JP2013221171A - Recovering method of rhenium - Google Patents

Recovering method of rhenium Download PDF

Info

Publication number
JP2013221171A
JP2013221171A JP2012092514A JP2012092514A JP2013221171A JP 2013221171 A JP2013221171 A JP 2013221171A JP 2012092514 A JP2012092514 A JP 2012092514A JP 2012092514 A JP2012092514 A JP 2012092514A JP 2013221171 A JP2013221171 A JP 2013221171A
Authority
JP
Japan
Prior art keywords
solution
rhenium
perrhenate
compound
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012092514A
Other languages
Japanese (ja)
Other versions
JP5987239B2 (en
Inventor
Hisao Hori
久男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2012092514A priority Critical patent/JP5987239B2/en
Publication of JP2013221171A publication Critical patent/JP2013221171A/en
Application granted granted Critical
Publication of JP5987239B2 publication Critical patent/JP5987239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating rhenium from solution containing rhenium with a simple method.SOLUTION: A method for recovering rhenium includes: an electron donor addition step wherein a compound containing a substituent having an atom including an unshared electron pair is added to solution containing perrhenate ion; an ultraviolet irradiation step wherein reductant of perrhenate ion contained in the solution is deposited by irradiating the solution passed through the electron donor addition step with ultraviolet rays; and an fractionating step wherein the reductant of the perrhenate ion deposited in the ultraviolet irradiation step is fractionated from the solution.

Description

本発明は、レニウムの回収方法に関する。   The present invention relates to a method for recovering rhenium.

希少金属の一つであるレニウムは、石油の改質や有機化合物を製造する際における触媒をはじめ、耐熱合金や電子材料等といった分野において幅広く用いられる。しかしながら、レニウムは、その産出量が少なく、さらに近年の世界的な需給の逼迫のために入手が困難になりつつある。そのため、レニウムを含む鉱物からレニウムを効率的に回収するための技術開発や、レニウムを含む産業廃水や回収製品等からレニウムをリサイクルするための技術開発が求められている。   Rhenium, a rare metal, is widely used in fields such as heat-resistant alloys and electronic materials, as well as catalysts for petroleum reforming and organic compound production. However, rhenium is low in production and is becoming difficult to obtain due to the recent global tight supply and demand. Therefore, there is a need for technological development for efficiently recovering rhenium from minerals containing rhenium and technical development for recycling rhenium from industrial wastewater containing rhenium and recovered products.

このような背景のもと、例えば特許文献1には、レニウムを含む溶液にアルカリを添加して不要な成分を沈殿除去した後に、当該溶液における酸の濃度を所定の範囲に調整し、硫化剤を添加してレニウムを含む硫化沈殿物を生成させ、これを回収するレニウムの分離方法が提案されている。   Under such a background, for example, in Patent Document 1, after adding an alkali to a solution containing rhenium to precipitate and remove unnecessary components, the acid concentration in the solution is adjusted to a predetermined range, A rhenium separation method has been proposed, in which a sulfide precipitate containing rhenium is produced by adding selenium and recovered.

また、特許文献2には、レニウムを含む溶液に、硫酸アンモニウム等のアンモニア化合物を添加して冷却することでNHReOの沈殿を生成させ、これを回収するレニウムの回収方法が提案されている。 Patent Document 2 proposes a rhenium recovery method in which an ammonia compound such as ammonium sulfate is added to a solution containing rhenium and cooled to form a precipitate of NH 4 ReO 4 and recovered. .

特開2011−58016号公報JP 2011-58016 A 特開2010−168629号公報JP 2010-168629 A

以上の方法によれば、レニウムを含む溶液からレニウムを分離することが可能であるが、より簡便な手順で、かつより効率的にレニウムの分離を行う手段が求められている。本発明は、以上の状況に鑑みてなされたものであり、レニウムを含む溶液から、簡便な手法で、レニウムを分離させることのできる方法を提供することを目的とする。   According to the above method, it is possible to separate rhenium from a solution containing rhenium, but a means for separating rhenium more efficiently by a simpler procedure is required. The present invention has been made in view of the above circumstances, and an object thereof is to provide a method capable of separating rhenium from a solution containing rhenium by a simple method.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えたアルコール等の化合物を添加し、さらに紫外線を照射することにより、溶液に含まれている過レニウム酸イオンが還元を受けて析出し、回収可能となることを見出した。本発明は、このような知見に基づいてなされたものであり、以下のようなものを提供する。   As a result of intensive studies to solve the above problems, the present inventors added a compound such as an alcohol having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion, Furthermore, it has been found that by irradiating with ultraviolet rays, perrhenic acid ions contained in the solution are reduced and deposited and can be recovered. The present invention has been made based on such findings, and provides the following.

