JP2013221135A - Polysiloxane compound and moisture-curable resin composition - Google Patents

Polysiloxane compound and moisture-curable resin composition Download PDF

Info

Publication number
JP2013221135A
JP2013221135A JP2012095153A JP2012095153A JP2013221135A JP 2013221135 A JP2013221135 A JP 2013221135A JP 2012095153 A JP2012095153 A JP 2012095153A JP 2012095153 A JP2012095153 A JP 2012095153A JP 2013221135 A JP2013221135 A JP 2013221135A
Authority
JP
Japan
Prior art keywords
general formula
carbon atoms
compound
compound represented
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095153A
Other languages
Japanese (ja)
Other versions
JP5930826B2 (en
Inventor
Kenichiro Hiwatari
謙一郎 日渡
Tomoaki Saiki
智秋 斉木
Kenta Masuda
健太 升田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2012095153A priority Critical patent/JP5930826B2/en
Publication of JP2013221135A publication Critical patent/JP2013221135A/en
Application granted granted Critical
Publication of JP5930826B2 publication Critical patent/JP5930826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polysiloxane compound useful for a curable resin composition giving a cured product having excellent heat-resistance and adhesiveness, and a moisture-curable resin composition containing the compound.SOLUTION: There is provided a polysiloxane compound expressed by general formula (1) (in the formula, Rto Rare each independently 1-4C alkyl or 6-10C aryl; Rand Rare each independently 1-4C alkyl; Xis 1-4C alkyl, 6-10C aryl or 1-4C alkoxyl; (a) is a number to allow the compound expressed by general formula (1) to have a mass-average molecular weight of 2,000 to 1,000,000; and b is 0 or 1).

Description

本発明は、耐熱性、粘着性に優れた湿気硬化性樹脂組成物に有用なポリシロキサン化合物、および、それを含有する湿気硬化性樹脂組成物に関する。   The present invention relates to a polysiloxane compound useful for a moisture curable resin composition excellent in heat resistance and adhesiveness, and a moisture curable resin composition containing the same.

分子末端に加水分解性シリル基を有する高分子化合物を含有する組成物は、大気中の水分等により常温でも硬化可能であり、特に主鎖がポリオキシアルキレン鎖やポリシロキサン鎖であるものは可撓性に優れることから、建築用のシール材、コーティング材、電気、電子部品の封止材料、ポッティング材料、自動車用、建築用、電気電子用の接着剤等の用途に広く使用されている(特許文献1〜2を参照)。   A composition containing a polymer compound having a hydrolyzable silyl group at the molecular end can be cured at room temperature with moisture in the atmosphere, and particularly those whose main chain is a polyoxyalkylene chain or a polysiloxane chain are acceptable. Because of its excellent flexibility, it is widely used for building sealing materials, coating materials, electrical and electronic component sealing materials, potting materials, automotive, architectural, electrical and electronic adhesives, etc. ( (See Patent Documents 1 and 2).

特開平05−279570号公報JP 05-279570 A 特開平07−003159号公報JP 07-003159 A

しかしながら、分子末端に加水分解性シリル基を有する高分子化合物のうち、ポリオキシアルキレンを主鎖とするものは、粘着性に優れるが、耐熱性が不十分であり、ポリシロキサンを主鎖とするものは、耐熱性に優れるが、粘着性が不十分という問題がある。
発熱体の周囲の接着やシーリングでは、耐熱性と粘着性の両方が要求されるが、従来知られた分子末端に加水分解性シリル基を有する高分子化合物を含有する組成物では、耐熱性と粘着性の両方が優れたものはなかった。
However, among the polymer compounds having a hydrolyzable silyl group at the molecular terminal, those having polyoxyalkylene as the main chain are excellent in adhesiveness but have insufficient heat resistance and have polysiloxane as the main chain. Although the thing is excellent in heat resistance, there exists a problem that adhesiveness is inadequate.
In the adhesion and sealing around the heating element, both heat resistance and tackiness are required. However, in a composition containing a polymer compound having a hydrolyzable silyl group at a molecular end known in the past, heat resistance and None of them were excellent in both stickiness.

そこで本発明の目的は、耐熱性と粘着性とに優れた硬化物を得ることのできる硬化性樹脂組成物に有用なポリシロキサン化合物、およびそれを含有する湿気硬化性樹脂組成物を提供することにある。   Accordingly, an object of the present invention is to provide a polysiloxane compound useful for a curable resin composition capable of obtaining a cured product excellent in heat resistance and adhesiveness, and a moisture curable resin composition containing the same. It is in.

本発明者らは、上記課題を解決すべく検討を進めた結果、同一分子において末端のアルコキシ基の数が異なるポリシロキサン化合物を使用することにより、耐熱性と粘着性に優れた湿気硬化性樹脂組成物が得られることを見出し、本発明を完成するに至った。   As a result of investigations to solve the above-mentioned problems, the present inventors have used a polysiloxane compound having a different number of terminal alkoxy groups in the same molecule, thereby providing a moisture curable resin excellent in heat resistance and adhesiveness. The present inventors have found that a composition can be obtained and have completed the present invention.

即ち本発明のポリシロキサン化合物は、下記一般式(1)で表されることを特徴とするものである。

Figure 2013221135
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R及びRは各々独立して炭素数1〜4のアルキル基を表し、Xは炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表し、aは、一般式(1)で表される化合物の質量平均分子量を2000〜100万とする数を表し、bは0又は1を表す。) That is, the polysiloxane compound of the present invention is represented by the following general formula (1).
Figure 2013221135
(In the formula, R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 5 and R 6 each independently represent one having 1 to 4 carbon atoms. Represents an alkyl group, X 1 represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and a is a compound represented by the general formula (1) Represents a number with a mass average molecular weight of 2000 to 1,000,000, and b represents 0 or 1.)

本発明の湿気硬化性樹脂組成物は、(A)成分として前記一般式(1)で表されるシロキサン化合物、及び(B)成分として硬化触媒を含有することを特徴とするものである。   The moisture curable resin composition of the present invention is characterized by containing a siloxane compound represented by the general formula (1) as the component (A) and a curing catalyst as the component (B).

本発明の湿気硬化性樹脂組成物は、更に、(C)成分として下記一般式(2)で表されるシロキサン化合物を含有することが好ましい。

Figure 2013221135
(式中、R〜R10は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R11は炭素数1〜4のアルキル基を表し、Xは炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表し、cは、一般式(2)で表される化合物の質量平均分子量を1000〜100万とする数を表し、d及びeは各々独立して0又は1を表す。) The moisture curable resin composition of the present invention preferably further contains a siloxane compound represented by the following general formula (2) as the component (C).
Figure 2013221135
(Wherein R 7 to R 10 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 11 represents an alkyl group having 1 to 4 carbon atoms, and X 2 Represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and c represents a mass average molecular weight of the compound represented by the general formula (2) from 1000 to 1000. (The number is 1 million, and d and e each independently represent 0 or 1.)

本発明の湿気硬化性樹脂組成物は、更に、(D)成分として下記一般式(3)で表されるシロキサン化合物を含有することが好ましい。

Figure 2013221135
(式中、R12〜R17は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R18は炭素数1〜4のアルキル基を表し、fは、一般式(3)で表される化合物の質量平均分子量を1000〜100万とする数を表し、g及びhは各々独立に0又は1を表す。) The moisture curable resin composition of the present invention preferably further contains a siloxane compound represented by the following general formula (3) as the component (D).
Figure 2013221135
(Wherein R 12 to R 17 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 18 represents an alkyl group having 1 to 4 carbon atoms, and f is And represents a number in which the mass average molecular weight of the compound represented by the general formula (3) is 1,000 to 1,000,000, and g and h each independently represent 0 or 1.)

本発明により、耐熱性と粘着性とに優れた湿気硬化性樹脂組成物に有用なポリシロキサン化合物、およびそれを含有する湿気硬化性樹脂組成物を提供することが可能となる。   According to the present invention, it is possible to provide a polysiloxane compound useful for a moisture curable resin composition excellent in heat resistance and adhesiveness, and a moisture curable resin composition containing the same.

本発明の前記一般式(1)で表されるポリシロキサン化合物は、分子の両末端にアルコキシ基を有し、末端のアルコキシ基の数が非対称であるところに特徴がある。以下、前記一般式(1)で表されるポリシロキサン化合物について説明する。   The polysiloxane compound represented by the general formula (1) of the present invention is characterized in that it has alkoxy groups at both ends of the molecule, and the number of alkoxy groups at the ends is asymmetric. Hereinafter, the polysiloxane compound represented by the general formula (1) will be described.

前記一般式(1)において、R〜Rは各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表す。炭素数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル等が挙げられ、炭素数6〜10のアリール基としては、フェニル、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2,4−ジメチルフェニル、2,6−ジメチルフェニル、2,4,6−トリメチルフェニル、4−t−ブチルフェニル、ナフチル等が挙げられ、好ましくは炭素原子数1〜4のアルキル基で置換されたフェニル基又は無置換のフェニル基である。R及びRはそれぞれ、すべて同一の基でもよいし、異なる基の組合せでもよい。R及びRとしては、粘着性の点からは、炭素数1〜4のアルキル基が好ましく、メチルが更に好ましく、耐熱性の点からは炭素数6〜10のアリール基が好ましく、フェニルが更に好ましい。 In the general formula (1), R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, and isobutyl, and examples of the aryl group having 6 to 10 carbon atoms include phenyl, 2- Examples include methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,6-dimethylphenyl, 2,4,6-trimethylphenyl, 4-t-butylphenyl, naphthyl, and the like. Is a phenyl group substituted with an alkyl group having 1 to 4 carbon atoms or an unsubstituted phenyl group. Each of R 1 and R 2 may be the same group or a combination of different groups. R 1 and R 2 are preferably an alkyl group having 1 to 4 carbon atoms from the viewpoint of tackiness, more preferably methyl, and an aryl group having 6 to 10 carbon atoms is preferable from the viewpoint of heat resistance, and phenyl is Further preferred.

及びRのうちの、アリール基の割合があまりに多い場合には、硬化物の粘着性が低下することから、R及びRは、炭素数1〜4のアルキル基と炭素数6〜10のアリール基の組合せであることが好ましく、R及びRのうち、炭素数6〜10のアリール基の割合は、1〜40モル%であることが好ましく、3〜30モル%であることが更に好ましく、10〜25モル%であることが最も好ましい。R及びRとしては、原料の入手が容易であり、原料の反応性も良好であることから、メチルが好ましい。 When the ratio of the aryl group in R 1 and R 2 is too large, the tackiness of the cured product is lowered, so that R 1 and R 2 are an alkyl group having 1 to 4 carbon atoms and 6 carbon atoms. Is preferably a combination of 10 to 10 aryl groups, and the ratio of 6 to 10 aryl groups in R 1 and R 2 is preferably 1 to 40 mol%, and 3 to 30 mol%. More preferably, it is most preferably 10 to 25 mol%. As R 3 and R 4 , methyl is preferable because the raw materials are easily available and the reactivity of the raw materials is good.

及びRは各々独立して炭素数1〜4のアルキル基を表す。炭素数1〜4のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第2ブチル、第3ブチル、イソブチル等が挙げられる。R及びRとしては加水分解反応が容易に起こることから、メチル、エチル、プロピルが好ましく、メチル、エチルが更に好ましい。 R 5 and R 6 each independently represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, secondary butyl, tertiary butyl, and isobutyl. R 3 and R 4 are preferably methyl, ethyl, and propyl, and more preferably methyl and ethyl, because a hydrolysis reaction easily occurs.

は、炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表す。炭素数1〜4のアルキル基、炭素数6〜10のアリール基としては、R及びRで例示した基が挙げられる。また、炭素数1〜4のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、第2ブトキシ、第3ブトキシ、イソブトキシ等が挙げられる。Xとしては、硬化物の粘着性が向上することから、炭素数1〜4のアルコキシ基が好ましく、加水分解性が良好であることから、メトキシ、エトキシが更に好ましい。 X 1 represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 and R 2 . Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy, ethoxy, propoxy, isopropoxy, butoxy, second butoxy, third butoxy, isobutoxy and the like. X 1 is preferably an alkoxy group having 1 to 4 carbon atoms because the tackiness of the cured product is improved, and methoxy and ethoxy are more preferable because hydrolyzability is good.

