JP2013221529A - Aerostatic gas bearing and linear motion guiding device using the same - Google Patents

Aerostatic gas bearing and linear motion guiding device using the same Download PDF

Info

Publication number
JP2013221529A
JP2013221529A JP2012091379A JP2012091379A JP2013221529A JP 2013221529 A JP2013221529 A JP 2013221529A JP 2012091379 A JP2012091379 A JP 2012091379A JP 2012091379 A JP2012091379 A JP 2012091379A JP 2013221529 A JP2013221529 A JP 2013221529A
Authority
JP
Japan
Prior art keywords
wall surface
annular
bearing
base
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012091379A
Other languages
Japanese (ja)
Other versions
JP6115021B2 (en
Inventor
Hikari Sato
光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Oiles Industry Co Ltd
Original Assignee
Oiles Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Oiles Industry Co Ltd filed Critical Oiles Corp
Priority to JP2012091379A priority Critical patent/JP6115021B2/en
Priority to PCT/JP2013/002077 priority patent/WO2013153753A1/en
Priority to CN201380019352.5A priority patent/CN104204573B/en
Priority to KR1020147025772A priority patent/KR101608364B1/en
Priority to TW102113142A priority patent/TWI582314B/en
Publication of JP2013221529A publication Critical patent/JP2013221529A/en
Priority to HK15101491.5A priority patent/HK1200899A1/en
Application granted granted Critical
Publication of JP6115021B2 publication Critical patent/JP6115021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • F16C32/0622Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings via nozzles, restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • F16C11/06Ball-joints; Other joints having more than one degree of angular freedom, i.e. universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/0666Details of hydrostatic bearings independent of fluid supply or direction of load of bearing pads

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aerostatic gas bearing which is capable of curbing the generation of a self-exited vibration and stably supporting an object to be supported and is low in cost, and to provide a linear motion guiding device using the aerostatic gas bearing.SOLUTION: An aerostatic gas bearing 1 comprises a bearing basal body 2 which is opened at an annular protrusion 6 provided integrally with one surface of a basal portion 4 and protrudingly from the basal portion 4 and at a protruding end face of the annular protrusion 6 in one end, and at the same time includes an air supply passage 11 opened on an outer circumferential surface of the basal portion 4 in the other end, a bearing body 3 with a plurality of air ejection holes 38 communicating with an annular depression that receives the annular protrusion 6 of the bearing basal body 2 and an annular depressed groove 33 and a self-exciting vibration damping mechanism A for damping the self-exciting vibration caused by the air ejection from the air ejection holes 38 via the annular depressed groove 33.

Description

本発明は、静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置に関する。     The present invention relates to a static pressure gas bearing and a linear motion guide device using the static pressure gas bearing.

精密工作機械や半導体露光装置などにおいては、加工工具や基板等の被加工物を高精度で位置決めすることが要求されている。そのため、被加工物の載置台の位置決め装置に摩擦の殆んどない静圧気体軸受を用いた直動案内装置が用いられている。このような直動案内装置では、被加工物の載置台としての可動テーブルと、案内部材としてのガイドレールとの間に圧縮空気の潤滑膜が介在され、この可動テーブルがガイドレールに対して非接触で移動されるように構成されている。   In precision machine tools, semiconductor exposure apparatuses, and the like, it is required to position a workpiece such as a processing tool or a substrate with high accuracy. For this reason, a linear motion guide device using a static pressure gas bearing with little friction is used for a positioning device for a work table. In such a linear motion guide device, a lubricating film of compressed air is interposed between a movable table as a work table and a guide rail as a guide member. It is configured to be moved by contact.

この直動案内装置に用いられる静圧気体軸受の空気吹出口の絞り形式としては、多孔質絞り、表面絞り、オリフィス絞り、自成絞り等があり、これらの絞り形式を備えた静圧気体軸受は、夫々用途に応じて負荷容量及び軸受剛性等を調整しながら使用されている。   As the throttle type of the air outlet of the static pressure gas bearing used in this linear motion guide device, there are a porous throttle, a surface throttle, an orifice throttle, a self-contained throttle, etc., and a static pressure gas bearing equipped with these throttle types Are used while adjusting the load capacity, bearing rigidity, etc. according to the respective applications.

例えば、特許文献1には、被支持体又は支持体のいずれか一方に固定され、その軸受部材を介して軸受面に供給される加圧空気により支持体を移動自在に支承するようにした静圧気体軸受パッドにおいて、軸受部材として、素材粒子の径がほぼ均一で開気孔の均等性が得られる種類のカーボングラファイト系の材料が提案されている。   For example, in Patent Document 1, a static body is fixed to either a supported body or a support body, and the support body is movably supported by pressurized air supplied to the bearing surface via the bearing member. In a pressurized gas bearing pad, as a bearing member, a type of carbon graphite-based material has been proposed in which the diameter of material particles is substantially uniform and the uniformity of open pores can be obtained.

また、特許文献2には、多孔質体からなる母材と、この母材上に接合され、予め所望の空気透過量になるように、貫通孔の径及び分布を調整して作製された多孔板からなる表面絞り層とを備え、表面絞り層を介して気体を噴出させ、その静圧によって被支持体を支持する静圧気体軸受が提案されている。   Patent Document 2 discloses a porous material produced by adjusting the diameter and distribution of through-holes so that a desired amount of air permeation can be obtained by joining a porous material and a preform on the preform. There has been proposed a static pressure gas bearing that includes a surface constriction layer made of a plate, ejects gas through the surface constriction layer, and supports the supported body by the static pressure.

特開昭63−231020号公報JP 63-23310 A 特開2001−56027号公報JP 2001-56027 A 特開2008−82449号公報JP 2008-82449 A

上記従来の静圧気体軸受は、超低摩擦、超高精度及び超高速運動を実現できるものの、軸受材料として、主に、高強度の金属やセラミックスが用いられると共にこれら軸受材料からなる軸受面に高精度の研削仕上げ等を施す必要があるため、必然的に高価となるという問題がある。   Although the above-mentioned conventional static pressure gas bearings can realize ultra-low friction, ultra-high accuracy and ultra-high-speed motion, high-strength metals and ceramics are mainly used as bearing materials, and bearing surfaces made of these bearing materials are used. There is a problem that it is inevitably expensive because it is necessary to perform a high-precision grinding finish or the like.

しかしながら、上記した超低摩擦、超高精度及び超高速運動までは要求されないが、例えば、液晶スクリーン等の物品を非接触で搬送したり、温度変化を生じさせることなく物品を水平移動させたりする用途においては、静圧気体軸受を用いると装置の構成が簡略化されるなどの利点を有する反面、静圧気体軸受自体が高価なため、当該用途には広く活用されていないのが実情である。   However, although the above-described ultra-low friction, ultra-high accuracy, and ultra-high-speed motion are not required, for example, an article such as a liquid crystal screen is transported in a non-contact manner, or the article is moved horizontally without causing a temperature change. In applications, the use of static pressure gas bearings has the advantage of simplifying the configuration of the apparatus, but the static pressure gas bearings themselves are expensive and are not widely used in such applications. .

上記実情に鑑み、種々の分野で活用可能な安価な静圧気体軸受を提供するべく本出願人は先に、上面に自成絞り形状又はオリフィス絞り形状の複数個の空気吹出口を、下面に該複数個の空気吹出口と連通する給気溝を夫々有する合成樹脂製の軸受部材と、該軸受部材の下面に前記給気溝を覆うように接合され、該給気溝と連通する給気口を有する軸受基体とが一体化された静圧気体軸受を提案した(特許文献3)。   In view of the above situation, in order to provide an inexpensive static pressure gas bearing that can be used in various fields, the present applicant has firstly provided a plurality of air outlets having a self-contained throttle shape or an orifice throttle shape on the upper surface, and a lower surface. Synthetic resin bearing members each having an air supply groove communicating with the plurality of air outlets, and an air supply connected to the lower surface of the bearing member so as to cover the air supply groove and communicating with the air supply groove A hydrostatic gas bearing in which a bearing base having a mouth is integrated has been proposed (Patent Document 3).

この特許文献3に記載された静圧気体軸受によれば、静圧気体軸受を形成する合成樹脂製の軸受部材を、金型を用いて射出成形によって形成することができ、機械加工を不要とすることができると共に軸受基体の構造も該軸受体と連通する給気口を形成するのみで、該軸受体と軸受基体とを接合するだけで静圧気体軸受を組み立てることができ、静圧気体軸受の大量生産が可能となり、安価な静圧気体軸受を提供することができるというものである。   According to the hydrostatic gas bearing described in Patent Document 3, a synthetic resin bearing member that forms the hydrostatic gas bearing can be formed by injection molding using a mold, and machining is unnecessary. In addition, the structure of the bearing base also forms an air supply port communicating with the bearing body, and the static pressure gas bearing can be assembled by simply joining the bearing body and the bearing base. This enables mass production of bearings and provides an inexpensive static pressure gas bearing.

しかしながら、特許文献3に記載された静圧気体軸受における空気吹出口は、金型を用いた射出成形で形成されるため、その直径が0.2〜0.4mm程度の比較的大きな直径の自成絞りあるいはオリフィス絞り形状となり、当該空気吹出口からの給気吹出量が多すぎて自励振動を生じる虞があり、静圧気体軸受による被支持体の支持が不安定となり、やはり実用化するには改良が必要とされる。   However, since the air outlet in the static pressure gas bearing described in Patent Document 3 is formed by injection molding using a mold, its diameter is about 0.2 to 0.4 mm. There is a risk that it will be in the shape of an orifice or orifice, and there is a risk that self-excited vibration will occur due to the excessive amount of air supply from the air outlet, and the support of the supported body by the hydrostatic gas bearing will become unstable and will also be put to practical use. There is a need for improvement.

本発明は,上記諸点に鑑みてなされたものであり、その目的とするところは、自励振動の発生を抑制できて、被支持体の支持を安定的に行うことができる安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することにある。   The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an inexpensive static pressure gas that can suppress the occurrence of self-excited vibration and can stably support a supported body. An object of the present invention is to provide a bearing and a linear guide device using the static pressure gas bearing.

本発明の静圧気体軸受は、基部、該基部の一方の面から一体的に突設された環状突出部並びに一端では該環状突出部の突出端面で開口している一方、他端では基部の外周面で開口すると共に基部及び環状突出部に設けられた給気通路を備えた合成樹脂製の軸受基体と、基部の一方の面に対面している一方の面に形成されていると共に軸受基体の環状突出部を受容した環状凹所、他方の面で開口した環状凹溝及び一端では環状凹溝に連通していると共に他端では環状凹所に開口した自成絞りとしての複数個の空気吹出孔を夫々有した合成樹脂製の軸受体と、環状凹溝を介する空気吹出孔からの空気の吹き出しによる自励振動を減衰する自励振動減衰機構とを具備しており、軸受体は、環状凹所を規定する軸受体の外側円周面及び内側円周面で環状突出部の外周面及び内周面に溶着接合されて軸受基体に一体化されており、自励振動減衰機構は、軸受基体に若しくは軸受体に又は軸受基体及び軸受体の協働により形成された空気室と、一端では該空気室に連通する一方、他端では軸受体の他方の面で開口する少なくとも一つの絞り孔とを具備していることを特徴とする。   The hydrostatic gas bearing of the present invention has a base, an annular protrusion integrally projecting from one surface of the base, and one end opening at the projecting end surface of the annular protrusion, while the other end of the base A bearing base made of a synthetic resin having an air supply passage provided in the base and the annular projecting portion and opening on the outer peripheral surface, and a bearing base formed on one surface facing one surface of the base A plurality of air as a self-contained aperture that communicates with the annular recess at one end and the annular recess at one end and opens into the annular recess at the other end. A bearing body made of a synthetic resin each having a blowout hole, and a self-excited vibration damping mechanism that attenuates self-excited vibration caused by blowing air from the air blowout hole through the annular groove, Rings on the outer and inner circumferential surfaces of the bearing body that define the annular recess The self-excited vibration damping mechanism is formed on the bearing base or the bearing body or by the cooperation of the bearing base and the bearing body. The air chamber includes at least one throttle hole that communicates with the air chamber at one end and opens at the other surface of the bearing body at the other end.

本発明の静圧気体軸受によれば、合成樹脂製の軸受基体の環状突出部が合成樹脂製の軸受体の環状凹所に受容されていると共に該環状突出部の外周面及び内周面が該環状凹所を規定する軸受体の外側内周面及び内側内周面に溶着接合されているため、合成樹脂製の軸受体と軸受基体とが強固に一体化されており、軸受基体に若しくは軸受体に又は軸受基体及び軸受体の協働により形成された空気室と、一端では該空気室に連通する一方、他端では軸受体の他方の面で開口する少なくとも一つの絞り孔とを具備している自励振動減衰機構により、環状凹溝を介する空気吹出孔からの空気の吹き出しによる自励振動の発生を抑制できるので、当該静圧気体軸受による被支持体の支持を安定的に行わせることができる。   According to the static pressure gas bearing of the present invention, the annular protrusion of the synthetic resin bearing base is received in the annular recess of the synthetic resin bearing body, and the outer peripheral surface and inner peripheral surface of the annular protrusion are Since it is welded and joined to the outer inner peripheral surface and the inner inner peripheral surface of the bearing body that defines the annular recess, the synthetic resin bearing body and the bearing base are firmly integrated, and the bearing base or An air chamber formed in the bearing body or by the cooperation of the bearing base and the bearing body, and at least one throttle hole that communicates with the air chamber at one end and opens at the other surface of the bearing body at the other end. The self-excited vibration damping mechanism can suppress the generation of self-excited vibration due to air blowing from the air blowing hole through the annular concave groove, so that the supported body is stably supported by the static pressure gas bearing. Can be made.

本発明の静圧気体軸受において、環状凹溝は、少なくとも0.3mmの幅、好ましくは0.3〜0.1mmの幅と、少なくとも0.01mmの深さ、好ましくは0.01〜0.05mmの深さとを有しており、空気吹出孔は、その一端で少なくとも30μmの直径、
好ましくは30〜120μmの直径を有している。
In the hydrostatic gas bearing of the present invention, the annular groove is at least 0.3 mm wide, preferably 0.3-0.1 mm wide and at least 0.01 mm deep, preferably 0.01-0. The air outlet hole has a diameter of at least 30 μm at one end thereof,
Preferably it has a diameter of 30-120 μm.

環状凹溝、空気吹出孔及び絞り孔のうちの少なくとも一つは、好ましくは、炭酸ガスレーザー、YAGレーザー、UVレーザー、エキシマレーザー等から選択される加工用レーザーレーザーでのレーザー加工により形成されている。   At least one of the annular concave groove, the air blowing hole, and the throttle hole is preferably formed by laser processing with a processing laser laser selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like. Yes.

環状凹溝、空気吹出孔及び絞り孔のうちの少なくとも一つをレーザー加工により形成すると、切削等の機械加工に比較して、瞬時にこれらを形成でき、大量生産が可能となるばかりでなく、安価に製作することができる。   When at least one of the annular groove, air blowing hole and throttle hole is formed by laser processing, these can be formed instantaneously compared to machining such as cutting, and mass production becomes possible, It can be manufactured at low cost.

