JP2013223258A - Non-contact power supply device - Google Patents

Non-contact power supply device Download PDF

Info

Publication number
JP2013223258A
JP2013223258A JP2012091260A JP2012091260A JP2013223258A JP 2013223258 A JP2013223258 A JP 2013223258A JP 2012091260 A JP2012091260 A JP 2012091260A JP 2012091260 A JP2012091260 A JP 2012091260A JP 2013223258 A JP2013223258 A JP 2013223258A
Authority
JP
Japan
Prior art keywords
power
side pad
power transmission
input current
transmission side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012091260A
Other languages
Japanese (ja)
Other versions
JP5757269B2 (en
Inventor
Keisuke Tani
恵亮 谷
Akira Kamiya
旭 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012091260A priority Critical patent/JP5757269B2/en
Publication of JP2013223258A publication Critical patent/JP2013223258A/en
Application granted granted Critical
Publication of JP5757269B2 publication Critical patent/JP5757269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power supply device that has a simple configuration, and that can suppress an influence of positional deviation between a power transmission side pad and a power reception side pad and detect whether or not there is a foreign object between the power transmission side pad and the power reception side pad.SOLUTION: An equivalent resistor of a power transmission side pad 100 in an equivalent circuit of the power transmission side pad 100 and a power reception side pad 101, which are arranged to be opposed to each other, changes according to the existence or nonexistence of a foreign object and its size between the power transmission side pad 100 and the power reception side pad 101, but hardly change due to positional deviation between the power transmission side pad 100 and the power reception side pad 101. A power transmission side control device 107 determines whether there is a foreign object or not on the basis of the equivalent resistor of the power transmission side pad 100 by using this characteristic. There is no need to adjust the position of a winding wire or to adjust a driving frequency of the winding wire unlike the traditional way. Therefore, a non-contact power supply device, with a simple configuration, can suppress an influence of positional deviation between the power transmission side pad 100 and the power reception side pad 101 and detect whether or not there is a foreign object between the power transmission side pad 100 and the power reception side pad 101.

Description

本発明は、送電側パッドと受電側パッドを対向させた状態で、送電側パッドから受電側パッドに非接触で送電する非接触給電装置に関する。   The present invention relates to a non-contact power feeding apparatus that performs non-contact power transmission from a power transmission side pad to a power reception side pad in a state where a power transmission side pad and a power reception side pad are opposed to each other.

従来、送電側パッドと受電側パッドを対向させた状態で、送電側パッドから受電側パッドに非接触で送電する非接触給電装置として、例えば特許文献1に開示されている給電システムがある。   Conventionally, for example, there is a power supply system disclosed in Patent Document 1 as a non-contact power supply apparatus that transmits power from a power transmission side pad to a power reception side pad in a contactless manner with a power transmission side pad and a power reception side pad facing each other.

この給電システムは、電源部と、送電部と、受電部と、伝送効率検出部と、判定部とを備えている。送電部及び受電部は、それぞれコイルで構成されている。給電ステーションの所定位置に車両を駐車すると、送電部と受電部が上下方向に所定の間隔をあけて対向する。この状態で、電源部は、送電部に交流電圧を印加する。交流電圧が印加され、コイルに交流電流が流れると、送電部は交番磁束を発生する。送電部の発生した磁束がコイルと鎖交することで、受電部は、電磁誘導によって誘導起電力を生じる。電磁誘導を利用した方式では、高周波磁界により金属性異物が発熱して高温となり、製品の安全性を確保できないという問題に対処するため、給電装置が高温になった場合に電力供給を自動的に停止するための装置が設けられている。そこで、伝送効率検出部は、送電部と受電部の間の電力伝送効率を検出する。判定部は、検出した電力伝送効率に基づいて、送電部と受電部の間の障害物の有無を判定する。具体的には、検出した電力伝送効率が予め設定されている基準値未満であれば、障害物があると判定する。   The power supply system includes a power supply unit, a power transmission unit, a power reception unit, a transmission efficiency detection unit, and a determination unit. Each of the power transmission unit and the power reception unit is configured by a coil. When the vehicle is parked at a predetermined position of the power supply station, the power transmission unit and the power reception unit face each other with a predetermined interval in the vertical direction. In this state, the power supply unit applies an AC voltage to the power transmission unit. When an AC voltage is applied and an AC current flows through the coil, the power transmission unit generates an alternating magnetic flux. When the magnetic flux generated by the power transmission unit is linked with the coil, the power reception unit generates an induced electromotive force by electromagnetic induction. In the method using electromagnetic induction, the metallic foreign object generates heat due to the high-frequency magnetic field and becomes high temperature. A device for stopping is provided. Therefore, the transmission efficiency detection unit detects the power transmission efficiency between the power transmission unit and the power reception unit. The determination unit determines whether there is an obstacle between the power transmission unit and the power reception unit based on the detected power transmission efficiency. Specifically, if the detected power transmission efficiency is less than a preset reference value, it is determined that there is an obstacle.

特開2010−119246号公報JP 2010-119246 A

電力伝送効率は、送電部と受電部の間の障害物の有無によって変化する。また、送電部と受電部の位置ずれによっても変化する。そのため、送電部と受電部の間に障害物がない場合であっても、送電部と受電部の位置ずれによって電力伝送効率が変化すると、障害物があると誤判定しまう可能性がある。   The power transmission efficiency varies depending on the presence or absence of an obstacle between the power transmission unit and the power reception unit. Moreover, it changes also by the position shift of a power transmission part and a power receiving part. For this reason, even when there is no obstacle between the power transmission unit and the power reception unit, if the power transmission efficiency changes due to the positional deviation between the power transmission unit and the power reception unit, there is a possibility that the obstacle is erroneously determined.

これに対して、コイルの位置を調整したり、コイルの駆動周波数を調整したりして、送電部と受電部の位置ずれによる影響を抑える構成が提案されている。しかし、この場合、構成が複雑になり、コストがアップしてしまう。   On the other hand, the structure which suppresses the influence by the position shift of a power transmission part and a power receiving part by adjusting the position of a coil or adjusting the drive frequency of a coil is proposed. However, in this case, the configuration becomes complicated and the cost increases.

本発明はこのような事情に鑑みてなされたものであり、簡素な構成で、送電側パッドと受電側パッドの位置ずれによる影響を抑え、送電側パッドと受電側パッドの間の異物の有無を検出することができる非接触給電装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and with a simple configuration, suppresses the influence of positional deviation between the power transmission side pad and the power reception side pad, and detects the presence or absence of foreign matter between the power transmission side pad and the power reception side pad. It is an object of the present invention to provide a non-contact power feeding device that can be detected.

本発明は、巻線を有する送電側パッドと、巻線を有し、送電側パッドと対向して配置され、送電側パッドから送電される電力を受電する受電側パッドと、外部電源と送電側パッドに接続され、外部電源から供給される電力を変換して送電側パッドに供給する送電回路と、受電側パッドと給電対象に接続され、受電側パッドから供給される電力を変換して給電対象に供給する受電回路と、送電側パッドと受電側パッドの間の異物の有無を判定する異物判定手段と、を備えた非接触給電装置において、異物判定手段は、対向して配置された送電側パッドと受電側パッドの等価回路における送電側パッドの等価抵抗、又は、等価抵抗に関連するパラメータに基づいて異物の有無を判定することを特徴とする。   The present invention includes a power transmission side pad having a winding, a power reception side pad that has a winding and is arranged to face the power transmission side pad and receives power transmitted from the power transmission side pad, an external power source, and a power transmission side A power transmission circuit that is connected to the pad, converts the power supplied from the external power supply and supplies it to the power transmission side pad, and is connected to the power reception side pad and the power supply target. In the non-contact power feeding device including a power receiving circuit that supplies power to a power receiving side and a foreign matter determining unit that determines the presence or absence of a foreign matter between the power transmission side pad and the power receiving side pad, the foreign matter determining unit The presence / absence of a foreign object is determined based on an equivalent resistance of the power transmission side pad in the equivalent circuit of the pad and the power reception side pad, or a parameter related to the equivalent resistance.