(1)本発明は、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えた化合物を添加する電子供与剤添加工程と、当該電子供与剤添加工程を経た上記溶液に紫外線を照射することにより、当該溶液に含まれる過レニウム酸イオンの還元体を析出させる紫外線照射工程と、上記紫外線照射工程により析出させた過レニウム酸イオンの還元体を上記溶液から分取する分取工程と、を含むことを特徴とするレニウムの回収方法である。   (1) The present invention includes an electron donor addition step of adding a compound having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion, and the electron donor addition step described above. By irradiating the solution with ultraviolet rays, an ultraviolet irradiation step for precipitating a reduced form of perrhenate ions contained in the solution, and a reduced form of the perrhenate ions precipitated by the ultraviolet irradiation step are separated from the solution. And a preparative step for collecting rhenium.

(2)上記置換基は、水酸基であることが好ましい。   (2) The substituent is preferably a hydroxyl group.

(3)上記化合物は、脂肪族アルコールであることが好ましい。   (3) The compound is preferably an aliphatic alcohol.

本発明によれば、レニウムを含む溶液から、簡便な手法で、レニウムを分離させることのできる方法が提供される。   The present invention provides a method capable of separating rhenium from a solution containing rhenium by a simple technique.

図1は、実施例1における光照射時間に対する水溶液中の過レニウム酸イオン(ReO )濃度のプロットである。FIG. 1 is a plot of perrhenate ion (ReO 4 ) concentration in an aqueous solution versus light irradiation time in Example 1. 図2は、実施例1における光照射時間に対する水溶液中の総Re濃度のプロットである。FIG. 2 is a plot of the total Re concentration in the aqueous solution against the light irradiation time in Example 1.

以下、本発明に係るレニウムの回収方法についての一実施態様を説明する。なお、本発明は、以下の実施態様に限定されるものではなく、本発明の範囲において適宜変更して実施することができる。   Hereinafter, one embodiment of the method for recovering rhenium according to the present invention will be described. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the present invention.

本発明は、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えた化合物を添加する電子供与剤添加工程と、電子供与剤添加工程を経た溶液に紫外線を照射することにより、当該溶液に含まれる過レニウム酸イオンの還元体を析出させる紫外線照射工程と、紫外線照射工程により析出させた過レニウム酸イオンの還元体を溶液から分取する分取工程と、を含む。以下、各工程について説明する。   The present invention includes an electron donor addition step of adding a compound having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion, and irradiating the solution that has undergone the electron donor addition step with ultraviolet rays. An ultraviolet irradiation step for precipitating a reduced form of perrhenate ions contained in the solution, and a fractionation step for separating the reduced form of perrhenate ions precipitated by the ultraviolet irradiation step from the solution. Including. Hereinafter, each step will be described.

[電子供与剤添加工程]
電子供与剤添加工程は、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えた化合物を添加する工程である。過レニウム酸イオンを含む溶液としては、水溶液を好ましく挙げることができる。この溶液には、レニウムを含む鉱石や、レニウムを含む回収製品(リサイクル製品)等を由来とするレニウムが過レニウム酸イオンとして含まれる。
[Electron donor addition process]
The electron donor addition step is a step of adding a compound having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion. Preferred examples of the solution containing perrhenate ions include aqueous solutions. This solution contains rhenium derived from ore containing rhenium, a recovered product containing rhenium (recycled product), and the like as perrhenate ions.

過レニウム酸イオンは、ReO の化学式で表される化学種である。この化学種において、レニウムは七価の酸化数をとる。レニウムは、酸化を受けやすい元素であり、例えば、酸化数が六価となるレニウムの化合物であるReOは、空気中や溶液中で容易に酸化を受け、酸化数が七価となるレニウムの化合物であるReO (過レニウム酸イオン)となる。そのため、溶液に含まれるレニウムは、その大部分が過レニウム酸イオンとして存在していると考えられる。しかしながら、溶液に含まれるレニウムを確実に過レニウム酸イオンに変換しておくために、適切な酸化剤を溶液に添加しておいてもよい。このような酸化剤としては、過酸化水素水、過炭酸ナトリウム、次亜塩素酸ナトリウム、分子状酸素、空気バブル等が例示される。 Perrhenate ion is a chemical species represented by the chemical formula of ReO 4 . In this chemical species, rhenium has a seven-valent oxidation number. Rhenium is an element that is susceptible to oxidation. For example, ReO 3 , which is a rhenium compound having an oxidation number of hexavalent, is easily oxidized in air or in a solution, and rhenium having an oxidation number of seven. The compound is ReO 4 (perrhenate ion). Therefore, it is considered that most of rhenium contained in the solution exists as perrhenate ions. However, an appropriate oxidizing agent may be added to the solution in order to reliably convert rhenium contained in the solution into perrhenate ions. Examples of such an oxidizing agent include hydrogen peroxide solution, sodium percarbonate, sodium hypochlorite, molecular oxygen, air bubbles and the like.

非共有電子対を有する原子を持つ置換基としては、水酸基、アミノ基、チオール基等が例示される。このような置換基の中でも、水酸基が特に好ましく例示される。そして、このような置換基を備えた化合物としてアルコール化合物が好ましく例示され、中でも脂肪族アルコール化合物が好ましく例示される。脂肪族アルコール化合物としては、メタノール、エタノール、n−プロパノール、2−プロパノール、ブタノール、2−ブタノール、sec−ブタノール、tert−ブタノール、ペンタノール、ヘキサノール、オクタノール等が例示される。これらの中でも、2−プロパノールを好ましく例示することができる。   Examples of the substituent having an atom having an unshared electron pair include a hydroxyl group, an amino group, and a thiol group. Among such substituents, a hydroxyl group is particularly preferred. And an alcohol compound is illustrated preferably as a compound provided with such a substituent, and an aliphatic alcohol compound is illustrated preferably among them. Examples of the aliphatic alcohol compound include methanol, ethanol, n-propanol, 2-propanol, butanol, 2-butanol, sec-butanol, tert-butanol, pentanol, hexanol, octanol and the like. Among these, 2-propanol can be preferably exemplified.

本発明者は、溶液中からのレニウムの回収方法について検討を重ねる過程で、意外にも、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えた化合物を添加し、次いでこの溶液に紫外線を照射すると、溶液に含まれるレニウムが析出して分取可能になることを知見した。本発明は、このような知見に基づいて完成されたものである。このような析出を生じるメカニズムとしては、必ずしも明らかではないが、紫外線の照射下で過レニウム酸イオンに含まれるレニウムが励起された際に、非共有電子対を有する原子を持つ置換基を備えた化合物がレニウムに電子を供与し、七価のレニウム(すなわち過レニウム酸イオン)が六価に還元されるというものが考えられる。つまり、溶液に添加された非共有電子対を有する原子を持つ置換基を備えた化合物は、レニウムが励起した際に電子供与剤として振る舞うものと考えられる。六価に還元されたReO等のレニウム化合物は、過レニウム酸イオンとは違って水溶性が乏しいため、析出する。 Surprisingly, the inventor added a compound having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion in a process of repeatedly examining a method for recovering rhenium from a solution. Then, it was found that when this solution was irradiated with ultraviolet rays, rhenium contained in the solution was precipitated and could be collected. The present invention has been completed based on such findings. Although the mechanism for causing such precipitation is not necessarily clear, when rhenium contained in a perrhenate ion is excited under ultraviolet irradiation, it has a substituent having an atom having an unshared electron pair. It is conceivable that the compound donates electrons to rhenium and the heptavalent rhenium (ie, perrhenate ion) is reduced to hexavalent. That is, it is considered that a compound having a substituent having an atom having an unshared electron pair added to a solution behaves as an electron donor when rhenium is excited. Unlike rhenium ions, rhenium compounds such as ReO 3 that have been reduced to hexavalent ions are precipitated due to poor water solubility.