一般式(1)において、aは、一般式(1)で表される化合物の質量平均分子量を2000〜100万とする数を表す。一般式(1)で表される化合物の質量平均分子量が2000よりも小さい場合には、得られる硬化物の粘着性が不十分となり、100万よりも大きい場合には高粘度になりハンドリング性が低下する。一般式(1)で表される化合物の質量平均分子量は、2500〜5万が好ましく、3000〜3万が更に好ましく、3500〜1万が最も好ましい。尚、本発明において、質量平均分子量とは、テトラヒドロフランを溶媒としてGPC(Gel Permeation Chromatography、ゲル浸透クロマトグラフィーともいう)分析を行った場合のポリスチレン換算の質量平均分子量をいう。bは0又は1を表し、製造が容易であることから、bは0が好ましい。   In General formula (1), a represents the number which makes the mass mean molecular weight of the compound represented by General formula (1) 2000-1 million. When the mass average molecular weight of the compound represented by the general formula (1) is smaller than 2000, the obtained cured product has insufficient tackiness, and when it is larger than 1 million, the viscosity becomes high and handling properties are increased. descend. The mass average molecular weight of the compound represented by the general formula (1) is preferably 2500 to 50,000, more preferably 3000 to 30,000, and most preferably 3500 to 10,000. In the present invention, the mass average molecular weight means a mass average molecular weight in terms of polystyrene when GPC (Gel Permeation Chromatography, also called gel permeation chromatography) analysis is performed using tetrahydrofuran as a solvent. b represents 0 or 1, and b is preferably 0 because production is easy.

一般式(1)で表される化合物のうちbが0である化合物は、アルコール化合物を出発物質として、環状シロキサン化合物を、触媒を用いて開環重合して下記一般式(1a)で表される中間体ポリマーを合成し、この中間体ポリマーの末端にトリアルコキシシラン化合物又はテトラアルコキシシラン化合物を反応させることにより得ることができる。

Figure 2013221135
(式中、R、R、R及びaは、一般式(1)と同義である。) Among the compounds represented by the general formula (1), a compound in which b is 0 is represented by the following general formula (1a) by ring-opening polymerization of a cyclic siloxane compound using a catalyst with an alcohol compound as a starting material. An intermediate polymer is synthesized, and the end of the intermediate polymer is reacted with a trialkoxysilane compound or a tetraalkoxysilane compound.
Figure 2013221135
(Wherein, R 1, R 2, R 5 and a are as in formula (1) synonymous.)

上記一般式(1a)で表される化合物の出発物質としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、第2ブタノール、第3ブタノール、イソブタノール等の炭素数1〜4のアルコール化合物が挙げられる。   Examples of the starting material of the compound represented by the general formula (1a) include alcohol compounds having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol, second butanol, third butanol, and isobutanol. .

上記開環重合の触媒としては、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、硫酸化ジルコニア等の酸触媒;水酸化リチウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド等の塩基触媒が挙げられ、分子量のコントロールが容易であることから塩基触媒が好ましく、工業的な入手の容易さから水酸化ナトリウム、水酸化カリウムが更に好ましい。触媒に塩基触媒を用いる場合には、副生成物の含量が低減できることから、前記のアルコール化合物を、塩基触媒のアルコラートにしてから用いることが好ましい。   Examples of the ring-opening polymerization catalyst include sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, sulfated zirconia, and other acid catalysts; lithium hydroxide, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, and other basic catalysts. The base catalyst is preferable because of easy control of the molecular weight, and sodium hydroxide and potassium hydroxide are more preferable from the viewpoint of industrial availability. When a base catalyst is used as the catalyst, the content of by-products can be reduced. Therefore, it is preferable to use the alcohol compound after converting it to an alcoholate of the base catalyst.

上記環状シロキサン化合物としては、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、2,4,6−トリメチル−2,4,6−トリフェニルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、オクタエチルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサン、2,4,6,8−テトラメチル−2,4,6,8−テトラフェニルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、デカエチルシクロペンタシロキサン、デカフェニルシクロペンタシロキサン、2,4,6,8,10−ペンタメチル−2,4,6,8,10−ペンタフェニルシクロペンタシロキサン、ウンデカメチルシクロヘキサシロキサン等が挙げられ、工業的に入手が容易であることから、オクタメチルシクロテトラシロキサン、オクタエチルシクロテトラシロキサン、オクタフェニルシクロテトラシロキサンが好ましい。   Examples of the cyclic siloxane compound include hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, 2,4,6-trimethyl-2,4,6-triphenylcyclotrisiloxane, and octamethylcyclotetrasiloxane. , Octaethylcyclotetrasiloxane, octaphenylcyclotetrasiloxane, 2,4,6,8-tetramethyl-2,4,6,8-tetraphenylcyclotetrasiloxane, decamethylcyclopentasiloxane, decaethylcyclopentasiloxane, Decaphenylcyclopentasiloxane, 2,4,6,8,10-pentamethyl-2,4,6,8,10-pentaphenylcyclopentasiloxane, undecamethylcyclohexasiloxane, etc. are listed and are commercially available. Because it is easy, octamethylcyclotetrasiloxane, octaethyl cyclotetrasiloxane, is octaphenylcyclotetrasiloxane preferred.

上記開環重合の反応温度は80〜250℃が好ましく、100〜200℃が更に好ましく、120〜180℃が最も好ましい。上記開環重合は、必要に応じて、ジブチルエーテル、トルエン、キシレン等を溶媒として使用してもよい。   The reaction temperature of the ring-opening polymerization is preferably 80 to 250 ° C, more preferably 100 to 200 ° C, and most preferably 120 to 180 ° C. In the above ring-opening polymerization, dibutyl ether, toluene, xylene or the like may be used as a solvent, if necessary.

前記中間体ポリマーに反応させるトリアルコキシシラン化合物又はテトラアルコキシシラン化合物としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。   Examples of trialkoxysilane compounds or tetraalkoxysilane compounds to be reacted with the intermediate polymer include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, and phenyl. Examples include trimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane.

前記中間体ポリマーとトリアルコキシシラン化合物又はテトラアルコキシシラン化合物との反応では、触媒を用いることが好ましい。触媒としては、ジブチルスズジメトキサイド、ジブチルスズジアセテート、ジブチルスズジオクテート、ジブチルスズジラウレート、ジメチルスズジメトキサイド、ジメチルスズアセテート等の有機スズ化合物;テトラプロピルチタネート、テトラブチルチタネート、テトラ−2−エチルヘキシルチタネート、ジメトキシチタンジアセチルアセトナート、ジイソプロポキシチタンジアセチルアセトナート等の有機チタン化合物;ヘキシルアミン、3−アミノプロピルトリメトキシシラン、テトラメチルグアニジルプロピルトリメトキシシラン等のアミン化合物又はその塩;ギ酸、酢酸、プロピオン酸、ブタン酸等の低級脂肪族カルボン酸;アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシム等のオキシム化合物;アルミニウムメトキシドジ(エチルアセトアセトナート)、アルミニウムイソプロポキシドジ(エチルアセトアセトナート)、アルミニウムトリ(エチルアセトアセトナート)等のアルミニウム錯体等が挙げられ、副反応が少ないことからアミン化合物又はその塩が好ましい。触媒の使用量は、前記中間体ポリマー100質量部に対して0.001〜5質量部以下が好ましく、0.005〜3質量部が更に好ましく、0.01〜1質量部が最も好ましい。反応温度は、触媒の種類や使用量によって変わるが、50〜150℃が好ましい。   In the reaction of the intermediate polymer with the trialkoxysilane compound or the tetraalkoxysilane compound, it is preferable to use a catalyst. Catalysts include organotin compounds such as dibutyltin dimethoxide, dibutyltin diacetate, dibutyltin dioctate, dibutyltin dilaurate, dimethyltin dimethoxide, dimethyltin acetate; tetrapropyl titanate, tetrabutyl titanate, tetra-2-ethylhexyl titanate Organic titanium compounds such as dimethoxytitanium diacetylacetonate and diisopropoxytitanium diacetylacetonate; amine compounds such as hexylamine, 3-aminopropyltrimethoxysilane and tetramethylguanidylpropyltrimethoxysilane or salts thereof; formic acid, Lower aliphatic carboxylic acids such as acetic acid, propionic acid, butanoic acid; oxime compounds such as acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime; Examples include aluminum complexes such as minium methoxide di (ethyl acetoacetonate), aluminum isopropoxide di (ethyl acetoacetonate), aluminum tri (ethyl acetoacetonate), etc. Since there are few side reactions, amine compounds or their salts preferable. The amount of the catalyst used is preferably 0.001 to 5 parts by mass, more preferably 0.005 to 3 parts by mass, and most preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the intermediate polymer. The reaction temperature varies depending on the type of catalyst and the amount used, but is preferably 50 to 150 ° C.

一般式(1)で表される化合物のうちbが1である化合物は、前記一般式(1a)で表される中間体ポリマーに、下記一般式(1b)で表されるビニルクロロシラン化合物を反応させて、下記一般式(1c)で表される中間体ポリマーとし、下記一般式(1c)で表される中間体ポリマーのビニル基に、下記一般式(1d)で表されるシラン化合物をヒドロシリル化反応させる方法により得ることができる。

Figure 2013221135
(式中、R及びRは、一般式(1)と同義である。)
Figure 2013221135
(式中、R〜R及びaは、一般式(1)と同義である。)
Figure 2013221135
(式中、R及びXは、一般式(1)と同義である。) Among the compounds represented by the general formula (1), the compound in which b is 1 is reacted with the vinyl chlorosilane compound represented by the following general formula (1b) to the intermediate polymer represented by the general formula (1a). Then, the intermediate polymer represented by the following general formula (1c) is used, and the silane compound represented by the following general formula (1d) is hydrosilylated to the vinyl group of the intermediate polymer represented by the following general formula (1c). It can obtain by the method of making it react.
Figure 2013221135
(In the formula, R 3 and R 4 have the same meaning as in general formula (1).)
Figure 2013221135
(In formula, R < 1 > -R < 5 > and a are synonymous with General formula (1).)
Figure 2013221135
(In the formula, R 6 and X 1 have the same meaning as in general formula (1).)

前記一般式(1a)で表される中間体ポリマーと前記一般式(1b)で表されるビニルクロロシラン化合物との反応では、ピリジン、ピコリン等の塩基性有機溶媒の存在下に、前記一般式(1a)で表される中間体ポリマーの末端のシラノール基に前記一般式(1b)で表されるビニルクロロシラン化合物のクロロシリル基を反応させることにより、前記一般式(1c)で表される中間体ポリマーが得られる。前記一般式(1b)で表されるビニルクロロシラン化合物としては、ジメチルビニルクロロシラン、エチルメチルビニルクロロシラン、ジエチルビニルクロロシラン、メチルフェニルビニルクロロシラン、エチルフェニルビニルクロロシラン、ジフェニルビニルクロロシラン等が挙げられる。   In the reaction of the intermediate polymer represented by the general formula (1a) and the vinylchlorosilane compound represented by the general formula (1b), the above general formula (1) is used in the presence of a basic organic solvent such as pyridine and picoline. The intermediate polymer represented by the general formula (1c) by reacting the chlorosilyl group of the vinylchlorosilane compound represented by the general formula (1b) with the silanol group at the end of the intermediate polymer represented by 1a) Is obtained. Examples of the vinylchlorosilane compound represented by the general formula (1b) include dimethylvinylchlorosilane, ethylmethylvinylchlorosilane, diethylvinylchlorosilane, methylphenylvinylchlorosilane, ethylphenylvinylchlorosilane, diphenylvinylchlorosilane, and the like.

前記一般式(1c)で表される中間体ポリマーと前記一般式(1d)で表されるシラン化合物のヒドロシリル化反応では、白金系触媒を用いることが好ましい。白金系触媒としては、例えば、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金−オレフィン錯体、白金−カルボニルビニルメチル錯体(Ossko触媒)、白金−ジビニルテトラメチルシロキサン錯体(KaRstedt触媒)、白金−シクロビニルメチルシロキサン錯体、白金−オクチルアルデヒド錯体、白金−ホスフィン錯体(例えば、Pt[P(C、PtCl[P(C、Pt[P(C]、白金−ホスファイト錯体(例えば、Pt[P(OC)、Pt[P(OC)、ジカルボニルジクロロ白金等が挙げられる。触媒の使用量は反応性の点から、各原料の合計量の5質量%以下が好ましく、0.0001〜1.0質量%が更に好ましく、0.001〜0.1質量%が最も好ましい。反応温度は、室温(25℃)〜130℃で行なうのが好ましく、反応時にトルエン、ヘキサン、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等の従来公知の溶媒を使用してもよい。 In the hydrosilylation reaction of the intermediate polymer represented by the general formula (1c) and the silane compound represented by the general formula (1d), it is preferable to use a platinum-based catalyst. Examples of the platinum-based catalyst include chloroplatinic acid, complexes of chloroplatinic acid and alcohol, aldehyde, ketone, platinum-olefin complex, platinum-carbonylvinylmethyl complex (Ossko catalyst), platinum-divinyltetramethylsiloxane complex ( KaRstedt catalyst), platinum-cyclovinylmethylsiloxane complex, platinum-octylaldehyde complex, platinum-phosphine complex (eg, Pt [P (C 6 H 5 ) 3 ] 4 , PtCl [P (C 6 H 5 ) 3 ] 3 , Pt [P (C 4 H 9 ) 3 ) 4 ], platinum-phosphite complexes (eg, Pt [P (OC 6 H 5 ) 3 ] 4 ), Pt [P (OC 4 H 9 ) 3 ] 4 ) , Dicarbonyldichloroplatinum and the like. From the viewpoint of reactivity, the amount of the catalyst used is preferably 5% by mass or less, more preferably 0.0001 to 1.0% by mass, and most preferably 0.001 to 0.1% by mass of the total amount of each raw material. The reaction temperature is preferably room temperature (25 ° C.) to 130 ° C., and a conventionally known solvent such as toluene, hexane, methyl isobutyl ketone, cyclopentanone, propylene glycol monomethyl ether acetate may be used during the reaction.