対向して配置された送電側パッドと受電側パッドの等価回路における送電側パッドの等価抵抗は、送電側パッドと受電側パッドの間の異物の有無や大きさによって変化し、送電側パッドと受電側パッドの位置ずれによってはほとんど変化しないという特性を有している。この構成によれば、この特性を利用し、送電側パッドの等価抵抗、又は、等価抵抗に関連するパラメータに基づいて異物の有無を判定する。従来のように、巻線の位置を調整したり、巻線の駆動周波数を調整したりする必要もない。そのため、簡素な構成で、送電側パッドと受電側パッドの位置ずれによる影響を抑え、送電側パッドと受電側パッドの間の異物の有無を検出することができる。   The equivalent resistance of the power transmission side pad in the equivalent circuit of the power transmission side pad and the power reception side pad arranged opposite to each other changes depending on the presence or absence of foreign matter between the power transmission side pad and the power reception side pad and the power transmission side pad and the power reception pad. It has a characteristic that it hardly changes depending on the positional deviation of the side pads. According to this configuration, the presence / absence of a foreign object is determined based on the equivalent resistance of the power transmission side pad or a parameter related to the equivalent resistance using this characteristic. There is no need to adjust the position of the winding or the driving frequency of the winding as in the prior art. Therefore, it is possible to detect the presence or absence of a foreign object between the power transmission side pad and the power reception side pad by suppressing the influence of the positional deviation between the power transmission side pad and the power reception side pad with a simple configuration.

第1実施形態における非接触給電装置の回路図である。It is a circuit diagram of the non-contact electric power feeder in 1st Embodiment. 対向して配置された送電側パッドと受電側パッドの等価回路図である。It is an equivalent circuit diagram of the power transmission side pad and power receiving side pad which are arrange | positioned facing. 位置ずれと異物の大きさと等価抵抗の関係を示すグラフである。It is a graph which shows the relationship between a position shift, the magnitude | size of a foreign material, and an equivalent resistance. 位置ずれと異物の大きさと結合係数の関係を示すグラフである。It is a graph which shows the relationship between a position shift, the magnitude | size of a foreign material, and a coupling coefficient. 送電側パッドの入力電圧と入力電流の比に対する結合係数の関係を示す第1マップである。It is a 1st map which shows the relationship of the coupling coefficient with respect to the ratio of the input voltage and input current of a power transmission side pad. 受電回路の出力電流と結合係数と基準入力電流の関係を示す第2マップである。It is a 2nd map which shows the relationship between the output current of a receiving circuit, a coupling coefficient, and a reference input current. 送電回路の入力電流と基準入力電流の比に対する等価抵抗の関係を示す第3マップである。It is a 3rd map which shows the relationship of the equivalent resistance with respect to ratio of the input current of a power transmission circuit, and a reference input current. 第1実施形態における非接触給電装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the non-contact electric power feeder in 1st Embodiment. 第2実施形態における非接触給電装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the non-contact electric power feeder in 2nd Embodiment.

次に、実施形態を挙げ、本発明をより詳しく説明する。本実施形態では、本発明に係る非接触給電装置を、電気自動車やハイブリッド車に搭載されたバッテリに非接触で送電する非接触給電装置に適用した例を示す。   Next, the present invention will be described in more detail with reference to embodiments. In the present embodiment, an example in which the non-contact power feeding device according to the present invention is applied to a non-contact power feeding device that transmits power in a non-contact manner to a battery mounted on an electric vehicle or a hybrid vehicle is shown.

(第1実施形態)
まず、図1〜図7を参照して第1実施形態の非接触給電装置の構成について説明する。なお、図中における前後方向及び上下方向は、車両における方向を示すものである。
(First embodiment)
First, the configuration of the non-contact power feeding device according to the first embodiment will be described with reference to FIGS. In addition, the front-back direction and the up-down direction in a figure show the direction in a vehicle.

図1に示すように、非接触給電装置1は、車両の外部に設置された外部電源PSから車両に搭載されたバッテリB1に非接触で送電し、バッテリB1(給電対象)を充電する装置である。ここで、バッテリB1は、車両の走行のための駆動力を発生するモータに電力を供給する、直流高電圧の充放電可能な電源である。非接触給電装置1は、送電側パッド100と、受電側パッド101と、送電回路102と、電圧センサ103と、電流センサ104と、電圧センサ105と、電流センサ106と、送電側制御装置107(異物判定手段、結合係数取得手段、基準入力電流取得手段、等価抵抗取得手段、判定手段)と、受電回路108と、電圧センサ109と、電流センサ110と、受電側制御装置111とを備えている。   As shown in FIG. 1, the non-contact power supply device 1 is a device that transmits power from an external power source PS installed outside the vehicle to a battery B 1 mounted on the vehicle in a non-contact manner and charges the battery B 1 (power supply target). is there. Here, the battery B1 is a DC high-voltage chargeable / dischargeable power source that supplies electric power to a motor that generates a driving force for traveling of the vehicle. The non-contact power feeding device 1 includes a power transmission side pad 100, a power reception side pad 101, a power transmission circuit 102, a voltage sensor 103, a current sensor 104, a voltage sensor 105, a current sensor 106, and a power transmission side control device 107 ( A foreign substance determination unit, a coupling coefficient acquisition unit, a reference input current acquisition unit, an equivalent resistance acquisition unit, a determination unit), a power reception circuit 108, a voltage sensor 109, a current sensor 110, and a power reception side control device 111. .

送電側パッド100は、駐車スペース内に車両を駐車したときに車両の底部に設置された受電側パッド101と対向する駐車スペース内の地表面の所定位置(車両の外部)に設置され、電流が流れることで磁束を発生する装置である。送電側パッド100は、巻線を備えている。送電側パッド100の巻線の両端は、送電回路102にそれぞれ接続されている。   The power transmission side pad 100 is installed at a predetermined position (outside of the vehicle) on the ground surface in the parking space facing the power receiving side pad 101 installed at the bottom of the vehicle when the vehicle is parked in the parking space. It is a device that generates magnetic flux by flowing. The power transmission side pad 100 includes a winding. Both ends of the winding of the power transmission side pad 100 are connected to the power transmission circuit 102, respectively.

受電側パッド101は、車両の底部に設置され、駐車スペースに車両を駐車したときに上下方向に所定の間隔をあけて送電側パッド100と対向し、送電側パッド100の発生した磁束が鎖交することで電磁誘導によって誘導起電力を生じる装置である。受電側パッド101は、巻線を備えている。受電側パッド101の巻線の両端は、受電回路108にそれぞれ接続されている。   The power receiving side pad 101 is installed at the bottom of the vehicle. When the vehicle is parked in the parking space, the power receiving side pad 101 faces the power transmitting side pad 100 with a predetermined interval in the vertical direction, and the magnetic flux generated by the power transmitting side pad 100 is linked. This is a device that generates an induced electromotive force by electromagnetic induction. The power receiving side pad 101 includes a winding. Both ends of the winding of the power receiving side pad 101 are connected to the power receiving circuit 108, respectively.

ここで、対向して配置された送電側パッド100と受電側パッド101の等価回路は、図2に示すように、送電側パッド100の等価抵抗R1及び漏れインダクタンスl1、受電側パッド101の等価抵抗R2及び漏れインダクタンスl2、並びに、送電側パッド100と受電側パッド101の間の相互インダクタンスM12によって表される。この等価回路において、結合係数kは、数1に示すように、漏れインダクタンスl1、l2、及び、相互インダクタンスM12によって決まる。   Here, the equivalent circuit of the power transmission side pad 100 and the power reception side pad 101 arranged opposite to each other is equivalent to the equivalent resistance R1 and leakage inductance l1 of the power transmission side pad 100 and the equivalent resistance of the power reception side pad 101 as shown in FIG. It is represented by R2 and leakage inductance l2, and a mutual inductance M12 between the power transmission side pad 100 and the power reception side pad 101. In this equivalent circuit, the coupling coefficient k is determined by the leakage inductances l1 and l2 and the mutual inductance M12 as shown in Equation 1.

Figure 2013223258
Figure 2013223258

等価回路における送電側パッド100の等価抵抗R1は、図3に示すように、送電側パッド100と受電側パッド101の間の異物の大きさによって変化する。具体的には、異物の大きさが大きくなるに従って大きくなる。しかし、送電側パッド100と受電側パッド101の位置ずれによってはほとんど変化しない。   The equivalent resistance R1 of the power transmission side pad 100 in the equivalent circuit varies depending on the size of the foreign matter between the power transmission side pad 100 and the power reception side pad 101, as shown in FIG. Specifically, it increases as the size of the foreign material increases. However, the power transmission side pad 100 and the power reception side pad 101 hardly change depending on the positional deviation.

これに対し、結合係数kは、図4に示すように、送電側パッド100と受電側パッド101の位置ずれによって変化する。具体的には、位置ずれが大きくなるに従って小さくなる。しかし、送電側パッド100と受電側パッド101の間の異物の大きさによってはほとんど変化しない。   On the other hand, the coupling coefficient k changes depending on the positional deviation between the power transmission side pad 100 and the power reception side pad 101 as shown in FIG. Specifically, it decreases as the positional deviation increases. However, it hardly changes depending on the size of the foreign matter between the power transmission side pad 100 and the power reception side pad 101.

