-08 2005-12-22 Nidek Co Ltd Ophthalmologic measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6365842A (en) * 1986-09-06 1988-03-24 株式会社トプコン Non-contact type tonometer
US4817620A (en) * 1986-09-06 1989-04-04 Tokyo Kogaku Kikai Kabushiki Kaisha Noncontact type tonometer
JPH03111027A (en) * 1989-09-26 1991-05-10 Topcon Corp Dimension measuring instrument for living body eye
JPH09108185A (en) * 1995-10-18 1997-04-28 Topcon Corp Ophthalmological device
JPH10216089A (en) * 1997-02-10 1998-08-18 Nidek Co Ltd Opthalmonogy device
US5909269A (en) * 1997-02-10 1999-06-01 Nidek Co., Ltd. Ophthalmic apparatus
JP2002531205A (en) * 1998-12-10 2002-09-24 カール ツァイス イェナ ゲーエムベーハー System and method for non-contact measurement of axial length of the eye and / or curvature of the cornea and / or anterior chamber depth suitable for calculation of intraocular lenses
US20050018137A1 (en) * 1998-12-10 2005-01-27 Roland Barth System and method for the non-contacting measurement of the axis length and/or cornea curvature and/or anterior chamber depth of the eye, preferably for intraocular lens calculation
US20050068497A1 (en) * 2003-09-30 2005-03-31 Nidek Co., Ltd. Eye refractive power measurement apparatus
JP2005103103A (en) * 2003-09-30 2005-04-21 Nidek Co Ltd Refractive power measuring apparatus
EP1602320A1 (en) * 2004-06-03 2005-12-07 Nidek Co., Ltd. Ophtalmic apparatus
JP2005348755A (en) * 2004-06-08 2005-12-22 Nidek Co Ltd Ophthalmologic measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167423A (en) * 2016-11-07 2019-08-23 卡尔蔡司医疗技术股份公司 Method and ophthalmology self-checking unit for eyes self-test
CN110167423B (en) * 2016-11-07 2022-08-02 卡尔蔡司医疗技术股份公司 Method for self-examination of eyes and ophthalmic self-examination device

Also Published As

Publication number Publication date
JP5650810B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5586823B2 (en) Axial length measuring device
JP5179063B2 (en) Ophthalmic equipment
JP5601613B2 (en) Fundus photographing device
US9101300B2 (en) Intraocular lens power determination apparatus, intraocular lens power determination method, and intraocular lens power determination program
JP5704946B2 (en) Ophthalmic imaging equipment
JP5650482B2 (en) Ophthalmic imaging equipment
EP2644085B1 (en) Fundus photographing apparatus
JP5767026B2 (en) Anterior segment measurement device
JP2015043844A (en) Ophthalmologic imaging device and ophthalmologic imaging program
JP6471466B2 (en) Ophthalmic apparatus and processing program used therefor
JP2016158906A (en) Eye axial length measurement device, eye ball shape information acquisition method, and eye ball shape information acquisition program
JP5807371B2 (en) Ophthalmic imaging equipment
JP6421919B2 (en) Ophthalmic imaging equipment
JPWO2019026862A1 (en) Intraocular lens power determination device and intraocular lens power determination program
JP5650810B2 (en) Axial length measuring device
JP6052445B2 (en) Intraocular lens power determination device and program
JP5179675B2 (en) Ophthalmic equipment
JP2020049128A (en) Intraocular lens selection device and intraocular lens selection program
JP6430770B2 (en) Ophthalmic equipment
WO2022186115A1 (en) Oct device, and ophthalmic image processing program
JP2012527268A (en) Eye geometry measuring method and analyzer used therefor
JP2018038468A (en) Tomographic imaging apparatus
JP2018015440A (en) Anterior eye segment imaging apparatus and anterior eye segment analyzing program
JP5562621B2 (en) Ophthalmic equipment
JP5232325B2 (en) Axial length measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141113

R150 Certificate of patent or registration of utility model

Ref document number: 5650810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250