前記一般式(1d)で表されるシラン化合物としては、メチルジメトキシシラン、メチルジエトキシシラン、エチルジメトキシシラン、エチルジエトキシシラン、プロピルジメトキシシラン、ブチルジメトキシシラン、フェニルジメトキシシラン、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリブトキシシラン等が挙げられる。   Examples of the silane compound represented by the general formula (1d) include methyldimethoxysilane, methyldiethoxysilane, ethyldimethoxysilane, ethyldiethoxysilane, propyldimethoxysilane, butyldimethoxysilane, phenyldimethoxysilane, trimethoxysilane, and trimethoxysilane. Examples include ethoxysilane, tripropoxysilane, and tributoxysilane.

前記一般式(1)で表されるポリシロキサン化合物は、湿気硬化性樹脂組成物のベース樹脂として有用であり、(A)成分として前記一般式(1)で表されるシロキサン化合物、及び(B)成分として硬化触媒を含有する組成物は、湿気硬化性樹脂組成物として好適に使用できる。本発明の湿気硬化性樹脂組成物の(B)成分の硬化触媒としては、ジブチルスズジラウリレート、ジオクチルスズジマレート、ジブチルスズフタレート、オクチル酸第一スズ、ジブチルスズジアセテート、ジブチルスズ塩とオルトケイ酸エチルとの反応生成物等の有機スズ化合物;テトラブチルチタネート、テトライソプロピルチタネート、トリエタノールアミンチタネート、チタニウムテトラキス(エチレングリコールモノメチルエーテル)、チタニウムテトラキス(エチレングリコールモノエチルエーテル)、チタニウムテトラキス(エチレングリコールモノブチルエーテル)等のチタン化合物;ジルコニウム(アセチルアセトン)、ジルコニウムトリス(アセチルアセトン)、ジルコニウムテトラキス(エチレングリコールモノメチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノエチルエーテル)、ジルコニウムテトラキス(エチレングリコールモノブチルエーテル)などの有機ジルコニウム化合物;オクチル酸鉛、ナフテン酸鉛、ナフテン酸ニッケル、ナフテン酸コバルト等のカルボン酸金属塩;アルミニウムアセチルアセテート錯体等の金属アセチルアセテート錯体;バナジウムアセチルアセトナート錯体等の金属アセチルアセトナート錯体等が挙げられ、反応性に優れ、毒性も少ないことから、チタン化合物が好ましい。   The polysiloxane compound represented by the general formula (1) is useful as a base resin of a moisture curable resin composition, and the siloxane compound represented by the general formula (1) as a component (A) and (B The composition containing a curing catalyst as a component can be suitably used as a moisture curable resin composition. As a curing catalyst of the component (B) of the moisture curable resin composition of the present invention, dibutyltin dilaurate, dioctyltin dimaleate, dibutyltin phthalate, stannous octylate, dibutyltin diacetate, dibutyltin salt and ethyl orthosilicate Organic tin compounds such as reaction products of: tetrabutyl titanate, tetraisopropyl titanate, triethanolamine titanate, titanium tetrakis (ethylene glycol monomethyl ether), titanium tetrakis (ethylene glycol monoethyl ether), titanium tetrakis (ethylene glycol monobutyl ether) Titanium compounds such as: zirconium (acetylacetone), zirconium tris (acetylacetone), zirconium tetrakis (ethylene glycol monomethyl) Organic) zirconium compounds such as zirconium tetrakis (ethylene glycol monoethyl ether) and zirconium tetrakis (ethylene glycol monobutyl ether); metal carboxylates such as lead octylate, lead naphthenate, nickel naphthenate and cobalt naphthenate; aluminum Examples thereof include metal acetyl acetate complexes such as acetyl acetate complexes; metal acetylacetonate complexes such as vanadium acetylacetonate complexes, etc. Titanium compounds are preferred because of excellent reactivity and low toxicity.

本発明の湿気硬化性樹脂組成物の(B)成分である硬化触媒の量があまりに少ない場合には、硬化不足になる場合があり、またあまりに多い場合は、配合量に見合う増量効果は得られないばかりか、却って耐熱性等の物性に悪影響を及ぼすことがあることから硬化触媒は、本発明の湿気硬化性樹脂組成物100質量部に対して0.005〜10質量が好ましく、0.01〜7質量部が更に好ましく、0.1〜5質量部が最も好ましい。   When the amount of the curing catalyst that is the component (B) of the moisture curable resin composition of the present invention is too small, curing may be insufficient, and when it is too large, an effect of increasing the amount corresponding to the blending amount is obtained. In addition, since the curing catalyst may adversely affect physical properties such as heat resistance, the curing catalyst is preferably 0.005 to 10 parts by mass with respect to 100 parts by mass of the moisture curable resin composition of the present invention. -7 mass parts is still more preferable, and 0.1-5 mass parts is the most preferable.

本発明の湿気硬化性樹脂組成物は、硬化性が向上することから、更に、下記一般式(2)で表されるシロキサン化合物を含有することが好ましい。

Figure 2013221135
(式中、R〜R10は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R11は炭素数1〜4のアルキル基を表し、Xは炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表し、cは、一般式(2)で表される化合物の質量平均分子量を1000〜100万とする数を表し、d及びeは各々独立して0又は1を表す。) The moisture curable resin composition of the present invention preferably further contains a siloxane compound represented by the following general formula (2) because the curability is improved.
Figure 2013221135
(Wherein R 7 to R 10 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 11 represents an alkyl group having 1 to 4 carbon atoms, and X 2 Represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and c represents a mass average molecular weight of the compound represented by the general formula (2) from 1000 to 1000. (The number is 1 million, and d and e each independently represent 0 or 1.)

前記一般式(2)において、R〜R10は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表す。炭素数1〜4のアルキル基及び又は炭素数6〜10のアリール基としては、前記一般式(1)のR及びRで例示した基等が挙げられる。R及びRはそれぞれ、すべて同一の基でもよいし、異なる基の組合せでもよい。粘着性の点からは、炭素数1〜4のアルキル基が好ましく、メチルが更に好ましく、耐熱性の点からは炭素数6〜10のアリール基が好ましく、フェニルが更に好ましい。R及びRのうちの、アリール基の割合があまりに多い場合には、硬化物の粘着性が低下することから、R及びRは、炭素数1〜4のアルキル基と炭素数6〜10のアリール基の組合せであることが好ましく、R及びRのうち、炭素数6〜10のアリール基の割合は、1〜40モル%であることが好ましく、3〜30モル%であることが更に好ましく、10〜25モル%であることが最も好ましい。R及びR10としては、原料の入手が容易であり、原料の反応性も良好であることから、メチルが好ましい。 In the general formula (2) represents the R 7 to R 10 are each independently an alkyl group or an aryl group having 6 to 10 carbon atoms having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and / or the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 and R 2 in the general formula (1). Each of R 7 and R 8 may be the same group or a combination of different groups. From the viewpoint of tackiness, an alkyl group having 1 to 4 carbon atoms is preferable, methyl is more preferable, and from the viewpoint of heat resistance, an aryl group having 6 to 10 carbon atoms is preferable, and phenyl is more preferable. When the ratio of the aryl group in R 7 and R 8 is too large, the adhesiveness of the cured product is lowered. Therefore, R 7 and R 8 are an alkyl group having 1 to 4 carbon atoms and 6 carbon atoms. Is preferably a combination of 10 to 10 aryl groups, and the ratio of aryl groups having 6 to 10 carbon atoms in R 7 and R 8 is preferably 1 to 40 mol%, and 3 to 30 mol%. More preferably, it is most preferably 10 to 25 mol%. R 9 and R 10 are preferably methyl because the raw materials are easily available and the reactivity of the raw materials is good.

11は炭素数1〜4のアルキル基を表す。炭素数1〜4のアルキル基としては、前記一般式(1)のR及びRで例示した基等が挙げられる。R11としては、加水分解反応が容易に起こることから、メチル、エチル、プロピルが好ましく、メチル、エチルが更に好ましい。 R 11 represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include groups exemplified for R 5 and R 6 in the general formula (1). R 11 is preferably methyl, ethyl, or propyl, and more preferably methyl or ethyl, because a hydrolysis reaction easily occurs.

は炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表す。炭素数1〜4のアルキル基、炭素数6〜10のアリール基及び炭素数1〜4のアルコキシ基としては、前記一般式(1)のXで例示した基等が挙げられる。Xとしては、加水分解性が良好であることから、メチル、エチル、メトキシ、エトキシが好ましく、本発明の湿気硬化性樹脂組成物の保存安定性が良好であることから、メチル、エチルが更に好ましい。 X 2 represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms, the aryl group having 6 to 10 carbon atoms, and the alkoxy group having 1 to 4 carbon atoms include the groups exemplified for X 1 in the general formula (1). X 2 is preferably methyl, ethyl, methoxy, or ethoxy since hydrolyzability is good, and the storage stability of the moisture-curable resin composition of the present invention is good, so that methyl and ethyl are further added. preferable.

一般式(2)において、cは、一般式(2)で表される化合物の質量平均分子量を1000〜100万とする数を表す。一般式(2)で表される化合物の質量平均分子量が1000よりも小さい場合には、得られる硬化物の粘着性が不十分となり、100万よりも大きい場合には高粘度になりハンドリング性が低下する。一般式(2)で表される化合物の質量平均分子量は、1500〜5万が好ましく、2000〜3万が更に好ましく、2500〜1万が最も好ましい。d及びeは0又は1を表し、簡便な工程で製造できることからd及びeは0が好ましい。   In General formula (2), c represents the number which makes the mass mean molecular weight of the compound represented by General formula (2) 1000-1 million. When the mass average molecular weight of the compound represented by the general formula (2) is smaller than 1000, the obtained cured product has insufficient tackiness, and when it is larger than 1 million, the viscosity becomes high and handling properties are increased. descend. The mass average molecular weight of the compound represented by the general formula (2) is preferably 1500 to 50,000, more preferably 2000 to 30,000, and most preferably 2500 to 10,000. d and e represent 0 or 1, and d and e are preferably 0 because they can be produced by a simple process.

本発明の湿気硬化性樹脂組成物において、(C)成分の含量があまりに少ない場合は、十分な効果を発揮できず、またあまりに多い場合は、硬化物の粘着性が低下することがあることから、(C)成分の含量は(A)成分100質量部に対して、0.05〜15質量部が好ましく、0.2〜10質量部が更に好ましく、0.3〜5質量部が最も好ましい。   In the moisture curable resin composition of the present invention, when the content of the component (C) is too small, a sufficient effect cannot be exhibited, and when it is too large, the adhesiveness of the cured product may be lowered. The content of component (C) is preferably 0.05 to 15 parts by mass, more preferably 0.2 to 10 parts by mass, and most preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of component (A). .

一般式(2)で表されるシロキサン化合物のうち、d及びeが0である化合物は、下記一般式(2a)で表される中間体ポリマーの末端のシラノール基にトリアルコキシシラン化合物又はテトラアルコキシシラン化合物を反応させることにより得ることができる。

Figure 2013221135
(式中、R、R及びcは、一般式(2)と同義である。) Among the siloxane compounds represented by the general formula (2), a compound in which d and e are 0 is a trialkoxysilane compound or a tetraalkoxy group in the terminal silanol group of the intermediate polymer represented by the following general formula (2a). It can be obtained by reacting a silane compound.
Figure 2013221135
(In formula, R < 7 >, R < 8 > and c are synonymous with General formula (2).)

一般式(2a)で表される中間体ポリマーとトリアルコキシシラン化合物又はテトラアルコキシシラン化合物との反応は、前述した一般式(1a)で表される中間体ポリマーとトリアルコキシシラン化合物又はテトラアルコキシシラン化合物との反応と同様に行えばよく、トリアルコキシシラン化合物又はテトラアルコキシシラン化合物としては、一般式(1a)で表される中間体ポリマーとの反応で例示したトリアルコキシシラン化合物又はテトラアルコキシシラン化合物が挙げられる。   The reaction between the intermediate polymer represented by the general formula (2a) and the trialkoxysilane compound or the tetraalkoxysilane compound is performed by reacting the intermediate polymer represented by the general formula (1a) with the trialkoxysilane compound or the tetraalkoxysilane. The trialkoxysilane compound or tetraalkoxysilane compound or tetraalkoxysilane compound exemplified in the reaction with the intermediate polymer represented by the general formula (1a) may be used in the same manner as the reaction with the compound. Is mentioned.