送電回路102は、外部電源PSから供給される電力を変換して送電側パッド100に供給する回路である。具体的には、外部電源PSの出力する電圧を高周波の交流電圧に変換し、送電側パッド100に印加する回路である。送電回路102は、車両の外部に設置されている。送電回路102の入力端子は外部電源PSに、出力端子は送電側パッド100の巻線の両端にそれぞれ接続されている。   The power transmission circuit 102 is a circuit that converts the power supplied from the external power source PS and supplies it to the power transmission side pad 100. Specifically, it is a circuit that converts the voltage output from the external power supply PS into a high-frequency AC voltage and applies it to the power transmission side pad 100. The power transmission circuit 102 is installed outside the vehicle. The input terminal of the power transmission circuit 102 is connected to the external power source PS, and the output terminal is connected to both ends of the winding of the power transmission side pad 100.

電圧センサ103は、送電回路102の入力電圧を検出し、検出結果を出力する素子である。電圧センサ103の入力端子は、送電回路102の入力端子にそれぞれ接続されている。また、出力端子は、送電側制御装置107に接続されている。   The voltage sensor 103 is an element that detects an input voltage of the power transmission circuit 102 and outputs a detection result. The input terminal of the voltage sensor 103 is connected to the input terminal of the power transmission circuit 102. The output terminal is connected to the power transmission side control device 107.

電流センサ104は、送電回路102の入力電流を検出し、検出結果を出力する素子である。電流センサ104は、外部電源PSと送電回路102を接続する配線に、配線をクランプするように設けられている。電流センサ104の出力端子は、送電側制御装置107に接続されている。   The current sensor 104 is an element that detects an input current of the power transmission circuit 102 and outputs a detection result. The current sensor 104 is provided so as to clamp the wiring to the wiring connecting the external power source PS and the power transmission circuit 102. The output terminal of the current sensor 104 is connected to the power transmission side control device 107.

電圧センサ105は、送電側パッド100の入力電圧を検出し、検出結果を出力する素子である。電圧センサ105の入力端子は、送電回路102の出力端子にそれぞれ接続されている。また、出力端子は、送電側制御装置107に接続されている。   The voltage sensor 105 is an element that detects an input voltage of the power transmission side pad 100 and outputs a detection result. The input terminal of the voltage sensor 105 is connected to the output terminal of the power transmission circuit 102. The output terminal is connected to the power transmission side control device 107.

電流センサ106は、送電側パッド100の入力電流を検出し、検出結果を出力する素子である。電流センサ106は、送電回路102と送電側パッド100を接続する配線に、配線をクランプするように設けられている。電流センサ106の出力端子は、送電側制御装置107に接続されている。   The current sensor 106 is an element that detects an input current of the power transmission side pad 100 and outputs a detection result. The current sensor 106 is provided so as to clamp the wiring to the wiring connecting the power transmission circuit 102 and the power transmission side pad 100. An output terminal of the current sensor 106 is connected to the power transmission side control device 107.

送電側制御装置107は、受電側制御装置111との間で無線通信によって情報を送受信し、受信した情報に基づいて送電回路102を制御する装置である。また、電圧センサ103、105及び電流センサ104、106の検出結果、並びに、受信した情報に基づいて、送電側パッド100と受電側パッド101の間の異物の有無を判定する装置でもある。具体的には、等価回路における送電側パッド100の等価抵抗に基づいて、送電側パッド100と受電側パッド101の間の異物の有無を判定する。より具体的には、まず、等価回路における結合係数を求める。そして、求めた結合係数に基づいて、異物がない場合における送電回路102の入力電流である基準入力電流を求める。その後、求めた基準入力電流に基づいて送電側パッド100の等価抵抗を求め、この等価抵抗と予め設定されている基準抵抗の比較結果に基づいて異物の有無を判定する。送電側制御装置107は、電圧センサ103、105及び電流センサ104、106の出力端子にそれぞれ接続されている。また、送電回路102に接続されている。さらに、充電開始を指示する充電開始スイッチSW1に接続されている。   The power transmission side control device 107 is a device that transmits and receives information to and from the power reception side control device 111 through wireless communication, and controls the power transmission circuit 102 based on the received information. Further, it is also a device that determines the presence or absence of foreign matter between the power transmission side pad 100 and the power reception side pad 101 based on the detection results of the voltage sensors 103 and 105 and the current sensors 104 and 106 and the received information. Specifically, the presence / absence of a foreign object between the power transmission side pad 100 and the power reception side pad 101 is determined based on the equivalent resistance of the power transmission side pad 100 in the equivalent circuit. More specifically, first, a coupling coefficient in an equivalent circuit is obtained. Then, based on the obtained coupling coefficient, a reference input current that is an input current of the power transmission circuit 102 when there is no foreign object is obtained. Thereafter, an equivalent resistance of the power transmission side pad 100 is obtained based on the obtained reference input current, and the presence / absence of foreign matter is determined based on a comparison result between the equivalent resistance and a preset reference resistance. The power transmission side control device 107 is connected to the output terminals of the voltage sensors 103 and 105 and the current sensors 104 and 106, respectively. Further, it is connected to the power transmission circuit 102. Further, it is connected to a charging start switch SW1 that instructs to start charging.

送電側制御装置107には、異物の有無を判定する際に必要とされる、図5に示す、送電側パッド100の入力電圧と入力電流の比に対する結合係数の関係を示す第1マップ、図6に示す、受電回路108の出力電流と結合係数と基準入力電流の関係を示す第2マップ、及び、図7に示す、送電回路102の入力電流と基準入力電流の比に対する送電側パッド100の等価抵抗の関係を示す第3マップが予め設定されている。   In the power transmission side control device 107, a first map showing the relationship of the coupling coefficient to the ratio of the input voltage and the input current of the power transmission side pad 100 shown in FIG. 6, the second map showing the relationship between the output current of the power receiving circuit 108, the coupling coefficient, and the reference input current, and the ratio of the input current of the power transmission circuit 102 to the reference input current shown in FIG. A third map showing the relationship of equivalent resistance is set in advance.

図5に示す第1マップは、等価回路において、結合係数を変化させ、その際の送電側パッド100の入力電圧と入力電流をシミュレーションによって求め、それらの関係をまとめたものである。送電側パッド100に対する受電側パッド101の位置をずらして結合係数を変化させ、その際の送電側パッド100の入力電圧と入力電流を実測によって求め、それらの関係をまとめてもよい。   The first map shown in FIG. 5 is a summary of the relationship between the input circuit and the input current of the power transmission side pad 100 obtained by changing the coupling coefficient in the equivalent circuit by simulation. The coupling coefficient may be changed by shifting the position of the power receiving side pad 101 with respect to the power transmitting side pad 100, the input voltage and input current of the power transmitting side pad 100 at that time may be obtained by actual measurement, and their relationship may be summarized.

図6に示す第2マップは、異物がない状態の等価回路において、結合係数を変化させ、その際の受電回路108の出力電流と送電回路102の入力電流をシミュレーションによって求め、それらの関係をまとめたものである。異物がない状態において、送電側パッド100に対する受電側パッド101の位置をずらして結合係数を変化させ、その際の受電回路108の出力電流と送電回路102の入力電流を実測によって求め、それらの関係をまとめてもよい。   The second map shown in FIG. 6 summarizes the relationship between the output current of the power receiving circuit 108 and the input current of the power transmission circuit 102 by simulation by changing the coupling coefficient in an equivalent circuit without foreign matter. It is a thing. In a state where there is no foreign matter, the coupling coefficient is changed by shifting the position of the power receiving side pad 101 with respect to the power transmitting side pad 100, the output current of the power receiving circuit 108 and the input current of the power transmitting circuit 102 at that time are obtained by actual measurement, and their relationship May be put together.

図7に示す第3マップは、等価回路において送電側パッド100の等価抵抗を変化させ、その際の送電回路102の入力電流をシミュレーションによって求め、基準入力電流との比をとり、それらの関係をまとめたものである。送電側パッド100と受電側パッド101の間の異物の大きさを変化させ、その際の送電回路102の入力電流を実測によって求め、基準入力電流との比をとり、それらの関係をまとめてもよい。   The third map shown in FIG. 7 changes the equivalent resistance of the power transmission side pad 100 in the equivalent circuit, calculates the input current of the power transmission circuit 102 at that time by simulation, takes the ratio with the reference input current, and shows the relationship between them. It is a summary. Even if the size of the foreign matter between the power transmission side pad 100 and the power reception side pad 101 is changed, the input current of the power transmission circuit 102 at that time is obtained by actual measurement, the ratio with the reference input current is taken, and the relationship between them is summarized. Good.

基準抵抗は、異物がない場合における送電側パッド100の等価抵抗より大きい値に設定されている。   The reference resistance is set to a value larger than the equivalent resistance of the power transmission side pad 100 when there is no foreign object.