過レニウム酸イオンの溶液中の濃度は、溶媒に溶解させて溶液とすることができる程度であれば、特に限定されない。そのような過レニウム酸イオンの濃度の一例としては、1mmol/L〜100mmol/L程度を挙げることができる。また、非共有電子対を有する原子を持つ置換基を備えた化合物の溶液中の濃度は、過レニウム酸イオンの濃度に対して大過剰であることが好ましい。そのような非共有電子対を有する原子を持つ置換基を備えた化合物の溶液中の濃度の一例としては、10mmol/L〜10mol/L程度を挙げることができる。なお、過レニウム酸イオンのモル濃度に対する非共有電子対を有する原子を持つ置換基を備えた化合物のモル濃度の比は、5倍〜10000倍程度を例示することができる。   The concentration of the perrhenate ion in the solution is not particularly limited as long as it can be dissolved in a solvent to form a solution. As an example of the concentration of such perrhenate ions, about 1 mmol / L to 100 mmol / L can be mentioned. Moreover, it is preferable that the density | concentration in the solution of the compound provided with the substituent which has an atom which has a lone pair is large excessive with respect to the density | concentration of a perrhenate ion. As an example of the concentration of the compound having a substituent having an atom having an unshared electron pair in a solution, about 10 mmol / L to 10 mol / L can be mentioned. In addition, the ratio of the molar concentration of the compound having a substituent having an atom having an unshared electron pair with respect to the molar concentration of perrhenate ion can be about 5 to 10,000 times.

[紫外線照射工程]
紫外線照射工程は、上記電子供与剤添加工程を経た溶液に紫外線を照射することにより、当該溶液に含まれる過レニウム酸イオンの還元体を析出させる工程である。このとき、七価のレニウム化合物である過レニウム酸イオン(ReO )が六価に還元されてReO等となって析出する。
[Ultraviolet irradiation process]
The ultraviolet irradiation step is a step of precipitating a reduced form of perrhenate ions contained in the solution by irradiating the solution having undergone the electron donor addition step with ultraviolet rays. At this time, the perrhenate ion (ReO 4 ), which is a heptavalent rhenium compound, is reduced to hexavalent and precipitated as ReO 3 or the like.

上記のように、このときに用いる紫外線により過レニウム酸イオンに含まれるレニウムが励起され、還元反応を生じる。そのため、用いる紫外線は、過レニウム酸イオンに吸収される波長であることが必要である。この点、過レニウム酸イオンは300nm以下の波長にて幅広い吸収を有するため、用いる紫外線としては、300nm以下の波長を含むものであれば特に限定されない。また、用いる紫外線は、300nm以下の波長の紫外線を含めばよいので、300nm以下の波長の紫外線に加えて可視光線を含むものであってもよい。このような紫外線を発生させるために用いる光源としては、例えば、水銀・キセノンランプ、高圧水銀ランプ、メタルハライドランプ等が挙げられるが、特に限定されない。   As described above, the rhenium contained in the perrhenate ion is excited by the ultraviolet rays used at this time, thereby causing a reduction reaction. Therefore, it is necessary that the ultraviolet ray used has a wavelength that is absorbed by the perrhenate ion. In this respect, since perrhenate ions have wide absorption at wavelengths of 300 nm or less, the ultraviolet rays used are not particularly limited as long as they include wavelengths of 300 nm or less. Moreover, since the ultraviolet-ray to be used should just include the ultraviolet-ray with a wavelength of 300 nm or less, it may contain visible light in addition to the ultraviolet-ray with a wavelength of 300 nm or less. Examples of the light source used to generate such ultraviolet rays include, but are not limited to, a mercury / xenon lamp, a high-pressure mercury lamp, and a metal halide lamp.

上記光源の中には、発光中に発熱して熱線(赤外線)を生じるものもある。そのような光源を用いた場合、被照射物である溶液の温度が過度に上昇することも考えられるため、光源と被照射物である溶液との間に熱線を遮断する光学フィルターを設けてもよい。このような光学フィルターとしては、フィルター内に水を封入した水フィルター等が例示される。   Some of the light sources generate heat and generate heat rays (infrared rays) during light emission. When such a light source is used, the temperature of the solution that is the object to be irradiated may rise excessively, so an optical filter that blocks heat rays may be provided between the light source and the solution that is the object to be irradiated. Good. Examples of such an optical filter include a water filter in which water is enclosed in a filter.