前記一般式(2a)で表される中間体ポリマーは、ジクロロシラン化合物又はジアルコキシシラン化合物の加水分解縮合、又は下記一般式(2b)で表される中間体ポリマーの末端のアルコキシ基を加水分解することにより得ることができる。

Figure 2013221135
(式中、R19は炭素数1〜4のアルキル基を表し、R、R及びcは、一般式(2)と同義である。) The intermediate polymer represented by the general formula (2a) is a hydrolytic condensation of a dichlorosilane compound or a dialkoxysilane compound, or a terminal alkoxy group of the intermediate polymer represented by the following general formula (2b) is hydrolyzed. Can be obtained.
Figure 2013221135
(In the formula, R 19 represents an alkyl group having 1 to 4 carbon atoms, and R 7 , R 8 and c have the same meanings as in the general formula (2).)

ジクロロシラン化合物又はジアルコキシシラン化合物の加水分解縮合に用いられる、好ましいジクロロシラン化合物としては、ジメチルジクロロシラン、ジエチルジクロロシラン、ジプロピルジクロロシラン、メチルエチルジクロロシラン、メチルフェニルジクロロシラン、エチルフェニルジクロロシラン、ジフェニルジクロロシラン等が挙げられ、好ましいジアルコキシシラン化合物としては、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジプロピルジメトキシシラン、メチルエチルジメトキシシラン、メチルフェニルジメトキシシラン、エチルフェニルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジプロピルジエトキシシラン、メチルエチルジエトキシシラン、メチルフェニルジエトキシシラン、エチルフェニルジエトキシシラン、ジフェニルジエトキシシラン等が挙げられる。   Preferred dichlorosilane compounds used for hydrolysis condensation of dichlorosilane compounds or dialkoxysilane compounds include dimethyldichlorosilane, diethyldichlorosilane, dipropyldichlorosilane, methylethyldichlorosilane, methylphenyldichlorosilane, and ethylphenyldichlorosilane. Diphenyldichlorosilane and the like. Preferred dialkoxysilane compounds include dimethyldimethoxysilane, diethyldimethoxysilane, dipropyldimethoxysilane, methylethyldimethoxysilane, methylphenyldimethoxysilane, ethylphenyldimethoxysilane, diphenyldimethoxysilane, dimethyl Diethoxysilane, diethyldiethoxysilane, dipropyldiethoxysilane, methylethyldiethoxysilane Methylphenyl diethoxy silane, ethyl phenyl diethoxy silane, and diphenyl diethoxy silane and the like.

ジクロロシラン化合物又はジアルコキシシラン化合物の加水分解縮合は、水又は、水を含有する有機溶媒中で、ハロシラン基又はアルコキシシラン基が加水分解されてシラノール基(Si−OH基)を生成し、生成したシラノール基同士、又は、シラノール基とアルコキシシリル基が縮合することにより進行する。有機溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、アセトン、メチルエチルケトン、ジオキサン、テトラヒドロフラン等が挙げられる。反応を促進するには、触媒を使用することが好ましく、具体的には、塩酸、リン酸、硫酸等の無機酸類;ギ酸、酢酸、シュウ酸、クエン酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、リン酸モノイソプロピル等の有機酸類;水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等の無機塩基類;トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン等のアミン化合物(有機塩基)類等が挙げられ、これらの1種を用いても、2種以上を併用してもよい。加水分解・縮合反応の温度は、溶媒の種類、触媒の種類及び量等により変わるが、0〜80℃が好ましく、5〜50℃が更に好ましく、8〜30℃が最も好ましい。   Hydrolytic condensation of a dichlorosilane compound or dialkoxysilane compound is produced by hydrolyzing a halosilane group or alkoxysilane group in water or an organic solvent containing water to produce a silanol group (Si-OH group). It progresses by condensing silanol groups or silanol groups and alkoxysilyl groups. Examples of the organic solvent include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, acetone, methyl ethyl ketone, dioxane, tetrahydrofuran and the like. In order to accelerate the reaction, it is preferable to use a catalyst. Specifically, inorganic acids such as hydrochloric acid, phosphoric acid and sulfuric acid; formic acid, acetic acid, oxalic acid, citric acid, methanesulfonic acid, benzenesulfonic acid, p -Organic acids such as toluenesulfonic acid and monoisopropyl phosphate; inorganic bases such as sodium hydroxide, potassium hydroxide, lithium hydroxide and ammonia; amine compounds such as trimethylamine, triethylamine, monoethanolamine and diethanolamine (organic base) These may be used, and one of these may be used, or two or more may be used in combination. The temperature of the hydrolysis / condensation reaction varies depending on the type of solvent, the type and amount of the catalyst, etc., but is preferably 0 to 80 ° C, more preferably 5 to 50 ° C, and most preferably 8 to 30 ° C.

前記一般式(2b)で表される中間体ポリマーは、前記一般式(1a)で表される中間体ポリマーと同様の方法により得ることができる。前記一般式(2b)で表される中間体ポリマーの末端のアルコキシ基の加水分解は、塩酸、リン酸、硫酸等の無機酸類を触媒として行えばよい。   The intermediate polymer represented by the general formula (2b) can be obtained by the same method as the intermediate polymer represented by the general formula (1a). Hydrolysis of the terminal alkoxy group of the intermediate polymer represented by the general formula (2b) may be performed using an inorganic acid such as hydrochloric acid, phosphoric acid, sulfuric acid or the like as a catalyst.

一般式(2)で表されるシロキサン化合物のうち、d及びeが1である化合物は、下記一般式(2c)で表される中間体ポリマーのビニル基に、下記一般式(2d)で表されるシラン化合物を反応させる方法、又は下記一般式(2e)で表される中間体ポリマーのSiH基に、下記一般式(2f)で表されるビニルシラン化合物を反応させる方法により得ることができ、工業的な原料の入手が容易であることから、前者が好ましい。

Figure 2013221135
(式中、R〜R10及びcは、一般式(2)と同義である。)
Figure 2013221135
(式中、R11及びXは、一般式(2)と同義である。)
Figure 2013221135
(式中、R〜R10及びcは、一般式(2)と同義である。)
Figure 2013221135
(式中、R11及びXは、一般式(2)と同義である。) Among the siloxane compounds represented by the general formula (2), a compound in which d and e are 1 is represented by the following general formula (2d) on the vinyl group of the intermediate polymer represented by the following general formula (2c). Can be obtained by a method of reacting a silane compound or a method of reacting a vinyl silane compound represented by the following general formula (2f) with the SiH group of the intermediate polymer represented by the following general formula (2e), The former is preferred because it is easy to obtain industrial raw materials.
Figure 2013221135
(In formula, R < 7 > -R < 10 > and c are synonymous with General formula (2).)
Figure 2013221135
(In the formula, R 11 and X 2 have the same meaning as in the general formula (2).)
Figure 2013221135
(In formula, R < 7 > -R < 10 > and c are synonymous with General formula (2).)
Figure 2013221135
(In the formula, R 11 and X 2 have the same meaning as in the general formula (2).)

前記一般式(2c)で表される中間体ポリマーと前記一般式(2d)で表されるシラン化合物の反応、及び前記一般式(2e)で表される中間体ポリマーと前記一般式(2f)で表されるビニルシラン化合物のヒドロシリル化反応では、前記一般式(1c)で表される中間体ポリマーと前記一般式(1d)で表されるシラン化合物のヒドロシリル化反応の場合と同様の条件で反応させればよい。   Reaction of intermediate polymer represented by general formula (2c) with silane compound represented by general formula (2d), and intermediate polymer represented by general formula (2e) and general formula (2f) In the hydrosilylation reaction of the vinylsilane compound represented by general formula (1c), the reaction is carried out under the same conditions as in the hydrosilylation reaction of the intermediate polymer represented by general formula (1c) and the silane compound represented by general formula (1d). You can do it.

前記一般式(2d)で表されるシラン化合物としては、前記一般式(1d)で表されるシラン化合物で例示した化合物等が挙げられる。   Examples of the silane compound represented by the general formula (2d) include compounds exemplified for the silane compound represented by the general formula (1d).

また、前記一般式(2f)で表されるビニルシラン化合物としては、メチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジメトキシシラン、エチルビニルジエトキシシラン、プロピルビニルジメトキシシラン、ブチルビニルジメトキシシラン、フェニルビニルジメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン等が挙げられる。   Examples of the vinylsilane compound represented by the general formula (2f) include methylvinyldimethoxysilane, methylvinyldiethoxysilane, ethylvinyldimethoxysilane, ethylvinyldiethoxysilane, propylvinyldimethoxysilane, butylvinyldimethoxysilane, phenyl Examples include vinyldimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, and vinyltributoxysilane.

前記一般式(2c)で表される中間体ポリマーは、前記一般式(2a)で表される中間体ポリマーに下記一般式(2g)で表されるビニルクロロシラン化合物を反応させる方法、又は下記一般式(2h)で表されるジビニルシロキサン化合物に、環状シロキサン化合物を挿入付加させる方法により得ることができ、副反応が少なく、分子量の制御が容易であることから前者が好ましい。

Figure 2013221135
(式中、R及びR10は、一般式(2)と同義である。)
Figure 2013221135
(式中、R及びR10は、一般式(2)と同義である。) The intermediate polymer represented by the general formula (2c) is a method in which the intermediate polymer represented by the general formula (2a) is reacted with a vinylchlorosilane compound represented by the following general formula (2g), or the following general polymer The former is preferred because it can be obtained by a method of inserting and adding a cyclic siloxane compound to the divinylsiloxane compound represented by the formula (2h), and there are few side reactions and the molecular weight can be easily controlled.
Figure 2013221135
(In the formula, R 9 and R 10 have the same meaning as in the general formula (2).)
Figure 2013221135
(In the formula, R 9 and R 10 have the same meaning as in the general formula (2).)

上記一般式(2g)で表されるビニルクロロシラン化合物としては、ジメチルビニルクロロシラン、エチルメチルビニルクロロシラン、ジエチルビニルクロロシラン、メチルフェニルビニルクロロシラン、エチルフェニルビニルクロロシラン、ジフェニルビニルクロロシランが挙げられる。一般式(2a)で表される中間体ポリマーと一般式(2g)で表されるビニルクロロシラン化合物との反応は、ピリジン、ピコリン等の存在下に、反応温度40〜120℃、好ましくは60〜90℃で行えばよい。   Examples of the vinylchlorosilane compound represented by the general formula (2g) include dimethylvinylchlorosilane, ethylmethylvinylchlorosilane, diethylvinylchlorosilane, methylphenylvinylchlorosilane, ethylphenylvinylchlorosilane, and diphenylvinylchlorosilane. The reaction between the intermediate polymer represented by the general formula (2a) and the vinylchlorosilane compound represented by the general formula (2g) is carried out in the presence of pyridine, picoline and the like at a reaction temperature of 40 to 120 ° C., preferably 60 to What is necessary is just to perform at 90 degreeC.

上記一般式(2h)で表されるジビニルシロキサン化合物としては、1,1,3,3−テトラメチル−1,3−ジビニルシロキサン、1,1,3,3−テトラエチル−1,3−ジビニルシロキサン、1,3−ジメチル−1,3−ジフェニル−1,3−ジビニルシロキサン、1,1,3,3−テトラフェニル−1,3−ジビニルシロキサン等が挙げられ、環状シロキサン化合物としては、上記一般式(1a)で表される中間体ポリマーの合成で例示した環状シロキサン化合物が挙げられる。   Examples of the divinylsiloxane compound represented by the general formula (2h) include 1,1,3,3-tetramethyl-1,3-divinylsiloxane and 1,1,3,3-tetraethyl-1,3-divinylsiloxane. 1,3-dimethyl-1,3-diphenyl-1,3-divinylsiloxane, 1,1,3,3-tetraphenyl-1,3-divinylsiloxane, and the like. Examples thereof include the cyclic siloxane compounds exemplified in the synthesis of the intermediate polymer represented by the formula (1a).