図1に示す受電回路108は、受電側パッド101から供給される電力を変換してバッテリB1に供給する回路である。具体的には、受電側パッド101の出力する交流電圧を直流電圧に変換し、バッテリB1を充電する回路である。受電回路108は、車両に搭載されている。受電回路108の入力端子は受電側パッド101の巻線の両端に、出力端子はバッテリB1の両端にそれぞれ接続されている。   The power receiving circuit 108 shown in FIG. 1 is a circuit that converts the power supplied from the power receiving side pad 101 and supplies it to the battery B1. Specifically, it is a circuit that converts the AC voltage output from the power receiving side pad 101 into a DC voltage and charges the battery B1. The power receiving circuit 108 is mounted on the vehicle. The input terminal of the power receiving circuit 108 is connected to both ends of the winding of the power receiving side pad 101, and the output terminal is connected to both ends of the battery B1.

電圧センサ109は、受電回路108の出力電圧を検出し、検出結果を出力する素子である。電圧センサ109の入力端子は、受電回路108の出力端子にそれぞれ接続されている。また、出力端子は、受電側制御装置111に接続されている。   The voltage sensor 109 is an element that detects the output voltage of the power receiving circuit 108 and outputs the detection result. The input terminal of the voltage sensor 109 is connected to the output terminal of the power receiving circuit 108. The output terminal is connected to the power receiving side control device 111.

電流センサ110は、受電回路108の出力電流を検出し、検出結果を出力する素子である。電流センサ110は、受電回路108とバッテリB1を接続する配線に、配線をクランプするように設けられている。電流センサ110の出力端子は、受電側制御装置111に接続されている。   The current sensor 110 is an element that detects an output current of the power receiving circuit 108 and outputs a detection result. The current sensor 110 is provided so as to clamp the wiring to the wiring connecting the power receiving circuit 108 and the battery B1. An output terminal of the current sensor 110 is connected to the power receiving side control device 111.

受電側制御装置111は、送電側制御装置107との間で無線通信によって情報を送受信し、受信した情報に基づいて受電回路108を制御する装置である。受電側制御装置111は、電圧センサ109及び電流センサ110の出力端子にそれぞれ接続されている。また、受電回路108に接続されている。   The power reception side control device 111 is a device that transmits and receives information to and from the power transmission side control device 107 by wireless communication, and controls the power reception circuit 108 based on the received information. The power receiving side control device 111 is connected to the output terminals of the voltage sensor 109 and the current sensor 110, respectively. Further, the power receiving circuit 108 is connected.

次に、図1、図5〜図8を参照して非接触給電装置の動作について説明する。   Next, the operation of the non-contact power feeding device will be described with reference to FIGS. 1 and 5 to 8.

図1に示すように、駐車スペースに車両を駐車すると、送電側パッド100と受電側パッド101が上下方向に所定の間隔をあけて対向する。送電側制御装置107は、図8に示すように、充電開始スイッチがオンしたか否かを判定する(S100)。   As shown in FIG. 1, when a vehicle is parked in the parking space, the power transmission side pad 100 and the power reception side pad 101 face each other with a predetermined interval in the vertical direction. As shown in FIG. 8, the power transmission side control device 107 determines whether or not the charging start switch is turned on (S100).

ステップS100において、充電開始スイッチがオンしていないと判定すると、充電開始スイッチがオンするまでステップS100を繰り返す。   If it is determined in step S100 that the charging start switch is not turned on, step S100 is repeated until the charging start switch is turned on.

一方、ステップS100において、充電開始スイッチがオンしていると判定すると、図1に示す非接触給電装置1は、バッテリB1への送電を開始する(S101)。   On the other hand, if it determines with the charge start switch having been turned on in step S100, the non-contact electric power feeder 1 shown in FIG. 1 will start the power transmission to battery B1 (S101).

図1に示す送電側制御装置107と受電側制御装置111は、無線通信によって情報を送受信する。送電側制御装置107は、受信した情報に基づいて送電回路102を制御する。送電回路102は、外部電源PSの出力する電圧を高周波の交流電圧に変換して送電側パッド100に印加する。交流電圧が印加され、巻線に交流電流が流れると、送電側パッド100は交番磁束を発生する。送電側パッド100の発生した磁束が巻線と鎖交することで、受電側パッド101は、電磁誘導によって誘導起電力を生じる。受電側制御装置111は、受信した情報に基づいて受電回路108を制御する。受電回路108は、受電側パッド101の出力する交流電圧を直流高電圧に変換してバッテリB1を充電する。   The power transmission side control device 107 and the power reception side control device 111 illustrated in FIG. 1 transmit and receive information by wireless communication. The power transmission side control device 107 controls the power transmission circuit 102 based on the received information. The power transmission circuit 102 converts the voltage output from the external power source PS into a high-frequency AC voltage and applies it to the power transmission side pad 100. When an AC voltage is applied and an AC current flows through the winding, the power transmission side pad 100 generates an alternating magnetic flux. When the magnetic flux generated by the power transmission side pad 100 is linked to the winding, the power reception side pad 101 generates an induced electromotive force by electromagnetic induction. The power receiving side control device 111 controls the power receiving circuit 108 based on the received information. The power receiving circuit 108 converts the AC voltage output from the power receiving side pad 101 into a DC high voltage and charges the battery B1.

図8に示すように、送電側制御装置107は、電圧センサ105及び電流センサ106を介して、送電側パッド100の入力電圧及び入力電流を検出する(S102)。そして、検出した送電側パッド100の入力電圧と入力電流の比に対応する結合係数を、予め設定されている、図5に示す第1マップから求める(S103)。その後、電圧センサ103及び電流センサ104を介して、送電回路102の入力電圧及び入力電流を検出する(S104)。   As shown in FIG. 8, the power transmission side control device 107 detects the input voltage and the input current of the power transmission side pad 100 via the voltage sensor 105 and the current sensor 106 (S102). Then, a coupling coefficient corresponding to the detected ratio between the input voltage and the input current of the power transmission side pad 100 is obtained from the first map shown in FIG. 5 set in advance (S103). Thereafter, the input voltage and input current of the power transmission circuit 102 are detected via the voltage sensor 103 and the current sensor 104 (S104).

受電側制御装置111は、電圧センサ109及び電流センサ110を介して、受電回路108の出力電圧及び出力電流を検出する(S105)。そして、検出した受電回路108の出力電圧及び出力電流の情報を送電側制御装置107に送信する。   The power receiving side control device 111 detects the output voltage and output current of the power receiving circuit 108 via the voltage sensor 109 and the current sensor 110 (S105). Then, the detected information on the output voltage and output current of the power receiving circuit 108 is transmitted to the power transmission side control device 107.

送電側制御装置107は、検出した受電回路108の出力電流と求めた結合係数に対応する基準入力電流を、予め設定されている、図6に示す第2マップから求める(S106)。そして、検出した送電回路102の入力電流と求めた基準入力電流の比に対応する送電側パッド100の等価抵抗を、予め設定されている、図7に示す第3マップから求める(S107)。その後、求めた等価抵抗と予め設定されている基準抵抗の比較結果に基づいて異物の有無を判定する(S108)。具体的には、求めた等価抵抗が、予め設定されている基準抵抗より大きいか否かを判定する。   The power transmission side control device 107 obtains a reference input current corresponding to the detected output current of the power receiving circuit 108 and the obtained coupling coefficient from a second map shown in FIG. 6 which is set in advance (S106). Then, the equivalent resistance of the power transmission side pad 100 corresponding to the ratio between the detected input current of the power transmission circuit 102 and the determined reference input current is determined from a preset third map shown in FIG. 7 (S107). Thereafter, the presence / absence of a foreign substance is determined based on a comparison result between the obtained equivalent resistance and a preset reference resistance (S108). Specifically, it is determined whether or not the obtained equivalent resistance is larger than a preset reference resistance.

ステップS108において、送電側パッド100の等価抵抗が基準抵抗より大きいとき、送電側制御装置107は、送電側パッド100と受電側パッド101の間に異物があると判定し、送電回路102を停止させ送電を中止するとともに、外部に報知する(S109)。   In step S108, when the equivalent resistance of the power transmission side pad 100 is larger than the reference resistance, the power transmission side control device 107 determines that there is a foreign object between the power transmission side pad 100 and the power reception side pad 101, and stops the power transmission circuit 102. The power transmission is stopped and the outside is notified (S109).

一方、ステップS108において、等価抵抗が基準抵抗未満のとき、送電側制御装置107は、送電側パッド100と受電側パッド101の間に異物がないと判定し、ステップS101に戻り同様の動作を繰り返す。   On the other hand, when the equivalent resistance is less than the reference resistance in step S108, the power transmission side control device 107 determines that there is no foreign object between the power transmission side pad 100 and the power reception side pad 101, and returns to step S101 to repeat the same operation. .

次に、効果について説明する。   Next, the effect will be described.