本発明の静圧気体軸受において、好ましい例では、軸受基体の環状突出部の外周面は、円筒外壁面と、該円筒外壁面に連続して当該円筒外壁面から外方に徐々に拡径する環状の截頭円錐外壁面と、該截頭円錐外壁面と連続して該基部の一方の面に連なると共に円筒外壁面よりも大径の円筒外壁面とを有しており、軸受基体の環状突出部の内周面は、円筒内壁面と、該円筒内壁面に連続して当該円筒内壁面から内方に徐々に縮径する環状の截頭円錐内壁面と、該截頭円錐内壁面と連続して該基部の一方の面に連なると共に円筒内壁面よりも小径の円筒内壁面とを有しており、該軸受体の環状凹所を規定する外側内周面は、当該環状凹所の開口端の外縁を規定する環状の周縁を有した外側円筒内壁面を具備しており、該軸受体の環状凹所を規定する内側内周面は、当該環状凹所の開口端の内縁を規定する周縁を有した内側円筒内壁面を有しており、該軸受体は、外側円筒内壁面を環状突出部の外周面の円筒外壁面に、内側円筒内壁面を環状突出部の内周面の円筒内壁面に夫々嵌合せしめると共に該環状凹所の開口端の外縁を規定する外側円筒内壁面の環状の周縁を環状突出部の外周面の截頭円錐外壁面に、該環状凹所の開口端の内縁を規定する内側円筒内壁面の環状の周縁を環状突出部の内周面の截頭円錐内壁面に夫々接触させて、当該環状突出部に接触する部位で超音波溶着により当該環状突出部に溶着接合されて軸受基体に一体化されている。   In the hydrostatic gas bearing of the present invention, in a preferred example, the outer peripheral surface of the annular projecting portion of the bearing base gradually expands outward from the cylindrical outer wall surface continuously to the cylindrical outer wall surface. An annular frustoconical outer wall surface and a cylindrical outer wall surface that is continuous with the outer wall surface of the frustoconical cone and continuous with one surface of the base and has a larger diameter than the cylindrical outer wall surface. An inner peripheral surface of the projecting portion includes a cylindrical inner wall surface, an annular frustoconical inner wall surface that is continuous with the cylindrical inner wall surface and gradually reduces inward from the cylindrical inner wall surface, and the frustoconical inner wall surface A cylindrical inner wall surface continuously connected to one surface of the base portion and having a smaller diameter than the cylindrical inner wall surface, and an outer inner peripheral surface defining the annular recess of the bearing body is An outer cylindrical inner wall surface having an annular periphery defining an outer edge of the open end, and defining an annular recess of the bearing body The inner inner peripheral surface has an inner cylindrical inner wall surface having a peripheral edge that defines the inner edge of the opening end of the annular recess, and the bearing body has an outer cylindrical inner wall surface that is a cylinder of the outer peripheral surface of the annular protrusion. The inner cylindrical inner wall surface is fitted to the outer cylindrical wall surface of the inner peripheral surface of the annular protrusion, and the annular peripheral edge of the outer cylindrical inner wall surface that defines the outer edge of the opening end of the annular recess is annular protruding portion. The outer peripheral surface of the outer peripheral surface of the annular recess is brought into contact with the inner peripheral surface of the inner peripheral surface of the annular protrusion, and the inner peripheral surface of the inner surface of the inner circular cylinder defining the inner edge of the opening of the annular recess. In addition, it is welded and joined to the annular projecting portion by ultrasonic welding at a portion in contact with the annular projecting portion and integrated with the bearing base.

斯かる例では、該軸受基体と軸受体との互いに接触する部位が所謂シェア・ジョイントであるので、シェア・ジョイントでの超音波による溶着接合となり、気密性がよく、非常に強い溶着強度が得られて、軸受体と軸受基体とが強固に一体化された静圧気体軸受を提供できる。   In such an example, since the part where the bearing base and the bearing body contact each other is a so-called shear joint, the joint is ultrasonically welded at the shear joint, which is airtight and has a very strong welding strength. Thus, a static pressure gas bearing in which the bearing body and the bearing base are firmly integrated can be provided.

本発明の静圧気体軸受において、他の好ましい例では、軸受基体の環状突出部の外周面は、円筒外壁面と、該円筒外壁面に連続して当該円筒外壁面から外方に徐々に拡径する環状の截頭円錐外壁面と、該截頭円錐外壁面と連続して該基部の一方の面に連なると共に円筒外壁面よりも大径の円筒外壁面とを有しており、軸受基体の環状突出部の内周面は、円筒内壁面と、該円筒内壁面に連続して当該円筒内壁面から内方に徐々に縮径する環状の截頭円錐内壁面と、該截頭円錐内壁面と連続して該基部の一方の面に連なると共に円筒内壁面よりも小径の円筒内壁面とを有しており、該軸受体の該環状凹所を規定する外側内周面は、外側円筒内壁面と、該外側円筒内壁面から徐々に拡径していると共に該環状凹所の開口端の外縁を規定する環状の周縁を有した外側截頭円錐内壁面とを具備しており、該軸受体の該環状凹所を規定する内側内周面は、内側円筒内壁面と、該内側円筒内壁面から徐々に縮径していると共に該環状凹所の開口端の内縁を規定する環状の周縁を有した内側截頭円錐内壁面とを具備しており、該軸受体は、外側円筒内壁面を環状突出部の外周面の円筒外壁面に、内側円筒内壁面を環状突出部の内周面の円筒内壁面に夫々嵌合せしめると共に外側截頭円錐内壁面を截頭円錐外壁面に、内側截頭円錐内壁面を截頭円錐内壁面に夫々接触させて、当該環状突出部に接触する部位で超音波溶着により当該環状突出部に溶着接合されて軸受基体に一体化されている。   In another preferred example of the hydrostatic gas bearing of the present invention, the outer peripheral surface of the annular projection of the bearing base is gradually expanded outward from the cylindrical outer wall surface continuously with the cylindrical outer wall surface. An annular frusto-conical outer wall surface having a diameter, a cylindrical outer wall surface continuous with the outer wall surface of the frusto-cone and connected to one surface of the base and having a diameter larger than that of the cylindrical outer wall surface. The inner peripheral surface of the annular protrusion is formed by connecting a cylindrical inner wall surface, an annular frustoconical inner wall surface that is continuous with the cylindrical inner wall surface and gradually shrinks inward from the cylindrical inner wall surface, A cylindrical inner wall surface continuous with the wall surface and connected to one surface of the base and having a diameter smaller than that of the cylindrical inner wall surface, and an outer inner circumferential surface defining the annular recess of the bearing body is an outer cylindrical surface An inner wall and an annular periphery that gradually expands from the inner wall of the outer cylinder and that defines the outer edge of the open end of the annular recess. And an inner inner peripheral surface defining the annular recess of the bearing body is gradually reduced in diameter from the inner cylindrical inner wall surface and the inner cylindrical inner wall surface. And an inner frustoconical inner wall surface having an annular peripheral edge defining an inner edge of the opening end of the annular recess, and the bearing body has an outer cylindrical inner wall surface that is connected to the outer circumferential surface of the annular protrusion. Fit the inner cylindrical inner wall surface to the inner cylindrical inner wall surface of the annular protrusion, and the outer frustoconical inner wall surface to the outer truncated cone outer wall surface, and the inner truncated conical inner wall surface It is brought into contact with the inner wall surface of the head cone, and is welded and joined to the annular projecting portion by ultrasonic welding at a portion in contact with the annular projecting portion and integrated with the bearing base.

斯かる他の例では、軸受基体と軸受体との当該互いに接触する部位が所謂スカーフ・ジョイントであるので、当該スカーフ・ジョイントで超音波により一様な発熱が得られ、大きな溶着面積が得られるので、気密性がよく、非常に強い溶着強度が得られ、軸受体と軸受基体とがより強固に一体化された静圧気体軸受を提供できる。   In such another example, since the portions of the bearing base and the bearing body that contact each other are so-called scarf joints, uniform heat generation is obtained by ultrasonic waves at the scarf joints, and a large welding area is obtained. Therefore, it is possible to provide a static pressure gas bearing in which the airtightness is good, a very strong welding strength is obtained, and the bearing body and the bearing base are more firmly integrated.

空気室は、該基部の一方の面と、該基部の一方の面に対面する軸受体の一方の面と、該軸受基体の環状突出部の内周面の截頭円錐内壁面及び小径の円筒内壁面とにより規定されて軸受基体及び軸受体の協働により形成された空所を具備していてもよく、これに代えて、該基部の一方の面と、該基部の一方の面に対面する軸受体の一方の面と、該軸受基体の小径の円筒内壁面とにより規定されて軸受基体及び軸受体の協働により形成された空所を具備していてもよく、これらの場合、絞り孔は、一端では空所に開口していてもよい。   The air chamber has one surface of the base portion, one surface of the bearing body facing the one surface of the base portion, a frustoconical inner wall surface of the inner peripheral surface of the annular projecting portion of the bearing base, and a small-diameter cylinder. It may be provided with a space defined by the inner wall surface and formed by the cooperation of the bearing base and the bearing body. Instead, one surface of the base portion and one surface of the base portion face each other. A space defined by one surface of the bearing body and a small cylindrical inner wall surface of the bearing base and formed by the cooperation of the bearing base and the bearing body. The hole may open to a void at one end.

また、空気室は、該軸受体の一方の面で開口していると共に該軸受体に形成された凹部を具備していてもよく、この場合、絞り孔は、一端では凹部に開口しているとよい。   The air chamber may be open at one surface of the bearing body and may have a recess formed in the bearing body. In this case, the throttle hole opens at the recess at one end. Good.

本発明の静圧気体軸受において、軸受体は、環状凹溝に加えて、その他方の面に形成されていると共に該環状凹溝の外側で当該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、その他方の面に形成されていると共に該環状凹溝の内側で当該環状凹溝に囲まれた小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを更に具備していてもよく、これら大径環状凹溝、第一の放射状凹溝、小径環状凹溝及び第二の放射状凹溝のうちの少なくとも一つは、上記と同様に、レーザー加工により形成されていてもよい。   In the static pressure gas bearing of the present invention, the bearing body is formed on the other surface in addition to the annular groove, and a large-diameter annular groove surrounding the annular groove outside the annular groove, A plurality of first radial grooves, one end of which opens into the annular groove and the other end of which opens into the large-diameter groove, and the other side of the annular groove. A small-diameter annular groove surrounded by the annular groove on the inner side of the groove, and a plurality of second radial grooves whose one end opens into the annular groove and the other end opens into the small-diameter groove. A groove having at least one of the large-diameter annular groove, the first radial groove, the small-diameter annular groove, and the second radial groove, as described above. It may be formed by processing.

本発明の静圧気体軸受は、軸受基体に設けられていると共に球体受容凹部を有した球体受容手段を更に具備していてもよく、斯かる球体受容手段は、基部の他方の面で開口して当該基部に形成された截頭円錐凹部を球体受容凹部として有していても、基部の他方の面で開口して当該軸受基体に形成された半球凹部を球体受容凹部として有していても、基部の他方の面で開口して当該基部に形成された円柱状凹部に嵌合固定されていると共に一方の面で開口した截頭円錐凹部を球体受容凹部として有する駒を具備していても、そして、基部の他方の面で開口して当該基部に形成された円柱状凹部に嵌合固定されていると共に一方の面で開口した半球凹部を球体受容凹部として有する駒を具備していてもよい。   The static pressure gas bearing of the present invention may further include a sphere receiving means provided on the bearing base and having a sphere receiving recess, and the sphere receiving means opens on the other surface of the base. Even if it has a truncated conical recess formed in the base as a sphere receiving recess, it may have a hemispherical recess formed in the bearing base as an opening in the other surface of the base as a sphere receiving recess. And a piece having a truncated cone concavity that is open and fitted in a cylindrical recess formed on the other surface of the base and fitted in a cylindrical recess formed in the base. And a piece having a hemispherical recess opened as a sphere receiving recess that is open and fitted in a cylindrical recess formed in the base and opened on the other surface of the base. Good.

斯かる球体受容手段を備えた静圧気体軸受においては、球体受容凹部に、例えば、ボールスタッドの球体が基部又は駒に摺動自在に接して配されていてもよく、斯かる場合においては、静圧気体軸受に球体回りの自動調芯機能が付加される。   In the static pressure gas bearing provided with such a sphere receiving means, for example, the sphere of the ball stud may be slidably disposed in contact with the base or the piece in the sphere receiving recess, and in such a case, An automatic centering function around the sphere is added to the static pressure gas bearing.

斯かる自動調芯機能が付加された静圧気体軸受は、被加工物の載置台の位置決め装置としての直動案内装置に用いられて好適である。   The static pressure gas bearing to which such an automatic alignment function is added is suitable for use in a linear motion guide device as a positioning device for a work table.

本発明の直動案内装置は、上面案内面及び両側案内面を有する案内部材と、この案内部材の外側に配されていると共に上面案内面に対面する上板及び両側案内面に対面する一対の側板を備えた可動テーブルと、この可動テーブルの上板の下面及び一対の側板の夫々の内面のうちの少なくとも一つの面に球体を案内部材に向けて立設されたボールスタッドと、このボールスタッドの球体及び該少なくとも一つの面に対面する上面案内面及び両側案内面の間に配されていると共に球体受容手段を有した上記の静圧気体軸受と、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面及び当該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に対面する上面案内面及び両側案内面の間に配されていると共に球体受容手段を必ずしも有しない上記の静圧気体軸受とを具備しており、ボールスタッドの球体は、球体受容手段を有した静圧気体軸受の軸受基体が当該球体を中心としてボールスタッドに対して揺動自在となるように、当該静圧気体軸受の球体受容手段の球体受容部の夫々に受容されており、球体受容手段を必ずしも有しない静圧気体軸受のうちの少なくとも一つの静圧気体軸受の軸受基体の基部は、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に固定されている。   The linear motion guide device of the present invention includes a guide member having an upper surface guide surface and both side guide surfaces, a pair of upper plates disposed on the outer side of the guide member and facing the upper surface guide surface, and facing both side guide surfaces. A movable table provided with a side plate, a ball stud standing on at least one of a lower surface of the upper plate of the movable table and an inner surface of each of the pair of side plates with a sphere facing the guide member, and the ball stud And the above-mentioned hydrostatic gas bearing having a sphere-receiving means and a movable table other than the at least one surface, and a movable table other than the at least one surface. Between the lower surface of the upper plate and the inner surfaces of the pair of side plates and the upper surface guide surface and the both side guide surfaces facing the lower surface of the upper plate of the movable table other than the at least one surface and the inner surfaces of the pair of side plates. And the above-mentioned static pressure gas bearing that does not necessarily have a sphere receiving means, and the ball stud sphere has a ball bearing centered on the sphere. At least one of the static pressure gas bearings that are received in each of the sphere receiving portions of the sphere receiving means of the static pressure gas bearing so as to be swingable with respect to the stud and do not necessarily have the sphere receiving means. The base portion of the bearing base of the hydrostatic gas bearing is fixed to the lower surface of the upper plate of the movable table and the inner surfaces of the pair of side plates other than the at least one surface.

本発明の直動案内装置によれば、軸受体の複数個の空気吹出孔から案内部材の案内面に圧縮空気を噴射することにより、軸受体の他方の面と案内面との間の軸受隙間(数μm〜数十μm程度)に形成される空気の潤滑膜によって可動テーブルを案内面に対して非接触の状態に保持することができ、その際、静圧気体軸受では、絞り孔を介して軸受体の他方の面と案内面との間の軸受隙間に絞り孔を介して連通する空気室が振動減衰作用を発揮するため自励振動の発生を抑制でき、そして、軸受体の他方の面と案内面との間の軸受隙間が不均一であって、軸受隙間において圧力差が発生しても、その圧力差により、軸受隙間が均一となる方向に静圧気体軸受が自動調芯され、軸受体の他方の面が案内面に対して平行な状態が保持されるため、案内部材及び可動テーブルの平行度、直角度等の部品精度を比較的粗い精度とすることができ、静圧気体軸受自体の低コストに加えて、安価な直動案内装置を提供することができる。   According to the linear motion guide device of the present invention, the bearing gap between the other surface of the bearing body and the guide surface is obtained by injecting compressed air from the plurality of air blowing holes of the bearing body onto the guide surface of the guide member. The movable table can be held in a non-contact state with respect to the guide surface by an air lubrication film formed on the order of several μm to several tens of μm. Since the air chamber communicating with the bearing gap between the other surface of the bearing body and the guide surface via the throttle hole exerts a vibration damping action, the occurrence of self-excited vibration can be suppressed, and the other of the bearing body Even if the bearing gap between the bearing surface and the guide surface is uneven and a pressure difference occurs in the bearing gap, the static pressure gas bearing is automatically aligned in the direction in which the bearing gap becomes uniform due to the pressure difference. Because the other surface of the bearing body is kept parallel to the guide surface, The accuracy of parts such as parallelism and perpendicularity of the members and movable table can be made relatively coarse, and an inexpensive linear motion guide device can be provided in addition to the low cost of the static pressure gas bearing itself.

本発明の静圧気体軸受において、軸受体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂から形成されているのが好ましく、また、軸受基体は、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂又はこれらの熱可塑性合成樹脂にガラス繊維、ガラス粉末、炭素繊維もしくは無機充填材を30〜50質量%含有した補強充填材含有熱可塑性合成樹脂から形成されているのが好ましい。これら合成樹脂製の軸受体及び軸受基体は、合成樹脂素材を機械加工して形成しても、金型を用いて射出成形により形成してもよい。   In the hydrostatic gas bearing of the present invention, the bearing body is preferably formed from a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, polyphenylene sulfide resin, and the bearing base is composed of polyacetal resin, polyamide resin, polyphenylene. It is formed from a thermoplastic synthetic resin such as a sulfide resin, or a thermoplastic synthetic resin containing reinforcing filler containing 30-50% by mass of glass fiber, glass powder, carbon fiber or inorganic filler in these thermoplastic synthetic resins. Is preferred. These synthetic resin bearing bodies and bearing bases may be formed by machining a synthetic resin material or by injection molding using a mold.

本発明によれば、自励振動の発生を抑制できて、被支持体の支持を安定的に行うことができる大量生産が可能で、安価な静圧気体軸受及びこの静圧気体軸受を用いた直動案内装置を提供することができる。   According to the present invention, the generation of self-excited vibration can be suppressed, and mass production capable of stably supporting a supported body is possible, and an inexpensive static pressure gas bearing and this static pressure gas bearing are used. A linear motion guide device can be provided.

図1は、本発明の実施の形態の好ましい例の平面説明図である。FIG. 1 is an explanatory plan view of a preferred example of an embodiment of the present invention. 図2は、図1のII−II線矢視断面説明図である。2 is a cross-sectional explanatory view taken along the line II-II in FIG. 図3は、図2の一部拡大断面説明図である。FIG. 3 is a partially enlarged cross-sectional explanatory view of FIG. 図4は、軸受基体の平面説明図である。FIG. 4 is an explanatory plan view of the bearing base. 図5は、図4のV−V線矢視断面説明図である。FIG. 5 is a cross-sectional explanatory view taken along the line V-V in FIG. 4. 図6は、図5の一部拡大断面説明図である。6 is a partially enlarged cross-sectional explanatory view of FIG. 図7は、図5の一部拡大断面説明図である。FIG. 7 is a partially enlarged cross-sectional explanatory view of FIG. 図8は、軸受体の底面説明図である。FIG. 8 is an explanatory bottom view of the bearing body. 図9は、図8のIX−IX線矢視断面説明図である。9 is a cross-sectional explanatory view taken along line IX-IX in FIG. 図10は、軸受体素体と軸受基体との組立体の平面説明図である。FIG. 10 is an explanatory plan view of the assembly of the bearing body and the bearing base. 図11は、図10のXI−XI線矢視断面説明図である。11 is a cross-sectional explanatory view taken along the line XI-XI in FIG. 図12は、図11の一部拡大断面説明図である。FIG. 12 is a partially enlarged cross-sectional explanatory view of FIG. 図13は、軸受体素体の他の実施の形態の好ましい例の断面説明図である。FIG. 13 is a cross-sectional explanatory view of a preferred example of another embodiment of the bearing body. 図14は、図13に示す軸受体素体と軸受基体との組立体の断面説明図である。FIG. 14 is a cross-sectional explanatory view of the assembly of the bearing body element and the bearing base body shown in FIG. 図15は、図14の一部拡大断面説明図である。FIG. 15 is a partially enlarged cross-sectional explanatory view of FIG. 図16は、軸受体素体の他の実施の形態の好ましい例の底面説明図である。FIG. 16 is a bottom view for explaining a preferred example of another embodiment of the bearing body. 図17は、図16のXVII−XVII線矢視断面説明図である。17 is a cross-sectional explanatory view taken along line XVII-XVII in FIG. 図18は、図17に示す軸受体素体と軸受基体との組立体の断面説明図である。18 is an explanatory cross-sectional view of the assembly of the bearing body element and the bearing base body shown in FIG. 図19は、本発明の他の実施の形態の好ましい例の断面説明図である。FIG. 19 is a cross-sectional explanatory view of a preferred example of another embodiment of the present invention. 図20は、軸受体素体の他の実施の形態の好ましい例の底面説明図である。FIG. 20 is an explanatory bottom view of a preferable example of another embodiment of the bearing body. 図21は、図20のXXI−XXI線矢視断面説明図である。21 is a cross-sectional explanatory view taken along the line XXI-XXI in FIG. 図22は、図21に示す軸受体素体と軸受基体との組立体の平面説明図である。FIG. 22 is an explanatory plan view of the assembly of the bearing body element and the bearing base body shown in FIG. 図23は、図22のXXIII−XXIII線矢視断面説明図である。23 is a cross-sectional explanatory view taken along line XXIII-XXIII in FIG. 図24は、本発明の他の実施の形態の好ましい例の平面説明図である。FIG. 24 is an explanatory plan view of a preferred example of another embodiment of the present invention. 図25は、図24のXXV−XXV線矢視断面説明図である。25 is a cross-sectional explanatory view taken along the line XXV-XXV in FIG. 図26は、軸受体の他の実施の形態の好ましい例の平面説明図である。FIG. 26 is an explanatory plan view of a preferred example of another embodiment of the bearing body. 図27は、駒の好ましい例の断面説明図である。FIG. 27 is a cross-sectional explanatory view of a preferable example of the piece. 図28は、図27に示す駒を嵌合固定した軸受基体を用いた本発明の他の実施の形態の好ましい例の断面説明図である。FIG. 28 is a cross-sectional explanatory view of a preferred example of another embodiment of the present invention using the bearing base to which the piece shown in FIG. 27 is fitted and fixed. 図29は、図28に示す例に自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 29 is a cross-sectional explanatory view of a static pressure gas bearing in which an automatic alignment function is added to the example shown in FIG. 図30は、駒の他の好ましい例の断面説明図である。FIG. 30 is a cross-sectional explanatory view of another preferred example of the piece. 図31は、図30に示す駒を嵌合固定した軸受基体を用いた本発明の他の実施の形態の好ましい例の断面説明図である。FIG. 31 is a cross-sectional explanatory view of a preferred example of another embodiment of the present invention using the bearing base to which the piece shown in FIG. 30 is fitted and fixed. 図32は、図31に示す例に自動調芯機能を付加した静圧気体軸受の断面説明図である。FIG. 32 is a cross-sectional explanatory view of a static pressure gas bearing obtained by adding an automatic alignment function to the example shown in FIG. 図33は、静圧気体軸受を用いた直動案内装置の実施の形態の好ましい例の断面説明図である。FIG. 33 is a cross-sectional explanatory view of a preferred example of an embodiment of a linear motion guide device using a static pressure gas bearing.

次に本発明を、図に示す好ましい実施の形態の例に基づいて更に詳細に説明する。なお、本発明はこれらの例に何等限定されない。   Next, the present invention will be described in more detail based on an example of a preferred embodiment shown in the drawings. Note that the present invention is not limited to these examples.

図1から図9において、静圧気体軸受1は、好ましくは、ポリアセタール樹脂(POM)、ポリアミド樹脂(PA)、ポリフェニレンサルファイド樹脂(PPS)等の熱可塑性合成樹脂又はこれらの熱可塑性合成樹脂にガラス繊維、ガラス粉末、炭素繊維もしくは無機充填材を30〜50質量%含有した補強充填材含有熱可塑性合成樹脂から形成されている合成樹脂製の軸受基体2と、軸受基体2に一体的に溶着接合されていると共に好ましくはポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性合成樹脂から形成されている合成樹脂製の軸受体3とを具備している。   1 to 9, the static pressure gas bearing 1 is preferably made of a thermoplastic synthetic resin such as polyacetal resin (POM), polyamide resin (PA), polyphenylene sulfide resin (PPS), or a thermoplastic synthetic resin such as glass. A synthetic resin bearing base 2 formed from a thermoplastic synthetic resin containing reinforcing filler containing 30 to 50% by mass of fiber, glass powder, carbon fiber, or inorganic filler, and integrally welded to the bearing base 2 And a bearing body 3 made of a synthetic resin, preferably made of a thermoplastic synthetic resin such as a polyacetal resin, a polyamide resin, or a polyphenylene sulfide resin.

軸受基体2は、特に、図4から図7に示すように、基部4と、基部4の平面視円形の一方の面5から一体的に突設された環状突出部6と、一端7では環状突出部6の平面視円形の突出端面8で開口している一方、他端9では基部4の円筒状の外周面の平坦面部10で開口すると共に基部4及び環状突出部6に設けられた給気通路11と、基部4の平面視円形の他方の面12の中央部に平面視円形の開口面13を有して当該中央部に設けられていると共に平面視円形の底面14で規定された円柱状凹部15とを備えている。   As shown in FIGS. 4 to 7, the bearing base 2 has a base portion 4, an annular projecting portion 6 integrally projecting from one circular surface 5 of the base portion 4 in plan view, and an annular shape at one end 7. The protrusion 6 is open at the circular protrusion end surface 8 in plan view, while the other end 9 is open at the flat surface portion 10 of the cylindrical outer peripheral surface of the base 4 and is provided at the base 4 and the annular protrusion 6. An air passage 11 and an opening surface 13 having a circular shape in plan view are provided at the central portion of the other surface 12 of the base portion 4 having a circular shape in plan view. A cylindrical recess 15 is provided.

環状突出部6は、外周面16を有した外側環状突出部17と、内周面18を有した内側環状突出部19とを具備している。   The annular protrusion 6 includes an outer annular protrusion 17 having an outer peripheral surface 16 and an inner annular protrusion 19 having an inner peripheral surface 18.

外側環状突出部17の外周面16は、特に図6に示すように、円筒外壁面20と、円筒外壁面20に連続して円筒外壁面20から外方に徐々に拡径する環状の截頭円錐外壁面21と、截頭円錐外壁面21と連続して基部4の一方の面5に連なると共に円筒外壁面20よりも大径の円筒外壁面22とを有している。   As shown in FIG. 6 in particular, the outer peripheral surface 16 of the outer annular protrusion 17 has a cylindrical outer wall surface 20 and an annular wharf that is continuous with the cylindrical outer wall surface 20 and gradually expands outward from the cylindrical outer wall surface 20. It has a conical outer wall surface 21 and a cylindrical outer wall surface 22 that is continuous with the frustoconical outer wall surface 21 and is continuous with one surface 5 of the base 4 and has a larger diameter than the cylindrical outer wall surface 20.

内側環状突出部19の内周面18は、特に図7に示すように、円筒内壁面23と、円筒内壁面23に連続して円筒内壁面23から内方に徐々に縮径する環状の截頭円錐内壁面24と、截頭円錐内壁面24と連続して基部4の一方の面5に連なると共に円筒内壁面23よりも小径の円筒内壁面25とを有している。   As shown in FIG. 7 in particular, the inner peripheral surface 18 of the inner annular projecting portion 19 is a cylindrical inner wall surface 23 and an annular flange gradually reducing the diameter inward from the cylindrical inner wall surface 23 continuously to the cylindrical inner wall surface 23. The head cone inner wall surface 24 and the frustoconical inner wall surface 24 are connected to one surface 5 of the base 4 and have a cylindrical inner wall surface 25 having a smaller diameter than the cylindrical inner wall surface 23.

軸受基体2に設けられた給気通路11は、円環状の開口26としての円環状の一端7において突出端面8で開口している共に基部4及び環状突出部6に設けられた有底の円環状凹部27と、基部4に設けられていると共に一端では円環状凹部27に連通する一方、給気通路11の他端9でもある他端では基部4の円筒状の外周面の平坦面部10で開口している給気口28とを具備している。   The air supply passage 11 provided in the bearing base 2 opens at the projecting end surface 8 at one end 7 of the annular shape as the annular opening 26 and has a bottomed circle provided at the base 4 and the annular projecting portion 6. An annular recess 27 is provided in the base 4 and communicates with the annular recess 27 at one end, and at the other end which is also the other end 9 of the air supply passage 11 at the flat surface portion 10 of the cylindrical outer peripheral surface of the base 4. And an air supply opening 28 which is open.

円環状凹部27は、基部4の外側円筒内壁面29と、外側円筒内壁面29に対面した基部4の内側円筒内壁面30と、基部4の円環状の底壁面31とによって規定されており、給気口28は、一端で外側円筒内壁面29で開口して円環状凹部27に連通している。   The annular recess 27 is defined by an outer cylindrical inner wall surface 29 of the base portion 4, an inner cylindrical inner wall surface 30 of the base portion 4 facing the outer cylindrical inner wall surface 29, and an annular bottom wall surface 31 of the base portion 4. The air supply port 28 is opened at one end by an outer cylindrical inner wall surface 29 and communicates with the annular recess 27.

軸受体3は、特に図3、図8及び図9に示すように、基部4の一方の面5に対面している平面視円形の一方の面32に形成されていると共に軸受基体2の環状突出部6を受容した環状凹所33と、平面視円形の他方の面34で開口した環状凹溝35と、一端36では環状凹溝35に連通していると共に他端37では環状凹所33に開口した複数個の空気吹出孔38と、円筒状の外周面39とを有している。   As shown in FIGS. 3, 8, and 9, the bearing body 3 is formed on one surface 32 having a circular shape in a plan view facing the one surface 5 of the base portion 4, and the annular shape of the bearing base 2. An annular recess 33 that receives the protrusion 6, an annular recess 35 that opens on the other surface 34 that is circular in plan view, an end 36 that communicates with the annular recess 35, and an annular recess 33 at the other end 37. And a plurality of air blowing holes 38 that are open to the outside and a cylindrical outer peripheral surface 39.