上記一般式(2h)で表されるジビニルシロキサン化合物への環状シロキサン化合物の挿入付加反応には、酸触媒又は塩基触媒を用いる。酸触媒としては、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、活性白土、硫酸化ジルコニア等が挙げられ、塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド等の塩基触媒等が挙げられる。挿入付加反応の触媒としては、反応性が良好であることから、塩基触媒が好ましく、水酸化カリウムが更に好ましい。反応温度は80〜250℃が好ましく、100〜200℃が更に好ましく、120〜180℃が最も好ましい。上記開環重合は、必要に応じて、ジブチルエーテル、トルエン、キシレン等を溶媒として使用してもよい。   An acid catalyst or a base catalyst is used for the insertion addition reaction of the cyclic siloxane compound to the divinylsiloxane compound represented by the general formula (2h). Examples of the acid catalyst include sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, activated clay, and sulfated zirconia. Examples of the basic catalyst include lithium hydroxide, sodium hydroxide, potassium hydroxide, and tetramethylammonium hydroxide. And the base catalyst. As a catalyst for the insertion addition reaction, a base catalyst is preferable because of good reactivity, and potassium hydroxide is more preferable. The reaction temperature is preferably 80 to 250 ° C, more preferably 100 to 200 ° C, and most preferably 120 to 180 ° C. In the above ring-opening polymerization, dibutyl ether, toluene, xylene or the like may be used as a solvent, if necessary.

上記一般式(2e)で表される中間体ポリマーは、前記一般式(2a)で表される中間体ポリマーに下記一般式(2i)で表されるクロロシラン化合物を反応させる方法、又は下記一般式(2j)で表されるシロキサン化合物に、環状シロキサン化合物を挿入付加させる方法より得ることができ、副反応が少なく、分子量の制御が容易であることから前者が好ましい。

Figure 2013221135
(式中、R及びR10は、一般式(2)と同義である。)
Figure 2013221135
(式中、R及びR10は、一般式(2)と同義である。) The intermediate polymer represented by the general formula (2e) is a method in which the intermediate polymer represented by the general formula (2a) is reacted with a chlorosilane compound represented by the following general formula (2i), or the following general formula: The former is preferable because it can be obtained by a method of inserting and adding a cyclic siloxane compound to the siloxane compound represented by (2j), has few side reactions, and easily controls the molecular weight.
Figure 2013221135
(In the formula, R 9 and R 10 have the same meaning as in the general formula (2).)
Figure 2013221135
(In the formula, R 9 and R 10 have the same meaning as in the general formula (2).)

一般式(2i)で表されるクロロシラン化合物としては、ジメチルクロロシラン、エチルメチルクロロシラン、ジエチルクロロシラン、メチルフェニルクロロシラン、エチルフェニルクロロシラン、ジフェニルクロロシランが挙げられる。一般式(2a)で表される中間体ポリマーと一般式(2i)で表されるクロロシラン化合物との反応は、ピリジン、ピコリン等の存在下に、反応温度40〜120℃、好ましくは60〜90℃で行えばよい。   Examples of the chlorosilane compound represented by the general formula (2i) include dimethylchlorosilane, ethylmethylchlorosilane, diethylchlorosilane, methylphenylchlorosilane, ethylphenylchlorosilane, and diphenylchlorosilane. The reaction between the intermediate polymer represented by the general formula (2a) and the chlorosilane compound represented by the general formula (2i) is carried out in the presence of pyridine, picoline and the like, at a reaction temperature of 40 to 120 ° C., preferably 60 to 90. What is necessary is just to carry out at ° C.

前記一般式(2j)で表されるシロキサン化合物としては、1,1,3,3−テトラメチルシロキサン、1,1,3,3−テトラエチルシロキサン、1,3−ジメチル−1,3−ジフェニルシロキサン、1,1,3,3−テトラフェニルシロキサン等が挙げられ、環状シロキサン化合物としては、下記一般式(1a)で表される中間体ポリマーの合成で例示した環状シロキサン化合物が挙げられる。   Examples of the siloxane compound represented by the general formula (2j) include 1,1,3,3-tetramethylsiloxane, 1,1,3,3-tetraethylsiloxane, and 1,3-dimethyl-1,3-diphenylsiloxane. 1,1,3,3-tetraphenylsiloxane and the like, and examples of the cyclic siloxane compound include the cyclic siloxane compounds exemplified in the synthesis of the intermediate polymer represented by the following general formula (1a).

上記一般式(2h)で表されるシロキサン化合物への環状シロキサン化合物の挿入付加反応には、酸触媒を用いる。酸触媒としては、硫酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、活性白土、硫酸化ジルコニア等が挙げられる。挿入付加反応の触媒としては、反応性が良好であることから、メタンスルホン酸が好ましい。反応温度は80〜250℃が好ましく、100〜200℃が更に好ましく、120〜180℃が最も好ましい。上記開環重合は、必要に応じて、ジブチルエーテル、トルエン、キシレン等を溶媒として使用してもよい。   An acid catalyst is used for the insertion addition reaction of the cyclic siloxane compound to the siloxane compound represented by the general formula (2h). Examples of the acid catalyst include sulfuric acid, methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, activated clay, and sulfated zirconia. As a catalyst for the insertion addition reaction, methanesulfonic acid is preferable because of its good reactivity. The reaction temperature is preferably 80 to 250 ° C, more preferably 100 to 200 ° C, and most preferably 120 to 180 ° C. In the above ring-opening polymerization, dibutyl ether, toluene, xylene or the like may be used as a solvent, if necessary.

一般式(2)で表されるシロキサン化合物のうち、d及びeの一方が1であり、他方が0である化合物は、下記一般式(2k)で表されるビニルシラン化合物を出発物質として、環状シロキサン化合物を、触媒を用いて開環重合して下記一般式(2m)で表される中間体ポリマーを合成し、この中間体ポリマーのビニル末端に前記一般式(2d)で表されるシラン化合物を反応させ、シラノール末端にトリアルコキシシラン化合物又はテトラアルコキシシラン化合物を反応させることにより得ることができる。

Figure 2013221135
(式中、R〜R10及びcは、一般式(2)と同義である。) Among the siloxane compounds represented by the general formula (2), a compound in which one of d and e is 1 and the other is 0 is cyclic starting from a vinylsilane compound represented by the following general formula (2k) A siloxane compound is subjected to ring-opening polymerization using a catalyst to synthesize an intermediate polymer represented by the following general formula (2m), and a silane compound represented by the above general formula (2d) at the vinyl terminal of the intermediate polymer Can be obtained by reacting a trialkoxysilane compound or a tetraalkoxysilane compound with a silanol terminal.
Figure 2013221135
(In formula, R < 7 > -R < 10 > and c are synonymous with General formula (2).)

本発明の湿気硬化性樹脂組成物は、粘着性が向上することから、更に、(D)成分として、下記一般式(3)で表されるシロキサン化合物を含有することが好ましい。

Figure 2013221135
(式中、R12〜R17は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R18は炭素数1〜4のアルキル基を表し、fは、一般式(3)で表される化合物の質量平均分子量を1000〜100万とする数を表し、g及びhは各々独立に0又は1を表す。) The moisture curable resin composition of the present invention preferably further contains a siloxane compound represented by the following general formula (3) as the component (D) because the adhesiveness is improved.
Figure 2013221135
(Wherein R 12 to R 17 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 18 represents an alkyl group having 1 to 4 carbon atoms, and f is And represents a number in which the mass average molecular weight of the compound represented by the general formula (3) is 1,000 to 1,000,000, and g and h each independently represent 0 or 1.)

前記一般式(3)において、R12〜R17は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表す。炭素数1〜4のアルキル基、炭素数6〜10のアリール基としては、前記一般式(1)のR及びRで例示した基等が挙げられる。R12及びR13はそれぞれ、すべて同一の基でもよいし、異なる基の組合せでもよい。粘着性の点からは、炭素数1〜4のアルキル基が好ましく、メチルが更に好ましく、耐熱性の点からは炭素数6〜10のアリール基が好ましく、フェニルが更に好ましい。R12及びR13のうちの、アリール基の割合があまりに多い場合には、硬化物の粘着性が低下することから、R12及びR13は、炭素数1〜4のアルキル基と炭素数6〜10のアリール基の組合せであることが好ましく、R12及びR13のうち、炭素数6〜10のアリール基の割合は、1〜40モル%であることが好ましく、3〜30モル%であることが更に好ましく、10〜25モル%であることが最も好ましい。R14〜R17としては、原料の入手が容易であり、原料の反応性も良好であることから、メチルが好ましい。 In the general formula (3), R 12 to R 17 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms and the aryl group having 6 to 10 carbon atoms include the groups exemplified for R 1 and R 2 in the general formula (1). Each of R 12 and R 13 may be the same group or a combination of different groups. From the viewpoint of tackiness, an alkyl group having 1 to 4 carbon atoms is preferable, methyl is more preferable, and from the viewpoint of heat resistance, an aryl group having 6 to 10 carbon atoms is preferable, and phenyl is more preferable. When the ratio of the aryl group in R 12 and R 13 is too large, the adhesiveness of the cured product is lowered, so that R 12 and R 13 are an alkyl group having 1 to 4 carbon atoms and 6 carbon atoms. Is preferably a combination of 10 to 10 aryl groups, and the ratio of aryl groups having 6 to 10 carbon atoms in R 12 and R 13 is preferably 1 to 40 mol%, and 3 to 30 mol%. More preferably, it is most preferably 10 to 25 mol%. As R < 14 > -R < 17 >, since acquisition of a raw material is easy and the reactivity of a raw material is also favorable, methyl is preferable.

18は炭素数1〜4のアルキル基を表す。炭素数1〜4のアルキル基としては、前記一般式(1)のRで例示した基等が挙げられる。R18としては、加水分解反応が容易に起こることから、メチル、エチル、プロピルが好ましく、メチル、エチルが更に好ましい。 R 18 represents an alkyl group having 1 to 4 carbon atoms. The alkyl group having 1 to 4 carbon atoms, such as the groups exemplified for by R 5 in the general formula (1). R 18 is preferably methyl, ethyl, or propyl, and more preferably methyl or ethyl because hydrolysis reaction easily occurs.

一般式(3)において、fは、一般式(3)で表される化合物の質量平均分子量を1000〜100万とする数を表す。一般式(3)で表される化合物の質量平均分子量が1000よりも小さい場合には、得られる硬化物の粘着性が不十分となり、100万よりも大きい場合には高粘度になりハンドリング性が低下する。一般式(3)で表される化合物の質量平均分子量は、2000〜5万が好ましく、3000〜3万が更に好ましく、3500〜1万が最も好ましい。g及びhは各々独立に0又は1を表し、簡便な工程で製造できることから、g及びhは0が好ましい。   In General formula (3), f represents the number which makes the mass mean molecular weight of the compound represented by General formula (3) 1000-100 million. When the mass average molecular weight of the compound represented by the general formula (3) is smaller than 1000, the obtained cured product has insufficient tackiness, and when it is larger than 1,000,000, the viscosity becomes high and handling properties are increased. descend. The mass average molecular weight of the compound represented by the general formula (3) is preferably 2000 to 50,000, more preferably 3000 to 30,000, and most preferably 3500 to 10,000. g and h each independently represent 0 or 1, and g and h are preferably 0 because they can be produced by a simple process.

本発明の湿気硬化性樹脂組成物において、前記一般式(3)で表されるシロキサン化合物の含量があまりに少ない場合は、十分な効果を発揮できず、またあまりに多い場合は、硬化物の硬化性に悪影響を及ぼすことがあることから、前記一般式(3)で表されるシロキサン化合物の含量は前記一般式(1)で表されるシロキサン化合物100質量部に対して、5〜200質量部が好ましく、10〜150質量部が更に好ましく、20〜120質量部が最も好ましい。   In the moisture curable resin composition of the present invention, when the content of the siloxane compound represented by the general formula (3) is too small, sufficient effects cannot be exhibited, and when the content is too large, the curability of the cured product is not achieved. The content of the siloxane compound represented by the general formula (3) is 5 to 200 parts by mass with respect to 100 parts by mass of the siloxane compound represented by the general formula (1). Preferably, 10-150 mass parts is more preferable, and 20-120 mass parts is the most preferable.

一般式(3)で表されるシロキサン化合物のうち、g及びhが0である化合物は、下記中間体ポリマー(3a)又は下記一般式(3b)で表される中間体ポリマーの末端のシラノール基を、オルトエステル化合物又はテトラアルコキシメタン化合物により、アルコキシシリル基にすることにより得ることができる。

Figure 2013221135
(式中、R12、R13、R16〜R18及びfは、一般式(3)と同義である。)
Figure 2013221135
(式中、R12、R13、R16、R17及びfは、一般式(3)と同義である。) Among the siloxane compounds represented by the general formula (3), a compound in which g and h are 0 is a silanol group at the terminal of the intermediate polymer (3a) or the intermediate polymer represented by the following general formula (3b). Can be obtained by making an alkoxysilyl group with an ortho ester compound or a tetraalkoxymethane compound.
Figure 2013221135
(In formula, R < 12 >, R < 13 >, R < 16 > -R < 18 > and f are synonymous with General formula (3).)
Figure 2013221135
(In formula, R < 12 >, R <13> , R <16> , R < 17 > and f are synonymous with General formula (3).)