対向して配置された送電側パッド100と受電側パッド101の等価回路における送電側パッド100の等価抵抗は、図3に示すように、送電側パッド100と受電側パッド101の間の異物の有無や大きさによって変化するが、送電側パッド100と受電側パッド101の位置ずれによってはほとんど変化しないという特性を有している。第1実施形態によれば、送電側制御装置107は、この特性を利用し、送電側パッド100の等価抵抗に基づいて異物の有無を判定する。従来のように、巻線の位置を調整したり、巻線の駆動周波数を調整したりする必要もない。そのため、車両の外部に設置された送電側パッド100と、車両に搭載された受電側パッド101を備え、車両の外部から車両に非接触で送電する非接触給電装置1において、簡素な構成で、送電側パッド100と受電側パッド101の位置ずれによる影響を抑え、送電側パッド100と受電側パッド101の間の異物の有無を検出することができる。   As shown in FIG. 3, the equivalent resistance of the power transmission side pad 100 in the equivalent circuit of the power transmission side pad 100 and the power reception side pad 101 arranged oppositely is the presence or absence of foreign matter between the power transmission side pad 100 and the power reception side pad 101. Although it changes depending on the size, it has a characteristic that it hardly changes depending on the positional deviation between the power transmission side pad 100 and the power reception side pad 101. According to the first embodiment, the power transmission side control device 107 uses this characteristic to determine the presence or absence of a foreign object based on the equivalent resistance of the power transmission side pad 100. There is no need to adjust the position of the winding or the driving frequency of the winding as in the prior art. Therefore, in the non-contact power feeding apparatus 1 that includes the power transmission side pad 100 installed outside the vehicle and the power reception side pad 101 mounted on the vehicle and transmits power from the outside of the vehicle to the vehicle in a non-contact manner, with a simple configuration, The presence or absence of foreign matter between the power transmission side pad 100 and the power reception side pad 101 can be detected by suppressing the influence of the positional deviation between the power transmission side pad 100 and the power reception side pad 101.

第1実施形態によれば、送電側制御装置107は、まず、等価回路における結合係数を求める。そして、求めた結合係数に基づいて、異物がない場合における送電回路102の入力電流である基準入力電流を求める。その後、送電側制御装置107は、求めた基準入力電流に基づいて送電側パッド100の等価抵抗を求める。これにより、送電側パッド100の等価抵抗を確実に求めることができる。そして、この等価抵抗と基準抵抗の比較結果に基づいて異物の有無を判定する。そのため、送電側パッド100と受電側パッドの間に異物の有無を確実に判定することができる。   According to 1st Embodiment, the power transmission side control apparatus 107 calculates | requires the coupling coefficient in an equivalent circuit first. Then, based on the obtained coupling coefficient, a reference input current that is an input current of the power transmission circuit 102 when there is no foreign object is obtained. Thereafter, the power transmission side control device 107 obtains an equivalent resistance of the power transmission side pad 100 based on the obtained reference input current. Thereby, the equivalent resistance of the power transmission side pad 100 can be calculated | required reliably. The presence / absence of a foreign object is determined based on the comparison result between the equivalent resistance and the reference resistance. Therefore, the presence or absence of a foreign object can be reliably determined between the power transmission side pad 100 and the power reception side pad.

第1実施形態によれば、送電側制御装置107は、送電側パッド100の入力電圧と入力電流を検出し、検出した送電側パッド100の入力電圧と入力電流の比に対応する結合係数を、予め設定されている、図5に示す、送電側パッド100の入力電圧と入力電流の比に対する結合係数の関係を示す第1マップから求める。そのため、結合係数を確実に求めることができる。   According to the first embodiment, the power transmission side control device 107 detects the input voltage and the input current of the power transmission side pad 100, and determines the coupling coefficient corresponding to the ratio of the detected input voltage and input current of the power transmission side pad 100, It is determined from a first map showing the relationship of the coupling coefficient to the ratio of the input voltage and the input current of the power transmission side pad 100 shown in FIG. Therefore, the coupling coefficient can be obtained reliably.

第1実施形態によれば、送電側制御装置107は、受電回路108の出力電流を検出し、検出した受電回路108の出力電流と求めた結合係数に対応する基準入力電流を、予め設定されている、図6に示す、受電回路108の出力電流と結合係数と基準入力電流の関係を示す第2マップから求める。そのため、基準入力電流を確実に求めることができる。   According to the first embodiment, the power transmission side control device 107 detects the output current of the power receiving circuit 108, and the reference input current corresponding to the detected output current of the power receiving circuit 108 and the obtained coupling coefficient is set in advance. 6 is obtained from the second map showing the relationship between the output current of the power receiving circuit 108, the coupling coefficient, and the reference input current shown in FIG. Therefore, the reference input current can be obtained reliably.

第1実施形態によれば、送電側制御装置107は、送電回路102の入力電流を検出し、検出した送電回路102の入力電流と求めた基準入力電流の比に対応する送電側パッド100の等価抵抗を、予め設定されている、図7に示す、送電回路102の入力電流と求めた基準入力電流の比に対する送電側パッド100の等価抵抗の関係を示す第3マップから求める。そのため、送電側パッド100の等価抵抗を確実に求めることができる。   According to the first embodiment, the power transmission side control device 107 detects the input current of the power transmission circuit 102 and the equivalent of the power transmission side pad 100 corresponding to the ratio of the detected input current of the power transmission circuit 102 and the obtained reference input current. The resistance is obtained from a third map that is set in advance and that shows the relationship between the equivalent resistance of the power transmission side pad 100 and the ratio of the input current of the power transmission circuit 102 and the determined reference input current shown in FIG. Therefore, the equivalent resistance of the power transmission side pad 100 can be obtained reliably.

図3に示すように、送電側パッド100の等価抵抗は、異物が大きくなるに従って大きくなる。第1実施形態によれば、送電側制御装置107は、求めた送電側パッド100の等価抵抗が予め設定されている基準抵抗より大きいとき、異物があると判定する。そのため、異物の有無を判定することができる。パッドの等価抵抗は、巻線の形状等によって決まるパッドの型式毎の固有値であるため、第1実施形態のように、異物の有無を判定する基準パラメータをパッドの等価抵抗にすることで、基準抵抗はパッドの型式毎に設定すればよく、送電回路や受電回路やパッド等の組合せ毎に設定する必要がない。そのため、基準パラメータの管理を簡易化することができる。   As shown in FIG. 3, the equivalent resistance of the power transmission side pad 100 increases as the foreign matter increases. According to the first embodiment, the power transmission side control device 107 determines that there is a foreign object when the calculated equivalent resistance of the power transmission side pad 100 is greater than a preset reference resistance. Therefore, the presence or absence of foreign matter can be determined. Since the equivalent resistance of the pad is an eigenvalue for each pad type determined by the shape of the winding, etc., the reference parameter for determining the presence or absence of foreign matter is set to the equivalent resistance of the pad as in the first embodiment. The resistor may be set for each type of pad, and need not be set for each combination of a power transmission circuit, a power reception circuit, a pad, and the like. Therefore, management of reference parameters can be simplified.

第1実施形態によれば、基準抵抗は、異物がない場合における送電側パッド100の等価抵抗より大きい値に設定されている。そのため、異物の有無を確実に判定することができる。   According to the first embodiment, the reference resistance is set to a value larger than the equivalent resistance of the power transmission side pad 100 when there is no foreign object. Therefore, the presence / absence of a foreign object can be reliably determined.

なお、第1実施形態では、送電側制御装置107が異物の有無を判定する例を挙げているが、これに限られるものではない。判定に必要な情報及びマップを受電側制御装置111に集め、受電側制御装置111が異物の有無を判定するようにしてもよい。   In addition, although the power transmission side control apparatus 107 has given the example which determines the presence or absence of a foreign material in 1st Embodiment, it is not restricted to this. Information and a map necessary for the determination may be collected in the power receiving side control device 111 so that the power receiving side control device 111 determines the presence or absence of a foreign object.

また、第1実施形態では、外部電源PSの出力電圧の形態が特に規定されていないが、外部電源PSは、交流電源であってもよいし、直流電源であってもよい。   In the first embodiment, the form of the output voltage of the external power supply PS is not particularly specified, but the external power supply PS may be an AC power supply or a DC power supply.

さらに、第1実施形態では、送電側パッド100が駐車スペースの地表面に、受電側パッド101が車両の底部にそれぞれ設置されている例を挙げているが、これに限られるものではない。送電側パッドは、道路の路面、建物の床面、及び、地中に設置されていてもよい。また、建物の壁面や天井に設置されていてもよい。その場合、受電側パッドが、車両の側面や天井面に設置されていれば同様に送電することができる。   Further, in the first embodiment, an example in which the power transmission side pad 100 is installed on the ground surface of the parking space and the power reception side pad 101 is installed on the bottom of the vehicle is described, but the present invention is not limited to this. The power transmission side pad may be installed on the road surface of the road, the floor surface of the building, and the ground. Moreover, you may install in the wall surface and ceiling of a building. In that case, if the power receiving side pad is installed on the side surface or ceiling surface of the vehicle, power can be transmitted in the same manner.