紫外線照射工程では、上記のように、溶液に紫外線が照射されるが、その際、溶液を撹拌しながら紫外線の照射を行うことが好ましい。また、特に限定されないが、その際の溶液の温度として20℃程度を例示することができる。さらに、既に述べたように、レニウムは酸化を受けやすい元素であるため、紫外線の照射によって溶液中に生じたレニウムの還元体が、再び酸化されて過レニウム酸イオンとなることも考えられる。そのため、紫外線照射工程は、アルゴンや窒素雰囲気下で行われることが好ましい。   In the ultraviolet irradiation step, as described above, the solution is irradiated with ultraviolet rays. At that time, it is preferable to irradiate the solution while stirring the solution. Moreover, although not specifically limited, about 20 degreeC can be illustrated as a temperature of the solution in that case. Furthermore, since rhenium is an element that is easily oxidized as described above, it is also considered that the reductant of rhenium generated in the solution by irradiation with ultraviolet rays is oxidized again to perrhenate ions. Therefore, it is preferable that an ultraviolet irradiation process is performed in argon or nitrogen atmosphere.

必要とされる紫外線の照射時間は、溶液に含まれる過レニウム酸イオンの濃度や、光源から発せられる紫外線の強度等によって変動する。したがって、紫外線の照射時間は、例えば、イオンクロマトグラフィー等の手段により溶液中の過レニウム酸イオン濃度の変化をモニターしながら決定されることが好ましい。一例として、10.37mmol/LのKReO及び0.50mol/Lの2−プロパノールを含む水溶液(10mL)に対して、アルゴン雰囲気中で撹拌しながら水銀・キセノンランプ(出力200W)からの紫外線を照射した場合、およそ19時間で、溶液中の過レニウム酸イオンがイオンクロマトグラフィーにおける検出限界以下の濃度となる。 The required irradiation time of ultraviolet rays varies depending on the concentration of perrhenate ions contained in the solution, the intensity of ultraviolet rays emitted from the light source, and the like. Therefore, it is preferable to determine the irradiation time of ultraviolet rays while monitoring changes in the perrhenate ion concentration in the solution by means such as ion chromatography. As an example, an ultraviolet ray from a mercury / xenon lamp (output 200 W) is stirred in an argon atmosphere against an aqueous solution (10 mL) containing 10.37 mmol / L KReO 4 and 0.50 mol / L 2-propanol. When irradiated, the perrhenate ion in the solution becomes a concentration below the detection limit in ion chromatography in about 19 hours.

なお、溶液に含まれる過レニウム酸イオンの濃度をイオンクロマトグラフィーでモニターする場合、カラムとして東ソー株式会社製のTSKgel IC−Anion−PWXLを用い、移動相として1.7mmol/L NaHCO+1.8mmol/L NaCO+20%アセトニトリル水溶液を用いることが例示される。 When monitoring the concentration of perrhenate ion contained in the solution by ion chromatography, TSKgel IC-Anion-PWXL manufactured by Tosoh Corporation is used as the column, and 1.7 mmol / L NaHCO 3 +1.8 mmol is used as the mobile phase. Using / L Na 2 CO 3 + 20% acetonitrile aqueous solution is exemplified.

[分取工程]
分取工程は、上記紫外線照射工程により析出させた過レニウム酸イオンの還元体を溶液から分取する工程である。これにより、溶液中からレニウムが回収されることになる。
[Preparation process]
A fractionation process is a process of fractionating the reduced body of the perrhenate ion precipitated by the said ultraviolet irradiation process from a solution. As a result, rhenium is recovered from the solution.

析出した過レニウム酸イオンの還元体は、上記の通り、六価のレニウムであるReO等の化合物である。これは、固体であるので、従来公知の固液分離法により分離される。このような固液分離法としては、濾過、遠心分離等が例示される。 The reduced form of the perrhenate ion thus deposited is a compound such as ReO 3 which is hexavalent rhenium as described above. Since this is a solid, it is separated by a conventionally known solid-liquid separation method. Examples of such a solid-liquid separation method include filtration and centrifugation.

溶液から分離されたレニウムは、その後、必要な処理を受けて再資源化されることになる。上記のように、本発明によれば、過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えたアルコール等の化合物を添加し、さらに紫外線を照射するという簡便な手法により、溶液中からレニウムを分離させることが可能となる。   The rhenium separated from the solution is then subjected to necessary processing and recycled. As described above, according to the present invention, a simple compound of adding a compound such as an alcohol having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion, and further irradiating ultraviolet rays. The technique makes it possible to separate rhenium from the solution.

以下、本発明のレニウムの回収方法について、実施例を示すことによりさらに具体的に説明するが、本発明は、以下の実施例に何ら限定されるものではない。   Hereinafter, the method for recovering rhenium of the present invention will be described more specifically by showing examples, but the present invention is not limited to the following examples.