一般式(3a)で表される中間体ポリマーは、前記一般式(1a)で表される中間体ポリマーと同様の方法により得ることができ、一般式(3b)で表される中間体ポリマーは、前記一般式(2a)で表される中間体ポリマーと同様の方法により得ることができる。   The intermediate polymer represented by the general formula (3a) can be obtained by the same method as the intermediate polymer represented by the general formula (1a). The intermediate polymer represented by the general formula (3b) is The intermediate polymer represented by the general formula (2a) can be obtained by the same method.

オルトエステル化合物としては、トリメトキシメタン、トリエトキシメタン、トリプロポキシメタン、トリイソプロポキシメタン、トリブトキシメタン、トリメトキシエタン、トリエトキシエタン、トリプロポキシエタン、トリイソプロポキシエタン、トリブトキシエタン等が挙げられ、テトラアルコキシメタン化合物としては、テトラメトキシメタン、テトラエトキシメタン、テトライソプロポキシメタンが挙げられる。これらの中でも、反応性が良好であることから、トリメトキシメタン、トリエトキシメタン、トリメトキシエタン、テトラメトキシメタンが好ましい。   Examples of orthoester compounds include trimethoxymethane, triethoxymethane, tripropoxymethane, triisopropoxymethane, tributoxymethane, trimethoxyethane, triethoxyethane, tripropoxyethane, triisopropoxyethane, and tributoxyethane. Examples of the tetraalkoxymethane compound include tetramethoxymethane, tetraethoxymethane, and tetraisopropoxymethane. Among these, trimethoxymethane, triethoxymethane, trimethoxyethane, and tetramethoxymethane are preferable because of good reactivity.

シラノール基を、オルトエステル化合物又はテトラアルコキシメタン化合物により、アルコキシシリル基にする場合には、シラノール基に対して、過剰量のオルトエステル化合物又はテトラアルコキシメタン化合物を使用し、100〜150℃程度に加熱して反応させた後、未反応のオルトエステル化合物又はテトラアルコキシメタン化合物を除去すればよい。   When the silanol group is converted to an alkoxysilyl group by an ortho ester compound or a tetraalkoxymethane compound, an excessive amount of orthoester compound or tetraalkoxymethane compound is used with respect to the silanol group, and the temperature is about 100 to 150 ° C. After the reaction by heating, the unreacted orthoester compound or tetraalkoxymethane compound may be removed.

一般式(3)で表されるシロキサン化合物のうち、g及びhが1である化合物は、下記一般式(3c)で表される中間体ポリマーのビニル基に、下記一般式(3d)で表されるシラン化合物を反応させる方法、又は下記一般式(3e)で表される中間体ポリマーに、下記一般式(3f)で表されるビニルシラン化合物を反応させる方法により得ることができ、工業的な原料の入手が容易であることから、前者が好ましい。

Figure 2013221135
(式中、R12〜R15、及びfは、一般式(3)と同義である。)
Figure 2013221135
(式中、R12〜R15、及びfは一般式(3)と同義である。) Among the siloxane compounds represented by the general formula (3), a compound in which g and h are 1 is represented by the following general formula (3d) on the vinyl group of the intermediate polymer represented by the following general formula (3c). Can be obtained by a method of reacting a silane compound, or an intermediate polymer represented by the following general formula (3e) with a vinyl silane compound represented by the following general formula (3f). The former is preferred because the raw materials are easily available.
Figure 2013221135
(In formula, R < 12 > -R < 15 > and f are synonymous with General formula (3).)
Figure 2013221135
(In formula, R < 12 > -R < 15 > and f are synonymous with General formula (3).)

前記一般式(3c)で表される中間体ポリマーと前記一般式(3d)で表されるシラン化合物の反応、及び前記一般式(3e)で表される中間体ポリマーと前記一般式(3f)で表されるビニルシラン化合物の反応は、前記一般式(2c)で表される中間体ポリマーと前記一般式(2d)で表されるシラン化合物の反応、及び前記一般式(2e)で表される中間体ポリマーと前記一般式(2f)で表されるビニルシラン化合物の反応と、同様の条件で反応すればよい。   Reaction of intermediate polymer represented by general formula (3c) with silane compound represented by general formula (3d), and intermediate polymer represented by general formula (3e) and general formula (3f) The reaction of the vinyl silane compound represented by the general formula (2c) is represented by the reaction of the intermediate polymer represented by the general formula (2c) and the silane compound represented by the general formula (2d), and the general formula (2e). The reaction may be performed under the same conditions as the reaction between the intermediate polymer and the vinylsilane compound represented by the general formula (2f).

前記一般式(3d)で表されるシラン化合物としては、ジメチルメトキシシラン、ジメチルエトキシシラン、ジエチルメトキシシラン、ジエチルエトキシシラン、ジプロピルメトキシシラン、ジブチルメトキシシラン、ジフェニルメトキシシラン、メチルエチルメトキシシラン、メチルエチルエトキシシラン、メチルプロピルメトキシシラン、メチルブチルメトキシシラン、メチルフェニルメトキシシラン等が挙げられる。   Examples of the silane compound represented by the general formula (3d) include dimethylmethoxysilane, dimethylethoxysilane, diethylmethoxysilane, diethylethoxysilane, dipropylmethoxysilane, dibutylmethoxysilane, diphenylmethoxysilane, methylethylmethoxysilane, methyl Examples include ethylethoxysilane, methylpropylmethoxysilane, methylbutylmethoxysilane, and methylphenylmethoxysilane.

また、前記一般式(3f)で表されるビニルシラン化合物としては、ジメチルビニルメトキシシラン、ジメチルビニルエトキシシラン、ジエチルビニルメトキシシラン、ジエチルビニルエトキシシラン、ジプロピルビニルメトキシシラン、ジブチルビニルメトキシシラン、ジフェニルビニルメトキシシラン、メチルエチルビニルメトキシシラン、メチルエチルビニルエトキシシラン、メチルプロピルビニルメトキシシラン、メチルブチルビニルメトキシシラン、メチルフェニルビニルメトキシシラン等が挙げられる。   Examples of the vinylsilane compound represented by the general formula (3f) include dimethylvinylmethoxysilane, dimethylvinylethoxysilane, diethylvinylmethoxysilane, diethylvinylethoxysilane, dipropylvinylmethoxysilane, dibutylvinylmethoxysilane, and diphenylvinyl. Examples include methoxysilane, methylethylvinylmethoxysilane, methylethylvinylethoxysilane, methylpropylvinylmethoxysilane, methylbutylvinylmethoxysilane, and methylphenylvinylmethoxysilane.

前記一般式(3c)で表される中間体ポリマーは、前記一般式(2c)で表される中間体ポリマーと同様の方法で得ることができ、前記一般式(3e)で表される中間体ポリマーは、前記一般式(2e)で表される中間体ポリマーと同様の方法で得ることができる。   The intermediate polymer represented by the general formula (3c) can be obtained by the same method as the intermediate polymer represented by the general formula (2c), and the intermediate polymer represented by the general formula (3e). The polymer can be obtained by the same method as the intermediate polymer represented by the general formula (2e).

一般式(3)で表されるシロキサン化合物のうち、g及びhの一方が1であり、他方が0である化合物は、下記一般式(3g)で表されるビニルシラン化合物を出発物質として、環状シロキサン化合物を、触媒を用いて開環重合して下記一般式(3h)で表される中間体ポリマーを合成し、この中間体ポリマーのビニル末端に前記一般式(3d)で表されるシラン化合物を反応させ、シラノール末端にオルトエステル化合物又はテトラアルコキシメタン化合物を反応させることにより得ることができる。

Figure 2013221135
(式中、R12〜R15、及びfは、一般式(3)と同義である。) Among the siloxane compounds represented by the general formula (3), a compound in which one of g and h is 1 and the other is 0 is cyclic starting from a vinylsilane compound represented by the following general formula (3g) A siloxane compound is subjected to ring-opening polymerization using a catalyst to synthesize an intermediate polymer represented by the following general formula (3h), and the silane compound represented by the above general formula (3d) at the vinyl terminal of the intermediate polymer Can be obtained by reacting an orthoester compound or a tetraalkoxymethane compound at the silanol terminal.
Figure 2013221135
(In formula, R < 12 > -R < 15 > and f are synonymous with General formula (3).)

本発明の湿気硬化性樹脂組成物は、流動性やチクソトロピー性が改良されるとともに、本発明の硬化物の熱伝導性を改良し放熱性を付与することができることから、さらに、フィラーを含有することが好ましい。フィラーとしては、例えば、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、酸化ケイ素、酸化チタン、酸化鉄、酸化亜鉛、酸化ベリリウム、炭化ケイ素、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、窒化アルミニウム、窒化ホウ素、窒化ケイ素、水酸化アルミニウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム等の無機系フィラー;銀、銅、アルミニウム、鉄、亜鉛、ニッケル、スズ等の金属系フィラー;カーボン、グラファイト等の炭素系フィラー等が挙げられる。高い電気絶縁性が要求される場合には、無機系フィラーのみを使用することが好ましい。前記フィラーは、1種を単独で用いてもよく、2種以上を併用してもよい。   The moisture curable resin composition of the present invention further includes a filler because the fluidity and thixotropy are improved and the heat conductivity of the cured product of the present invention can be improved and heat dissipation can be imparted. It is preferable. Examples of the filler include aluminum oxide, magnesium oxide, calcium oxide, silicon oxide, titanium oxide, iron oxide, zinc oxide, beryllium oxide, silicon carbide, calcium carbonate, magnesium carbonate, zinc carbonate, aluminum nitride, boron nitride, and silicon nitride. Inorganic fillers such as aluminum hydroxide, magnesium hydroxide, calcium sulfate and barium sulfate; metal fillers such as silver, copper, aluminum, iron, zinc, nickel and tin; carbon fillers such as carbon and graphite It is done. When high electrical insulation is required, it is preferable to use only an inorganic filler. The said filler may be used individually by 1 type, and may use 2 or more types together.

本発明の湿気硬化性樹脂組成物は、この他、必要に応じて、酸化防止剤、老化防止剤、紫外線吸収剤、難燃剤、防カビ剤、溶剤、香料、顔料、染料等を添加してもよい。   In addition to this, the moisture curable resin composition of the present invention may be added with an antioxidant, an antioxidant, a UV absorber, a flame retardant, an antifungal agent, a solvent, a fragrance, a pigment, a dye, and the like as necessary. Also good.

本発明の湿気硬化性樹脂組成物では、アルコキシシリル基が加水分解されて、シラノール基とアルコールが生成し、シラノール基同士の脱水縮合により硬化が起こる。本発明の湿気硬化性樹脂組成物の硬化条件は、硬化触媒の種類や配合量によって変わり、特には限定されないが、温度25℃以上で、湿度50%であれば、10〜30時間で硬化を行うことができ、この後、生成したアルコールの除去とシラノール基同士の脱水縮合の促進を目的として、更に、100〜200℃で0.5〜3時間加熱することが好ましい。   In the moisture curable resin composition of the present invention, the alkoxysilyl group is hydrolyzed to produce a silanol group and an alcohol, and curing occurs by dehydration condensation between the silanol groups. The curing conditions of the moisture curable resin composition of the present invention vary depending on the type and amount of the curing catalyst, and are not particularly limited. However, when the temperature is 25 ° C. or higher and the humidity is 50%, the curing can be performed in 10 to 30 hours. Thereafter, it is preferable to further heat at 100 to 200 ° C. for 0.5 to 3 hours for the purpose of removing the generated alcohol and promoting dehydration condensation between silanol groups.

本発明の湿気硬化性樹脂組成物は、自動車、電器、土木用のシーラント又はシーリング材、接着剤、塗料、コーティング材、ポッティング材、成形物などに適用することができる。本発明の湿気硬化性樹脂組成物は、特に、耐熱性及び粘着性に優れることから、高温にさらされる機器のシーリング材、接着剤として好適に使用できる。特に、本発明の湿気硬化性樹脂組成物に熱伝導性の高いフィラーを配合したものは、電子機器の放熱シートに好適に使用できる。   The moisture curable resin composition of the present invention can be applied to automobiles, electrical appliances, civil engineering sealants or sealants, adhesives, paints, coating materials, potting materials, molded articles, and the like. Since the moisture curable resin composition of the present invention is particularly excellent in heat resistance and tackiness, it can be suitably used as a sealing material and adhesive for equipment exposed to high temperatures. In particular, the moisture curable resin composition of the present invention blended with a filler having high thermal conductivity can be suitably used for a heat radiating sheet of electronic equipment.

以下、実施例により本発明を更に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、特に限定のない限り、実施例中の「部」や「%」は質量基準によるものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. Unless otherwise specified, “parts” and “%” in the examples are based on mass.