(第2実施形態)
次に、第2実施形態の非接触給電装置について説明する。第2実施形態の非接触給電装置は、第1実施形態の非接触給電装置が送電側パッドの等価抵抗に基づいて異物の有無を判定するのに対して、この等価抵抗に関連するパラメータに基づいて異物の有無を判定するようにしたものである。
(Second Embodiment)
Next, the non-contact power feeding device of the second embodiment will be described. The contactless power supply device of the second embodiment is based on parameters related to the equivalent resistance, whereas the contactless power supply device of the first embodiment determines the presence or absence of foreign matter based on the equivalent resistance of the power transmission side pad. Thus, the presence or absence of foreign matter is determined.

送電側制御装置以外は、第1実施形態の非接触給電装置と同一構成である。そのため、送電側制御装置以外は、必要な場合を除いて説明を省略する。   Except for the power transmission side control device, the configuration is the same as that of the non-contact power feeding device of the first embodiment. Therefore, the description other than the power transmission side control device is omitted unless necessary.

まず、第1実施形態と同一の図1を参照して非接触給電装置の構成について説明する。   First, the configuration of the non-contact power feeding device will be described with reference to FIG. 1 which is the same as that of the first embodiment.

送電側制御装置107(異物判定手段、結合係数取得手段、基準入力電流取得手段、判定手段)は、等価回路における送電側パッド100の等価抵抗に関連するパラメータに基づいて、送電側パッド100と受電側パッド101の間の異物の有無を判定する。具体的には、送電回路102の入力電流に基づいて異物の有無を判定する。より具体的には、まず、等価回路における結合係数を求める。そして、求めた結合係数に基づいて、基準入力電流を求める。その後、検出した送電回路102の入力電流と求めた基準入力電流の比較結果に基づいて異物の有無を判定する。   The power transmission side control device 107 (foreign matter determination means, coupling coefficient acquisition means, reference input current acquisition means, determination means) is connected to the power transmission side pad 100 and the power reception based on a parameter related to the equivalent resistance of the power transmission side pad 100 in the equivalent circuit. The presence / absence of foreign matter between the side pads 101 is determined. Specifically, the presence / absence of a foreign object is determined based on the input current of the power transmission circuit 102. More specifically, first, a coupling coefficient in an equivalent circuit is obtained. Then, a reference input current is obtained based on the obtained coupling coefficient. Thereafter, the presence / absence of a foreign object is determined based on a comparison result between the detected input current of the power transmission circuit 102 and the obtained reference input current.

送電側制御装置107には、第1実施形態と同様に、図5に示す第1マップと、図6に示す第2マップが予め設定されている。しかし、判定に際して等価抵抗は不要であるので、第1実施形態と異なり、図7に示す第3マップは設定されていない。   In the power transmission side control device 107, as in the first embodiment, a first map shown in FIG. 5 and a second map shown in FIG. 6 are set in advance. However, since an equivalent resistance is not required for the determination, unlike the first embodiment, the third map shown in FIG. 7 is not set.

次に、図9を参照して非接触給電装置の動作について説明する。   Next, the operation of the non-contact power feeding device will be described with reference to FIG.

図9に示すフローチャートにおいて、ステップS200〜S206は、第1実施形態におけるステップS100〜S106と同一の動作である。   In the flowchart shown in FIG. 9, steps S200 to S206 are the same operations as steps S100 to S106 in the first embodiment.

送電側制御装置107は、検出した送電回路102の入力電流と求めた基準入力電流の比較結果に基づいて異物の有無を判定する。具体的には、検出した送電回路102の入力電流が求めた基準入力電流より大きいとき、異物があると判定する(S207)。   The power transmission side control device 107 determines the presence or absence of foreign matter based on the comparison result between the detected input current of the power transmission circuit 102 and the obtained reference input current. Specifically, when the detected input current of the power transmission circuit 102 is larger than the obtained reference input current, it is determined that there is a foreign object (S207).

ステップS207において、送電回路102の入力電流が基準入力電流より大きいとき、送電側制御装置107は、送電側パッド100と受電側パッド101の間に異物があると判定し、送電回路102を停止させ送電を中止するとともに、外部に報知する(S208)。   In step S207, when the input current of the power transmission circuit 102 is larger than the reference input current, the power transmission side control device 107 determines that there is a foreign object between the power transmission side pad 100 and the power reception side pad 101, and stops the power transmission circuit 102. The power transmission is stopped and the outside is notified (S208).

一方、ステップS207において、送電回路102の入力電流が基準入力電流未満のとき、送電側制御装置107は、送電側パッド100と受電側パッド101の間に異物がないと判定し、ステップS201に戻り同様の動作を繰り返す。   On the other hand, when the input current of the power transmission circuit 102 is less than the reference input current in step S207, the power transmission side control device 107 determines that there is no foreign object between the power transmission side pad 100 and the power reception side pad 101, and returns to step S201. The same operation is repeated.

次に、効果について説明する。   Next, the effect will be described.

対向して配置された送電側パッド100と受電側パッド101の等価回路における送電側パッド100の等価抵抗は、図3に示すように、送電側パッド100と受電側パッド101の間の異物の有無や大きさによって変化するが、送電側パッド100と受電側パッド101の位置ずれによってはほとんど変化しないという特性を有している。第2実施形態によれば、送電側制御装置107は、この特性を利用し、送電側パッド100の等価抵抗に関連するパラメータである送電回路102の入力電流に基づいて異物の有無を判定する。従来のように、巻線の位置を調整したり、巻線の駆動周波数を調整したりする必要もない。そのため、第1実施形態と同様に、簡素な構成で、送電側パッド100と受電側パッド101の位置ずれによる影響を抑え、送電側パッド100と受電側パッド101の間の異物の有無を検出することができる。   As shown in FIG. 3, the equivalent resistance of the power transmission side pad 100 in the equivalent circuit of the power transmission side pad 100 and the power reception side pad 101 arranged oppositely is the presence or absence of foreign matter between the power transmission side pad 100 and the power reception side pad 101. Although it changes depending on the size, it has a characteristic that it hardly changes depending on the positional deviation between the power transmission side pad 100 and the power reception side pad 101. According to the second embodiment, the power transmission side control device 107 uses this characteristic to determine the presence or absence of a foreign substance based on the input current of the power transmission circuit 102 that is a parameter related to the equivalent resistance of the power transmission side pad 100. There is no need to adjust the position of the winding or the driving frequency of the winding as in the prior art. Therefore, similarly to the first embodiment, with a simple configuration, the influence of the positional deviation between the power transmission side pad 100 and the power reception side pad 101 is suppressed, and the presence or absence of foreign matter between the power transmission side pad 100 and the power reception side pad 101 is detected. be able to.

第2実施形態によれば、送電側制御装置107は、まず、等価回路における結合係数を求める。そして、求めた結合係数に基づいて、基準入力電流を求める。そのため、基準入力電流を確実に求めることができる。その後、送電側制御装置107は、検出した送電回路102の入力電流と求めた基準入力電流の比較結果に基づいて異物の有無を判定する。従って、送電側パッド100と受電側パッドの間に異物の有無を確実に判定することができる。   According to the second embodiment, the power transmission side control device 107 first obtains a coupling coefficient in the equivalent circuit. Then, a reference input current is obtained based on the obtained coupling coefficient. Therefore, the reference input current can be obtained reliably. Then, the power transmission side control apparatus 107 determines the presence or absence of a foreign material based on the comparison result of the detected input current of the power transmission circuit 102 and the obtained reference input current. Therefore, the presence or absence of a foreign object can be reliably determined between the power transmission side pad 100 and the power reception side pad.

第2実施形態によれば、送電側制御装置107は、第1実施形態同様に、送電側パッド100の入力電圧と入力電流を検出し、検出した送電側パッドの入力電圧と入力電流の比に対応する結合係数を、第1マップから求める。そのため、第1実施形態と同様に、結合係数を確実に求めることができる。   According to the second embodiment, the power transmission side control device 107 detects the input voltage and input current of the power transmission side pad 100 as in the first embodiment, and sets the ratio between the detected input voltage and input current of the power transmission side pad. The corresponding coupling coefficient is determined from the first map. Therefore, the coupling coefficient can be obtained reliably as in the first embodiment.

