JP2013221732A - Combustion efficiency improvement device - Google Patents

Combustion efficiency improvement device Download PDF

Info

Publication number
JP2013221732A
JP2013221732A JP2012095847A JP2012095847A JP2013221732A JP 2013221732 A JP2013221732 A JP 2013221732A JP 2012095847 A JP2012095847 A JP 2012095847A JP 2012095847 A JP2012095847 A JP 2012095847A JP 2013221732 A JP2013221732 A JP 2013221732A
Authority
JP
Japan
Prior art keywords
fuel
combustion
combustion efficiency
far
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095847A
Other languages
Japanese (ja)
Other versions
JP6019699B2 (en
Inventor
Kosuke Murooka
康資 室岡
Shigeo Tokusa
茂男 木賊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIHON KOEI CORP
Original Assignee
NIHON KOEI CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIHON KOEI CORP filed Critical NIHON KOEI CORP
Priority to JP2012095847A priority Critical patent/JP6019699B2/en
Publication of JP2013221732A publication Critical patent/JP2013221732A/en
Application granted granted Critical
Publication of JP6019699B2 publication Critical patent/JP6019699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion efficiency improvement device capable of being used at normal temperature and also from low temperature of -45°C to high temperature of 250°C or higher as a fuel temperature.SOLUTION: A combustion efficiency improvement device includes a combustion improvement material 11 comprising a far infrared ray generating substance comprising graphite silica powder, hornblende cummingtonite powder or tourmaline powder, and an inert liquid comprising a normal temperature ion liquid having heat resistance of a fuel temperature or higher in a fuel supply path, an inner case 17 for storing the combustion improvement material 11, and a supply pipe 22 disposed in the combustion improvement material 11 in the inner case 17 in a buried state, having a spiral coil section 22a circling along an inner face of the inner case 17, and comprising a material through which far infrared ray can penetrate, and the supply pipe 22 is disposed on the way of the fuel supply path from a fuel tank to a combustion device.

Description

本発明は、液体燃料の燃焼効率を改良する燃焼効率改良装置に関する。   The present invention relates to a combustion efficiency improving apparatus for improving the combustion efficiency of liquid fuel.

船舶やバス、トラックなどのエンジンへ供給する液体燃料に対して遠赤外線を照射することで、燃焼効率を改良する燃焼効率改良装置が種々提案されている。なお、本明細書では、遠赤外線のように燃焼効率を改良可能な波長の電磁波を「遠赤外線」と総称するものとする。   Various combustion efficiency improvement apparatuses that improve the combustion efficiency by irradiating far-infrared rays to liquid fuel supplied to engines such as ships, buses, and trucks have been proposed. In this specification, electromagnetic waves having a wavelength capable of improving combustion efficiency, such as far infrared rays, are collectively referred to as “far infrared rays”.

前記燃焼効率改良装置として、ナノカーボングラファイト粒子を含む導電性溶液中に少なくとも電気石粒子が分散された混合分散液が、表面が硬質アルマイトで被覆された導電性材料からなる中空部材内に充填されているとともに、液体燃料の燃料タンクから液体燃料の燃焼装置に至る燃料パイプの周囲を囲繞可能に形成したものが提案されている(例えば、特許文献1参照。)。   As the combustion efficiency improving device, a mixed dispersion in which at least tourmaline particles are dispersed in a conductive solution containing nanocarbon graphite particles is filled into a hollow member made of a conductive material whose surface is coated with hard anodized. In addition, there has been proposed one in which the periphery of a fuel pipe extending from a liquid fuel tank to a liquid fuel combustion device can be surrounded (see, for example, Patent Document 1).

ところで、船舶等で使用されるC重油は、粘度が高いことから、通常は80℃または120℃に加温して粘度を低くした状態で、燃料供給通路を通じてエンジンに供給されている。   By the way, since C heavy oil used in ships and the like has a high viscosity, it is usually supplied to the engine through the fuel supply passage in a state where the viscosity is lowered by heating to 80 ° C. or 120 ° C.

特許第4660191号公報Japanese Patent No. 4660191

ところで、前記特許文献1記載の発明では、混合分散液からの遠赤外線を燃料に照射して、燃費を改良できるものの、例えば混合分散液として、水と電気石とカーボン粒子との混合物を用いた場合には、燃料供給路内の燃料温度が高くなると、混合分散液中の水の体積が増えたり、沸騰したりすることから、80℃又は120℃に加熱して使用されるC重油を用いた船舶等に対して適用できないという問題があった。また、混合分散液に導電性を付与するためナノカーボングラファイト粒子を混入する必要があることから、混合分散液の製作コストが高くなるという問題もある。   By the way, in the invention described in Patent Document 1, although the fuel efficiency can be improved by irradiating the far-infrared rays from the mixed dispersion liquid, for example, a mixture of water, tourmaline, and carbon particles is used as the mixed dispersion liquid. In this case, if the fuel temperature in the fuel supply path becomes high, the volume of water in the mixed dispersion increases or boils, so the C heavy oil used by heating to 80 ° C or 120 ° C is used. There was a problem that it could not be applied to ships that had been. Moreover, since it is necessary to mix nanocarbon graphite particles in order to impart conductivity to the mixed dispersion, there is also a problem that the manufacturing cost of the mixed dispersion increases.

本発明の目的は、常温はいうまでもなく、−45℃の低温から+250℃以上の高温の燃料に対しても使用可能な燃焼効率改良装置を提供することである。   An object of the present invention is to provide a combustion efficiency improving device that can be used for a fuel having a low temperature of −45 ° C. to a high temperature of + 250 ° C. or higher, not to mention normal temperature.

請求項1に係る燃焼効率改良装置は、燃料供給通路内を流通する燃料に対して遠赤外線を照射して燃焼効率を改良する燃焼効率改良装置であって、前記燃料に対して遠赤外線を照射する物質として、遠赤外線発生物質と、遠赤外線により電子活動が活性化する不活性液体との混合物からなる燃焼改良材を用いたものである。なお、前記燃焼効率改良装置は、船舶やバス、トラックなどのエンジンだけでなく、火力発電所や焼却設備、鋳造や製鋼などの炉、ボイラーなどで使用されるバーナーに対しても適用可能である。   A combustion efficiency improving apparatus according to claim 1 is a combustion efficiency improving apparatus that irradiates far-infrared rays to fuel flowing in a fuel supply passage to improve combustion efficiency, and irradiates the fuel with far-infrared rays. As the substance to be used, a combustion improving material made of a mixture of a far infrared ray generating substance and an inert liquid whose electronic activity is activated by the far infrared ray is used. The combustion efficiency improving device is applicable not only to engines for ships, buses, trucks, but also to burners used in thermal power plants, incineration facilities, furnaces for casting and steel making, boilers, and the like. .

この燃焼効率改良装置では、燃料に対して遠赤外線を照射する燃焼改良材として、遠赤外線発生物質と、遠赤外線により電子活動が活性化する不活性液体との混合物からなる燃焼改良材を用いているので、不活性液体として、例えば−45℃の低温から+250以上の高温においても、体積が変化したり、沸騰したりせず、しかも遠赤外線により電子活動が活性化するものを採用できるので、従来適用困難であると考えられていた、C重油を用いた船舶等のように、燃料供給通路内の燃料を例えば80℃又は120℃に加温するものであっても、該C重油に対して遠赤外線を照射して、燃焼効率を改良することができる。   In this combustion efficiency improving device, a combustion improving material made of a mixture of a far infrared ray generating substance and an inert liquid whose electronic activity is activated by the far infrared ray is used as a combustion improving material for irradiating the fuel with far infrared rays. Therefore, as the inert liquid, for example, a liquid whose volume does not change or boil even at a low temperature of −45 ° C. to a high temperature of +250 or more and whose electronic activity is activated by far infrared rays can be adopted. Even if the fuel in the fuel supply passage is heated to, for example, 80 ° C. or 120 ° C., such as a ship using C heavy oil, which has been considered difficult to apply, By irradiating far infrared rays, the combustion efficiency can be improved.

ここで、前記不活性液体として、燃料供給通路内における燃料温度以上の耐熱性を有する常温イオン液体を用いることが好ましい実施の形態である。このような耐熱性を有する常温イオン液体を用いると、80℃又は120℃に加温されているC重油を使用する船舶等に対しても、本発明を適用して燃焼効率を改良できるので好ましい。常温イオン液体としては、燃料供給通路内における燃料の温度以上の耐熱性を有するものであれば、任意の化学成分のものを採用することができる。   Here, as the inert liquid, it is preferable to use a room temperature ionic liquid having heat resistance equal to or higher than the fuel temperature in the fuel supply passage. Use of a room temperature ionic liquid having such heat resistance is preferable because it can improve the combustion efficiency by applying the present invention to ships using C heavy oil heated to 80 ° C or 120 ° C. . As the room temperature ionic liquid, any chemical component can be used as long as it has heat resistance equal to or higher than the temperature of the fuel in the fuel supply passage.

前記遠赤外線発生物質としてグラファイトシリカ(Graphite Silica)紛体又は、ホルンブレンドカミングトン閃石ひん岩紛体又は、電気石(Tourmaline)紛体を用いることが好ましい。特に、グラファイトシリカは常温においても遠赤外線を放射できるので好適である。   It is preferable to use graphite silica (Graphite Silica) powder, horn blended cumingtonite nepheline powder, or tourmaline powder as the far infrared ray generating substance. In particular, graphite silica is suitable because it can emit far-infrared rays even at room temperature.

前記不活性液体と遠赤外線発生物質との混合割合を、不活性液体100wt%に対して遠赤外線発生物質を1〜75wt%に設定することが好ましい実施の形態である。不活性液体100wt%に対して遠赤外線発生物質の混合割合が1wt%未満の場合には、遠赤外線を十分に照射することができず、75wt%を超える場合には、混合体の流動性が低下して遠赤外線発生物質の密度に粗密が発生し、遠赤外線発生物質から一様に縁赤外線を照射できなくなるので、遠赤外線発生物質の混合割合は1〜75wt%に設定することが好ましい。特に、遠赤外線発生物質の混合割合は、5〜50wt%に設定することが好ましく、10〜25wt%に設定することが最適である。   In a preferred embodiment, the mixing ratio of the inert liquid and the far infrared ray generating material is set to 1 to 75 wt% of the far infrared ray generating material with respect to 100 wt% of the inert liquid. When the mixing ratio of the far-infrared ray generating substance is less than 1 wt% with respect to 100 wt% of the inert liquid, the far-infrared ray cannot be sufficiently irradiated. When the mixing ratio exceeds 75 wt%, the fluidity of the mixture is low. The density of the far-infrared ray generating substance is reduced and the density of the far-infrared ray generating substance is reduced, and it becomes impossible to irradiate the edge infrared ray uniformly from the far-infrared ray emitting substance. In particular, the mixing ratio of the far infrared ray generating substance is preferably set to 5 to 50 wt%, and most preferably set to 10 to 25 wt%.

前記燃焼改良材と、前記燃焼改良材を収容するケーシングと、前記ケーシング内の燃焼改良材に埋設状に設けた、前記ケーシングの内面に沿って周回する螺旋状のコイル部を有する、遠赤外線を透過可能な材料からなる供給管とを備え、前記供給管を前記燃料供給通路の途中部に介装することも好ましい実施の形態である。この場合には、燃料が流通するコイル部が遠赤外線を照射する燃焼改良材に埋設されるので、燃料に対して遠赤外線を効率的に作用させることができる。また、コイル部内で燃料が強制的に撹拌されるので、燃料全体に対して一様に遠赤外線を照射することが可能となる。なお、遠赤外線を透過可能な材料としては、アルミニウム合金を好適に採用できる。   Far-infrared radiation, comprising: the combustion improving material; a casing that accommodates the combustion improving material; and a helical coil portion that is embedded in the combustion improving material in the casing and circulates along the inner surface of the casing. It is also a preferred embodiment that includes a supply pipe made of a permeable material, and the supply pipe is interposed in the middle of the fuel supply passage. In this case, since the coil portion through which the fuel flows is embedded in the combustion improving material that irradiates far infrared rays, the far infrared rays can be efficiently applied to the fuel. Further, since the fuel is forcibly agitated in the coil portion, it becomes possible to uniformly irradiate far-infrared rays to the entire fuel. As a material that can transmit far infrared rays, an aluminum alloy can be preferably used.

前記ケーシングの中央部に筒状部材を設け、前記筒状部材内に加熱手段を配置することも好ましい実施の形態である。A重油は、C重油と比較して粘度が小さく通常は加熱しないで、常温のままでエンジン等へ供給することになるが、本発明のように加熱手段を設けると、燃焼改良材を加熱して、燃焼改良材からの遠赤外線の発生を促進させ、燃料に対して十分に遠赤外線を照射できるので好ましい。   It is also a preferred embodiment that a cylindrical member is provided at the center of the casing, and a heating means is disposed in the cylindrical member. A heavy oil has a lower viscosity than C heavy oil and is not usually heated and is supplied to the engine or the like at room temperature. However, if a heating means is provided as in the present invention, the combustion improving material is heated. Therefore, the generation of far infrared rays from the combustion improving material is promoted, and the fuel can be sufficiently irradiated with far infrared rays, which is preferable.

前記コイル部を囲繞するケーシングの胴部内周面又は胴部外周面に鏡面仕上げしたステンレス鋼板からなる反射板を、鏡面側を内側にして設けることが好ましい実施の形態である。この場合には、外部へ放散されてしまう遠赤外線を反射板で反射してコイル部に照射することができるので、燃料に対して遠赤外線を一層効率的に作用させることができる。   In a preferred embodiment, a reflecting plate made of a stainless steel plate having a mirror finish is provided on the inner peripheral surface or the outer peripheral surface of the casing surrounding the coil portion, with the mirror side facing inward. In this case, since the far infrared rays that are diffused to the outside can be reflected by the reflecting plate and applied to the coil portion, the far infrared rays can be more efficiently applied to the fuel.

前記供給管の内周面及び/又は外周面に微細な凹凸を形成することも好ましい実施の形態である。このように構成すると、供給管の表面積を増大させて、燃料に対する遠赤外線の照射面積を増大して、燃料に対して遠赤外線を更により効率的に作用させることができる。なお、微細な凹凸は、例えばブラスト処理や薬品処理により形成することができる。また、供給管の内周面に凹凸を形成すると、管内壁に沿って流通する燃料に乱流を発生させて、供給管内を流通する燃料を効率的に撹拌して、燃料全体に対してより一層一様に遠赤外線を照射することが可能となる。   It is also a preferred embodiment to form fine irregularities on the inner peripheral surface and / or outer peripheral surface of the supply pipe. If comprised in this way, the surface area of a supply pipe | tube can be increased, the irradiation area of the far infrared rays with respect to a fuel can be increased, and a far infrared ray can be made to act still more efficiently with respect to a fuel. The fine unevenness can be formed by, for example, blasting or chemical treatment. In addition, if irregularities are formed on the inner peripheral surface of the supply pipe, turbulent flow is generated in the fuel flowing along the inner wall of the supply pipe, and the fuel flowing in the supply pipe is efficiently agitated. It becomes possible to irradiate far infrared rays more uniformly.

前記供給管に内側へ突出する螺旋状の条溝を連続的或いは間欠的に設けることも好ましい実施の形態である。このように構成すると、燃料を螺旋状に旋回させながら供給管内を流通させることができるので、燃料全体に対してより一層一様に遠赤外線を照射することが可能となる。   It is also a preferred embodiment to provide the supply pipe with a spiral groove that protrudes inward continuously or intermittently. If comprised in this way, since the inside of a supply pipe | tube can be distribute | circulated, turning a fuel helically, it becomes possible to irradiate far-infrared rays more uniformly with respect to the whole fuel.

前記ケーシングに断熱材を外装することが好ましい実施の形態である。この場合には、燃焼改良材の温度を、遠赤外線を効率的に放射可能な温度に、無駄なく維持することができる。   In a preferred embodiment, the casing is sheathed with a heat insulating material. In this case, the temperature of the combustion improving material can be maintained without waste at a temperature at which far infrared rays can be efficiently emitted.

前記燃料がC重油であることが好ましい。前述のように、C重油は粘度が高いことから通常は80℃や120℃に加熱して使用されるので、従来、導電性液が沸騰することから適用困難であると考えられていたが、本発明では不活性液体を用いることで、適用できるようになった。   The fuel is preferably C heavy oil. As mentioned above, since C heavy oil is usually used by heating to 80 ° C. or 120 ° C. because of its high viscosity, it was conventionally considered difficult to apply since the conductive liquid boils. The present invention can be applied by using an inert liquid.

本発明に係る燃焼効率改良装置によれば、燃料に対して遠赤外線を照射する燃焼改良材として、遠赤外線発生物質と、遠赤外線により電子活動が活性化する不活性液体との混合物からなる燃焼改良材を用いているので、不活性液体として、例えば−45℃の低温から+250以上の高温においても、体積が変化したり、沸騰したりせず、しかも遠赤外線により電子活動が活性化するものを採用できるので、従来適用困難であると考えられていた、C重油を用いた船舶等のように、燃料供給通路内の燃料を例えば80℃又は120℃に加温するものであっても、該C重油に対して遠赤外線を照射して、燃焼効率を改良することができる。   According to the combustion efficiency improving apparatus according to the present invention, as a combustion improving material for irradiating a fuel with a far infrared ray, a combustion comprising a mixture of a far infrared ray generating substance and an inert liquid whose electronic activity is activated by the far infrared ray. Since the improved material is used, as an inert liquid, for example, the volume does not change or boil from a low temperature of −45 ° C. to a high temperature of +250 or more, and electronic activity is activated by far infrared rays. Even if the fuel in the fuel supply passage is heated to, for example, 80 ° C. or 120 ° C., such as a ship using C heavy oil, which has been considered difficult to apply in the past, Combustion efficiency can be improved by irradiating the C heavy oil with far infrared rays.

燃焼効率改良装置の斜視図Perspective view of combustion efficiency improvement device 図1のII-II線断面図II-II sectional view of FIG. 図2のIII-III線断面図Sectional view along line III-III in Fig. 2 他の構成の供給管の要部正面図Front view of main part of supply pipe of other configuration

以下、本発明の実施の形態について図面を参照しながら説明する。
図1〜図3に示すように、燃焼効率改良装置10は、燃料タンク1からエンジンやバーナーなどの燃焼装置2に至る燃料供給通路3の途中部に介装され、燃料供給通路3を流通する燃料に対して遠赤外線を照射して燃焼効率を改良するもので、燃料に対して遠赤外線を照射する物質として、遠赤外線発生物質と、遠赤外線により電子活動が活性化する不活性液体との混合物からなる燃焼改良材11を用いたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 3, the combustion efficiency improving device 10 is interposed in the middle of a fuel supply passage 3 from a fuel tank 1 to a combustion device 2 such as an engine or a burner, and flows through the fuel supply passage 3. It is intended to improve the combustion efficiency by irradiating the fuel with far infrared rays. As a material for irradiating the fuel with far infrared rays, a far infrared ray generating substance and an inert liquid whose electronic activity is activated by the far infrared rays are used. A combustion improving material 11 made of a mixture is used.