[合成例1]中間体a1の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、オクタフェニルテトラシロキサン872g(1.1mol)、オクタメチルテトラシロキサン1305g(4.4mol)、およびカリウムメトキシド70g(1mol)を仕込み、窒素雰囲気下、150℃で2時間攪拌して反応させた。冷却して、反応液をイオン交換水で水洗した後、100℃で水を減圧留去し、2033gの中間体a1を得た(収率92%)。中間体a1は、前記一般式(1a)おいてRがメチルである化合物、及び前記一般式(3a)おいてR18がメチルである化合物に、それぞれ相当する。
[Synthesis Example 1] Synthesis of Intermediate a1 In a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 872 g (1.1 mol) of octaphenyltetrasiloxane and 1305 g (4.4 mol) of octamethyltetrasiloxane. , And 70 g (1 mol) of potassium methoxide were allowed to react under stirring in a nitrogen atmosphere at 150 ° C. for 2 hours. After cooling and washing the reaction solution with ion-exchanged water, water was distilled off under reduced pressure at 100 ° C. to obtain 2033 g of intermediate a1 (yield 92%). The intermediate a1 corresponds to the compound in which R 5 is methyl in the general formula (1a) and the compound in which R 18 is methyl in the general formula (3a), respectively.

[合成例2]化合物A1の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、中間体a1を500g、メチルトリメトキシシラン78g(0.5mol)、並びに触媒として酢酸0.6g(0.1mmol)を仕込み、窒素雰囲気下、90℃で2時間攪拌して反応させた。反応液を、90℃で減圧して、未反応のメチルトリメトキシシラン、酢酸及び生成したメタノールを除去し、ろ過した後、更に、薄膜蒸留装置を用いて低沸点成分を除去し、化合物A1を得た。化合物A1は、前記一般式(1)において、R、R及びXがメチル、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、bが0の化合物である。また、化合物A1の質量平均分子量は4500であった。
Synthesis Example 2 Synthesis of Compound A1 In a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 500 g of intermediate a1, 78 g (0.5 mol) of methyltrimethoxysilane, and acetic acid 0 as a catalyst .6 g (0.1 mmol) was charged and the reaction was allowed to stir at 90 ° C. for 2 hours under a nitrogen atmosphere. The reaction solution was depressurized at 90 ° C. to remove unreacted methyltrimethoxysilane, acetic acid and produced methanol, and after filtration, the low boiling point component was further removed using a thin-film distillation apparatus, and compound A1 was obtained. Obtained. Compound A1 is a compound in which R 5 , R 6 and X 1 are methyl, R 1 and R 2 are methyl and phenyl in the general formula (1), and methyl / phenyl = 4/1 molar ratio and b is 0 It is. Moreover, the mass average molecular weight of Compound A1 was 4500.

[合成例3]化合物A2の合成
合成例2において、メチルトリメトキシシラン78g(0.5mol)の代わりに、テトラメトキシシラン76g(0.5mol)を使用した以外は、合成例2と同様の操作を行い、化合物A2を得た。化合物A2は、前記一般式(1)において、R及びRがメチル、Xがメトキシ、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、bが0の化合物である。また、化合物A2の質量平均分子量は4500であった。
[Synthesis Example 3] Synthesis of Compound A2 In Synthesis Example 2, the same operation as in Synthesis Example 2 except that 76 g (0.5 mol) of tetramethoxysilane was used instead of 78 g (0.5 mol) of methyltrimethoxysilane. To obtain Compound A2. Compound A2 has the following formula (1): R 5 and R 6 are methyl, X 1 is methoxy, R 1 and R 2 are combinations of methyl and phenyl, and methyl / phenyl = 4/1 molar ratio, b is 0 It is a compound of this. Moreover, the mass average molecular weight of Compound A2 was 4500.

[合成例4]中間体a2の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、中間体a1を200g、ジメチルビニルクロロシシラン78g(0.32mol)、及び溶媒としてピリジン100gを仕込み、窒素雰囲気下、90℃で2時間攪拌して反応させた。反応液を、90℃で減圧して、未反応のジメチルビニルクロロシシラン及びピリジンを除去した後、イオン交換水で水洗し、更に、100℃で減圧し、水を除去して中間体a2を得た。中間体a2は、前記一般式(1c)に相当する化合物である。
[Synthesis Example 4] Synthesis of Intermediate a2 In a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 200 g of intermediate a1, 78 g (0.32 mol) of dimethylvinylchlorosilane, and a solvent 100 g of pyridine was charged and the reaction was allowed to stir at 90 ° C. for 2 hours under a nitrogen atmosphere. The reaction solution was depressurized at 90 ° C. to remove unreacted dimethylvinylchlorosilane and pyridine, then washed with ion-exchanged water, and further depressurized at 100 ° C. to remove the water and remove intermediate a2. Obtained. The intermediate a2 is a compound corresponding to the general formula (1c).

[合成例5]化合物A3の合成
中間体a2が入っているガラス製反応容器に、メチルジメトキシシラン36g(0.3mol)および触媒として白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)20mg、溶媒としてトルエン100gを仕込み、60℃で15時間攪拌して反応させた。この後、100℃で、未反応のメチルジメトキシシラン及びトルエンを減圧留去し、ろ過した後、更に、薄膜蒸留装置を用いて低沸点成分を除去し、化合物A3を得た。化合物A3は、前記一般式(1)において、R〜R及びX1がメチル、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、bが1の化合物である。また、化合物A3の質量平均分子量は4600であった。
[Synthesis Example 5] Synthesis of Compound A3 In a glass reaction container containing intermediate a2, 36 g (0.3 mol) of methyldimethoxysilane, 20 mg of platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) as a catalyst, and as a solvent 100 g of toluene was charged and reacted by stirring at 60 ° C. for 15 hours. Thereafter, unreacted methyldimethoxysilane and toluene were distilled off under reduced pressure at 100 ° C. and filtered, and then the low boiling point component was removed using a thin film distillation apparatus to obtain Compound A3. Compound A3 is a compound in which, in General Formula (1), R 3 to R 6 and X 1 are methyl, R 1 and R 2 are methyl and phenyl, and methyl / phenyl = 4/1 molar ratio and b is 1 It is. Further, the mass average molecular weight of the compound A3 was 4600.

[合成例6]中間体c1の合成
窒素ガス導入管、温度計、還流器及び攪拌装置を備えたガラス製反応容器に、中間体a1を500g、20%塩酸水溶液250g、溶媒としてトルエン250gを仕込み、100℃で、15時間撹拌した。反応液から、塩酸水溶液層を除去し、反応液をイオン交換水で水洗した後、100℃で減圧し、水及びトルエンを除去して480gの中間体c1を得た(収率96%)。中間体c1は、前記一般式(2a)で表される化合物に相当する。
[Synthesis Example 6] Synthesis of Intermediate c1 A glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer, a reflux device and a stirrer was charged with 500 g of intermediate a1, 250 g of 20% aqueous hydrochloric acid, and 250 g of toluene as a solvent. The mixture was stirred at 100 ° C. for 15 hours. The hydrochloric acid aqueous solution layer was removed from the reaction solution, and the reaction solution was washed with ion-exchanged water and then decompressed at 100 ° C. to remove water and toluene to obtain 480 g of intermediate c1 (yield 96%). The intermediate c1 corresponds to the compound represented by the general formula (2a).

[合成例7]化合物C1の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、中間体c1を200g、メチルトリメトキシシラン44g(0.32mol)、並びに触媒として酢酸0.24g(0.4mmol)を仕込み、窒素雰囲気下、90℃で2時間攪拌して反応させた。反応液を、90℃で減圧して、未反応のメチルトリメトキシシラン、酢酸及び生成したメタノールを除去し、ろ過した後、更に、薄膜蒸留装置を用いて低沸点成分を除去し、化合物C1を得た。化合物C1は、前記一般式(2)において、R11及びXがメチル、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、d及びeが0の化合物である。また、化合物C1の質量平均分子量は4200であった。
Synthesis Example 7 Synthesis of Compound C1 In a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 200 g of intermediate c1, 44 g (0.32 mol) of methyltrimethoxysilane, and acetic acid 0 as a catalyst .24 g (0.4 mmol) was charged and the reaction was allowed to stir at 90 ° C. for 2 hours under a nitrogen atmosphere. The reaction solution was depressurized at 90 ° C. to remove unreacted methyltrimethoxysilane, acetic acid and generated methanol, and after filtration, the low boiling point component was further removed using a thin-film distillation apparatus to give compound C1. Obtained. Compound C1 is a compound in which, in General Formula (2), R 11 and X 2 are methyl, R 7 and R 8 are a combination of methyl and phenyl, methyl / phenyl = 4/1 molar ratio, and d and e are 0 is there. Further, the mass average molecular weight of the compound C1 was 4200.

[合成例8]化合物C2の合成
合成例7において、メチルトリメトキシシラン44g(0.32mol)の代わりに、テトラメトキシシラン49g(0.32mol)を使用した以外は、合成例7と同様の操作を行い、化合物C2を得た。化合物C2は、前記一般式(2)において、R11がメチル、Xがメトキシ、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、d及びeが0の化合物である。また、化合物C2の質量平均分子量は4200であった。
[Synthesis Example 8] Synthesis of Compound C2 The same operation as in Synthesis Example 7 except that in Synthesis Example 7, instead of 44 g (0.32 mol) of methyltrimethoxysilane, 49 g (0.32 mol) of tetramethoxysilane was used. And compound C2 was obtained. Compound C2 has the following formula (2): R 11 is methyl, X 2 is methoxy, R 7 and R 8 are combinations of methyl and phenyl, and methyl / phenyl = 4/1 molar ratio, d and e are 0 A compound. Further, the mass average molecular weight of the compound C2 was 4200.

[合成例9]中間体c2の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、中間体c1を200g、ジメチルビニルクロロシシラン78g(0.32mol)、及び溶媒としてピリジン100gを仕込み、窒素雰囲気下、90℃で2時間攪拌して反応させた。反応液を、90℃で減圧して、未反応のジメチルビニルクロロシシラン及びピリジンを除去した後、イオン交換水で水洗し、更に、100℃で減圧し、水を除去して中間体c2を得た。中間体c2は、前記一般式(2c)に相当する化合物である。
[Synthesis Example 9] Synthesis of Intermediate c2 In a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 200 g of intermediate c1, 78 g (0.32 mol) of dimethylvinylchlorosilane, and as a solvent 100 g of pyridine was charged and the reaction was allowed to stir at 90 ° C. for 2 hours under a nitrogen atmosphere. The reaction solution was depressurized at 90 ° C. to remove unreacted dimethylvinylchlorosilane and pyridine, then washed with ion-exchanged water, and further depressurized at 100 ° C. to remove the water and remove intermediate c2. Obtained. The intermediate c2 is a compound corresponding to the general formula (2c).

[合成例10]化合物C3の合成
中間体c2が入っているガラス製反応容器に、メチルジメトキシシラン36g(0.3mol)および触媒として白金−ジビニルテトラメチルジシロキサン錯体(Karstedt触媒)20mg、溶媒としてトルエン100gを仕込み、60℃で15時間攪拌して反応させた。この後、100℃で、未反応のメチルジメトキシシラン及びトルエンを減圧留去し、ろ過した後、更に、薄膜蒸留装置を用いて低沸点成分を除去し、化合物C3を得た。化合物C3は、前記一般式(2)において、R及びXがメチル、R及びRがメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、R及びRが1の化合物である。また、化合物C3の質量平均分子量は4300であった。
Synthesis Example 10 Synthesis of Compound C3 In a glass reaction vessel containing intermediate c2, 36 g (0.3 mol) of methyldimethoxysilane, 20 mg of platinum-divinyltetramethyldisiloxane complex (Karstedt catalyst) as a catalyst, and as a solvent 100 g of toluene was charged and reacted by stirring at 60 ° C. for 15 hours. Thereafter, unreacted methyldimethoxysilane and toluene were distilled off under reduced pressure at 100 ° C., followed by filtration, and further, low-boiling components were removed using a thin film distillation apparatus to obtain Compound C3. Compound C3 has the following formula (2): R 8 and X 3 are methyl, R 7 and R 8 are a combination of methyl and phenyl, methyl / phenyl = 4/1 molar ratio, R 7 and R 8 are 1 A compound. Further, the mass average molecular weight of the compound C3 was 4300.