第2実施形態によれば、送電側制御装置107は、第1実施形態と同様に、受電回路の出力電流を検出し、検出した受電回路の出力電流と求めた結合係数に対応する基準入力電流を、第2マップから求める。そのため、第1実施形態と同様に、基準入力電流を確実に求めることができる。   According to the second embodiment, the power transmission side control device 107 detects the output current of the power receiving circuit, as in the first embodiment, and the reference input current corresponding to the detected output current of the power receiving circuit and the obtained coupling coefficient. Is obtained from the second map. Therefore, the reference input current can be obtained reliably as in the first embodiment.

図3に示すように、送電側パッド100の等価抵抗は、異物が大きくなるに従って大きくなる。送電側パッド100の等価抵抗に関連するパラメータである送電回路102の入力電流も、異物が大きくなるに従って大きくなる。第2実施形態によれば、送電側制御装置107は、検出した送電回路102の入力電流が、異物がない場合における送電回路102の入力電流である基準入力電流より大きいとき、異物があると判定する。そのため、異物の有無を確実に判定することができる。   As shown in FIG. 3, the equivalent resistance of the power transmission side pad 100 increases as the foreign matter increases. The input current of the power transmission circuit 102, which is a parameter related to the equivalent resistance of the power transmission side pad 100, also increases as the foreign matter increases. According to the second embodiment, the power transmission side control device 107 determines that there is a foreign object when the detected input current of the power transmission circuit 102 is greater than the reference input current that is the input current of the power transmission circuit 102 when there is no foreign object. To do. Therefore, the presence / absence of a foreign object can be reliably determined.

なお、第2実施形態では、送電側パッド100の等価抵抗に関連するパラメータとして送電回路102の入力電流を用いて異物の有無を判定する例を挙げているが、これに限られるものではない。送電側パッド100の等価抵抗に関連するパラメータであれば、送電回路102の入力電流以外のものを用いて異物の有無を判定してもよい。   In the second embodiment, an example in which the presence / absence of a foreign object is determined using the input current of the power transmission circuit 102 as a parameter related to the equivalent resistance of the power transmission side pad 100 is not limited thereto. As long as the parameter is related to the equivalent resistance of the power transmission side pad 100, the presence or absence of a foreign object may be determined using a parameter other than the input current of the power transmission circuit 102.

1・・・非接触給電装置、100・・・送電側パッド、101・・・受電側パッド、102・・・送電回路、103・・・電圧センサ、104・・・電流センサ、105・・・電圧センサ、106・・・電流センサ、107・・・送電側制御装置(異物判定手段、結合係数取得手段、基準入力電流取得手段、等価抵抗取得手段、判定手段)、108・・・受電回路、109・・・電圧センサ、110・・・電流センサ、111・・・受電側制御装置 DESCRIPTION OF SYMBOLS 1 ... Non-contact electric power feeder, 100 ... Power transmission side pad, 101 ... Power receiving side pad, 102 ... Power transmission circuit, 103 ... Voltage sensor, 104 ... Current sensor, 105 ... Voltage sensor, 106 ... current sensor, 107 ... power transmission side control device (foreign matter determination means, coupling coefficient acquisition means, reference input current acquisition means, equivalent resistance acquisition means, determination means), 108 ... power reception circuit, 109... Voltage sensor, 110... Current sensor, 111.

Claims (12)

巻線を有する送電側パッド(100)と、
巻線を有し、前記送電側パッドと対向して配置され、前記送電側パッドから送電される電力を受電する受電側パッド(101)と、
外部電源と前記送電側パッドに接続され、前記外部電源から供給される電力を変換して前記送電側パッドに供給する送電回路(102)と、
前記受電側パッドと給電対象に接続され、前記受電側パッドから供給される電力を変換して前記給電対象に供給する受電回路(108)と、
前記送電側パッドと前記受電側パッドの間の異物の有無を判定する異物判定手段(107)と、
を備えた非接触給電装置において、
前記異物判定手段は、対向して配置された前記送電側パッドと前記受電側パッドの等価回路における前記送電側パッドの等価抵抗、又は、前記等価抵抗に関連するパラメータに基づいて異物の有無を判定することを特徴とする非接触給電装置。
A power transmission side pad (100) having windings;
A power receiving side pad (101) having a winding, disposed opposite to the power transmitting side pad, and receiving power transmitted from the power transmitting side pad;
A power transmission circuit (102) connected to an external power source and the power transmission side pad, converting power supplied from the external power source and supplying the power to the power transmission side pad;
A power receiving circuit (108) connected to the power receiving side pad and a power supply target, converting power supplied from the power receiving side pad and supplying the power to the power supply target;
Foreign matter determining means (107) for determining the presence or absence of foreign matter between the power transmission side pad and the power receiving side pad;
In a non-contact power feeding device with
The foreign matter determining means determines the presence or absence of foreign matter based on an equivalent resistance of the power transmitting side pad in an equivalent circuit of the power transmitting side pad and the power receiving side pad arranged to face each other, or a parameter related to the equivalent resistance. A non-contact power feeding device.
前記異物判定手段は、
前記等価回路における結合係数を求める結合係数取得手段(107)と、
求めた前記結合係数に基づいて、異物がない場合における前記送電回路の入力電流である基準入力電流を求める基準入力電流取得手段(107)と、
求めた前記基準入力電流に基づいて前記等価抵抗を求める等価抵抗取得手段(107)と、
求めた前記等価抵抗と基準抵抗の比較結果に基づいて異物の有無を判定する判定手段(107)と、
を有することを特徴とする請求項1に記載の非接触給電装置。
The foreign matter determining means includes
Coupling coefficient obtaining means (107) for obtaining a coupling coefficient in the equivalent circuit;
Based on the obtained coupling coefficient, reference input current obtaining means (107) for obtaining a reference input current that is an input current of the power transmission circuit when there is no foreign object,
Equivalent resistance acquisition means (107) for determining the equivalent resistance based on the determined reference input current;
Determination means (107) for determining the presence or absence of a foreign substance based on a comparison result of the obtained equivalent resistance and reference resistance;
The contactless power feeding device according to claim 1, wherein
前記結合係数取得手段は、前記送電側パッドの入力電圧と入力電流を検出し、検出した前記送電側パッドの入力電圧と入力電流の比に対応する前記結合係数を、予め設定されている前記送電側パッドの入力電圧と入力電流の比に対する前記結合係数の関係を示すマップから求めることを特徴とする請求項2に記載の非接触給電装置。   The coupling coefficient acquisition unit detects an input voltage and an input current of the power transmission side pad, and sets the coupling coefficient corresponding to the detected ratio of the input voltage and the input current of the power transmission side pad in advance. The contactless power feeding device according to claim 2, wherein the contactless power feeding device is obtained from a map indicating a relationship of the coupling coefficient with respect to a ratio between an input voltage and an input current of the side pad. 前記基準入力電流取得手段は、前記受電回路の出力電流を検出し、検出した前記受電回路の出力電流と求めた前記結合係数に対応する前記基準入力電流を、予め設定されている前記受電回路の出力電流と前記結合係数と前記基準入力電流の関係を示すマップから求めることを特徴とする請求項2又は3に記載の非接触給電装置。   The reference input current acquisition unit detects an output current of the power receiving circuit, and the reference input current corresponding to the detected output current of the power receiving circuit and the obtained coupling coefficient is set in advance in the power receiving circuit. The contactless power feeding device according to claim 2 or 3, wherein the contactless power feeding device is obtained from a map indicating a relationship among an output current, the coupling coefficient, and the reference input current. 前記等価抵抗取得手段は、前記送電回路の入力電流を検出し、検出した前記送電回路の入力電流と求めた前記基準入力電流の比に対応する前記等価抵抗を、予め設定されている前記送電回路の入力電流と前記基準入力電流の比に対する前記等価抵抗の関係を示すマップから求めることを特徴とする請求項2〜4のいずれか1項に記載の非接触給電装置。   The equivalent resistance acquisition unit detects an input current of the power transmission circuit, and the equivalent resistance corresponding to a ratio of the detected input current of the power transmission circuit and the obtained reference input current is set in advance. 5. The contactless power feeding device according to claim 2, wherein the contactless power feeding device is obtained from a map indicating a relationship of the equivalent resistance with respect to a ratio of an input current to a reference input current. 前記判定手段は、求めた前記等価抵抗が前記基準抵抗より大きいとき、異物があると判定することを特徴とする請求項2〜5のいずれか1項に記載の非接触給電装置。   The contactless power supply device according to claim 2, wherein the determination unit determines that there is a foreign object when the calculated equivalent resistance is greater than the reference resistance. 前記基準抵抗は、異物がない場合における前記等価抵抗より大きい値に設定されていることを特徴とする請求項2〜6のいずれか1項に記載の非接触給電装置。   The non-contact power feeding apparatus according to claim 2, wherein the reference resistance is set to a value larger than the equivalent resistance when no foreign matter is present. 前記等価抵抗に関連するパラメータは、前記送電回路の入力電流であり、
前記異物判定手段は、
前記等価回路における結合係数を求める結合係数取得手段と、
求めた前記結合係数に基づいて、前記基準入力電流を求める基準入力電流取得手段と、
検出した前記送電回路の入力電流と求めた前記基準入力電流の比較結果に基づいて異物の有無を判定する判定手段と、
を有することを特徴とする請求項1に記載の非接触給電装置。
The parameter related to the equivalent resistance is an input current of the power transmission circuit,
The foreign matter determining means includes
Coupling coefficient obtaining means for obtaining a coupling coefficient in the equivalent circuit;
A reference input current obtaining means for obtaining the reference input current based on the obtained coupling coefficient;
Determining means for determining the presence or absence of foreign matter based on a comparison result between the detected input current of the power transmission circuit and the determined reference input current;
The contactless power feeding device according to claim 1, wherein
前記結合係数取得手段は、前記送電側パッドの入力電圧と入力電流を検出し、検出した前記送電側パッドの入力電圧と入力電流の比に対応する前記結合係数を、予め設定されている前記送電側パッドの入力電圧と入力電流の比に対する前記結合係数の関係を示すマップから求めることを特徴とする請求項8に記載の非接触給電装置。   The coupling coefficient acquisition unit detects an input voltage and an input current of the power transmission side pad, and sets the coupling coefficient corresponding to the detected ratio of the input voltage and the input current of the power transmission side pad in advance. 9. The non-contact power feeding device according to claim 8, wherein the contactless power feeding device is obtained from a map showing a relationship of the coupling coefficient with respect to a ratio between an input voltage and an input current of a side pad. 前記基準入力電流取得手段は、前記受電回路の出力電流を検出し、検出した前記受電回路の出力電流と求めた前記結合係数に対応する前記基準入力電流を、予め設定されている前記受電回路の出力電流と前記結合係数と前記基準入力電流の関係を示すマップから求めることを特徴とする請求項8又は9に記載の非接触給電装置。   The reference input current acquisition unit detects an output current of the power receiving circuit, and the reference input current corresponding to the detected output current of the power receiving circuit and the obtained coupling coefficient is set in advance in the power receiving circuit. The contactless power feeding device according to claim 8 or 9, wherein the contactless power feeding device is obtained from a map showing a relationship among an output current, the coupling coefficient, and the reference input current. 前記判定手段は、検出した前記送電回路の入力電流が求めた前記基準入力電流より大きいとき、異物があると判定することを特徴とする請求項8〜10のいずれか1項に記載の非接触給電装置。   The non-contact according to claim 8, wherein the determination unit determines that there is a foreign object when the detected input current of the power transmission circuit is larger than the determined reference input current. Power supply device. 前記送電側パッドは、車両の外部に設置され、
前記受電側パッドは、前記車両に搭載され、
前記車両の外部から前記車両に非接触で送電することを特徴とする請求項1〜11のいずれか1項に記載の非接触給電装置。
The power transmission side pad is installed outside the vehicle,
The power receiving pad is mounted on the vehicle,
The non-contact power feeding apparatus according to claim 1, wherein power is transmitted to the vehicle in a non-contact manner from the outside of the vehicle.
JP2012091260A 2012-04-12 2012-04-12 Non-contact power feeding device Active JP5757269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091260A JP5757269B2 (en) 2012-04-12 2012-04-12 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091260A JP5757269B2 (en) 2012-04-12 2012-04-12 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2013223258A true JP2013223258A (en) 2013-10-28
JP5757269B2 JP5757269B2 (en) 2015-07-29

Family

ID=49593892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091260A Active JP5757269B2 (en) 2012-04-12 2012-04-12 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5757269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236422A (en) * 2012-05-07 2013-11-21 Sony Corp Detection device, power reception device, power transmission device and non-contact power supply system
JP2017046521A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Non-contact power transmission system and transmission equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537688A (en) * 2004-05-11 2007-12-20 スプラッシュパワー リミテッド Control of inductive power transfer system
JP2010119246A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Power supply system
WO2011006758A2 (en) * 2009-07-14 2011-01-20 Conductix-Wampfler Ag Device for the inductive transfer of electric energy
US20110128015A1 (en) * 2009-11-03 2011-06-02 Robert Bosch Gmbh Foreign Object Detection in Inductive Coupled Devices
WO2011097608A2 (en) * 2010-02-08 2011-08-11 Access Business Group International Llc Input parasitic metal detection
JP2011176914A (en) * 2010-02-23 2011-09-08 Saitama Univ Non-contact power supplying device
JP2011244531A (en) * 2010-05-14 2011-12-01 Toyota Industries Corp Resonance type non-contact power supply system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537688A (en) * 2004-05-11 2007-12-20 スプラッシュパワー リミテッド Control of inductive power transfer system
JP2010119246A (en) * 2008-11-14 2010-05-27 Toyota Motor Corp Power supply system
WO2011006758A2 (en) * 2009-07-14 2011-01-20 Conductix-Wampfler Ag Device for the inductive transfer of electric energy
JP2012533277A (en) * 2009-07-14 2012-12-20 コンダクティクス−バンプフラー ゲーエムベーハー Equipment for inductive transmission of electrical energy
US20110128015A1 (en) * 2009-11-03 2011-06-02 Robert Bosch Gmbh Foreign Object Detection in Inductive Coupled Devices
WO2011097608A2 (en) * 2010-02-08 2011-08-11 Access Business Group International Llc Input parasitic metal detection
JP2013519355A (en) * 2010-02-08 2013-05-23 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Input parasitic metal detection
JP2011176914A (en) * 2010-02-23 2011-09-08 Saitama Univ Non-contact power supplying device
JP2011244531A (en) * 2010-05-14 2011-12-01 Toyota Industries Corp Resonance type non-contact power supply system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236422A (en) * 2012-05-07 2013-11-21 Sony Corp Detection device, power reception device, power transmission device and non-contact power supply system
US9518948B2 (en) 2012-05-07 2016-12-13 Sony Corporation Detection device, power reception device, power transmission device and non-contact power supply system
US10256673B2 (en) 2012-05-07 2019-04-09 Sony Corporation Detection device, power reception device, power transmission device and non-contact power supply system
US10326318B2 (en) 2012-05-07 2019-06-18 Sony Corporation Detection device, power reception device, power transmission device and non-contact power supply system
US10797536B2 (en) 2012-05-07 2020-10-06 Sony Corporation Detection device, power reception device, power transmission device and non-contact power supply system
JP2017046521A (en) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 Non-contact power transmission system and transmission equipment
CN106487078A (en) * 2015-08-28 2017-03-08 丰田自动车株式会社 Noncontact power transmission system and power transmission device
EP3139467A1 (en) * 2015-08-28 2017-03-08 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and power transmission device
US10263472B2 (en) 2015-08-28 2019-04-16 Toyota Jidosha Kabushiki Kaisha Contactless power transfer system and power transmission device
CN106487078B (en) * 2015-08-28 2020-03-06 丰田自动车株式会社 Non-contact power transmission system and power transmission device

Also Published As

Publication number Publication date
JP5757269B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
JP6067211B2 (en) Non-contact power feeding device
US10804743B2 (en) Surface flux control for inductive wireless charging systems
EP3157116A1 (en) Contactless power-supplying system, power-receiving device, and power-transmitting device
JP6089464B2 (en) Non-contact power transmission device
JP7384821B2 (en) Apparatus, system and method for detecting foreign objects
CN102971179B (en) Temperature survey during no touch transmitting energy
US20210143684A1 (en) Contactless power feeding apparatus and contactless power feeding system
WO2013077326A1 (en) Non-contact power supply apparatus and non-contact power supply system
JP2012023913A (en) Non-contact power feeding device
JP2015008548A (en) Non-contact power transmission device
TW201729511A (en) Method for operating a monitoring apparatus for monitoring an inductive energy transmission apparatus
TW201935826A (en) Thermal feedback for power transfer optimization
JP6094204B2 (en) Wireless power transmission system
US20160114688A1 (en) Power feed device and method for acquisition of frequency characteristics
JP2020048369A (en) Running non-contact power supply system
JP2013038893A (en) Power transmission system
JP6149209B2 (en) Non-contact power feeding device
JP5757269B2 (en) Non-contact power feeding device
JP6451510B2 (en) Non-contact power feeding device
JP2013215073A (en) Feeding apparatus and power reception apparatus for non-contact power transmission system
JP5903990B2 (en) Contactless power supply
WO2013061617A1 (en) Contactless electrical power transmission device, and electricity supply device and electricity reception device using same
JP2013225980A (en) Non-contact power supply device
JP2016106512A (en) Non-contact power feeding device
JP5699960B2 (en) Non-contact power transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R151 Written notification of patent or utility model registration

Ref document number: 5757269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250