[実施例1]
2−プロパノール(0.50mol/L)、過レニウム酸カリウム(KReO、10.37mmol/L)及び水中のイオン強度を一定に保つための試薬である過塩素酸ナトリウム(NaClO、0.10mol/L)を含む水溶液を光反応セル(液量10mL)に入れ、アルゴン雰囲気中で撹拌しながら、水銀・キセノンランプを用いて上記水溶液に紫外〜可視領域の光(220〜460nm)を照射した。照射終了後、遠心分離器で沈殿を分離し、水中に残存している過レニウム酸イオンをイオンクロマトグラフィーで定量し、水中の総レニウム濃度をICP(Inductively coupled plasma;誘導結合プラズマ)発光分析で定量した。イオンクロマトグラフィーでは、カラムとして東ソー株式会社製TSKgel IC−Anion−PWXLを用い、移動相として1.7mmol/L NaHCO+1.8mmol/L NaCO+20%アセトニトリル水溶液を用いた。
[Example 1]
2-Propanol (0.50 mol / L), potassium perrhenate (KReO 4 , 10.37 mmol / L) and sodium perchlorate (NaClO 4 , 0.10 mol) which is a reagent for keeping the ionic strength in water constant / L) was placed in a photoreaction cell (liquid volume: 10 mL), and the aqueous solution was irradiated with ultraviolet to visible light (220 to 460 nm) using a mercury / xenon lamp while stirring in an argon atmosphere. . After the irradiation, the precipitate is separated with a centrifuge, and the perrhenate ion remaining in the water is quantified by ion chromatography. The total rhenium concentration in the water is determined by ICP (Inductively coupled plasma) emission spectrometry. Quantified. In ion chromatography, TSKgel IC-Anion-PWXL manufactured by Tosoh Corporation was used as a column, and 1.7 mmol / L NaHCO 3 +1.8 mmol / L Na 2 CO 3 + 20% acetonitrile aqueous solution was used as a mobile phase.

図1に、実施例1における光照射時間に対する水溶液中の過レニウム酸イオン(ReO )濃度のプロットを示す。また、図2に、実施例1における光照射時間に対する水溶液中の総Re濃度のプロットを示す。図1からわかるように、光照射を開始してから19時間後には、溶液中における過レニウム酸イオンがイオンクロマトグラフィーの検出限界以下となった。また、図2からわかるように、光照射を開始してから19時間後には、溶液中における総Re濃度がほとんどゼロに近かった。これらのことから、水溶液中に存在していた過レニウム酸イオンは、19時間の光照射により、ほぼ全量が沈殿として析出し水溶液中には残存していないことがわかる。 FIG. 1 shows a plot of the perrhenate ion (ReO 4 ) concentration in the aqueous solution against the light irradiation time in Example 1. FIG. 2 shows a plot of the total Re concentration in the aqueous solution against the light irradiation time in Example 1. As can be seen from FIG. 1, 19 hours after the start of light irradiation, perrhenate ions in the solution were below the detection limit of ion chromatography. Further, as can be seen from FIG. 2, the total Re concentration in the solution was almost zero after 19 hours from the start of light irradiation. From these facts, it can be seen that the perrhenate ions present in the aqueous solution are almost entirely deposited as precipitates by 19 hours of light irradiation and do not remain in the aqueous solution.

なお、得られた沈殿に対してXPS(X線光電子分光)測定を行ったところ、当該沈殿がRe(VII):Re(VI)=85:15の混合物であることがわかった。既に述べたようにレニウムは酸化を受けやすいため、溶液中に析出した時点ではRe(VI)だったものが、分離操作や測定操作の最中に、その一部がRe(VII)に酸化されたものと考えられる。   In addition, when XPS (X-ray photoelectron spectroscopy) measurement was performed on the obtained precipitate, it was found that the precipitate was a mixture of Re (VII): Re (VI) = 85: 15. As already mentioned, rhenium is susceptible to oxidation, so what was Re (VI) when it was deposited in the solution was partially oxidized to Re (VII) during the separation and measurement operations. It is thought that.

[比較例1]
2−プロパノールを添加しないことを除き、実施例1と同様の手順で比較例1の操作を行った。その結果、光照射を開始して19時間経過後も、過レニウム酸イオンは、初期量の95.1%が残存していることが確認された。
[Comparative Example 1]
The operation of Comparative Example 1 was performed in the same procedure as Example 1 except that 2-propanol was not added. As a result, it was confirmed that 95.1% of the initial amount of perrhenate ions remained even after 19 hours had passed since the light irradiation was started.

[比較例2]
光照射を行わないことを除き、実施例1と同様の手順で比較例2の操作を行った。その結果、溶液を調製してから19時間経過後も、過レニウム酸イオンは、初期量の100%が残存していることが確認された。
[Comparative Example 2]
Except not performing light irradiation, operation of the comparative example 2 was performed in the procedure similar to Example 1. FIG. As a result, it was confirmed that 100% of the initial amount of perrhenate ions remained even after 19 hours from the preparation of the solution.

実施例1及び比較例1〜2の結果をまとめたものを表1に示す。なお、表1における「ReO 残存率」は、光照射を開始してから19時間経過後(実施例1及び比較例1)又は溶液を調製してから19時間経過後(比較例2)における(以下、単に「19時間経過後における」と称する。)、溶液中での過レニウム酸イオンの初期量に対する残存率を表す。また、表1における「ReO 」は、19時間経過後における溶液中の過レニウム酸イオンの濃度(mmol/L)を表す。また、表1における「総Re」は、19時間経過後における溶液中の総レニウム濃度(mg/mL)を表す。 Table 1 shows a summary of the results of Example 1 and Comparative Examples 1-2. Incidentally, in Table 1, "ReO 4 - residual ratio" after 19 hours elapsed from the start of light irradiation (Example 1 and Comparative Example 1) or the solution 19 hours elapses after the prepared (Comparative Example 2) (Hereinafter, simply referred to as “after 19 hours”) represents the residual ratio of the perrhenate ion in the solution with respect to the initial amount. Further, “ReO 4 ” in Table 1 represents the concentration (mmol / L) of perrhenate ion in the solution after 19 hours. “Total Re” in Table 1 represents the total rhenium concentration (mg / mL) in the solution after 19 hours.

Figure 2013221171
(※)イオンクロマトグラフィーにおける検出限界以下であることを示す
Figure 2013221171
(*) Indicates below the detection limit in ion chromatography

表1から明らかなように、溶液中に含まれる過レニウム酸イオンを析出させて回収するには、非共有電子対を有する原子を持つ置換基を備えた化合物である2−プロパノールの添加と光照射とが必須であると理解される。また、実施例1において、溶液中における総Re濃度が19時間経過後にはほとんどゼロとなったことから、本発明のレニウムの回収方法によれば、溶液中に含まれるレニウムをほぼ確実に除去できることがわかる。   As is apparent from Table 1, in order to deposit and recover the perrhenate ion contained in the solution, addition of 2-propanol, which is a compound having a substituent having an atom having an unshared electron pair, and light It is understood that irradiation is essential. In Example 1, since the total Re concentration in the solution became almost zero after 19 hours, the rhenium contained in the solution can be almost certainly removed according to the rhenium recovery method of the present invention. I understand.

Claims (3)

過レニウム酸イオンを含む溶液に、非共有電子対を有する原子を持つ置換基を備えた化合物を添加する電子供与剤添加工程と、
前記電子供与剤添加工程を経た前記溶液に紫外線を照射することにより、前記溶液に含まれる過レニウム酸イオンの還元体を析出させる紫外線照射工程と、
前記紫外線照射工程により析出させた過レニウム酸イオンの還元体を前記溶液から分取する分取工程と、を含むことを特徴とするレニウムの回収方法。
An electron donor addition step of adding a compound having a substituent having an atom having an unshared electron pair to a solution containing a perrhenate ion;
An ultraviolet irradiation step for precipitating a reduced form of perrhenate ions contained in the solution by irradiating the solution that has undergone the electron donor addition step with ultraviolet rays;
And a fractionation step of fractionating the reduced form of perrhenate ions precipitated in the ultraviolet irradiation step from the solution.
前記置換基が水酸基である請求項1記載のレニウムの回収方法。   The method for recovering rhenium according to claim 1, wherein the substituent is a hydroxyl group. 前記化合物が脂肪族アルコール化合物である請求項1又は2記載のレニウムの回収方法。   The method for recovering rhenium according to claim 1 or 2, wherein the compound is an aliphatic alcohol compound.
JP2012092514A 2012-04-13 2012-04-13 Rhenium recovery method Active JP5987239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092514A JP5987239B2 (en) 2012-04-13 2012-04-13 Rhenium recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092514A JP5987239B2 (en) 2012-04-13 2012-04-13 Rhenium recovery method

Publications (2)

Publication Number Publication Date
JP2013221171A true JP2013221171A (en) 2013-10-28
JP5987239B2 JP5987239B2 (en) 2016-09-07

Family

ID=49592376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092514A Active JP5987239B2 (en) 2012-04-13 2012-04-13 Rhenium recovery method

Country Status (1)

Country Link
JP (1) JP5987239B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals
CN113247998A (en) * 2021-05-25 2021-08-13 中国人民解放军陆军勤务学院 Application of titanium trichloride and treatment method of rhenium-containing wastewater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166423A (en) * 1991-12-11 1993-07-02 Asahi Glass Co Ltd Manufacture of conductive film and low reflective conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166423A (en) * 1991-12-11 1993-07-02 Asahi Glass Co Ltd Manufacture of conductive film and low reflective conductive film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals
WO2017018364A1 (en) * 2015-07-24 2017-02-02 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
CN107849641A (en) * 2015-07-24 2018-03-27 学校法人神奈川大学 The recovery method of rhenium, from the solution containing rhenium and other metals the method for selective recovery rhenium and in the solution containing rhenium and other metals improve rhenium containing ratio method
EA032279B1 (en) * 2015-07-24 2019-05-31 Канагава Юниверсити Method for recovering rhenium, method for selectively recovering rhenium from a solution including rhenium and one or more other metals, and method for enriching rhenium in a solution including rhenium and one or more other metals
CN107849641B (en) * 2015-07-24 2019-07-16 学校法人神奈川大学 The recovery method of rhenium, improve from the method for selective recovery rhenium in the solution containing rhenium and other metals and in the solution containing rhenium and other metals rhenium containing ratio method
US10480048B2 (en) 2015-07-24 2019-11-19 Kanagawa University Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
CN113247998A (en) * 2021-05-25 2021-08-13 中国人民解放军陆军勤务学院 Application of titanium trichloride and treatment method of rhenium-containing wastewater
CN113247998B (en) * 2021-05-25 2023-03-24 中国人民解放军陆军勤务学院 Application of titanium trichloride and treatment method of rhenium-containing wastewater

Also Published As

Publication number Publication date
JP5987239B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
RU2591903C2 (en) Method of extracting zinc oxide
CN103343224A (en) Method for quickly extracting gold from gold-containing material
JP5853963B2 (en) Method for recovering ruthenium or ruthenium compounds
EP3984958A1 (en) Method and apparatus for producing vanadium compound, and method and apparatus for producing redox-flow battery electrolyte
JP5114049B2 (en) Preparation of arsenic liquid from copper arsenic compound
Hori et al. Efficient photochemical recovery of rhenium from aqueous solutions
JP2011214092A (en) Method for treating reducing slag containing selenium and tellurium
JP5987239B2 (en) Rhenium recovery method
JP6111976B2 (en) Precious metal recovery method
JP5987244B1 (en) Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals
JP2004285368A (en) Method for refining cobalt aqueous solution
EP1468122B1 (en) Method for the separation of zinc and nickel in the presence of chloride ions
AU2015234654B2 (en) Method for pre-treating gold ore
RU2437836C1 (en) Method of extracting and cleaning rhenium from solutions from processing heat-resistant alloys
JP2009102672A (en) Method for recovering metal from aqueous metal complex solution
US20180111888A1 (en) Conversion of natural gas into clean liquid fuels
RU2285662C2 (en) METHOD OF SEDIMENTATION OF THE ELEMENTARY SELENIUM FROM THE ACID SOLUTIONS CONTAINING Se(VI)
AU2012321049A2 (en) Improvements in recovery of metals from ores
JP4974995B2 (en) Method for removing polysulfide ions from basic aqueous solutions
TWI532682B (en) System for removing hydrogen peroxide from ammonia-nitrogen wastewater and the method thereof
JP2019007052A (en) Method for recovering deposit containing platinum element
JPH0194998A (en) Photochemical treatment of waste water
JP2011178582A (en) Method for purifying alkali tungstate solution
JP4296289B2 (en) Method for removing mercury in sulfuric acid
AU2015234654A1 (en) Method for pre-treating gold ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160721

R150 Certificate of patent or registration of utility model

Ref document number: 5987239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250