特に図3に示すように、軸受体3の環状底面43と、互いに対面する一対の円筒面44とによって規定された環状凹溝35は、少なくとも0.3mmの幅Wと、少なくとも0.01mmの深さdとを有しており、空気吹出孔38は、その一端36で、本例では一端36から他端37にわたって少なくとも30μmの直径Dを有して、環状凹所33と環状凹溝35との間で自成絞りを形成している。   In particular, as shown in FIG. 3, the annular groove 35 defined by the annular bottom surface 43 of the bearing body 3 and the pair of cylindrical surfaces 44 facing each other has a width W of at least 0.3 mm and a width of at least 0.01 mm. The air blowing hole 38 has a diameter D of at least 30 μm from one end 36 to the other end 37 in this example, and has an annular recess 33 and an annular groove 35. A self-contained diaphragm is formed between

環状凹所33は、空気吹出孔38の他端37が開口する円環状の天井面45と、天井面45の外縁に連接されている外側内周面46と、天井面45の内縁に連接されている内側内周面47とにより規定されている。   The annular recess 33 is connected to an annular ceiling surface 45 where the other end 37 of the air blowing hole 38 opens, an outer inner peripheral surface 46 connected to the outer edge of the ceiling surface 45, and an inner edge of the ceiling surface 45. The inner inner peripheral surface 47 is defined.

環状凹所33を規定する外側内周面46は、天井面45の外縁に連接されている小径縁を有した環状の截頭円錐外壁面48と、截頭円錐外壁面48の大径縁に連接されている小径縁を有していると共に外側環状突出部17の突出端面8に対して隙間49をもって対面した円環状の段部壁面50と、段部壁面50の大径縁に連接されている周縁を有すると共に環状凹所33の円形の開口端51の外縁を規定する円環状の周縁52を有した外側円筒内壁面53とを具備している。   An outer inner peripheral surface 46 defining the annular recess 33 is formed on an annular frustoconical outer wall surface 48 having a small-diameter edge connected to an outer edge of the ceiling surface 45, and a large-diameter edge of the frustoconical outer wall surface 48. An annular step wall surface 50 having a small-diameter edge that is connected and facing the protruding end surface 8 of the outer annular protrusion 17 with a gap 49, and a large-diameter edge of the step wall surface 50. And an outer cylindrical inner wall surface 53 having an annular peripheral edge 52 that defines the outer edge of the circular open end 51 of the annular recess 33.

環状凹所33を規定する内側内周面47は、天井面45の内縁に連接されている大径縁を有した環状の截頭円錐内壁面54と、截頭円錐内壁面54の小径縁に連接されている大径縁を有していると共に内側環状突出部19の突出端面8に対して隙間55をもって対面した円環状の段部壁面56と、段部壁面56の小径縁に連接されている周縁を有すると共に環状凹所33の円形の開口端51の内縁を規定する円環状の周縁57を有した内側円筒内壁面58とを有している。   An inner inner peripheral surface 47 defining the annular recess 33 is formed on an annular frustoconical inner wall surface 54 having a large-diameter edge connected to the inner edge of the ceiling surface 45, and a small-diameter edge of the frustoconical inner wall surface 54. An annular step wall surface 56 having a large-diameter edge that is connected and facing the protruding end surface 8 of the inner annular protrusion 19 with a gap 55, and a small-diameter edge of the step wall surface 56. And an inner cylindrical inner wall surface 58 having an annular peripheral edge 57 that defines the inner edge of the circular open end 51 of the annular recess 33.

静圧気体軸受1は、環状凹溝35を介する空気吹出孔38からの空気の吹き出しによる自励振動を減衰する自励振動減衰機構Aを更に具備しており、自励振動減衰機構Aは、軸受基体2及び軸受体3の協働により形成された空気室Bと、一端40では一方の面32の中央部に開口して空気室Bに連通していると共に他端41では他方の面34の中央部に開口している一つの絞り孔42とを具備しており、絞り孔42は、1mm程度の直径を有しているとよい。   The static pressure gas bearing 1 further includes a self-excited vibration damping mechanism A that attenuates self-excited vibration caused by blowing air from the air blowing hole 38 through the annular concave groove 35. The air chamber B formed by the cooperation of the bearing base 2 and the bearing body 3 and the one end 40 open to the center of one surface 32 and communicate with the air chamber B, and the other surface 41 has the other surface 34. It is preferable that the throttle hole 42 has a diameter of about 1 mm.

空気室Bは、基部4の一方の面5と、面5に対面する軸受体3の一方の面32と、軸受基体2の環状突出部6の内周面18の截頭円錐内壁面24及び小径の円筒内壁面25とにより規定されて軸受基体2及び軸受体3の協働により形成された空所Cを具備しており、絞り孔42は、一端40では空所Cに開口している。   The air chamber B includes one surface 5 of the base 4, one surface 32 of the bearing body 3 facing the surface 5, a frustoconical inner wall surface 24 of the inner peripheral surface 18 of the annular protrusion 6 of the bearing base 2, and The space C is defined by the small-diameter cylindrical inner wall surface 25 and formed by the cooperation of the bearing base 2 and the bearing body 3, and the throttle hole 42 opens into the space C at one end 40. .

軸受体3は、外側円筒内壁面53を外側環状突出部17の外周面16の円筒外壁面20に、内側円筒内壁面58を内側環状突出部19の内周面18の円筒内壁面23に夫々接触嵌合せしめると共に環状凹所33の開口端51の外縁を規定する外側円筒内壁面53の環状の周縁52を外側環状突出部17の外周面16の截頭円錐外壁面21に、環状凹所33の開口端51の内縁を規定する内側円筒内壁面58の環状の周縁57を内側環状突出部19の内周面18の截頭円錐内壁面24に夫々接触させており、軸受体3は、互いに接触する部位、即ち、周縁52と截頭円錐外壁面21との接触する部位及び周縁57と截頭円錐内壁面24との接触する部位での超音波溶着、所謂シェア・ジョイントにより、周縁52の截頭円錐外壁面21への接触する部位及び周縁57の截頭円錐内壁面24への接触する部位に加えて、外側円筒内壁面53の円筒外壁面20への接触する部位及び内側円筒内壁面58の円筒内壁面23への接触する部位で軸受基体2に溶着接合されて、軸受基体2に一体化されている。   The bearing body 3 has an outer cylindrical inner wall surface 53 on the outer cylindrical surface 20 of the outer annular projection 17 and an inner cylindrical inner wall surface 58 on the inner cylindrical surface 23 of the inner annular projection 19. The annular peripheral edge 52 of the outer cylindrical inner wall surface 53 that fits the contact and defines the outer edge of the opening end 51 of the annular recess 33 is formed on the frustoconical outer wall surface 21 of the outer peripheral surface 16 of the outer annular protrusion 17. The annular peripheral edge 57 of the inner cylindrical inner wall surface 58 that defines the inner edge of the opening end 51 of the 33 is brought into contact with the frustoconical inner wall surface 24 of the inner peripheral surface 18 of the inner annular protrusion 19, respectively. The peripheral edge 52 is formed by ultrasonic welding, that is, a so-called shear joint, at a portion where the peripheral edge 52 and the frustoconical outer wall surface 21 are in contact with each other and a portion where the peripheral edge 57 and the frustoconical inner wall surface 24 are in contact with each other. Contact with outer cone wall 21 In addition to the portion that contacts the inner wall surface 24 of the frustoconical portion of the peripheral edge 57 and the portion that contacts the outer cylindrical wall surface 53 of the outer cylindrical inner wall surface 53 and the inner wall surface 23 of the inner cylindrical inner wall surface 58 It is welded and joined to the bearing base 2 at a part to be integrated with the bearing base 2.

軸受体3が環状凹所33を規定する外側内周面46及び内側内周面47で環状突出部6の外周面16及び内周面18に溶着接合されて軸受基体2に一体化されることにより、軸基部4の一方の面5と、一方の面5に対面する軸受体3の一方の面32と、軸受基体2の内側環状突出部19の内周面18の截頭円錐内壁面24及び小径の円筒内壁面25で規定された空気室Bの空所Cが形成されることとになる。   The bearing body 3 is welded and joined to the outer peripheral surface 16 and the inner peripheral surface 18 of the annular protrusion 6 at the outer inner peripheral surface 46 and the inner inner peripheral surface 47 that define the annular recess 33, and is integrated with the bearing base 2. As a result, one surface 5 of the shaft base 4, one surface 32 of the bearing body 3 facing the one surface 5, and the frustoconical inner wall surface 24 of the inner peripheral surface 18 of the inner annular protrusion 19 of the bearing base 2. And the void C of the air chamber B defined by the small-diameter cylindrical inner wall surface 25 is formed.

静圧気体軸受1においては、軸受体3の面34での幅Wが少なくとも0.3mmで、深さdが少なくとも0.01mmの環状凹溝35と、一端36では環状凹溝35に開口し、他端37では環状凹所33に開口する直径が少なくとも30μmの複数個の自成絞り形状の複数個の空気吹出孔38とを例えばレーザー加工により瞬時に形成してもよい。   In the hydrostatic gas bearing 1, the annular groove 35 having a width W on the surface 34 of the bearing body 3 of at least 0.3 mm and a depth d of at least 0.01 mm, and the one end 36 open to the annular groove 35. At the other end 37, a plurality of self-drawing air blowing holes 38 having a diameter of at least 30 μm that open into the annular recess 33 may be formed instantaneously by, for example, laser processing.

以上の静圧気体軸受1では、軸受体3は、周縁52と截頭円錐外壁面21との接触する部、周縁57と截頭円錐内壁面24との接触する部、外側円筒内壁面53と円筒外壁面20との接触する部及び内側円筒内壁面58と円筒内壁面23との接触する部で超音波溶着により瞬時に気密性をもって軸受基体2に溶着接合されているので、大量生産が可能となるばかりでなく、安価とすることができる。   In the hydrostatic gas bearing 1 described above, the bearing body 3 includes a portion where the peripheral edge 52 and the frustoconical outer wall surface 21 are in contact, a portion where the peripheral edge 57 and the frustoconical inner wall surface 24 are in contact, and an outer cylindrical inner wall surface 53. Mass production is possible because the portion in contact with the cylindrical outer wall surface 20 and the portion in contact with the inner cylindrical inner wall surface 58 and the cylindrical inner wall surface 23 are welded and bonded to the bearing base 2 instantaneously and hermetically by ultrasonic welding. In addition, it can be made inexpensive.

次に図1から図3に示す静圧気体軸受1の製造方法の例を説明すると、まず図4から図7に示すような合成樹脂製の軸受基体2と、一方の面32の中央部で開口すると共に他方の面34の中央部で開口する一つの絞り孔42が予め形成されているが、環状凹溝35及び複数個の空気吹出孔38が形成されていない図10及び図11に示すような合成樹脂製の軸受体素体3aを準備し、図10から図12に示すように、基部4の一方の面5に軸受体3の一方の面32に対面させると共に軸受基体2の環状突出部6を軸受体3の環状凹所33に受容させ、環状凹所33の開口端51の外縁を規定する外側円筒内壁面53の環状の周縁52を外側環状突出部17の外周面16の截頭円錐外壁面21に、環状凹所33の開口端51の内縁を規定する内側円筒内壁面58の環状の周縁57を内側環状突出部19の内周面18の截頭円錐内壁面24に夫々接触させて軸受体素体3aと軸受基体2との組立体59を形成する。   Next, an example of a manufacturing method of the hydrostatic gas bearing 1 shown in FIGS. 1 to 3 will be described. First, a synthetic resin bearing base 2 as shown in FIGS. 4 to 7 and a central portion of one surface 32 are used. One throttle hole 42 that is opened and opened at the center of the other surface 34 is formed in advance, but the annular concave groove 35 and the plurality of air blowing holes 38 are not formed. Such a synthetic resin-made bearing body element 3a is prepared. As shown in FIGS. 10 to 12, one surface 5 of the base 4 is made to face one surface 32 of the bearing body 3 and the bearing base 2 is annular. The protrusion 6 is received in the annular recess 33 of the bearing body 3, and the annular peripheral edge 52 of the outer cylindrical inner wall surface 53 that defines the outer edge of the opening end 51 of the annular recess 33 is connected to the outer peripheral surface 16 of the outer annular protrusion 17. An inner wall defining the inner edge of the open end 51 of the annular recess 33 on the outer wall 21 of the truncated cone The annular rim 57 of the cylindrical inner wall surface 58 to the truncated conical inner wall surface 24 of the inner peripheral surface 18 of the inner annular protrusion 19 is respectively in contact to form an assembly 59 of the bearing element body 3a and the bearing base 2.

組立体59における軸受体素体3aの面34に工具ホーン(図示せず)を押し当て、加圧力0.098〜0.60MPa、振動振幅20〜80μm、発信時間0.1〜1.5秒、ホールド時間0.5〜1.0秒の溶着条件で超音波振動を与え、周縁52と截頭円錐外壁面21との接触部及び周縁57と截頭円錐内壁面24との接触部とのシェア・ジョイントにおいて径方向の溶着代X及び入り込み方向の溶着代Yをもって溶着接合させ、軸受基体2と軸受体素体3aとを接合一体化させる。   A tool horn (not shown) is pressed against the surface 34 of the bearing body 3a in the assembly 59, the applied pressure is 0.098 to 0.60 MPa, the vibration amplitude is 20 to 80 μm, and the transmission time is 0.1 to 1.5 seconds. The ultrasonic vibration is applied under a welding condition of a hold time of 0.5 to 1.0 seconds, and the contact portion between the peripheral edge 52 and the frustoconical outer wall surface 21 and the contact portion between the peripheral edge 57 and the frustoconical inner wall surface 24 are The shear joint is welded and joined with a welding allowance X in the radial direction and a welding allowance Y in the entry direction, and the bearing base 2 and the bearing body 3a are joined and integrated.

ここで、30質量%のガラス繊維を含有したポリフェニレンサルファイド樹脂から形成された軸受基体2の外側環状突出部17の円筒外壁面22の直径をD1、円筒外壁面20の直径をD2、内側環状突出部19の円筒内壁面23の直径をD3、円筒内壁面25の直径をD4とし、ポリフェニレンサルファイド樹脂から形成された軸受体素体3aの環状凹所33の外側円筒内壁面53の直径をd1、環状凹所33の内側円筒内壁面58の直径をd2として、次の寸法諸元の軸受基体2と軸受体素体3aの組立体59を、次の溶着条件で超音波溶着して一体化した例について説明する。   Here, the diameter of the cylindrical outer wall surface 22 of the outer annular projection 17 of the bearing base 2 formed of polyphenylene sulfide resin containing 30% by mass of glass fiber is D1, the diameter of the cylindrical outer wall surface 20 is D2, and the inner annular projection. The diameter of the cylindrical inner wall surface 23 of the portion 19 is D3, the diameter of the cylindrical inner wall surface 25 is D4, and the diameter of the outer cylindrical inner wall surface 53 of the annular recess 33 of the bearing body 3a formed of polyphenylene sulfide resin is d1, Assuming that the diameter of the inner cylindrical inner wall surface 58 of the annular recess 33 is d2, the assembly 59 of the bearing base 2 and the bearing body 3a having the following dimensions is integrated by ultrasonic welding under the following welding conditions. An example will be described.

<寸法諸元>
D1(円筒外壁面22の直径) φ41mm(公差+0.1、0)

D2(円筒外壁面20の直径) φ40mm(公差0、−0.05)

D3(円筒内壁面23の直径) φ20mm(公差0.05、0)

D4(円筒内壁面25の直径) φ19mm(公差0、−0.1)

d1(外側円筒内壁面53の直径) φ40mm(公差+0.10、+0.05)

d2(内側円筒内壁面58の直径) φ20mm(公差−0.05、−0.10)

<溶着条件>
加圧力:0.1MPa 振動振幅:40μm 発振時間:0.5秒 ホールド時間:0.5秒
<Dimensions>
D1 (diameter of cylindrical outer wall surface 22) φ41 mm (tolerance +0.1, 0)

D2 (diameter of cylindrical outer wall surface 20) φ40 mm (tolerance 0, -0.05)

D3 (diameter of cylindrical inner wall surface 23) φ20 mm (tolerance 0.05, 0)

D4 (diameter of cylindrical inner wall surface 25) φ19 mm (tolerance 0, -0.1)

d1 (diameter of outer cylindrical inner wall surface 53) φ40 mm (tolerance +0.10, +0.05)

d2 (diameter of inner cylindrical inner wall surface 58) φ20 mm (tolerance -0.05, -0.10)

<Welding conditions>
Applied pressure: 0.1 MPa Vibration amplitude: 40 μm Oscillation time: 0.5 seconds Hold time: 0.5 seconds

上記寸法諸元及び溶着条件にて超音波溶着した軸受基体2と軸受体素体3aとの組立体59は、周縁52と截頭円錐外壁面21との接合部及び周縁57との截頭円錐内壁面24との接合部において、気密性よく溶着接合されており、強固な溶着強度をもって接合一体化されているのを確認した。   The assembly 59 of the bearing base body 2 and the bearing body 3a ultrasonically welded under the above-mentioned dimensions and welding conditions is a joint between the peripheral edge 52 and the frustoconical outer wall surface 21 and the frustoconical part with the peripheral edge 57. It was confirmed that the joint portion with the inner wall surface 24 was welded and joined with good airtightness and joined and integrated with strong welding strength.

このように接合一体化された組立体59における軸受体素体3aの面34に、レーザー加工機によりレーザーを照射し、幅W0.3〜1.0mm、深さd0.01〜0.05mmの環状凹溝35と、環状凹溝35を規定する環状底面43に環状底面43から軸受体3を貫通して天井面45で環状凹所33に開口する直径が少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔38を形成する。   The surface 34 of the bearing body 3a in the assembly 59 thus joined and integrated is irradiated with a laser by a laser processing machine, and has a width W of 0.3 to 1.0 mm and a depth of d 0.01 to 0.05 mm. The diameter of the annular groove 35 and the annular bottom surface 43 defining the annular groove 35 through the bearing body 3 from the annular bottom surface 43 and opening to the annular recess 33 at the ceiling surface 45 is preferably at least 30 μm, preferably 30 to 120 μm. A plurality of self-drawing air blowing holes 38 are formed.

用いる加工用レーザーとしては、炭酸ガスレーザー、YAGレーザー、UVレーザー又はエキシマレーザー等から選択されるが、好ましくは、炭酸ガスレーザーを用いる。   The processing laser to be used is selected from a carbon dioxide laser, a YAG laser, a UV laser, an excimer laser, and the like. Preferably, a carbon dioxide laser is used.

中央での径が30mmであって幅0.5mm、深さ0.05mmの環状凹溝35は、レーザー出力9.5Wの炭酸ガスレーザーを使用して、スキャンスピード1000mm/s、重ね印字回数1回、加工時間2秒でポリフェニレンサルファイド樹脂から形成された軸受体素体3aの面34に形成、加工することができ、また、環状凹溝35の環状底面43に、環状底面43から軸受体素体3aを貫通して天井面45で環状凹所33に開口する直径0.065mm(65μm)の自成絞り形状の空気吹出孔38は、レーザー出力14W、加工時間15秒で円周方向に10等配の位置に10個加工することができた。   An annular groove 35 having a diameter at the center of 30 mm, a width of 0.5 mm, and a depth of 0.05 mm uses a carbon dioxide laser with a laser output of 9.5 W. It can be formed and processed on the surface 34 of the bearing body 3a made of polyphenylene sulfide resin with a processing time of 2 seconds, and the bearing body element can be formed on the annular bottom surface 43 of the annular groove 35 from the annular bottom surface 43. The self-drawn air blow hole 38 having a diameter of 0.065 mm (65 μm) that penetrates the body 3a and opens to the annular recess 33 at the ceiling surface 45 has a laser output of 14 W and a processing time of 15 seconds, and is 10 in the circumferential direction. Ten pieces could be processed at evenly spaced positions.

上記の例では、外側内周面46は、截頭円錐外壁面48、段部壁面50及び外側円筒内壁面53を具備しており、内側内周面47は、截頭円錐内壁面54、段部壁面56及び内側円筒内壁面58を具備しているが、これに代えて、図13から図15に示すように、外側内周面46は、截頭円錐外壁面48、段部壁面50及び外側円筒内壁面53に加えて、外側円筒内壁面53の一端に連接されて当該一端から徐々に拡径していると共に環状凹所33の開口端51の外縁を規定する円環状の周縁60を有した外側截頭円錐内壁面61を更に具備しており、内側内周面47は、截頭円錐内壁面54、段部壁面56及び内側円筒内壁面58に加えて、内側円筒内壁面58の一端に連接されて当該一端から徐々に縮径していると共に環状凹所33の開口端51の内縁を規定する円環状の周縁62を有した内側截頭円錐内壁面63を更に具備していてもよく、図13から図15に示す軸受体素体3aと基部4との組立体64では、軸受体3は、外側円筒内壁面53を外側環状突出部17の外周面16の円筒外壁面20に、内側円筒内壁面58を内側環状突出部19の内周面18の円筒内壁面23に夫々嵌合せしめると共に外側截頭円錐内壁面61を外側環状突出部17の外周面16の截頭円錐外壁面21に、内側截頭円錐内壁面63を内側環状突出部19の内周面18の截頭円錐内壁面24に夫々接触させており、軸受体素体3aは、互いに接触する部位、即ち、外側截頭円錐内壁面61と截頭円錐外壁面21との接触する部位及び内側截頭円錐内壁面63と截頭円錐内壁面24との接触する部位での超音波溶着、所謂スカーフ・ジョイント(軸方向の溶着代X、入り込み方向の溶着代Y)により、外側截頭円錐内壁面61の截頭円錐外壁面21への接触する部位及び内側截頭円錐内壁面63の截頭円錐内壁面24への接触する部位で軸受基体2に溶着接合されて、軸受基体2に一体化されている。   In the above example, the outer inner peripheral surface 46 includes the frustoconical outer wall surface 48, the stepped wall surface 50, and the outer cylindrical inner wall surface 53, and the inner inner peripheral surface 47 is the frustoconical inner wall surface 54, the stepped wall. The inner wall surface 56 and the inner cylindrical inner wall surface 58 are provided. Instead, as shown in FIGS. 13 to 15, the outer inner circumferential surface 46 includes a frustoconical outer wall surface 48, a stepped wall surface 50 and In addition to the outer cylindrical inner wall surface 53, an annular peripheral edge 60 which is connected to one end of the outer cylindrical inner wall surface 53 and gradually increases in diameter from the one end and which defines the outer edge of the opening end 51 of the annular recess 33 is provided. The inner inner circumferential surface 47 further includes a frustoconical inner wall surface 54, a stepped wall surface 56, and an inner cylindrical inner wall surface 58, and an inner cylindrical inner wall surface 58. It is connected to one end and gradually decreases in diameter from the one end, and the annular recess 33 is opened. An inner frustoconical inner wall surface 63 having an annular peripheral edge 62 defining the inner edge of the end 51 may be further provided, and the assembly of the bearing body 3a and the base 4 shown in FIGS. 64, the bearing body 3 has the outer cylindrical inner wall surface 53 as the cylindrical outer wall surface 20 of the outer circumferential surface 16 of the outer annular projection 17 and the inner cylindrical inner wall surface 58 as the cylindrical inner wall surface of the inner circumferential surface 18 of the inner annular projection 19. 23, and the outer frustoconical inner wall surface 61 is fitted to the outer frustoconical outer wall surface 21 of the outer circumferential surface 16 of the outer annular projection 17 and the inner frustoconical inner wall surface 63 is fitted to the inner circumferential surface of the inner annular projection 19. 18, the bearing element bodies 3a are in contact with each other, that is, the portion where the outer frustoconical inner wall surface 61 and the frustoconical outer wall surface 21 are in contact with each other, and the inner side. The frustoconical inner wall surface 63 and the frustoconical inner wall surface 24 come into contact with each other. Of the outer frustoconical inner wall surface 61 to the outer frustoconical outer wall surface 21 and the inner corrugation by ultrasonic welding at the position, so-called scarf joint (welding margin X in the axial direction, welding margin Y in the penetration direction). The head cone inner wall surface 63 is welded and joined to the bearing base 2 at a portion where it comes into contact with the frustoconical inner wall surface 24, and is integrated with the bearing base 2.

図13から図15に示す組立体64では、空気室Bは、基部4の一方の面5と、一方の面5に対面する軸受体3の一方の面32と、軸受基体2の内側環状突出部19の内周面18の小径の円筒内壁面25とにより規定されて軸受基体2及び軸受体素体3aの協働により形成されている空所Cを具備している。   In the assembly 64 shown in FIGS. 13 to 15, the air chamber B includes one surface 5 of the base portion 4, one surface 32 of the bearing body 3 facing the one surface 5, and an inner annular protrusion of the bearing base 2. The space C is defined by the small-diameter cylindrical inner wall surface 25 of the inner peripheral surface 18 of the portion 19 and is formed by the cooperation of the bearing base 2 and the bearing body 3a.

図13から図15に示す組立体64によれば、外側截頭円錐内壁面61と截頭円錐外壁面21との接触する部位及び内側截頭円錐内壁面63と截頭円錐内壁面24との接触する部位で面接触(斜面接触)からなる所謂スカーフ・ジョイントが形成されているため、超音波溶着において面接触で一様な発熱が得られ、大きな溶着面積が得られる結果、スカーフ・ジョイントにおいて気密性がよく、非常に強い溶着強度が得られ、軸受基体2と軸受体素体3aとは強固に一体化されている。   According to the assembly 64 shown in FIGS. 13 to 15, the portion where the outer frustoconical inner wall surface 61 and the outer frustoconical outer wall surface 21 are in contact with each other, and the inner frustoconical inner wall surface 63 and the frustoconical inner wall surface 24. Since a so-called scarf joint consisting of surface contact (slope contact) is formed at the contacted part, uniform heat generation is obtained by surface contact in ultrasonic welding, and a large welding area is obtained. The airtightness is good, a very strong welding strength is obtained, and the bearing base 2 and the bearing body 3a are firmly integrated.

図14及び図15に示す軸受体3aと軸受基体2との組立体64を製造するには、図4から図7に示す合成樹脂製の軸受基体2と、図13に示す合成樹脂製の軸受体3aとを準備し、図14及び図15に示すように、基部4の一方の面5に軸受体3aの一方の面32を対面させると共に軸受基体2の環状突出部6を軸受体3aの環状凹所33に受容させ、外側截頭円錐内壁面61を截頭円錐外壁面21に、内側截頭円錐内壁面63を截頭円錐内壁面24に夫々接触させ、以下、上記と同様にして、外側截頭円錐内壁面61と截頭円錐外壁面21との接触する部及び内側截頭円錐内壁面63と截頭円錐内壁面24との接触する部の溶着接合を行う。   In order to manufacture the assembly 64 of the bearing body 3a and the bearing base 2 shown in FIGS. 14 and 15, the synthetic resin bearing base 2 shown in FIGS. 4 to 7 and the synthetic resin bearing shown in FIG. 14 and 15, as shown in FIGS. 14 and 15, one surface 32 of the bearing body 3a faces one surface 5 of the base 4, and the annular protrusion 6 of the bearing base 2 is connected to the bearing body 3a. Receiving in the annular recess 33, the outer frustoconical inner wall surface 61 is brought into contact with the outer frustoconical outer wall surface 21 and the inner frustoconical inner wall surface 63 is brought into contact with the inner frustoconical wall surface 24, respectively. Then, welding and joining are performed on a portion where the outer frustoconical inner wall surface 61 and the frustoconical outer wall surface 21 are in contact and a portion where the inner frustoconical inner wall surface 63 and the frustoconical inner wall surface 24 are in contact.

このように接合一体化された組立体64における軸受体3aの面34に、前記と同様にしてレーザー加工機によりレーザーを照射し、幅W0.3〜1.0mm、深さd0.01〜0.05mmの環状凹溝35と、環状凹溝35を規定する環状底面43に環状底面43から軸受体3を貫通して天井面45で環状凹所33に開口する直径が少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔38とを形成することにより、前記と同様の静圧気体軸受1が形成される。   The surface 34 of the bearing body 3a in the assembly 64 thus joined and integrated is irradiated with a laser by a laser processing machine in the same manner as described above, and the width W is 0.3 to 1.0 mm and the depth d 0.01 to 0. .05 mm annular groove 35 and an annular bottom surface 43 defining the annular groove 35 through the bearing body 3 from the annular bottom surface 43 and having a diameter of at least 30 μm and preferably 30 μm. The static pressure gas bearing 1 similar to the above is formed by forming a plurality of self-drawn air blowing holes 38 of ~ 120 μm.

図16から図18に示す軸受体素体3aをもって図19に示す静圧気体軸受1を形成してもよく、図19に示す静圧気体軸受1において、自励振動減衰機構Aは、空所Cに加えて、軸受体3の一方の面32の中央部に平面視円形の開口端66を有して軸受体3に形成されていると共に開口端66で空所Cに連通した凹部Dを更に有した空気室Bと、一端68では凹部Dを規定する平面視円形の天井面69で開口して凹部Dに連通している一方、他端70では他方の面34の中央部で開口した直径1mm程度の一つの絞り孔42とを有している。   The bearing body 3a shown in FIGS. 16 to 18 may be used to form the static pressure gas bearing 1 shown in FIG. 19, and the self-excited vibration damping mechanism A in the static pressure gas bearing 1 shown in FIG. In addition to C, a concave portion D formed in the bearing body 3 having a circular opening end 66 in a plan view at the center of one surface 32 of the bearing body 3 and communicating with the void C at the opening end 66 is provided. Further, the air chamber B and the one end 68 are opened at a ceiling surface 69 having a circular shape in plan view defining the recess D and communicated with the recess D, while the other end 70 is opened at the center of the other surface 34. One throttle hole 42 having a diameter of about 1 mm is provided.

一方の面32の中央部で開口して軸受体3に形成された凹部Dは、平面視円形の天井面69と天井面69から面32にかけて末広がりに伸びる截頭円錐面71とで規定されたすり鉢状に形成されている。   A concave portion D formed in the bearing body 3 by opening at the center of one surface 32 is defined by a circular ceiling surface 69 in plan view and a truncated conical surface 71 extending from the ceiling surface 69 to the surface 32 in a divergent manner. It is formed in a mortar shape.

図19に示す静圧気体軸受1を製造するには、まず、図18に示すように、軸受基体2の基部4の一方の面5に、一方の面32の中央部に開口端66を有する凹部Dを備えた図16及び図17に示す軸受体素体3aの一方の面32を対面させると共に軸受基体2の環状突出部6を軸受体素体3aの環状凹所33に受容させ、環状凹所33の開口端51の外縁を規定する外側円筒内壁面53の環状の周縁52を外側環状突出部17の外周面16の截頭円錐外壁面21に、環状凹所33の開口端51の内縁を規定する内側円筒内壁面58の環状の周縁57を内側環状突出部19の内周面18の截頭円錐内壁面24に夫々接触させて軸受体素体3aと軸受基体2との組立体65を形成し、以下、上記と同様にして、周縁52と截頭円錐外壁面21との接触する部及び周縁57と截頭円錐内壁面24との接触する部に加えて、外側円筒内壁面53と円筒外壁面20との接触する部及び内側円筒内壁面58と円筒内壁面23との接触する部を溶着接合して、軸受体素体3aと軸受基体2とを一体化して、組立体65を形成する。   In order to manufacture the static pressure gas bearing 1 shown in FIG. 19, first, as shown in FIG. 18, the one end 5 of the base portion 4 of the bearing base 2 has an opening end 66 at the center of the one surface 32. 16 and FIG. 17 provided with the concave portion D are made to face one face 32 and the annular protrusion 6 of the bearing base body 2 is received in the annular recess 33 of the bearing body element 3a. The annular peripheral edge 52 of the outer cylindrical inner wall surface 53 that defines the outer edge of the opening end 51 of the recess 33 is formed on the frustoconical outer wall surface 21 of the outer peripheral surface 16 of the outer annular protrusion 17, and the opening end 51 of the annular recess 33 is formed. An assembly of the bearing body 3a and the bearing base 2 by bringing the annular peripheral edge 57 of the inner cylindrical inner wall surface 58 defining the inner edge into contact with the frustoconical inner wall surface 24 of the inner peripheral surface 18 of the inner annular projection 19 respectively. 65, and in the same manner as described above, the peripheral edge 52 and the frustoconical outer wall surface 21 In addition to the contact portion and the contact portion between the peripheral edge 57 and the frustoconical inner wall surface 24, the contact portion between the outer cylindrical inner wall surface 53 and the cylindrical outer wall surface 20 and the inner cylindrical inner wall surface 58 and the cylindrical inner wall surface 23 The contact portions are welded and joined, and the bearing body 3a and the bearing base 2 are integrated to form an assembly 65.

このように接合一体化された組立体65における軸受体素体3aの面34に、前記と同様にしてレーザー加工機によりレーザーを照射し、幅W0.3〜1.0mm、深さd0.01〜0.05mmの環状凹溝35と、環状凹溝35を規定する環状底面43に環状底面43から軸受体素体3aを貫通して天井面45で環状凹所33に開口する直径が少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔38を形成して、図19に示すような静圧気体軸受1を形成する。   The surface 34 of the bearing body 3a in the assembly 65 thus joined and integrated is irradiated with a laser by a laser processing machine in the same manner as described above, and the width W is 0.3 to 1.0 mm and the depth is d0.01. An annular groove 35 of 0.05 mm and an annular bottom surface 43 defining the annular groove 35 from the annular bottom surface 43 through the bearing body 3a and opening to the annular recess 33 on the ceiling surface 45 are at least 30 μm. Preferably, a plurality of self-drawn air blowing holes 38 of 30 to 120 μm are formed to form a static pressure gas bearing 1 as shown in FIG.

斯かる図19に示す静圧気体軸受1は、基部4の一方の面5、一方の面5に対面する軸受体3の一方の面32、軸受基体2の環状突出部6の内周面18の截頭円錐内壁面24及び円筒内壁面25で囲まれた空所Cに加えて、開口端66で空気室Cに連通して軸受体3の一方の面32に形成された凹部Dを具備した空気室Bと、空気室Bの凹部Dに開口する一つの絞り孔42とからなる自励振動減衰機構Aを具備している。   Such a static pressure gas bearing 1 shown in FIG. 19 includes one surface 5 of the base 4, one surface 32 of the bearing body 3 facing the one surface 5, and the inner peripheral surface 18 of the annular protrusion 6 of the bearing base 2. In addition to the space C surrounded by the inner wall surface 24 of the truncated cone and the inner wall surface 25 of the cylinder, a concave portion D is formed on one surface 32 of the bearing body 3 in communication with the air chamber C at the opening end 66. A self-excited vibration damping mechanism A comprising the air chamber B and a single throttle hole 42 opened in the recess D of the air chamber B is provided.

更に、図16及び図17に示す軸受素体3aであるが、絞り孔42が形成されていない図20及び図21に示す軸受体素体3aをもって図24及び図25に示す静圧気体軸受1を製造してもよい。   Further, the hydrostatic gas bearing 1 shown in FIGS. 24 and 25 is the bearing element body 3a shown in FIGS. 16 and 17 but having the bearing element body 3a shown in FIGS. May be manufactured.

図20及び図21に示す軸受体素体3aを用いて図24及び図25に示す静圧気体軸受1を製造する場合には、図22及び図23に示すように、軸受基体2の基部4の一方の面5に一方の面32を対面させると共に軸受基体2の環状突出部6を環状凹所33に受容させ、環状凹所33の開口端51の外縁を規定する外側円筒内壁面53の環状の周縁52を外側環状突出部17の外周面16の截頭円錐外壁面21に、環状凹所33の開口端51の内縁を規定する内側円筒内壁面58の環状の周縁57を内側環状突出部19の内周面18の截頭円錐内壁面24に夫々接触させて、以下、上記と同様にして、周縁52と截頭円錐外壁面21との接触する部位及び周縁57と截頭円錐内壁面24との接触する部位に加えて、外側円筒内壁面53と円筒外壁面20との接触する部位及び内側円筒内壁面58と円筒内壁面23との接触する部位を溶着接合して、軸受基体2と軸受体素体3aとを一体化した組立体72を形成する。   When the hydrostatic gas bearing 1 shown in FIGS. 24 and 25 is manufactured using the bearing body 3a shown in FIGS. 20 and 21, as shown in FIGS. 22 and 23, the base 4 of the bearing base 2 is formed. Of the outer cylindrical inner wall surface 53 that defines the outer edge of the opening end 51 of the annular recess 33 by allowing the one surface 32 of the bearing base 2 to face the one surface 5 and receiving the annular protrusion 6 of the bearing base 2 in the annular recess 33. An annular peripheral edge 52 is formed on the frustoconical outer wall surface 21 of the outer peripheral surface 16 of the outer annular protrusion 17, and an annular peripheral edge 57 of the inner cylindrical inner wall surface 58 that defines the inner edge of the opening end 51 of the annular recess 33 is formed on the inner annular protrusion. The inner peripheral surface 18 of the portion 19 is brought into contact with the frustoconical inner wall surface 24, respectively, and the portion where the peripheral edge 52 and the frustoconical outer wall surface 21 are in contact with each other, and the peripheral edge 57 and the inner surface of the frustoconical cone. In addition to the portion in contact with the wall surface 24, the outer cylindrical inner wall surface 53 and the cylinder The contact sites between the sites and the inner cylindrical inner wall surface 58 and the cylindrical inner wall surface 23 in contact with the wall surface 20 by fusion bonded to form an assembly 72 formed by integrating the bearing base 2 and the bearing element body 3a.

図22及び図23に示すように接合一体化された組立体72における軸受体素体3aの面34に、前記と同様にしてレーザー加工機によりレーザーを照射し、幅W0.3〜1.0mm、深さd0.01〜0.05mmの環状凹溝35と、環状凹溝35を規定する環状底面43に環状底面43から軸受体3を貫通して天井面45で環状凹所33に開口する直径が少なくとも30μm、好ましくは30〜120μmの複数個の自成絞り形状の空気吹出孔38と、凹部Dを規定する天井面69に対応する面34の中央部に直径が50〜65μmの複数個、好ましくは4〜24個の絞り孔42を形成して、図24及び図25に示すような静圧気体軸受1を形成する。   As shown in FIGS. 22 and 23, the surface 34 of the bearing body 3a in the assembly 72 joined and integrated is irradiated with a laser by a laser processing machine in the same manner as described above, and the width W is 0.3 to 1.0 mm. An annular groove 35 having a depth d of 0.01 to 0.05 mm and an annular bottom surface 43 defining the annular groove 35 are passed through the bearing body 3 from the annular bottom surface 43 and opened to the annular recess 33 on the ceiling surface 45. A plurality of self-drawn air blowing holes 38 having a diameter of at least 30 μm, preferably 30 to 120 μm, and a plurality of 50 to 65 μm in diameter at the center of the surface 34 corresponding to the ceiling surface 69 defining the recess D Preferably, 4 to 24 throttle holes 42 are formed, and the static pressure gas bearing 1 as shown in FIGS. 24 and 25 is formed.

図24及び図25に示す斯かる静圧気体軸受1は、軸受基体2の一方の面5、一方の面5に対面する軸受体3の一方の面32、軸受基体2の環状突出部6の内周面18の截頭円錐内壁面21及び円筒内壁面22で囲まれた空所Cに加えて、空所Cに連通すると共に軸受体3の一方の面32に形成された凹部Dを具備した空気室Bと、空気室Bの凹部Dに開口する複数個の絞り孔42とからなる自励振動減衰機構Aを具備している。   Such a hydrostatic gas bearing 1 shown in FIGS. 24 and 25 includes one surface 5 of the bearing base 2, one surface 32 of the bearing body 3 facing the one surface 5, and the annular protrusion 6 of the bearing base 2. In addition to the cavity C surrounded by the inner wall surface 21 and the cylindrical inner wall surface 22 of the inner peripheral surface 18, the cavity C communicates with the cavity C and has a recess D formed on one surface 32 of the bearing body 3. A self-excited vibration damping mechanism A comprising the air chamber B and a plurality of throttle holes 42 opened in the recess D of the air chamber B is provided.

更に上記の静圧気体軸受1の軸受体3は、一個の環状凹溝35を具備しているが、斯かる環状凹溝35に加えて、図26に示すように、軸受体3の他方の面34に環状凹溝35と同心に形成されていると共に環状凹溝35の外側で環状凹溝35を囲む大径環状凹溝73と、一方の端部74が環状凹溝35に開口すると共に他方の端部75が大径環状凹溝73に開口すると共に円周方向に等間隔に配された複数個の放射状凹溝76と、軸受体3の他方の面34に環状凹溝35と同心に形成されていると共に環状凹溝35の内側で環状凹溝35に囲まれた小径環状凹溝77と、一方の端部78が環状凹溝35に開口すると共に他方の端部79が小径環状凹溝77に開口すると共に円周方向に等間隔に配された複数個の放射状凹溝80とを具備していてもよい。   Further, the bearing body 3 of the static pressure gas bearing 1 includes one annular groove 35. In addition to the annular groove 35, as shown in FIG. A large-diameter annular groove 73 that is formed concentrically with the annular groove 35 on the surface 34 and surrounds the annular groove 35 outside the annular groove 35, and one end 74 opens into the annular groove 35. The other end 75 opens into the large-diameter annular groove 73 and a plurality of radial grooves 76 arranged at equal intervals in the circumferential direction, and the other surface 34 of the bearing body 3 is concentric with the annular groove 35. A small-diameter annular groove 77 surrounded by the annular groove 35 inside the annular groove 35, one end 78 opens into the annular groove 35, and the other end 79 has a small-diameter annular shape. And a plurality of radial grooves 80 that are open in the grooves 77 and arranged at equal intervals in the circumferential direction. It may be.

図26に示す軸受体3を有した静圧気体軸受1では、環状凹溝35に給気された空気は、放射状凹溝76及び80を介して大径環状凹溝73及び小径環状凹溝77にも供給されるので、供給面積が大きくなり、例えば被支持体の浮上において、安定した浮上を行うことができる。   In the static pressure gas bearing 1 having the bearing body 3 shown in FIG. 26, the air supplied to the annular groove 35 is supplied to the large diameter annular groove 73 and the small diameter annular groove 77 via the radial grooves 76 and 80. Therefore, the supply area is increased, and stable levitation can be performed, for example, when the supported body is floated.

斯かる大径環状凹溝73、放射状凹溝76、小径環状凹溝77及び放射状凹溝80は、環状凹溝35の形成と共にレーザー加工により形成されるとよい。   The large-diameter annular groove 73, the radial groove 76, the small-diameter annular groove 77, and the radial groove 80 may be formed by laser processing together with the formation of the annular groove 35.

静圧気体軸受1はまた、図27及び図28に示すように、軸受基体2に設けられていると共に球体受容凹部Eを有した球体受容手段Fを更に具備していてもよく、球体受容手段Fは、基部4の他方の面12で開口して当該基部4に形成された円柱状凹部15において底面14にぴったりと接触して基部4に嵌合固定されている駒81を有しており、駒81は、一端82では一方の面83で開口した円孔84と、円孔84の他端85に連通していると共に一端では他方の面86で開口して他端85から面86に向かうに連れて徐々に拡径された截頭円錐面87で規定された球体受容凹部Eとしてのすり鉢状の截頭円錐凹部88とを具備している。   As shown in FIGS. 27 and 28, the static pressure gas bearing 1 may further include a sphere receiving means F provided on the bearing base 2 and having a sphere receiving recess E, and the sphere receiving means. F has a piece 81 which is open on the other surface 12 of the base 4 and is in close contact with the bottom 14 in a cylindrical recess 15 formed in the base 4 and is fitted and fixed to the base 4. The piece 81 communicates with a circular hole 84 opened at one surface 83 at one end 82 and the other end 85 of the circular hole 84 and opened at the other surface 86 at one end and from the other end 85 to the surface 86. It has a mortar-shaped truncated cone conical recess 88 as a sphere receiving recess E defined by a truncated cone surface 87 that gradually expands in diameter.

図27及び図28に示す静圧気体軸受1には、図29に示すように、駒81のすり鉢状の截頭円錐凹部88に、ボールスタッド90の球体91の外面が截頭円錐面87に摺接して当該球体91が配されることにより、自動調芯機能が付加される。   In the hydrostatic gas bearing 1 shown in FIGS. 27 and 28, as shown in FIG. 29, the mortar-shaped frustoconical recess 88 of the piece 81 and the outer surface of the sphere 91 of the ball stud 90 to the frustoconical surface 87 are provided. An automatic alignment function is added by arranging the sphere 91 in sliding contact.

球体受容手段Fはまた、図30及び図31に示すように、一端82では一方の面83で開口する円孔84と、円孔84の他端85に連通していると共に一端では他方の面86で開口して他端85から面86に向かうに連れて徐々に拡径された半球凹面92で規定された球体受容部Eとしての半球凹部88とを有すると共に円柱状凹部15において底面14にぴったりと接触して基部4に嵌合固定された駒81を具備していてもよい。   30 and 31, the spherical body receiving means F communicates with a circular hole 84 opened at one surface 83 at one end 82 and the other end 85 of the circular hole 84 and at the other surface at the other end. And a hemispherical concave portion 88 as a sphere receiving portion E defined by a hemispherical concave surface 92 which is opened at 86 and gradually increases in diameter from the other end 85 toward the surface 86, and at the bottom surface 14 in the cylindrical concave portion 15. You may comprise the piece 81 which fits and was fixed to the base 4 in close contact.

図30及び図31に示す静圧気体軸受1おいても、図32に示すように、駒81の半球凹部88に、ボールスタッド90の球体91の外面が半球凹面92に摺接して当該球体91が配されることにより、自動調芯機能が付加される。   Also in the static pressure gas bearing 1 shown in FIGS. 30 and 31, as shown in FIG. 32, the outer surface of the sphere 91 of the ball stud 90 is in sliding contact with the hemispherical concave surface 92 against the hemispherical recess 88 of the piece 81. Is provided, an automatic alignment function is added.

駒81を摺動性に優れた材料、例えばポリアセタール樹脂、ポリアミド樹脂、ポリエステル樹脂等の熱可塑性合成樹脂、あるいは銅又は銅合金等で形成することにより、駒81の截頭円錐面87又は半球凹面92と球体91の外面との摺接をより円滑に行わせることができる。   By forming the piece 81 with a material having excellent slidability, for example, a thermoplastic synthetic resin such as polyacetal resin, polyamide resin, polyester resin, or copper or copper alloy, the truncated conical surface 87 or hemispherical concave surface of the piece 81 The sliding contact between 92 and the outer surface of the sphere 91 can be performed more smoothly.

上記の球体受容手段Fは、駒81を有した例であるが、斯かる駒81を有しないで、基部4の他方の面12で開口して当該基部4に直接形成された截頭円錐凹部88又は半球凹部88を球体受容凹部Eとして有していてもよい。   The spherical body receiving means F is an example having a piece 81, but does not have such a piece 81, and opens at the other surface 12 of the base portion 4 and is directly formed in the base portion 4. 88 or hemispherical recess 88 may be provided as the sphere receiving recess E.

上記の静圧気体軸受1は、図33に示すような直動案内装置120に用いられてもよく、図33に示す直動案内装置93は、案内面としての上面案内面94及び両側案内面95を有する案内部材96と、案内部材96の外側に案内部材96を跨いで配されていると共に上面案内面94に対面する上板97及び両側案内面95に対面する一対の側板98を備えた横断面コの字形の可動テーブル99、可動テーブル99の上板97の下面100及び側板98の夫々の内面101のうちの少なくとも一つの面に、本例では、側板98の夫々の内面101に球体91を案内部材96に向けて固定されたボールスタッド90と、ボールスタッド90の球体91の夫々と該少なくとも一つの面である側板101の夫々の内面101に対面する両側案内面95の夫々との間に配された図29に示す静圧気体軸受1と、該少なくとも一つの面以外の面である上板97の下面100と下面100に対面する上面案内面94との間に配された図2に示す静圧気体軸受1とを具備している。   The static pressure gas bearing 1 may be used in a linear motion guide device 120 as shown in FIG. 33. The linear motion guide device 93 shown in FIG. 33 includes an upper surface guide surface 94 and both side guide surfaces as guide surfaces. A guide member 96 having 95, an upper plate 97 facing the upper surface guide surface 94 and a pair of side plates 98 facing both side guide surfaces 95. The movable table 99 having a U-shaped cross section, the lower surface 100 of the upper plate 97 of the movable table 99 and the inner surface 101 of each of the side plates 98, in this example, the inner surface 101 of each of the side plates 98 are spherical. The ball stud 90 fixed to the guide member 96 toward the guide member 96, and both guide surfaces 9 facing the inner surface 101 of each of the spheres 91 of the ball stud 90 and the side plate 101 which is the at least one surface. 29 between the hydrostatic gas bearing 1 shown in FIG. 29 and the lower surface 100 of the upper plate 97 other than the at least one surface and the upper surface guide surface 94 facing the lower surface 100. The hydrostatic gas bearing 1 shown in FIG. 2 is provided.

直動案内装置93において、ボールスタッド90の球体91の夫々は、静圧気体軸受1の夫々の基部4が当該球体91を中心としてボールスタッド90に対して揺動自在となるように、球体受容手段Fの夫々の截頭円錐凹部88に、截頭円錐面87に摺動自在に接触して受容されている。   In the linear motion guide device 93, each of the spheres 91 of the ball stud 90 receives the sphere so that each base portion 4 of the static pressure gas bearing 1 can swing with respect to the ball stud 90 around the sphere 91. The respective frustoconical recesses 88 of the means F are received in sliding contact with the frustoconical surface 87.

上板97の下面100と下面100に対面する上面案内面94との間に配された図2に示す静圧気体軸受1の軸受気体2の基部4は、可動テーブル99の上板97の下面100に固定されている。   The base 4 of the bearing gas 2 of the static pressure gas bearing 1 shown in FIG. 2 arranged between the lower surface 100 of the upper plate 97 and the upper surface guide surface 94 facing the lower surface 100 is the lower surface of the upper plate 97 of the movable table 99. 100 is fixed.

斯かる直動案内装置93によれば、給気通路11に供給された圧縮空気を軸受体3の複数個の空気吹出孔38から案内部材96の上面案内面94及び両側案内面95に圧縮空気を噴射することにより、軸受体2の面34と上面案内面94及び両側案内面95との間の軸受隙間に形成される空気の潤滑膜によって可動テーブル99を上面案内面94及び両側案内面95に対して非接触の状態に保持することができる。また、直動案内装置93によれば、軸受体2の面34と上面案内面94及び両側案内面95との間の軸受隙間の空気圧を絞り孔42を介して空気室Bに伝達できるので、静圧気体軸受1、特に自動調芯機能が付加された静圧気体軸受1における自励振動を抑制でき、被支持体としての可動テーブル99の支持を安定的に行うことができる。そして、軸受体3の面34と上面案内面94及び両側案内面95との間の軸受隙間が不均一であると、軸受隙間各部に圧力差が発生するが、その圧力差により、自動調芯機能付きの静圧気体軸受1が軸受隙間を均一とする方向に自動調芯され、両側案内面95に対して平行な状態が保持されるため、案内部材96及び可動テーブル99の平行度、直角度等の部品精度を比較的粗い精度とすることができ、静圧気体軸受1自体の低コストに加えて、直動案内装置93の製作の容易化及びコストの低下を図ることができる。   According to such a linear motion guide device 93, compressed air supplied to the air supply passage 11 is compressed air from the plurality of air blowing holes 38 of the bearing body 3 to the upper surface guide surface 94 and the both side guide surfaces 95 of the guide member 96. , The movable table 99 is moved to the upper and lower guide surfaces 94 and 95 by a lubricating film of air formed in the bearing gap between the surface 34 of the bearing body 2 and the upper and lower guide surfaces 94 and 95. Can be kept in a non-contact state. Further, according to the linear motion guide device 93, the air pressure in the bearing gap between the surface 34 of the bearing body 2 and the upper surface guide surface 94 and both side guide surfaces 95 can be transmitted to the air chamber B through the throttle hole 42. The self-excited vibration in the static pressure gas bearing 1, particularly the static pressure gas bearing 1 to which an automatic alignment function is added, can be suppressed, and the movable table 99 as a supported body can be supported stably. If the bearing gaps between the surface 34 of the bearing body 3 and the upper guide surface 94 and the both side guide surfaces 95 are not uniform, a pressure difference is generated in each part of the bearing gap. The hydrostatic gas bearing 1 with a function is automatically aligned in a direction that makes the bearing gap uniform, and is maintained parallel to the guide surfaces 95 on both sides. The accuracy of parts such as angles can be made relatively coarse, and in addition to the low cost of the static pressure gas bearing 1 itself, the manufacture of the linear motion guide device 93 and the cost can be reduced.

直動案内装置93においては、自動調芯機能が付加された静圧気体軸受1として、図32に示す静圧気体軸受1を使用してもよく、また、自動調芯機能が付加されていない静圧気体軸受1として、上記の各静圧気体軸受1を使用してもよい。   In the linear motion guide device 93, the static pressure gas bearing 1 shown in FIG. 32 may be used as the static pressure gas bearing 1 to which the automatic alignment function is added, and the automatic alignment function is not added. As the static pressure gas bearing 1, each of the above static pressure gas bearings 1 may be used.

1 静圧気体軸受
2 軸受基体
3 軸受体
4 基部
5 面
6 環状突出部
11 給気通路
17 外側環状突出部
19 内側環状突出部
20 円筒外壁面
21 截頭円錐外壁面
22 円筒外壁面
23 円筒内壁面
24 截頭円錐内壁面
25 円筒内壁面
33 環状凹所
35 環状凹溝
38 空気吹出孔
42 絞り孔
B 空気室
90 ボールスタッド
93 直動案内装置
DESCRIPTION OF SYMBOLS 1 Static pressure gas bearing 2 Bearing base body 3 Bearing body 4 Base 5 Surface 6 Annular protrusion 11 Supply air passage 17 Outer annular protrusion 19 Inner annular protrusion 20 Cylindrical outer wall surface 21 Frustum cone outer wall surface 22 Cylindrical outer wall surface 23 In cylinder Wall surface 24 Inner wall surface of truncated cone 25 Inner wall surface of cylinder 33 Annular recess 35 Annular groove 38 Air blowing hole 42 Restriction hole B Air chamber 90 Ball stud 93 Linear motion guide device

Claims (19)

基部、該基部の一方の面から一体的に突設された環状突出部並びに一端では該環状突出部の突出端面で開口している一方、他端では基部の外周面で開口すると共に基部及び環状突出部に設けられた給気通路を備えた合成樹脂製の軸受基体と、基部の一方の面に対面している一方の面に形成されていると共に軸受基体の環状突出部を受容した環状凹所、他方の面で開口した環状凹溝及び一端では環状凹溝に連通していると共に他端では環状凹所に開口した自成絞りとしての複数個の空気吹出孔を夫々有した合成樹脂製の軸受体と、環状凹溝を介する空気吹出孔からの空気の吹き出しによる自励振動を減衰する自励振動減衰機構とを具備しており、軸受体は、環状凹所を規定する軸受体の外側円周面及び内側円周面で環状突出部の外周面及び内周面に溶着接合されて軸受基体に一体化されており、自励振動減衰機構は、軸受基体に若しくは軸受体に又は軸受基体及び軸受体の協働により形成された空気室と、一端では該空気室に連通する一方、他端では軸受体の他方の面で開口する少なくとも一つの絞り孔とを具備していることを特徴とする静圧気体軸受。   A base, an annular protrusion integrally projecting from one surface of the base, and one end opening at the protruding end surface of the annular protrusion, while the other end opening at the outer peripheral surface of the base and the base and annular A synthetic resin bearing base provided with an air supply passage provided in the protrusion, and an annular recess formed on one surface facing one surface of the base and receiving the annular protrusion of the bearing base A synthetic resin having a plurality of air outlet holes as a self-contained throttle that opens to the annular recess at the other end and communicates with the annular recess at one end and the annular recess at the other end. And a self-excited vibration damping mechanism for attenuating self-excited vibration caused by blowing air from the air blowing hole through the annular concave groove, and the bearing body is a bearing body that defines the annular recess. Outer circumferential surface and inner circumferential surface of the annular protrusion on the outer circumferential surface and the inner circumferential surface The self-excited vibration damping mechanism includes an air chamber formed on the bearing base, the bearing body, or the cooperation of the bearing base and the bearing body, and the air chamber at one end. A hydrostatic gas bearing characterized in that it has at least one throttle hole that opens at the other surface of the bearing body at the other end. 環状凹溝は、少なくとも0.3mmの幅と、少なくとも0.01mmの深さとを有しており、空気吹出孔は、その一端で少なくとも30μmの直径を有している請求項1に記載の静圧気体軸受。   The static groove according to claim 1, wherein the annular groove has a width of at least 0.3 mm and a depth of at least 0.01 mm, and the air blowing hole has a diameter of at least 30 μm at one end thereof. Pressure gas bearing. 環状凹溝は、0.3〜1.0mmの幅と、0.01〜0.05mmの深さとを有しており、該空気吹出孔は、その一端で30〜120μmの直径を有している請求項1又は2に記載の静圧気体軸受。   The annular groove has a width of 0.3 to 1.0 mm and a depth of 0.01 to 0.05 mm, and the air blowing hole has a diameter of 30 to 120 μm at one end thereof. The static pressure gas bearing according to claim 1 or 2. 環状凹溝、空気吹出孔及び絞り孔のうちの少なくとも一つは、レーザー加工により形成されている請求項1から3のいずれか一項に記載の静圧気体軸受。   The hydrostatic gas bearing according to any one of claims 1 to 3, wherein at least one of the annular groove, the air blowing hole, and the throttle hole is formed by laser processing. 軸受基体の環状突出部の外周面は、円筒外壁面と、該円筒外壁面に連続して当該円筒外壁面から外方に徐々に拡径する環状の截頭円錐外壁面と、該截頭円錐外壁面と連続して該基部の一方の面に連なると共に円筒外壁面よりも大径の円筒外壁面とを有しており、軸受基体の環状突出部の内周面は、円筒内壁面と、該円筒内壁面に連続して当該円筒内壁面から内方に徐々に縮径する環状の截頭円錐内壁面と、該截頭円錐内壁面と連続して該基部の一方の面に連なると共に円筒内壁面よりも小径の円筒内壁面とを有しており、該軸受体の環状凹所を規定する外側内周面は、当該環状凹所の開口端の外縁を規定する環状の周縁を有した外側円筒内壁面を具備しており、該軸受体の環状凹所を規定する内側内周面は、当該環状凹所の開口端の内縁を規定する周縁を有した内側円筒内壁面を有しており、該軸受体は、外側円筒内壁面を環状突出部の外周面の円筒外壁面に、内側円筒内壁面を環状突出部の内周面の円筒内壁面に夫々嵌合せしめると共に該環状凹所の開口端の外縁を規定する外側円筒内壁面の環状の周縁を環状突出部の外周面の截頭円錐外壁面に、該環状凹所の開口端の内縁を規定する内側円筒内壁面の環状の周縁を環状突出部の内周面の截頭円錐内壁面に夫々接触させて、当該環状突出部に接触する部位で超音波溶着により当該環状突出部に溶着接合されて軸受基体に一体化されている請求項1から4のいずれか一項に記載の静圧気体軸受。   The outer peripheral surface of the annular projecting portion of the bearing base includes a cylindrical outer wall surface, an annular frustoconical outer wall surface that is continuous with the cylindrical outer wall surface and gradually expands outward from the cylindrical outer wall surface, and the truncated cone It has a cylindrical outer wall surface that is continuous with the outer wall surface and is continuous with one surface of the base and has a larger diameter than the cylindrical outer wall surface, and the inner peripheral surface of the annular projecting portion of the bearing base includes a cylindrical inner wall surface, An annular frustoconical inner wall surface that is gradually reduced inward from the inner wall surface of the cylinder continuously to the inner wall surface of the cylinder, and is connected to one surface of the base continuously to the inner wall surface of the frustocone and a cylinder A cylindrical inner wall surface having a smaller diameter than the inner wall surface, and the outer inner peripheral surface defining the annular recess of the bearing body has an annular peripheral edge defining the outer edge of the opening end of the annular recess. An inner cylindrical wall surface having an outer cylindrical surface and an inner inner circumferential surface defining the annular recess of the bearing body defines an inner edge of the opening end of the annular recess. The bearing body has an inner cylindrical inner wall surface with a peripheral edge, and the bearing body has an outer cylindrical inner wall surface on the outer cylindrical surface of the annular protrusion and an inner cylindrical inner wall surface on the inner peripheral surface of the annular protrusion. An annular peripheral edge of the outer cylindrical inner wall surface that is fitted to each cylindrical inner wall surface and defines an outer edge of the opening end of the annular recess is formed on the outer circumferential surface of the annular protrusion, and the opening of the annular recess is An annular peripheral edge of the inner cylindrical inner wall surface defining the inner edge of the end is brought into contact with the inner wall surface of the frustoconical cone on the inner peripheral surface of the annular projecting portion, and the annular projecting portion is formed by ultrasonic welding at a portion in contact with the annular projecting portion. The hydrostatic gas bearing according to any one of claims 1 to 4, wherein the hydrostatic gas bearing is integrated with the bearing base by being welded and joined to the portion. 空気室は、該基部の一方の面と、該基部の一方の面に対面する軸受体の一方の面と、該軸受基体の環状突出部の内周面の截頭円錐内壁面及び小径の円筒内壁面とにより規定されて軸受基体及び軸受体の協働により形成された空所を具備している請求項5に記載の静圧気体軸受。   The air chamber has one surface of the base portion, one surface of the bearing body facing the one surface of the base portion, a frustoconical inner wall surface of the inner peripheral surface of the annular projecting portion of the bearing base, and a small-diameter cylinder. The hydrostatic gas bearing according to claim 5, further comprising a void defined by an inner wall surface and formed by cooperation of a bearing base and a bearing body. 軸受基体の環状突出部の外周面は、円筒外壁面と、該円筒外壁面に連続して当該円筒外壁面から外方に徐々に拡径する環状の截頭円錐外壁面と、該截頭円錐外壁面と連続して該基部の一方の面に連なると共に円筒外壁面よりも大径の円筒外壁面とを有しており、軸受基体の環状突出部の内周面は、円筒内壁面と、該円筒内壁面に連続して当該円筒内壁面から内方に徐々に縮径する環状の截頭円錐内壁面と、該截頭円錐内壁面と連続して該基部の一方の面に連なると共に円筒内壁面よりも小径の円筒内壁面とを有しており、該軸受体の該環状凹所を規定する外側内周面は、外側円筒内壁面と、該外側円筒内壁面から徐々に拡径していると共に該環状凹所の開口端の外縁を規定する環状の周縁を有した外側截頭円錐内壁面とを具備しており、該軸受体の該環状凹所を規定する内側内周面は、内側円筒内壁面と、該内側円筒内壁面から徐々に縮径していると共に該環状凹所の開口端の内縁を規定する環状の周縁を有した内側截頭円錐内壁面とを具備しており、該軸受体は、外側円筒内壁面を環状突出部の外周面の円筒外壁面に、内側円筒内壁面を環状突出部の内周面の円筒内壁面に夫々嵌合せしめると共に外側截頭円錐内壁面を截頭円錐外壁面に、内側截頭円錐内壁面を截頭円錐内壁面に夫々接触させて、当該環状突出部に接触する部位で超音波溶着により当該環状突出部に溶着接合されて軸受基体に一体化されている請求項1から4のいずれか一項に記載の静圧気体軸受。   The outer peripheral surface of the annular projecting portion of the bearing base includes a cylindrical outer wall surface, an annular frustoconical outer wall surface that is continuous with the cylindrical outer wall surface and gradually expands outward from the cylindrical outer wall surface, and the truncated cone It has a cylindrical outer wall surface that is continuous with the outer wall surface and is continuous with one surface of the base and has a larger diameter than the cylindrical outer wall surface, and the inner peripheral surface of the annular projecting portion of the bearing base includes a cylindrical inner wall surface, An annular frustoconical inner wall surface that is gradually reduced inward from the inner wall surface of the cylinder continuously to the inner wall surface of the cylinder, and is connected to one surface of the base continuously to the inner wall surface of the frustocone and a cylinder A cylindrical inner wall surface having a smaller diameter than the inner wall surface, and an outer inner circumferential surface defining the annular recess of the bearing body gradually increases in diameter from the outer cylindrical inner wall surface and the outer cylindrical inner wall surface. And an outer frustoconical inner wall surface having an annular periphery defining an outer edge of the open end of the annular recess, and the shaft The inner inner peripheral surface that defines the annular recess of the body has an inner cylindrical inner wall surface and an annular peripheral edge that is gradually reduced in diameter from the inner cylindrical inner wall surface and that defines the inner edge of the opening end of the annular recess. An inner frustoconical inner wall surface, and the bearing body has an outer cylindrical inner wall surface as a cylindrical outer wall surface of the annular projecting portion and an inner cylindrical inner wall surface as an inner circumferential surface of the annular projecting portion. The inner wall surface of the outer truncated cone and the inner wall surface of the inner truncated cone are in contact with the inner wall surface of the truncated cone, respectively, and the annular protrusion is in contact with each other The hydrostatic gas bearing according to any one of claims 1 to 4, wherein the hydrostatic gas bearing is integrated with the bearing base by being welded and joined to the annular protrusion by ultrasonic welding. 空気室は、該基部の一方の面と、該基部の一方の面に対面する軸受体の一方の面と、該軸受基体の小径の円筒内壁面とにより規定されて軸受基体及び軸受体の協働により形成された空所を具備している請求項7に記載の静圧気体軸受。   The air chamber is defined by one surface of the base, one surface of the bearing body facing the one surface of the base, and a small cylindrical inner wall surface of the bearing base. The static pressure gas bearing according to claim 7, further comprising a void formed by operation. 空気室は、該軸受体の一方の面で開口していると共に該軸受体に形成された凹部を具備している請求項1から8のいずれか一項に記載の静圧気体軸受。   The static pressure gas bearing according to any one of claims 1 to 8, wherein the air chamber is open on one surface of the bearing body and includes a recess formed in the bearing body. 絞り孔は、一端では空所に開口している請求項6又は8に記載の静圧気体軸受。   The static pressure gas bearing according to claim 6 or 8, wherein the throttle hole is open to a void at one end. 絞り孔は、一端では凹部に開口している請求項9に記載の静圧気体軸受。   The static pressure gas bearing according to claim 9, wherein the throttle hole is open to the recess at one end. 軸受体は、その他方の面に形成されていると共に該環状凹溝の外側で当該環状凹溝を囲む大径環状凹溝と、一方の端部が該環状凹溝に開口すると共に他方の端部が大径環状凹溝に開口する複数個の第一の放射状凹溝と、その他方の面に形成されていると共に該環状凹溝の内側で当該環状凹溝に囲まれた小径環状凹溝と、一方の端部が環状凹溝に開口すると共に他方の端部が小径環状凹溝に開口する複数個の第二の放射状凹溝とを更に具備している請求項1から11のいずれか一項に記載の静圧気体軸受。   The bearing body is formed on the other surface and encloses the annular groove outside the annular groove, and one end opens into the annular groove and the other end. A plurality of first radial grooves, the portion of which is open to the large-diameter annular groove, and a small-diameter annular groove formed on the other surface and surrounded by the annular groove inside the annular groove And a plurality of second radial grooves having one end opened to the annular groove and the other end opened to the small-diameter annular groove. The static pressure gas bearing according to one item. 大径環状凹溝、第一の放射状凹溝、小径環状凹溝及び第二の放射状凹溝のうちの少なくとも一つは、レーザー加工により形成されている請求項12に記載の静圧気体軸受。   The hydrostatic gas bearing according to claim 12, wherein at least one of the large-diameter annular groove, the first radial groove, the small-diameter annular groove, and the second radial groove is formed by laser processing. 軸受基体に設けられていると共に球体受容凹部を有した球体受容手段を更に具備している請求項1から13のいずれか一項に記載の静圧気体軸受。   The hydrostatic gas bearing according to any one of claims 1 to 13, further comprising a sphere receiving means provided on the bearing base and having a sphere receiving recess. 球体受容手段は、基部の他方の面で開口して当該基部に形成された截頭円錐凹部を球体受容凹部として有している請求項14に記載の静圧気体軸受。   The static pressure gas bearing according to claim 14, wherein the spherical body receiving means has a truncated conical concave portion that is opened on the other surface of the base portion and formed in the base portion as the spherical body receiving concave portion. 球体受容手段は、基部の他方の面で開口して当該基部に形成された半球凹部を球体受容凹部として有している請求項14に記載の静圧気体軸受。   The static pressure gas bearing according to claim 14, wherein the spherical body receiving means has a hemispherical concave portion that is opened on the other surface of the base portion and formed in the base portion as the spherical body receiving concave portion. 球体受容手段は、基部の他方の面で開口して当該基部に形成された円柱状凹部に嵌合固定されていると共に一方の面で開口した截頭円錐凹部を球体受容凹部として有する駒を具備している請求項14に記載の静圧気体軸受。   The spherical body receiving means includes a piece that is open on the other surface of the base and is fitted and fixed to a cylindrical concave portion formed in the base and has a truncated conical concave portion that opens on one surface as a spherical receiving recess. The hydrostatic gas bearing according to claim 14. 球体受容手段は、基部の他方の面で開口して当該基部に形成された円柱状凹部に嵌合固定されていると共に一方の面で開口した半球凹部を球体受容凹部として有する駒を具備している請求項13に記載の静圧気体軸受。   The spherical body receiving means includes a piece that is opened and fixed on a cylindrical concave portion formed on the other surface of the base portion and has a hemispherical concave portion opened on one surface as a spherical body concave portion. The static pressure gas bearing according to claim 13. 上面案内面及び両側案内面を有する案内部材と、この案内部材の外側に配されていると共に上面案内面に対面する上板及び両側案内面に対面する一対の側板を備えた可動テーブルと、この可動テーブルの上板の下面及び一対の側板の夫々の内面のうちの少なくとも一つの面に球体を案内部材に向けて立設されたボールスタッドと、このボールスタッドの球体及び該少なくとも一つの面に対面する上面案内面及び両側案内面の間に配された請求項14から18のいずれか一項に記載の静圧気体軸受と、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面及び当該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に対面する上面案内面及び両側案内面の間に配された請求項1から13のいずれか一項に記載の静圧気体軸受とを具備しており、ボールスタッドの球体は、請求項14から18のいずれか一項に記載の静圧気体軸受の軸受基体が当該球体を中心としてボールスタッドに対して揺動自在となるように、当該請求項14から18のいずれか一項に記載の静圧気体軸受の球体受容手段の球体受容部の夫々に受容されており、請求項1から13のいずれか一項に記載の静圧気体軸受のうちの少なくとも一つの静圧気体軸受の軸受基体の基部は、該少なくとも一つの面以外の可動テーブルの上板の下面及び一対の側板の夫々の内面に固定されている直動案内装置。
A guide member having an upper surface guide surface and both side guide surfaces, a movable table provided on the outside of the guide member and provided with an upper plate facing the upper surface guide surface and a pair of side plates facing both side guide surfaces; A ball stud erected on at least one surface of the lower surface of the upper plate of the movable table and the inner surfaces of the pair of side plates with the sphere facing the guide member, and the sphere of the ball stud and the at least one surface The static pressure gas bearing according to any one of claims 14 to 18, which is disposed between an upper surface guide surface and both side guide surfaces facing each other, and a lower surface and a pair of upper plates of a movable table other than the at least one surface. From the inner surface of each side plate, the lower surface of the upper plate of the movable table other than the at least one surface, and the upper surface guide surface and the both side guide surfaces facing each inner surface of the pair of side plates. The static pressure gas bearing according to any one of claims 1 to 3, wherein the ball stud sphere includes the ball bearing base of the static pressure gas bearing according to any one of claims 14 to 18. It is received in each of the sphere receiving portions of the sphere receiving means of the static pressure gas bearing according to any one of claims 14 to 18 so as to be swingable with respect to the ball stud as a center. Item 14. The base portion of the bearing base of at least one of the static pressure gas bearings according to any one of Items 1 to 13, the bottom surface of the upper plate of the movable table other than the at least one surface, and a pair of A linear motion guide device fixed to the inner surface of each side plate.
JP2012091379A 2012-04-12 2012-04-12 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing Active JP6115021B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012091379A JP6115021B2 (en) 2012-04-12 2012-04-12 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
PCT/JP2013/002077 WO2013153753A1 (en) 2012-04-12 2013-03-27 Aerostatic bearing and linear guide apparatus using the aerostatic bearing
CN201380019352.5A CN104204573B (en) 2012-04-12 2013-03-27 Hydrostatic gas-lubricated bearing and the linear guide device using the hydrostatic gas-lubricated bearing
KR1020147025772A KR101608364B1 (en) 2012-04-12 2013-03-27 Hydrostatic gas bearing and linear guide apparatus using the same
TW102113142A TWI582314B (en) 2012-04-12 2013-04-12 Static pressure gas bearings and the use of the static pressure gas bearing linear motion guide device
HK15101491.5A HK1200899A1 (en) 2012-04-12 2015-02-10 Aerostatic bearing and linear guide apparatus using the aerostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091379A JP6115021B2 (en) 2012-04-12 2012-04-12 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing

Publications (2)

Publication Number Publication Date
JP2013221529A true JP2013221529A (en) 2013-10-28
JP6115021B2 JP6115021B2 (en) 2017-04-19

Family

ID=49327343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091379A Active JP6115021B2 (en) 2012-04-12 2012-04-12 Static pressure gas bearing and linear motion guide device using the static pressure gas bearing

Country Status (6)

Country Link
JP (1) JP6115021B2 (en)
KR (1) KR101608364B1 (en)
CN (1) CN104204573B (en)
HK (1) HK1200899A1 (en)
TW (1) TWI582314B (en)
WO (1) WO2013153753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269701A (en) * 2017-07-12 2017-10-20 哈尔滨工业大学 A kind of plane air-bearing with air drain

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2884122T3 (en) * 2013-12-16 2017-07-10 Areva Wind Gmbh Pressure bearing, drive string, gear and wind generator
US11067124B2 (en) * 2018-07-23 2021-07-20 Alio Industries, Inc. Planar rotary air bearing stage
CN111262380A (en) * 2020-01-15 2020-06-09 天津大学 Spherical motor based on aerostatic bearing supports
CN112898014B (en) * 2021-03-05 2022-06-07 株洲火炬安泰新材料有限公司 Atmosphere sintering method of ITO (indium tin oxide) particles

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127927U (en) * 1985-01-29 1986-08-11
JPH09296825A (en) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd Static pressure gas bearing
JP2005201370A (en) * 2004-01-15 2005-07-28 Oiles Ind Co Ltd Gap adjusting device for hydrostatic gas bearing pad and hydrostatic gas bearing mechanism using the same
JP2006510857A (en) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gas bearing device
JP2008082449A (en) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd Static pressure gas bearing
JP2010060013A (en) * 2008-09-02 2010-03-18 Ckd Corp Levitation unit and contactless support device with the same
JP2010522431A (en) * 2007-03-20 2010-07-01 ケーエルエー−テンカー・コーポレーション Substrate stability using vacuum preloaded air bearing chuck

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256915A (en) * 1988-12-08 1990-10-17 Nippon Seiko Kk Porous static pressure bearing and manufacture thereof
DE102007054334A1 (en) * 2007-11-14 2009-05-20 BSH Bosch und Siemens Hausgeräte GmbH Aerostatic bearing and process for its production
CN201953815U (en) * 2010-11-24 2011-08-31 张建军 Aerostatic bearing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127927U (en) * 1985-01-29 1986-08-11
JPH09296825A (en) * 1996-04-30 1997-11-18 Kuroda Precision Ind Ltd Static pressure gas bearing
JP2006510857A (en) * 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Gas bearing device
JP2005201370A (en) * 2004-01-15 2005-07-28 Oiles Ind Co Ltd Gap adjusting device for hydrostatic gas bearing pad and hydrostatic gas bearing mechanism using the same
JP2008082449A (en) * 2006-08-31 2008-04-10 Oiles Ind Co Ltd Static pressure gas bearing
JP2010522431A (en) * 2007-03-20 2010-07-01 ケーエルエー−テンカー・コーポレーション Substrate stability using vacuum preloaded air bearing chuck
JP2010060013A (en) * 2008-09-02 2010-03-18 Ckd Corp Levitation unit and contactless support device with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269701A (en) * 2017-07-12 2017-10-20 哈尔滨工业大学 A kind of plane air-bearing with air drain

Also Published As

Publication number Publication date
KR101608364B1 (en) 2016-04-01
HK1200899A1 (en) 2015-08-14
JP6115021B2 (en) 2017-04-19
CN104204573B (en) 2017-03-08
TW201350697A (en) 2013-12-16
KR20140127880A (en) 2014-11-04
TWI582314B (en) 2017-05-11
WO2013153753A1 (en) 2013-10-17
CN104204573A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5928106B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP6115021B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP5961952B2 (en) Hydrostatic gas bearing and manufacturing method thereof
JP5929117B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP5915088B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP5924084B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
JP6237814B2 (en) Static pressure gas bearing and linear motion guide device using the static pressure gas bearing
TWI522544B (en) Static pressure gas bearing and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250