不活性液体としては、遠赤外線により電子活動が活性化し且つ燃料供給通路3内における燃料の温度以上の耐熱性を有するものであれば任意の組成からなるものを採用できる。例えば、イオン液体を好適に採用できる。イオン液体としては、陽イオンとして、イミダゾリウム塩類・ピリジニウム塩類などのアンモニウム系、ホスホニウム系イオン、無系イオンなどを用い、陰イオンとして、臭化物イオンやトリフラートなどのハロゲン系、テトラフェニルボレートなどのホウ素系、ヘキサフルオロホスフェートなどのリン系などを用いたものを採用できる。例えば、LU150FT(パイオトレック株式会社製)が特に最適である。   As the inert liquid, a liquid having an arbitrary composition can be adopted as long as the electronic activity is activated by far infrared rays and the heat resistance is equal to or higher than the temperature of the fuel in the fuel supply passage 3. For example, an ionic liquid can be suitably used. As ionic liquids, ammonium-based, phosphonium-based and non-ionic ions such as imidazolium salts and pyridinium salts are used as cations, halogens such as bromide ions and triflate, and boron such as tetraphenylborate as anions. And those using phosphorus, such as hexafluorophosphate, can be employed. For example, LU150FT (manufactured by Piotrec Co., Ltd.) is particularly optimal.

遠赤外線発生物質としてグラファイトシリカ紛体などの珪酸塩鉱物紛体又は、ホルンブレンドカミングトン閃石ひん岩紛体又は、鉄電気石、苦土電気石、シリカ電気石、オーレン電気石、鉄灰電気石、灰電気石、フォイト電気石、苦土フォイト電気石などの電気石紛体を用いることができる。遠赤外線発生物質の粒径は5μm以下が好ましい。   Silica mineral powder such as graphite silica powder, horn blended camingtonite nepheline powder, or iron tourmaline, dolomite tourmaline, silica tourmaline, oren tourmaline, iron ash tourmaline, ash Tourmaline powder such as stone, Voith tourmaline, and wrought Voith tourmaline can be used. The particle size of the far infrared ray generating substance is preferably 5 μm or less.

不活性液体と遠赤外線発生物質との混合割合は、不活性液体100wt%に対して遠赤外線発生物質が1wt%未満の場合には、遠赤外線を十分に照射することができず、75wt%を超える場合には、混合体の流動性が低下して遠赤外線発生物質の密度に粗密が発生し、遠赤外線発生物質から一様に縁赤外線を照射できなくなるので、遠赤外線発生物質の混合割合は1〜75wt%に設定することが好ましく、特に5〜50wt%が好適であり、10〜25wt%が最適配合である。   The mixing ratio of the inert liquid and the far-infrared ray generating substance is that when the far-infrared ray generating substance is less than 1 wt% with respect to 100 wt% of the inert liquid, the far-infrared ray cannot be sufficiently irradiated. In the case of exceeding, the fluidity of the mixture is lowered and the density of the far infrared ray generating substance becomes coarse, and it becomes impossible to irradiate the infrared ray uniformly from the far infrared ray generating substance. It is preferable to set to 1 to 75 wt%, 5 to 50 wt% is particularly suitable, and 10 to 25 wt% is the optimum blend.

次に、燃焼効率改良装置10の具体的な構成について説明する。ただし、燃焼効率改良装置10は、燃焼改良材11から放射される遠赤外線を、燃料供給通路3を流通する燃料に対して照射可能なものであれば、以下に説明する以外の任意の構成のものを採用することも可能である。   Next, a specific configuration of the combustion efficiency improving apparatus 10 will be described. However, the combustion efficiency improving apparatus 10 has any configuration other than that described below as long as it can irradiate far infrared rays radiated from the combustion improving material 11 to the fuel flowing through the fuel supply passage 3. It is also possible to adopt one.

燃焼効率改良装置10について説明すると、燃焼効率改良装置10の下端部には設置板12が設けられ、設置板12の中央部には円筒状の芯内筒13とそれに外嵌される芯外筒(筒状部材)14とが立設固定され、芯内筒13と芯外筒14間の隙間にはシート状の加熱手段15が円筒状に丸めた状態で装着されるとともに、加熱手段15と芯内筒13間には断熱材16が充填されている。加熱手段15としては、ゲルマヒータを好適に利用できるが、それ以外のものを採用することも可能である。この加熱手段15は、燃料供給通路3を流通する燃料が、A重油のように常温にて使用される燃料の場合に、燃焼改良材11を加熱して、遠赤外線の放射量を増大させるためのものである。このため、燃料供給通路3を流通する燃料が、80℃又は120℃に加熱されるC重油の場合には、加熱手段15を省略することができる。   The combustion efficiency improving apparatus 10 will be described. An installation plate 12 is provided at the lower end of the combustion efficiency improving apparatus 10, and a cylindrical core inner cylinder 13 and a core outer cylinder fitted around the cylindrical core inner cylinder 13 are provided at the center of the installation plate 12. (Cylindrical member) 14 is erected and fixed, and a sheet-like heating means 15 is mounted in a state of being rounded into a cylindrical shape in the gap between the core inner cylinder 13 and the core outer cylinder 14, and the heating means 15 A space between the core inner cylinders 13 is filled with a heat insulating material 16. As the heating means 15, a german heater can be suitably used, but other heating means can be employed. The heating means 15 heats the combustion improving material 11 and increases the far-infrared radiation amount when the fuel flowing through the fuel supply passage 3 is a fuel used at room temperature such as A heavy oil. belongs to. For this reason, when the fuel flowing through the fuel supply passage 3 is C heavy oil heated to 80 ° C. or 120 ° C., the heating means 15 can be omitted.

芯外筒14にはその下端部を除く全体に内側ケース(ケーシング)17が外装されている。内側ケース17は、芯外筒14に同心状に外嵌される円筒状の胴部材17aと、胴部材17aの上面開口を閉塞する上面板17bと、胴部材17aの下面開口を閉塞する下面板17cとを備えている。芯外筒14は下面板17cを液密状に挿通し、その上端部は上面板17bで液密状に閉鎖されている。内側ケース17には有底円筒状の外側ケース18が開口を下側に向けて外嵌され、外側ケース18の下端部は設置板12に固定されている。   An inner case (casing) 17 is externally provided on the core outer cylinder 14 except for its lower end. The inner case 17 includes a cylindrical body member 17a that is concentrically fitted to the core outer cylinder 14, an upper surface plate 17b that closes the upper surface opening of the body member 17a, and a lower surface plate that closes the lower surface opening of the body member 17a. 17c. The core outer cylinder 14 is liquid-tightly inserted through the lower surface plate 17c, and its upper end is closed in a liquid-tight manner by the upper surface plate 17b. A bottomed cylindrical outer case 18 is externally fitted to the inner case 17 with the opening facing downward, and the lower end portion of the outer case 18 is fixed to the installation plate 12.

芯外筒14と内側ケース17間には遠赤外線照射空間19が形成され、遠赤外線照射空間19には燃焼改良材11が収容されている。内側ケース17の下面板17cには1対の充填孔20が形成され、この充填孔20を通じて遠赤外線照射空間19内へ燃焼改良材11を充填できるように構成されている。なお、符号21は、燃焼改良材11の充填後に、貫通孔を閉塞するように設けたリベットである。   A far infrared irradiation space 19 is formed between the core outer cylinder 14 and the inner case 17, and the combustion improving material 11 is accommodated in the far infrared irradiation space 19. A pair of filling holes 20 are formed in the lower surface plate 17 c of the inner case 17, and the combustion improving material 11 can be filled into the far infrared irradiation space 19 through the filling holes 20. Reference numeral 21 denotes a rivet provided to close the through hole after the combustion improving material 11 is filled.

遠赤外線照射空間19内には芯外筒14を周回するコイル部22aを有する供給管22が芯外筒14及び内側ケース17の胴部材17aに接触しないように設けられ、供給管22の両端部は内側ケース17及び外側ケース18を液密状に貫通して外部に突出され、供給管22のコイル部22aは遠赤外線照射空間19内の燃焼改良材11に埋設されている。供給管22は、アルミニウム合金などのように遠赤外線を透過可能な材料で構成され、燃焼改良材11から放射される遠赤外線は、供給管22を透過して、供給管22内を流通する燃料に照射されることになる。なお、符号23は、供給管22を内側ケース17に固定支持するための支持ブラケットである。   In the far-infrared irradiation space 19, a supply pipe 22 having a coil portion 22 a that circulates around the core outer cylinder 14 is provided so as not to contact the core outer cylinder 14 and the body member 17 a of the inner case 17. The inner case 17 and the outer case 18 penetrate through the inner case 17 and the outer case 18 in a liquid-tight manner and project outside. The coil portion 22 a of the supply pipe 22 is embedded in the combustion improving material 11 in the far infrared irradiation space 19. The supply pipe 22 is made of a material that can transmit far-infrared rays, such as an aluminum alloy, and the far-infrared radiation radiated from the combustion improving material 11 passes through the supply pipe 22 and flows through the supply pipe 22. Will be irradiated. Reference numeral 23 denotes a support bracket for fixing and supporting the supply pipe 22 to the inner case 17.

供給管22は、燃料タンク1から燃焼装置2に至る燃料供給通路3の途中部に介装され、供給管22の流入側端部22bは流出側端部22cよりも下側に配置され、流入側端部22bは燃料タンク1に連なる燃料供給通路3に接続され、供給管22の流出側端部22cは燃焼装置2に連なる燃料供給通路3に接続されている。供給管22の流入側端部22bを燃焼装置2に連なる燃料供給通路3に接続し、供給管22の流出側端部22cを燃料タンク1に連なる燃料供給通路3に接続することも可能であるが、供給管22の流入側端部22bを燃料タンク1に連なる燃料供給通路3に接続し、供給管22の流出側端部22cを燃焼装置2に連なる燃料供給通路3に接続すると、燃料供給通路3に燃焼効率改良装置10を介装するときに、先ず燃料タンク1に連なる燃料供給通路3を供給管22の流入側端部22bに接続して、供給管22内の空気を排出しながら燃料を供給して、供給管22内の空気を完全に排出してから、供給管22の流出側端部22cに燃焼装置2に連なる燃焼供給通路3を接続することで、燃料供給通路3内における残留空気を略完全に排出できるので好ましい。   The supply pipe 22 is interposed in the middle of the fuel supply passage 3 from the fuel tank 1 to the combustion device 2, and the inflow side end 22 b of the supply pipe 22 is disposed below the outflow side end 22 c, The side end portion 22 b is connected to the fuel supply passage 3 connected to the fuel tank 1, and the outflow side end portion 22 c of the supply pipe 22 is connected to the fuel supply passage 3 connected to the combustion device 2. It is also possible to connect the inflow side end 22 b of the supply pipe 22 to the fuel supply passage 3 connected to the combustion device 2 and connect the outflow side end 22 c of the supply pipe 22 to the fuel supply passage 3 connected to the fuel tank 1. However, when the inflow end 22b of the supply pipe 22 is connected to the fuel supply passage 3 connected to the fuel tank 1, and the outflow end 22c of the supply pipe 22 is connected to the fuel supply passage 3 connected to the combustion device 2, the fuel supply When the combustion efficiency improving device 10 is installed in the passage 3, the fuel supply passage 3 connected to the fuel tank 1 is first connected to the inflow side end 22 b of the supply pipe 22, and the air in the supply pipe 22 is discharged. After the fuel is supplied and the air in the supply pipe 22 is completely discharged, the combustion supply path 3 connected to the combustion device 2 is connected to the outflow side end 22c of the supply pipe 22 so that the inside of the fuel supply path 3 The residual air at Preferable than that.

また、供給管22の内周面及び/又は外周面に微細な凹凸を形成することも好ましい実施の形態である。このように構成すると、供給管22の表面積を増大させて、燃料に対する遠赤外線の照射面積を増大して、燃料に対して遠赤外線をより効率的に作用させることができる。なお、微細な凹凸は、例えばブラスト処理や薬品処理により形成することができる。また、供給管22の内周面に凹凸を形成すると、管内壁に沿って流通する燃料に乱流を発生させて、供給管22内を流通する燃料を効率的に撹拌して、燃料全体に対してより一層一様に遠赤外線を照射することが可能となる。また、図4に示すように、供給管22に内側突出する螺旋状の条溝24を連続的或いは間欠的に設けることも好ましい実施の形態である。このように構成すると、燃料を螺旋状に旋回させながら供給管22内を流通させることができるので、燃料全体に対してより一層一様に遠赤外線を照射することが可能となる。   It is also a preferred embodiment to form fine irregularities on the inner peripheral surface and / or outer peripheral surface of the supply pipe 22. If comprised in this way, the surface area of the supply pipe | tube 22 can be increased, the irradiation area of the far infrared rays with respect to a fuel can be increased, and a far infrared ray can be made to act more efficiently with respect to a fuel. The fine unevenness can be formed by, for example, blasting or chemical treatment. In addition, when unevenness is formed on the inner peripheral surface of the supply pipe 22, turbulent flow is generated in the fuel flowing along the inner wall of the supply pipe, and the fuel flowing in the supply pipe 22 is efficiently stirred to On the other hand, it becomes possible to irradiate far infrared rays more uniformly. In addition, as shown in FIG. 4, it is also a preferred embodiment that a spiral groove 24 protruding inwardly in the supply pipe 22 is provided continuously or intermittently. If comprised in this way, since the inside of the supply pipe | tube 22 can be distribute | circulated, turning a fuel helically, it becomes possible to irradiate far infrared rays more uniformly with respect to the whole fuel.

内側ケース17の胴部材17aには鏡面仕上げしたステンレス板からなる反射板25が鏡面側を内側へ向けて胴部材17aの内周面に沿って設けられ、この反射板25により燃焼改良材11から放射される遠赤外線を反射して、遠赤外線が内側ケース17から外部へ漏れることを極力防止して、供給管22の燃料に対して効率的に遠赤外線を照射できるように構成されている。なお、反射板25としては、ステンレス板以外のものを採用することも可能である。また、反射板25は、胴部材17aの内周面に沿って設けたが、胴部材17aの外周面に沿って鏡面側を内側へ向けて設けることも可能である。また、反射板25と併用して、内側ケース17の下面板17cや上面板17bの内側や外側に鏡面仕上げ側を内側へ向けて、鏡面仕上げしたステンレス板からなる反射板を設けることも好ましい。   The body member 17a of the inner case 17 is provided with a reflecting plate 25 made of a mirror-finished stainless steel plate along the inner peripheral surface of the body member 17a with the mirror surface side facing inward. The far-infrared ray radiated is reflected to prevent the far-infrared ray from leaking from the inner case 17 to the outside as much as possible, and the far-infrared ray can be efficiently irradiated to the fuel in the supply pipe 22. In addition, as the reflecting plate 25, it is also possible to employ a material other than the stainless steel plate. Moreover, although the reflecting plate 25 was provided along the inner peripheral surface of the trunk | drum member 17a, it is also possible to provide a mirror surface side inward along the outer peripheral surface of the trunk | drum member 17a. Further, in combination with the reflector 25, it is also preferable to provide a reflector made of a mirror-finished stainless steel plate with the mirror finish side facing inward on the inside or outside of the lower surface plate 17c or the upper surface plate 17b of the inner case 17.

外側ケース18と内側ケース17間及び内側ケース17と設置板12間には保温空間26が形成され、この保温空間26内にはウレタンフォームなどからなる保温材27が収容され、内側ケース17の全体が保温材27で囲繞されるように構成されている。設置板12の下面には2つの注入孔28が形成され、保温材27はこの注入孔28から保温空間26に充填されるように構成されている。この保温材27により、燃焼改良材11が保温されて、燃焼改良材11からの遠赤外線の照射量を高めることができるように構成されている。   A heat insulating space 26 is formed between the outer case 18 and the inner case 17 and between the inner case 17 and the installation plate 12, and a heat insulating material 27 made of urethane foam or the like is accommodated in the heat insulating space 26. Is surrounded by a heat insulating material 27. Two injection holes 28 are formed in the lower surface of the installation plate 12, and the heat insulating material 27 is configured to fill the heat insulating space 26 from the injection holes 28. By this heat retaining material 27, the combustion improving material 11 is kept warm, and the amount of far infrared rays emitted from the combustion improving material 11 can be increased.

この燃焼効率改良装置10は、燃料タンク1から燃焼装置2に至る燃料供給通路3の途中部に介装され、燃料タンク1からの燃料は燃焼効率改良装置10の供給管22を通過する間に、燃焼改良材11からの遠赤外線が燃料に照射されて、燃焼効率が改良されることになる。また、燃焼改良材11として、グラファイトシリカ紛体又は、ホルンブレンドカミングトン閃石ひん岩紛体又は、電気石紛体からなる遠赤外線発生物質と、遠赤外線により電子活動が活性化する常温イオン液体からなる不活性液体との混合物からなる燃焼改良材11を用いているので、例えば−45℃の低温から+250℃以上の高温においても、燃焼改良材11の体積が変化したり、沸騰したりせず、しかも遠赤外線により電子活動が活性化するので、従来適用困難であると考えられていた、C重油を用いた船舶等のように、燃料供給通路3内の燃料を例えば80℃又は120℃に加温するものであっても、該C重油に対して適用できることになる。   The combustion efficiency improving device 10 is interposed in the middle of the fuel supply passage 3 from the fuel tank 1 to the combustion device 2, and the fuel from the fuel tank 1 passes through the supply pipe 22 of the combustion efficiency improving device 10. The far infrared rays from the combustion improving material 11 are irradiated to the fuel, so that the combustion efficiency is improved. Further, as the combustion improving material 11, a far-infrared ray-generating material composed of graphite silica powder, horn blended cumingtonite nepheline powder, or tourmaline powder, and an inert material composed of a room temperature ionic liquid in which electronic activity is activated by far infrared rays. Since the combustion improving material 11 made of a mixture with a liquid is used, the volume of the combustion improving material 11 does not change or boil even at a low temperature of −45 ° C. to a high temperature of + 250 ° C. or more. Since the electronic activity is activated by infrared rays, the fuel in the fuel supply passage 3 is heated to, for example, 80 ° C. or 120 ° C. like a ship using C heavy oil, which has been considered difficult to apply in the past. Even if it is a thing, it will be applicable with respect to this C heavy oil.

また、供給管22の途中部にコイル部22aが形成され、燃料に対する遠赤外線の照射距離を長く設定できるので、燃料に対して遠赤外線を十分に作用させることができる。また、コイル部22a内で燃料が強制的に撹拌されるので、燃料全体に対して一様に遠赤外線を照射することが可能となる。更に、胴部材17aの内周面又は外周面に沿って反射板25を設けているので、外部へ放散されてしまう遠赤外線を反射板25で反射してコイル部22aに照射することができるので、燃料に対して遠赤外線を一層効率的に作用させることができる。   Moreover, since the coil part 22a is formed in the middle part of the supply pipe | tube 22, and the irradiation distance of the far infrared rays with respect to a fuel can be set long, a far infrared ray can fully work with respect to a fuel. Further, since the fuel is forcibly stirred in the coil portion 22a, it becomes possible to uniformly irradiate far-infrared rays with respect to the entire fuel. Furthermore, since the reflecting plate 25 is provided along the inner peripheral surface or the outer peripheral surface of the body member 17a, far infrared rays that are scattered to the outside can be reflected by the reflecting plate 25 and irradiated to the coil portion 22a. The far infrared rays can be more efficiently applied to the fuel.

なお、A重油を用いた燃焼装置のように、燃料を常温のままで燃焼装置に供給するように構成した燃焼装置に対して、燃焼効率改良装置10を適用する場合には、加熱手段15により燃焼改良材11を加熱して、燃焼改良材11からの遠赤外線の放射を促進させ、燃料に対して十分に遠赤外線を照射することになる。   When the combustion efficiency improving apparatus 10 is applied to a combustion apparatus configured to supply fuel to the combustion apparatus at room temperature as in the combustion apparatus using heavy fuel oil A, the heating means 15 The combustion improving material 11 is heated to promote the emission of far infrared rays from the combustion improving material 11 and the far infrared rays are sufficiently irradiated to the fuel.

また、供給管22を同心状に配置した、遠赤外線を透過可能な内側管と外側管の2重管で構成することも可能で、この場合には、内側管内の収容部に燃焼改良材11を充填してその両端部を閉鎖し、内側管と外側管間の隙間を燃料供給通路3に連なる燃料通路とすることも可能である。更に、供給管22を同心状に配置した遠赤外線を透過可能な3重以上の多重管で構成し、燃焼改良材11の収容部と燃料通路とが交互に形成されるように構成することも可能である。   It is also possible to configure the supply pipe 22 concentrically with a double pipe consisting of an inner pipe and an outer pipe capable of transmitting far-infrared rays. In this case, the combustion improving material 11 is provided in the accommodating portion in the inner pipe. It is also possible to close the both ends and fill the gap between the inner tube and the outer tube as a fuel passage connected to the fuel supply passage 3. Further, the supply pipe 22 may be constituted by a triple or more multiple pipe capable of transmitting far-infrared rays arranged concentrically so that the accommodating portions of the combustion improving material 11 and the fuel passages are alternately formed. Is possible.

以上、本発明の実施形態について説明したが、本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲においてその構成を変更し得ることは勿論である。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and it goes without saying that the configuration can be changed without departing from the gist of the present invention.

1 燃料タンク 2 燃焼装置
3 燃料供給通路
10 燃焼効率改良装置 11 燃焼改良材
12 設置板 13 芯内筒
14 芯外筒 15 加熱手段
16 断熱材 17 内側ケース
17a 胴部材 17b 上面板
17c 下面板 18 外側ケース
19 遠赤外線照射空間 20 充填孔
21 リベット 22 供給管
22a コイル部 22b 流入側端部
22c 流出側端部 23 支持ブラケット
24 条溝 25 反射板
26 保温空間 27 保温材
28 注入孔
DESCRIPTION OF SYMBOLS 1 Fuel tank 2 Combustion apparatus 3 Fuel supply passage 10 Combustion efficiency improvement apparatus 11 Combustion improvement material 12 Installation plate 13 Core inner cylinder 14 Core outer cylinder 15 Heating means 16 Heat insulating material 17 Inner case 17a Body member 17b Upper surface plate 17c Lower surface plate 18 Outer Case 19 Far-infrared irradiation space 20 Filling hole 21 Rivet 22 Supply pipe 22a Coil portion 22b Inflow side end 22c Outflow side end 23 Support bracket 24 Strip 25 Reflecting plate 26 Heat insulation space 27 Heat insulation material 28 Injection hole

Claims (11)

燃料供給通路内を流通する燃料に対して遠赤外線を照射して燃焼効率を改良する燃焼効率改良装置であって、
前記燃料に対して遠赤外線を照射する物質として、遠赤外線発生物質と、遠赤外線により電子活動が活性化する不活性液体との混合物からなる燃焼改良材を用いた、
ことを特徴とする燃焼効率改良装置。
A combustion efficiency improving device for improving combustion efficiency by irradiating far-infrared rays to fuel flowing in a fuel supply passage,
As a substance that irradiates far-infrared rays to the fuel, a combustion improving material composed of a mixture of a far-infrared ray generating substance and an inert liquid whose electronic activity is activated by far-infrared rays,
Combustion efficiency improvement device characterized by the above.
前記不活性液体として、燃料供給通路内における燃料温度以上の耐熱性を有する常温イオン液体を用いた請求項1記載の燃焼効率改良装置。   The combustion efficiency improving apparatus according to claim 1, wherein a normal temperature ionic liquid having heat resistance equal to or higher than a fuel temperature in a fuel supply passage is used as the inert liquid. 前記遠赤外線発生物質としてグラファイトシリカ紛体又は、ホルンブレンドカミングトン閃石ひん岩紛体又は、電気石紛体を用いた請求項1又は2記載の燃焼効率改良装置。   The combustion efficiency improving apparatus according to claim 1 or 2, wherein a graphite silica powder, a horn blend cumingtonite nepheline powder, or a tourmaline powder is used as the far infrared ray generating substance. 前記不活性液体と遠赤外線発生物質との混合割合を、不活性液体100wt%に対して遠赤外線発生物質を1〜75wt%に設定した請求項1〜3のいずれか1項記載の燃焼効率改良装置。   The combustion efficiency improvement according to any one of claims 1 to 3, wherein a mixing ratio of the inert liquid and the far infrared ray generating substance is set to 1 to 75 wt% of the far infrared ray generating substance with respect to 100 wt% of the inert liquid. apparatus. 前記燃焼改良材と、前記燃焼改良材を収容するケーシングと、前記ケーシング内の燃焼改良材に埋設状に設けた、前記ケーシングの内面に沿って周回する螺旋状のコイル部を有する、遠赤外線を透過可能な材料からなる供給管とを備え、前記供給管を前記燃料供給通路の途中部に介装した請求項1〜4のいずれか1項記載の燃焼効率改良装置。   Far-infrared radiation, comprising: the combustion improving material; a casing that accommodates the combustion improving material; and a helical coil portion that is embedded in the combustion improving material in the casing and circulates along the inner surface of the casing. The combustion efficiency improvement apparatus of any one of Claims 1-4 provided with the supply pipe | tube which consists of a permeable material, and the said supply pipe | tube was interposed in the middle part of the said fuel supply channel | path. 前記ケーシングの中央部に筒状部材を設け、前記筒状部材内に加熱手段を配置した請求項5記載の燃焼効率改良装置。   The combustion efficiency improving apparatus according to claim 5, wherein a cylindrical member is provided at a central portion of the casing, and heating means is disposed in the cylindrical member. 前記コイル部を囲繞するケーシングの胴部内周面又は胴部外周面に鏡面仕上げしたステンレス鋼板からなる反射板を、鏡面側を内側にして設けた請求項5又は6記載の燃焼効率改良装置。   The combustion efficiency improving device according to claim 5 or 6, wherein a reflecting plate made of a stainless steel plate having a mirror finish is provided on the inner peripheral surface of the casing or the outer peripheral surface of the casing surrounding the coil portion with the mirror surface side inward. 前記供給管の内周面及び/又は外周面に微細な凹凸を形成した請求項5〜7のいずれか1項記載の燃焼効率改良装置。   The combustion efficiency improvement apparatus of any one of Claims 5-7 which formed the fine unevenness | corrugation in the inner peripheral surface and / or outer peripheral surface of the said supply pipe | tube. 前記供給管に内側へ突出する螺旋状の条溝を連続的或いは間欠的に設けた請求項5〜8のいずれか1項記載の燃焼効率改良装置。   The combustion efficiency improvement apparatus of any one of Claims 5-8 which provided the spiral groove | channel which protrudes inward in the said supply pipe | tube continuously or intermittently. 前記ケーシングに断熱材を外装した請求項5〜9のいずれか1項記載の燃焼効率改良装置。   The combustion efficiency improvement apparatus of any one of Claims 5-9 which coat | covered the heat insulating material in the said casing. 前記燃料がC重油である請求項1〜10のいずれか1項記載の燃焼効率改良装置。
The combustion efficiency improving apparatus according to any one of claims 1 to 10, wherein the fuel is C heavy oil.
JP2012095847A 2012-04-19 2012-04-19 Combustion efficiency improvement device Active JP6019699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095847A JP6019699B2 (en) 2012-04-19 2012-04-19 Combustion efficiency improvement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095847A JP6019699B2 (en) 2012-04-19 2012-04-19 Combustion efficiency improvement device

Publications (2)

Publication Number Publication Date
JP2013221732A true JP2013221732A (en) 2013-10-28
JP6019699B2 JP6019699B2 (en) 2016-11-02

Family

ID=49592822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095847A Active JP6019699B2 (en) 2012-04-19 2012-04-19 Combustion efficiency improvement device

Country Status (1)

Country Link
JP (1) JP6019699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238096A (en) * 2017-06-07 2017-10-10 汕头市合力环保节能技术有限公司 A kind of gas energy-saving device
EP3598001A4 (en) * 2017-03-10 2021-03-03 Yushin Co. Ltd., Silicate mixture and combustion accelerator using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312038U (en) * 1986-07-03 1988-01-26
JPH02206690A (en) * 1989-02-06 1990-08-16 Hideyo Tada Fuel activation method and activation system
JP2004535855A (en) * 2001-04-30 2004-12-02 ヨン ゴン キム Liquid multifunctional far-infrared radiator and use thereof
JP2007255261A (en) * 2006-03-22 2007-10-04 Rikka:Kk Noncontact type fuel reformer and system
JP2011016972A (en) * 2009-07-11 2011-01-27 Oono Kaihatsu Kk Fuel oil reforming apparatus
JP4660191B2 (en) * 2002-08-01 2011-03-30 賢一 橋本 Liquid fuel high combustion efficiency system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312038U (en) * 1986-07-03 1988-01-26
JPH02206690A (en) * 1989-02-06 1990-08-16 Hideyo Tada Fuel activation method and activation system
JP2004535855A (en) * 2001-04-30 2004-12-02 ヨン ゴン キム Liquid multifunctional far-infrared radiator and use thereof
JP4660191B2 (en) * 2002-08-01 2011-03-30 賢一 橋本 Liquid fuel high combustion efficiency system
JP2007255261A (en) * 2006-03-22 2007-10-04 Rikka:Kk Noncontact type fuel reformer and system
JP2011016972A (en) * 2009-07-11 2011-01-27 Oono Kaihatsu Kk Fuel oil reforming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3598001A4 (en) * 2017-03-10 2021-03-03 Yushin Co. Ltd., Silicate mixture and combustion accelerator using same
CN107238096A (en) * 2017-06-07 2017-10-10 汕头市合力环保节能技术有限公司 A kind of gas energy-saving device

Also Published As

Publication number Publication date
JP6019699B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
EP2249617A1 (en) Carbon fiber heating source and heating system using the same
JP6019699B2 (en) Combustion efficiency improvement device
CN105075401A (en) Plasmatron and heating devices comprising a plasmatron
JPWO2006088084A1 (en) Methane gas fuel activation device
KR20100111337A (en) A device to generate heat by induction heating type
KR20090070462A (en) A boiler using heat transfer fluid
KR100389814B1 (en) Heating apparatus using dielectric heating of heat-transfer oil
KR0141084B1 (en) Infrared radiation electric heater
KR101190273B1 (en) Serial-connected electric boiler
JPWO2008133050A1 (en) Fuel reforming method and apparatus
KR101214202B1 (en) Electric heat boiler
CN205079428U (en) Electric tracing area heat storage water tank
CN201569062U (en) Electric warmer and heating body thereof
KR20110015238A (en) A heating device and induction heating boiler having it
KR20120099906A (en) Gas continuation heater system
CN201383883Y (en) Electric heating element and electric heating device
EP3650755B1 (en) Combustion chamber module for a vehicle heater
KR20090069485A (en) Apparatus and method for heating water by microwave
KR20110104407A (en) Fluid and gas continuation heater system
ES2284255T3 (en) DEVICE FOR HEATING SUBSTANCES.
KR200364816Y1 (en) Electric boiler using carbon fiber heater
JP2011016972A (en) Fuel oil reforming apparatus
KR100455939B1 (en) A heat-pipe heating apparatus for heat-panel
KR20130004255U (en) Heating apparatus using wasting heat of cooking appliance
RU129600U1 (en) GAS-BURNER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6019699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250