[合成例11]化合物D1の合成
窒素ガス導入管、温度計及び攪拌装置を備えたガラス製反応容器に、中間体a1を300g、トリメトキシメタン53g(0.5mmol)を仕込み、窒素雰囲気下、100℃で6時間攪拌して反応させた。反応液を、100℃で減圧して、未反応のトリメトキシメタン、及び生成したギ酸メチルを除去し、ろ過した後、更に、薄膜蒸留装置を用いて低沸点成分を除去し、化合物D1を得た。化合物D1は、前記一般式(3)において、R18がメチル、R12、R13、R16及びR17がメチル及びフェニルの組合せでメチル/フェニル=4/1モル比、g及びhが0の化合物である。また、化合物D1の質量平均分子量は4500であった。
[Synthesis Example 11] Synthesis of Compound D1 Into a glass reaction vessel equipped with a nitrogen gas inlet tube, a thermometer and a stirrer, 300 g of intermediate a1 and 53 g (0.5 mmol) of trimethoxymethane were charged, and under a nitrogen atmosphere, The reaction was allowed to stir at 100 ° C. for 6 hours. The reaction solution was depressurized at 100 ° C. to remove unreacted trimethoxymethane and produced methyl formate, and after filtration, the low boiling point component was further removed using a thin film distillation apparatus to obtain Compound D1. It was. Compound D1 has the following formula (3): R 18 is methyl, R 12 , R 13 , R 16 and R 17 are a combination of methyl and phenyl, methyl / phenyl = 4/1 molar ratio, and g and h are 0 It is a compound of this. In addition, the mass average molecular weight of the compound D1 was 4500.

(湿気硬化性樹脂組成物の調製)
化合物A1、A2、A3、B1、C1、C2、C3、D1を用いて、表1に示す配合にて、実施例1〜15、比較例1〜6の湿気硬化性樹脂組成物を調製した。なお表中の( )内の数字は、各成分の質量比を表す。なお、化合物B1は、ジイソプロポキシチタンジアセチルアセトナートである。
(Preparation of moisture curable resin composition)
Using compounds A1, A2, A3, B1, C1, C2, C3, and D1, the moisture curable resin compositions of Examples 1 to 15 and Comparative Examples 1 to 6 were prepared with the formulations shown in Table 1. In addition, the number in () in a table | surface represents the mass ratio of each component. Compound B1 is diisopropoxytitanium diacetylacetonate.

実施例1〜15及び比較例1〜6の湿気硬化性樹脂組成物について、下記の方法により試験片を作製し、下記の評価を行った。結果を表1に示す。   About the moisture curable resin composition of Examples 1-15 and Comparative Examples 1-6, the test piece was produced by the following method and the following evaluation was performed. The results are shown in Table 1.

[試験片の作成方法]
縦10cm、横10cmのガラス板に、厚さ0.1mmとなるように湿気硬化性樹脂組成物を塗布し、温度40℃、相対湿度50%の恒温恒湿槽で24時間保存した後、200℃の恒温槽で2時間加熱して試験片に用いた。
[How to create a test piece]
A moisture curable resin composition was applied to a glass plate having a length of 10 cm and a width of 10 cm so as to have a thickness of 0.1 mm, and stored in a constant temperature and humidity chamber at a temperature of 40 ° C. and a relative humidity of 50% for 24 hours. It heated for 2 hours with the thermostat of ° C, and used for the test piece.

[ブリード試験]
試験片の表面に薬包紙を押し付け、薬包紙の濡れによりブリードの程度を以下の基準により判定した。
◎:薬包紙に濡れがなく、ブリードがみられない。
○:薬包紙にわずかに濡れがあり、わずかにブリードがみられない。
△:薬包紙にやや濡れがあり、ややブリードがみられる。
×:薬包紙に明らかに濡れがあり、ブリードが多い。
未硬化:硬化しておらず、ブリード試験未実施。
[Bleed test]
The wrapping paper was pressed against the surface of the test piece, and the degree of bleeding due to the wetting of the wrapping paper was determined according to the following criteria.
A: The medicine wrapping paper is not wet and bleeding is not observed.
○: The drug wrapping paper is slightly wet and no bleed is observed.
Δ: Medicine wrapping paper is slightly wet and slightly bleed is observed.
X: The medicine wrapping paper is clearly wet, and there are many bleeds.
Uncured: not cured, no bleed test.

[粘着性試験]
水平に置いた試験片上に、直径1/4インチの鋼球をのせ、試験片の傾斜角を0°から次第に大きくした場合にボールが動き始める傾斜角を測定した。ボールが動き始める傾斜角が大きいほど粘着性が大きいことを示す。
[Adhesion test]
A steel ball having a diameter of 1/4 inch was placed on a horizontally placed test piece, and the tilt angle at which the ball started to move when the tilt angle of the test piece was gradually increased from 0 ° was measured. The larger the tilt angle at which the ball starts to move, the greater the tackiness.

Figure 2013221135
Figure 2013221135

表1の結果から、本発明の硬化性樹脂組成物から得られる硬化物は、耐熱性および粘着性に優れていることがわかる。   From the results in Table 1, it can be seen that the cured product obtained from the curable resin composition of the present invention is excellent in heat resistance and adhesiveness.

Claims (4)

下記一般式(1)で表されることを特徴とするポリシロキサン化合物。
Figure 2013221135
(式中、R〜Rは各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R及びRは各々独立して炭素数1〜4のアルキル基を表し、Xは炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表し、aは、一般式(1)で表される化合物の質量平均分子量を2000〜100万とする数を表し、bは0又は1を表す。)
A polysiloxane compound represented by the following general formula (1):
Figure 2013221135
(In the formula, R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, and R 5 and R 6 each independently represent one having 1 to 4 carbon atoms. Represents an alkyl group, X 1 represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and a is a compound represented by the general formula (1) Represents a number with a mass average molecular weight of 2000 to 1,000,000, and b represents 0 or 1.)
(A)成分として前記一般式(1)で表されるシロキサン化合物、及び(B)成分として硬化触媒を含有することを特徴とする湿気硬化性樹脂組成物。   A moisture-curable resin composition comprising a siloxane compound represented by the general formula (1) as a component (A) and a curing catalyst as a component (B). 更に、(C)成分として下記一般式(2)で表されるシロキサン化合物を含有する請求項2記載の湿気硬化性樹脂組成物。
Figure 2013221135
(式中、R〜R10は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R11は炭素数1〜4のアルキル基を表し、Xは炭素数1〜4のアルキル基、炭素数6〜10のアリール基又は炭素数1〜4のアルコキシ基を表し、cは、一般式(2)で表される化合物の質量平均分子量を1000〜100万とする数を表し、d及びeは各々独立して0又は1を表す。)
Furthermore, the moisture curable resin composition of Claim 2 containing the siloxane compound represented by following General formula (2) as (C) component.
Figure 2013221135
(Wherein R 7 to R 10 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 11 represents an alkyl group having 1 to 4 carbon atoms, and X 2 Represents an alkyl group having 1 to 4 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and c represents a mass average molecular weight of the compound represented by the general formula (2) from 1000 to 1000. (The number is 1 million, and d and e each independently represent 0 or 1.)
更に、(D)成分として下記一般式(3)で表されるシロキサン化合物を含有する請求項2または3記載の湿気硬化性樹脂組成物。
Figure 2013221135
(式中、R12〜R17は各々独立して炭素数1〜4のアルキル基又は炭素数6〜10のアリール基を表し、R18は炭素数1〜4のアルキル基を表し、fは、一般式(3)で表される化合物の質量平均分子量を1000〜100万とする数を表し、g及びhは各々独立に0又は1を表す。)
Furthermore, the moisture curable resin composition of Claim 2 or 3 containing the siloxane compound represented by following General formula (3) as (D) component.
Figure 2013221135
(Wherein R 12 to R 17 each independently represents an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms, R 18 represents an alkyl group having 1 to 4 carbon atoms, and f is And represents a number in which the mass average molecular weight of the compound represented by the general formula (3) is 1,000 to 1,000,000, and g and h each independently represent 0 or 1.)
JP2012095153A 2012-04-18 2012-04-18 Polysiloxane compound and moisture curable resin composition Expired - Fee Related JP5930826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095153A JP5930826B2 (en) 2012-04-18 2012-04-18 Polysiloxane compound and moisture curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095153A JP5930826B2 (en) 2012-04-18 2012-04-18 Polysiloxane compound and moisture curable resin composition

Publications (2)

Publication Number Publication Date
JP2013221135A true JP2013221135A (en) 2013-10-28
JP5930826B2 JP5930826B2 (en) 2016-06-08

Family

ID=49592352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095153A Expired - Fee Related JP5930826B2 (en) 2012-04-18 2012-04-18 Polysiloxane compound and moisture curable resin composition

Country Status (1)

Country Link
JP (1) JP5930826B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098118A1 (en) * 2013-12-27 2015-07-02 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, the use thereof, and method for repairing electronic device
WO2015098119A1 (en) * 2013-12-27 2015-07-02 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, and the use thereof
JP2015523456A (en) * 2012-07-30 2015-08-13 ダウ コーニング コーポレーションDow Corning Corporation Thermally conductive condensation reaction curable polyorganosiloxane composition and method for preparation and use of the composition
JP2015183184A (en) * 2014-03-26 2015-10-22 信越化学工業株式会社 Room temperature moisture-thickening type thermoconductive silicone grease composition
JP2016094567A (en) * 2014-11-17 2016-05-26 信越化学工業株式会社 Water and oil repellent treatment agent, production method thereof, and article
WO2024202626A1 (en) * 2023-03-29 2024-10-03 信越化学工業株式会社 Organopolysiloxane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049072A (en) * 2001-05-30 2003-02-21 Dow Corning Toray Silicone Co Ltd Cold curable silicone rubber composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049072A (en) * 2001-05-30 2003-02-21 Dow Corning Toray Silicone Co Ltd Cold curable silicone rubber composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523456A (en) * 2012-07-30 2015-08-13 ダウ コーニング コーポレーションDow Corning Corporation Thermally conductive condensation reaction curable polyorganosiloxane composition and method for preparation and use of the composition
US9752007B2 (en) 2012-07-30 2017-09-05 Dow Corning Corporation Thermally conductive condensation reaction curable polyorganosiloxane composition and methods for the preparation and use of the composition
WO2015098118A1 (en) * 2013-12-27 2015-07-02 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, the use thereof, and method for repairing electronic device
WO2015098119A1 (en) * 2013-12-27 2015-07-02 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, and the use thereof
US10066138B2 (en) 2013-12-27 2018-09-04 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, the use thereof, and method for repairing electronic device
US10072151B2 (en) 2013-12-27 2018-09-11 Dow Corning Toray Co., Ltd. Room-temperature-curable silicone rubber composition, and the use thereof
JP2015183184A (en) * 2014-03-26 2015-10-22 信越化学工業株式会社 Room temperature moisture-thickening type thermoconductive silicone grease composition
JP2016094567A (en) * 2014-11-17 2016-05-26 信越化学工業株式会社 Water and oil repellent treatment agent, production method thereof, and article
US9850399B2 (en) 2014-11-17 2017-12-26 Shin-Etsu Chemical Co., Ltd. Water/oil-repellent treatment agent having heat resistance, method of preparation, and treated article
WO2024202626A1 (en) * 2023-03-29 2024-10-03 信越化学工業株式会社 Organopolysiloxane

Also Published As

Publication number Publication date
JP5930826B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5930826B2 (en) Polysiloxane compound and moisture curable resin composition
JP5655163B2 (en) Curable resin composition and cured product thereof
US9346954B2 (en) Curable resin composition
EP2937375B1 (en) Novel ethynyl-group-containing organopolysiloxane compound, method for producing straight-chain organopolysiloxane compound containing ethynyl group at both molecular chain ends, method for producing alkoxysilyl-ethynyl-group-terminated organosiloxane polymer, room-temperature-curable composition, and molded article that is cured product of same
JP2006348284A (en) Siloxane-based condensate and method for producing the same
CN108463508B (en) Condensation-reactive polysiloxane composition and cured product
JP6502658B2 (en) Curable silicone resin composition and cured product thereof
JP6747507B2 (en) Room temperature curable composition, sealant and article
KR20170018408A (en) Room-temperature-curable organopolysiloxane composition, and moulded product comprising cured product of said room- temperature-curable organopolysiloxane composition
JP2012122002A (en) Addition-curable metallosiloxane compound
JP3221718B2 (en) Epoxy-modified silicone resin composition
JP2015013927A (en) Moisture-curable resin composition and heat conduction sheet
JPWO2019069706A1 (en) Method for Producing Room Temperature Curable Organopolysiloxane Composition, Room Temperature Curable Organopolysiloxane Composition and Articles
KR20200078637A (en) Polysiloxane and its manufacturing method
US10100156B2 (en) Curable resin composition
JP3263177B2 (en) Epoxy group-containing silicone resin and method for producing the same
JPH07278497A (en) Coating composition for covering
JP2677773B2 (en) Method for producing organopolysiloxane
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
WO2015178475A1 (en) Branched-chain polyorganosiloxycyl alkylene, method for producing same, curable resin composition, and semiconductor device
JP5888112B2 (en) Method for producing room temperature curable organopolysiloxane composition and article
TW201412882A (en) Curable resin composition
JP5661429B2 (en) Liquid addition-curable metallosiloxane
CN118119670A (en) Room temperature curable organopolysiloxane composition, adhesive, sealant, and coating agent
WO2018235811A1 (en) Curable silicone resin composition and cured product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees