JP2013221081A - Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same - Google Patents

Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same Download PDF

Info

Publication number
JP2013221081A
JP2013221081A JP2012093308A JP2012093308A JP2013221081A JP 2013221081 A JP2013221081 A JP 2013221081A JP 2012093308 A JP2012093308 A JP 2012093308A JP 2012093308 A JP2012093308 A JP 2012093308A JP 2013221081 A JP2013221081 A JP 2013221081A
Authority
JP
Japan
Prior art keywords
coating material
coating
zinc
paint
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012093308A
Other languages
Japanese (ja)
Inventor
Kenichi Nakamura
健一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROVAL CORP
Original Assignee
ROVAL CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROVAL CORP filed Critical ROVAL CORP
Priority to JP2012093308A priority Critical patent/JP2013221081A/en
Publication of JP2013221081A publication Critical patent/JP2013221081A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a normal temperature-drying type zinc-rich coating material capable of effectively reducing flush rust and loose scale, and to provide a method for coating the normal temperature-drying type zinc-rich coating material by which the electric resistance of a coated film can be controlled properly.SOLUTION: The normal temperature-drying type aqueous zinc-rich coating material to be coated on the surface of a steel material is the one obtained by forming the coating material by mixing and stirring a second coating material obtained by kneading particulate silica with zinc powder, with a first coating material constituted of a rust-proofing agent of ≤0.5% by weight based on the whole coating material, an aqueous resin, an additive, water and a small amount of a volatile organic compound and the like at a coating site. The amount of the particulate silica to be mixed with the zinc powder in the second coating material is 100-5,000 ppm by the weight ratio to the weight of the zinc powder, and the normal temperature-drying type aqueous zinc-rich coating material obtained by mixing and stirring the second coating material with the first coating material at the site is coated.

Description

本発明は、揮発性有機化合物(VOC)成分が極小であって、環境を悪化させない常温乾燥型の水性ジンクリッチ塗料、及びこれを塗装する方法に関するものである。   The present invention relates to a room-temperature-drying water-based zinc rich paint that has a minimal volatile organic compound (VOC) component and does not deteriorate the environment, and a method for coating the same.

塗料の機能は、大別して被塗物に対する保護と美観の付与である。その内、保護機能を塗膜に付与するためには、大別して、塗膜の主構成物質である樹脂の選択によって塗膜自身の環境(雨水や海水等)に対する遮断性を持たす事と、塗膜中には必ず水が侵入する事を前提として、塗膜中に水可溶性防錆顔料を添加する、との2つの手段がある。   The function of the paint is broadly classified to provide protection and beauty to the object to be coated. Among them, in order to impart a protective function to the coating film, it is roughly classified to have a blocking property against the environment of the coating film itself (rainwater, seawater, etc.) by selecting the resin that is the main constituent material of the coating film. There are two means of adding a water-soluble anticorrosive pigment to the coating film on the premise that water always enters the film.

ところが、1940年代に英国の学者グループによって発明されたのがジンクリッチ塗料である。これは、金属亜鉛末を塗膜中に多量含有させる事によって、金属的塗膜として働き、膜中の亜鉛末粒子が犠牲となって塗膜下の鋼材を保護するものである。   However, zinc rich paint was invented by a group of British scholars in the 1940s. This is because a large amount of metallic zinc powder is contained in the coating film to act as a metallic coating film, and the steel powder under the coating film is protected at the expense of zinc powder particles in the film.

この塗料は電気化学的反応を利用したもので、亜鉛末粒子同士及び亜鉛末粒子と鋼材がそれぞれ金属的に接触しており、鋼材が陰極反応(カソード反応:還元反応)、塗膜中の亜鉛末粒子が陽極反応(アノード反応:酸化反応)との対で進行する。この事は、塗装された塗膜表面と塗膜下の鋼材との間の電気抵抗値は略ゼロΩである事を意味するものでる。即ち、塗膜は、金属膜的犠牲挙動を示すものである。   This paint uses an electrochemical reaction. The zinc dust particles and the zinc dust particles and the steel are in metal contact with each other. The steel is cathodic (cathode reaction: reduction reaction). The powder particles proceed in a pair with an anodic reaction (anodic reaction: oxidation reaction). This means that the electrical resistance value between the painted coating surface and the steel material under the coating is approximately zero Ω. That is, the coating film shows a sacrificial behavior like a metal film.

このために、亜鉛末粒子が金属的振る舞いを示す限り鋼材を保護する事になり、今日でも鋼材を保護するための塗料として大型鋼構造物等々で構成される鋼材表面に広く採用されている。   For this reason, as long as the zinc dust particles exhibit metallic behavior, the steel material is protected, and even today, it is widely used on the surface of steel materials composed of large steel structures and the like as paints for protecting the steel materials.

一方、昨今の塗料、塗装に関係する大型鋼構造物への社会的関心事は、溶剤型から水性型塗料への転換による環境対応と、トータルコストの導入である。   On the other hand, social concerns about large steel structures related to paints and coatings in recent years are environmental measures by switching from solvent-based paints to water-based paints and introduction of total costs.

このトータルコストの概念は、予め設計段階において、耐用年数を決め、初期建設費、維持管理費、解体・廃棄費を見積もり、この3つの費用をトータルコストとして提示する方法である。   The concept of this total cost is a method in which the useful life is determined in advance at the design stage, initial construction costs, maintenance costs, dismantling / disposal costs are estimated, and these three costs are presented as total costs.

従って、塗料、塗装分野では、水性化とともに、塗膜自身の耐用年数の提示に応えることが、重要な社会的背景になってきた。   Therefore, in the field of paints and paintings, it has become an important social background to respond to the presentation of the useful life of the coating film itself as well as being water-based.

特開平07−133442号公報Japanese Patent Application Laid-Open No. 07-133442 特開平08−141498号公報Japanese Patent Laid-Open No. 08-141498

昨今の環境問題もあり、脱有機溶剤系塗料(いわゆる水性塗料)への転換要求が高まってきた。従来の溶剤型ジンクリッチ塗料に対しても同様である。   Due to recent environmental problems, there has been an increasing demand for conversion to organic solvent-free paints (so-called water-based paints). The same applies to conventional solvent-type zinc rich paints.

また、水性ジンクリッチ塗料も提案されているが(特許文献1〜特許文献2)、常温下で塗装、乾燥できる塗料組成を教示するものではない。また、塗装前の鋼材表面のケレンによる錆落とし不良が原因の浮き錆、フラッシュラストを効果的に低減できる塗料組成やその成長を抑止する方法、更には、被塗物鋼材が要求する耐用性に沿った塗料を適切に塗装する方法は未だ知られていない。   Also, water-based zinc-rich paints have been proposed (Patent Documents 1 to 2), but do not teach a paint composition that can be applied and dried at room temperature. In addition, paint composition that can effectively reduce floating rust and flash last due to rust removal failure due to kelen on the surface of steel before painting, a method to suppress its growth, and the durability required for the steel to be coated It is not yet known how to properly apply the paint along.

また、鋼材の表面状態や鋼材の耐用要求に応えるべき、塗装後乾燥したジンクリッチ塗膜の電気抵抗値をゼロΩから適切な電気抵抗値にする方法及びその利用方法は未だ知られていない。 In addition, a method for changing the electrical resistance value of a zinc rich coating film dried after coating to an appropriate electrical resistance value from zero Ω and a method for using the same, which should meet the surface condition of the steel material and the durability requirement of the steel material, are not yet known.

本発明は、上記の問題点に鑑みてなされたものであって、常温で塗装、乾燥させ、浮き錆、フラッシュラストを効果的に低減でき、更には、被塗物鋼材の耐用年数に応じた塗膜の要求性能を適切に実現できる塗装方法を提供することを目的とする。   The present invention has been made in view of the above problems, and can be painted and dried at room temperature to effectively reduce floating rust and flash rust, and further according to the service life of the steel material to be coated. It aims at providing the coating method which can implement | achieve the required performance of a coating film appropriately.

上記の目的を達成するため、発明者は、種々の実験を繰り返した結果、特定の塗料用原料の製造、特定の組成物を添加する水性塗料によれば、錆が生じている鋼材であっても、あるいは被塗物鋼材に要求される耐用年数に応じるように塗装する方法を見出して本発明を完成させた。   In order to achieve the above object, the inventor has conducted various experiments, and as a result, the production of a specific paint raw material, and the water-based paint to which a specific composition is added, is a steel material in which rust has occurred. Alternatively, the present invention has been completed by finding a method of coating in accordance with the service life required for the steel material to be coated.

すなわち、本発明は、鋼材表面に塗装される水性塗料であって、水性樹脂を含有すると共に、塗料全体に対して70%〜90%で、且つ、固体成分に対して90%〜97%の重量比の亜鉛末を含有し、塗料全体の重量比10%〜25%が揮発成分で構成され、揮発性有機化合物は、塗料全体の重量比1%未満に抑制されている。本発明の揮発成分とは、乾燥状態で塗膜に残存しない物質を意味し、分散媒たる水を含んだ概念である。また、本発明の数値範囲は、以上と以下で規定されており、数値両端を含んでいる。   That is, the present invention is an aqueous paint to be coated on the surface of a steel material, containing an aqueous resin, 70% to 90% with respect to the entire paint, and 90% to 97% with respect to a solid component. It contains zinc powder at a weight ratio, 10% to 25% by weight of the entire paint is composed of volatile components, and volatile organic compounds are suppressed to less than 1% by weight of the entire paint. The volatile component of the present invention means a substance that does not remain in the coating film in a dry state, and is a concept including water as a dispersion medium. The numerical range of the present invention is defined as above and below, and includes both numerical ends.

本発明の、水性塗料は、分散媒として水を使用するものの、塗料全体に対しては70%〜90%で、且つ、固体成分に対して90%〜97%の重量比の亜鉛末を含有し、乾燥時間が短いので、金属面が露出した鋼材に塗布しても鋼材表面がウェットな時間を低減することができ、浮き錆の発生を効果的に抑制することができる。さらには、亜鉛末粒子の犠牲防食作用を制御することにより、鋼材表面の錆部分の広がり及び塗膜の耐用性を電気化学的に制御することができる。   Although the water-based paint of the present invention uses water as a dispersion medium, it contains zinc powder in a weight ratio of 70% to 90% with respect to the whole paint and 90% to 97% with respect to the solid component. And since drying time is short, even if it apply | coats to the steel material which the metal surface exposed, the time for which the steel material surface is wet can be reduced, and generation | occurrence | production of floating rust can be suppressed effectively. Furthermore, by controlling the sacrificial anticorrosive action of the zinc dust particles, the spread of the rust portion on the steel material surface and the durability of the coating film can be controlled electrochemically.

また、本発明の水性塗料の最大の意図は、予め、亜鉛末と任意の量の微粒子シリカとを混練することにより、亜鉛末粒子表面を適切に不活性化させた塗材(以下、第2塗材と称する)と、水、樹脂、分散媒、添加剤、微量の揮発性有機化合物等々、及び必須の防錆剤で混合、分散された塗材(以下、第1塗材と称する)とで構成される。   In addition, the greatest intention of the water-based paint of the present invention is that a coating material (hereinafter referred to as second coating material) in which the surface of zinc powder particles is appropriately inactivated by kneading zinc powder and an arbitrary amount of fine particle silica in advance. And a coating material (hereinafter referred to as the first coating material) mixed and dispersed with water, a resin, a dispersion medium, an additive, a small amount of a volatile organic compound, etc., and an essential rust inhibitor. Consists of.

塗装現場において、本発明塗料を塗装する場合、被塗物鋼材に要求される耐用性に応じて、第2塗材中の微粒子シリカ量を適切に選択して、塗装することにより、塗装塗膜の電気抵抗値を従来の基本的概念であるゼロΩという金属的な膜ではなく、適切な電気抵抗値を有する塗膜にすることができる。 When painting the paint of the present invention at the painting site, the coating film is formed by appropriately selecting the amount of fine particle silica in the second coating material according to the durability required for the steel material to be coated. The electrical resistance value can be a coating film having an appropriate electrical resistance value instead of a metal film of zero Ω which is the conventional basic concept.

本発明の、この概念は、従来の溶剤型ジンクリッチ塗膜並びに公表されている水性型ジンクリッチ塗膜の最大の特徴でもある過防食性を制御出来ない、との欠点も克服できる。即ち、金属的塗膜であるために、それ自体は自然環境下での電気化学的反応に依存して劣化が進む。この劣化速度を有用に制御できるのは、塗膜の電気抵抗値に依存することに着目したものである。   This concept of the present invention can also overcome the disadvantage that the anticorrosion property, which is the greatest feature of the conventional solvent-type zinc-rich coating film as well as the published aqueous-type zinc-rich coating film, cannot be controlled. That is, since it is a metallic coating film, the deterioration itself progresses depending on the electrochemical reaction in the natural environment. The fact that this deterioration rate can be controlled effectively is based on the fact that it depends on the electric resistance value of the coating film.

ところが、この概念を従来の溶剤型のジンクリッチ塗料に適用する事も可能ではあるが、製造コスト、原材料コスト、塗装コストが上昇して、今日の低価格指向情勢から、上市しても商品として差別化は困難であり、あえて本発明の範囲外とした。   However, although it is possible to apply this concept to conventional solvent-type zinc-rich paints, manufacturing costs, raw material costs, and coating costs have risen. Differentiation is difficult, and it was intentionally outside the scope of the present invention.

なお、本発明の水性塗料は、揮発性有機化合物の含有量が、塗料全体の重量比1%未満に抑制されているので、溶剤の乾燥時における作業環境への悪影響が極めて少ない。なお、本発明の水性塗料は、旧塗装膜の上に重複して塗装できるが、鋼材表面に錆が発生している場合には、旧塗膜を剥離するケレン作業を先行させることが好適である。   In addition, since the content of the volatile organic compound is suppressed to less than 1% by weight of the entire paint, the water-based paint of the present invention has very little adverse effect on the working environment when the solvent is dried. The water-based paint of the present invention can be applied over the old paint film, but when rust is generated on the steel surface, it is preferable to precede the work of peeling off the old paint film. is there.

本発明では、亜鉛末含有量は、塗料全体に対して重量比70%〜90%であるが、より好ましくは、重量比75%〜87%とすべきである。また、亜鉛末含有量は、固体成分に対して、より好ましくは、重量比92.1%〜97%とすべきである。   In the present invention, the zinc dust content is 70% to 90% by weight with respect to the entire coating material, and more preferably 75% to 87% by weight. The zinc dust content should more preferably be 92.1% to 97% by weight relative to the solid component.

本発明の揮発性成分は、塗料全体の重量比10%〜25%であるが、より好ましくは、20重量%以下に抑制されるべきである。このような場合、典型的には、重量比75%以上の亜鉛末を適切な量の微粒子シリカで予め処理された第2塗材と重量比25%の少なくとも適切な種類と量の防錆剤を含んだ第1塗材とを別々に用意し、塗装作業現場で両者を混合、攪拌して、本発明の水性塗料を完成させ、塗装することが好適である。   The volatile component of the present invention is 10% to 25% by weight of the entire coating material, and more preferably 20% by weight or less. In such a case, typically, a second coating material in which zinc powder having a weight ratio of 75% or more is pre-treated with an appropriate amount of fine-particle silica and at least an appropriate type and amount of rust inhibitor having a weight ratio of 25% are used. It is preferable to separately prepare the first coating material containing, and mix and stir both at the painting work site to complete and paint the water-based paint of the present invention.

このような組成によれば、はけ塗りやローラー塗りに適した粘度が実現されるが、エアスプレー塗装、エアレススプレーガン塗装を実現するためには、必要に応じて希釈水を追加して使用してもよい。希釈水は、塗料全体の2重量%以下に制限すべきである。   According to such a composition, viscosity suitable for brushing and roller coating is realized, but in order to realize air spray painting and airless spray gun painting, additional dilution water is used as necessary. May be. The dilution water should be limited to no more than 2% by weight of the total paint.

また、本発明の水性塗料に構成される水性樹脂は、一般の常温乾燥型の水性塗料に使用される水性樹脂であって、特別に合成された樹脂ではなく、水性エポキシ樹脂あるいは水性ウレタン樹脂等のラッカータイプでも良い。好ましくは、塗料全体に対して重量比3%〜9%の含有比とすべきである。また、より好ましい実施形態によれば、乾燥膜厚40μmにおいて、JIS K5600−5−4に基づく表面硬度がB〜2Hとなる。表面硬度は、より好ましくは、HB〜2Hとすべきであり、実施例の水性塗料では表面硬度がHB以上となる。   In addition, the water-based resin constituted in the water-based paint of the present invention is a water-based resin used for a general room temperature dry-type water-based paint, and is not a specially synthesized resin, but a water-based epoxy resin or a water-based urethane resin. The lacquer type can be used. Preferably, the content ratio should be 3% to 9% by weight with respect to the whole paint. According to a more preferred embodiment, the surface hardness based on JIS K5600-5-4 is B to 2H at a dry film thickness of 40 μm. More preferably, the surface hardness should be HB to 2H. In the water-based paint of the example, the surface hardness is HB or more.

本発明の水性塗料は、必須として防錆剤を含有させた第1塗材には、好適には、水性樹脂、水及び増粘剤、消泡剤、分散剤の何れか一以上が含有され、はけ塗りやローラー塗りに適した粘度に調製される。増粘剤の配合量は、必要な粘度に対応して設定されるが、塗料全体に対して、重量濃度1500〜2200ppm程度であるのが好適である。   In the water-based paint of the present invention, the first coating material containing a rust inhibitor as an essential component preferably contains at least one of a water-based resin, water and a thickener, an antifoaming agent, and a dispersant. The viscosity is suitable for brushing and roller coating. The blending amount of the thickener is set corresponding to the necessary viscosity, but it is preferable that the weight concentration is about 1500 to 2200 ppm with respect to the entire coating material.

そして、増粘剤としては、ポリエーテルポリオール及びアニオン活性剤を、増粘剤全体に対して30〜45重量%程度含有するものが好適に選択される。なお、ポリエーテルポリオールは、ノニオン活性剤に対して重量比4.0〜5.0程度が含有されるのが好適である。   And as a thickener, what contains a polyether polyol and an anionic active agent about 30 to 45 weight% with respect to the whole thickener is selected suitably. In addition, it is suitable that polyether polyol contains about 4.0-5.0 weight ratio with respect to a nonionic activator.

消泡剤と分散剤は、好ましくは、互いに、0.7:1〜1:0.7程度、より好ましくは、0.9:1〜1:0.9程度の重量比で重複して添加するのが好適である。   The antifoaming agent and the dispersing agent are preferably added to each other at a weight ratio of about 0.7: 1 to 1: 0.7, more preferably about 0.9: 1 to 1: 0.9. It is preferable to do this.

また、防錆剤は、亜鉛末粒子表面及び鋼材表面への酸化皮膜形成剤、無機系皮膜形成剤、有機皮膜形成剤、硫化皮膜形成剤、錆転換剤(キレート剤)等を単独あるいはこれらを、適時組み合わせて、最終的には、第2塗材中の微粒子シリカ量を適切に選択し、塗装後の塗膜の電気抵抗値を好ましくは、5Ω/mm〜5000kΩ/mmになるように塗装塗膜を完成させる。より好ましくは、50Ω/mm〜1000KΩ/mmになるように選定・組み合わせることが好適である。 In addition, the rust preventive agent is an oxide film forming agent, an inorganic film forming agent, an organic film forming agent, a sulfide film forming agent, a rust conversion agent (chelating agent), etc., on the zinc powder particle surface and the steel material surface. Combined in a timely manner, finally, the amount of fine particle silica in the second coating material is appropriately selected, and the electric resistance value of the coated film after coating is preferably 5 Ω / mm 2 to 5000 kΩ / mm 2 Complete the paint film. More preferably, it is suitable to select and combine so as to be 50 Ω / mm 2 to 1000 KΩ / mm 2 .

例えば、防錆剤としては、亜硝酸塩やバナジン酸塩系の酸化皮膜形成剤とキレート剤の組み合わせ、または単独添加があり、亜硝酸ナトリウムの場合、塗料全体の重量比で0.5重量%が好適であるが、本発明では、これに限定されるものではない。   For example, as a rust preventive agent, there is a combination of a nitrite or vanadate-based oxide film forming agent and a chelating agent, or a single additive. In the case of sodium nitrite, 0.5% by weight is the total weight ratio of the paint. Although preferred, the invention is not so limited.

本発明の水性塗料には、塗布性などの観点から、好ましくは、平均粒径が4〜5μm程度の亜鉛末が使用される。更に好ましくは、亜鉛及び酸化亜鉛で構成され、これに、好ましくは、亜鉛末重量に対して50〜5000ppmの微粉末シリカでもって、混練混合される。より好ましくは、100〜5000ppmが好適である。亜鉛末と微粉末シリカとを混練させることにより、亜鉛末の凝集防止剤としての機能及び亜鉛末同士の金属間の電気抵抗の付与機能をもたせた第2塗材、及び水性塗料として完成させる段階で添加された防錆剤を含む第1塗材との相乗効果によって、従来の金属的塗膜から塗装後の塗膜の電気抵抗値の決定に関与するものである。   For the water-based paint of the present invention, zinc powder having an average particle size of about 4 to 5 μm is preferably used from the viewpoint of applicability and the like. More preferably, it is composed of zinc and zinc oxide, and is preferably kneaded and mixed with fine powder silica of 50 to 5000 ppm based on the weight of zinc powder. More preferably, 100 to 5000 ppm is suitable. A step of completing a second coating material having a function as an agglomeration inhibitor of zinc powder and a function of imparting electrical resistance between metals of the zinc powder, and an aqueous paint by kneading zinc powder and fine powder silica Due to the synergistic effect with the first coating material containing the anticorrosive agent added in (1), it is involved in the determination of the electrical resistance value of the coating film after painting from the conventional metallic coating film.

微粉末シリカは、例えば、4塩化ケイ素を水素火炎中で燃焼させて生成されるヒュームドシリカが好適に使用される。   As the fine powder silica, for example, fumed silica produced by burning silicon tetrachloride in a hydrogen flame is suitably used.

また、本発明は、鋼材表面に、水性塗料を塗布して乾燥状態で膜厚30〜50μmの第1塗布工程と、第1塗布工程で塗布した水性塗料が乾燥した後、同一の水性塗料を塗布して乾燥状態で膜厚30〜50μmの第2塗膜を形成する第2塗布工程と、を有しする。但し、本発明では、使用される物件の鋼材によっては、第1塗布工程のみを塗布してもよく、特に限定されるものではない。   In addition, the present invention applies a water-based paint on the surface of a steel material, and after drying the first coating process having a film thickness of 30 to 50 μm in a dry state and the water-based paint applied in the first coating process, And a second application step of forming a second coating film having a film thickness of 30 to 50 μm in a dry state. However, in this invention, depending on the steel material of the property used, only a 1st application | coating process may be apply | coated and it does not specifically limit.

但し、本発明によれば、同一の塗料を重ね塗りすることで足りるので、作業性に優れている。なお、三回以上の重ね塗りすることを禁止するものではないが、膜厚30〜50μmの塗装膜層を二重に設けることで、第1塗布工程の直後に浮き錆やフラッシュラストが発生した場合でも、その成長を確実に抑止することができる。なお、この点は、多数回の実験によって確認している。   However, according to the present invention, it is sufficient to apply the same paint repeatedly, so that the workability is excellent. In addition, although it is not prohibited to overcoat three or more times, floating rust and flash last occurred immediately after the first coating step by providing a double coating film layer with a film thickness of 30 to 50 μm. Even in this case, the growth can be surely restrained. This point has been confirmed by many experiments.

本発明の第1塗布工程は、鋼材表面に塗装膜を残した状態で実行しても良いが、塗装膜に錆が浮いている場合には、塗装膜を剥離するケレン作業を第1塗布工程に先行して実行するのが好ましい。   The first coating step of the present invention may be performed with the coating film left on the steel surface. However, when rust is floating on the coating film, the first coating step is performed to remove the coating film. It is preferable to execute it prior to.

上記した本発明によれば、フラッシュラストや浮き錆を効果的に低減できる水性塗料、及び、塗装後の塗膜の電気抵抗値を任意に設定できる水性塗料を塗装する方法を実現できる。   According to the above-described present invention, it is possible to realize a method of applying a water-based paint capable of effectively reducing flash last and floating rust and a water-based paint capable of arbitrarily setting the electric resistance value of the coated film after coating.

実施例と比較例の塗料組成を示す図面である。It is drawing which shows the coating composition of an Example and a comparative example. 実施例と比較例の性能を示す図面である。It is drawing which shows the performance of an Example and a comparative example. 実施例と比較例の防錆剤の種類を示す図面である。It is drawing which shows the kind of rust preventive agent of an Example and a comparative example. 実施例と比較例の防錆剤の組み合わせを示す図面である。It is drawing which shows the combination of the antirust agent of an Example and a comparative example. 実施例と比較例の混練組成を示す図面である。It is drawing which shows the kneading | mixing composition of an Example and a comparative example. 塗装塗膜の電気抵抗値を測定する方法を示す図面である。It is drawing which shows the method of measuring the electrical resistance value of a coating film. 実施例と比較例の塗膜の電気抵抗値の効果を示す図面である。It is drawing which shows the effect of the electrical resistance value of the coating film of an Example and a comparative example.

以下、実施例に基づいて本発明を説明するが、特に本発明を限定するものではない。図1は、実施例1〜実施例6と比較例1〜比較例5の塗料組成と、重要成分の組成割合を図示したものである。なお、液組成を示す数値は、重量部を意味し、組成割合は、重量%を意味している。消泡剤と分散剤については、固・液の明確な分類が困難であり、かつ塗料中での割合は極微量であるため、計算上、揮発性有機化合物(VOC)として扱った。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not specifically limited. FIG. 1 illustrates the coating compositions of Examples 1 to 6 and Comparative Examples 1 to 5 and the composition ratios of important components. In addition, the numerical value which shows a liquid composition means a weight part, and a composition ratio means the weight%. Regarding the antifoaming agent and the dispersing agent, it was difficult to clearly classify the solid and the liquid, and the ratio in the paint was extremely small. Therefore, they were treated as volatile organic compounds (VOC) in the calculation.

水性ウレタン樹脂A,水性アクリルエマルジョン樹脂B、水性変性エポキシ樹脂C、水性変性エポキシエステル樹脂Dとしては、市場で入手可能な一般的な樹脂を使用し、各々の固形成分は、38%、35%、33%、37%であった。なお、樹脂A〜Dについて、同種の複数の樹脂について実験したが、ほぼ同様な傾向が得られた。溶剤系塗料としては、自社製のものを使用した。   As the water-based urethane resin A, the water-based acrylic emulsion resin B, the water-modified epoxy resin C, and the water-modified epoxy ester resin D, common resins available on the market are used, and the respective solid components are 38% and 35%. 33% and 37%. In addition, about resin A-D, although it experimented about several resin of the same kind, the substantially the same tendency was acquired. As the solvent-based paint, an in-house product was used.

亜鉛末としては、金属亜鉛分95.0%以上、総亜鉛分98.0%以上ものを使用し、微粉末シリカとしては、例えば、4塩化ケイ素を水素火炎中で燃焼させて生成されるヒュームドシリカを使用し、両者を混練して、第2塗材とした。なお、添加量は、亜鉛末重量に対する重量濃度で示している。   As zinc powder, a metal zinc content of 95.0% or more and a total zinc content of 98.0% or more are used. As fine powder silica, for example, fumes produced by burning silicon tetrachloride in a hydrogen flame. Dosilica was used, and both were kneaded to obtain a second coating material. In addition, the addition amount is shown by the weight concentration with respect to the zinc powder weight.

そして、乾燥塗膜中の亜鉛末含有量は、実施例1〜実施例6について計算すると、94.59%、92.16%、94.84%、94.77%、94.41%、96.14%と算出される。また、比較例1〜比較例4は、85.57%、96.11%、96.02%、96.07%と算出される。   And when zinc powder content in a dry coating film calculates about Example 1- Example 6, it is 94.59%, 92.16%, 94.84%, 94.77%, 94.41%, 96. Calculated as 14%. Further, Comparative Examples 1 to 4 are calculated as 85.57%, 96.11%, 96.02%, and 96.07%.

図2は、図1に示す水性塗料の性能試験の結果を示している。   FIG. 2 shows the results of the performance test of the water-based paint shown in FIG.

ここで、「樹脂単膜物性」は、樹脂単体での鋼面への成膜性、鋼面への付着性(碁盤目試験)、鉛筆硬度、耐溶剤性(ラビングテスト)、耐候性(屋外暴露での目視外観)を検証して、この5試験の評価結果を総合して、樹脂単膜物性評価とした。   Here, “resin single film physical properties” refers to film formation on the steel surface with a single resin, adhesion to the steel surface (cross-cut test), pencil hardness, solvent resistance (rubbing test), weather resistance (outdoors The visual appearance at the time of exposure) was verified, and the evaluation results of these five tests were combined to evaluate the physical properties of the resin single film.

○は良好、△はやや懸念あり、×は樹脂単膜としては問題あり、との評価である。   ○ is good, Δ is somewhat concerned, and × is a problem as a single resin film.

ここでの「混練作業性」については、予め微粒子シリカで混練された亜鉛末含有の第2塗材と第1塗材の塗料液とを混練(ここでは混合、攪拌の操作を混練と称した)した際の、分散作業性、凝集物の有無などを評価した。○は良好、△はやや混練しにくいが容易に分散できる、×は混練、分散が非常に困難を意味する。なお、△―は、△と×の間の評価である。   Regarding the “kneading workability” here, the second coating material containing zinc powder previously kneaded with fine-particle silica and the coating liquid of the first coating material are kneaded (here, mixing and stirring operations are called kneading). ) And the presence / absence of aggregates were evaluated. ○ means good, Δ is slightly difficult to knead but can be easily dispersed, × means very difficult to knead and disperse. Δ- is an evaluation between Δ and ×.

「塗布性(はけ、ローラー)」は、第1塗材と第2塗材を混合、攪拌後の塗料をはけ及びローラーにて鋼板へ塗装し、塗装しやすさ、成膜性を評価した。○は良好、△は、塗布しにくいが均一膜の形成が可能、×は塗布が非常に困難で、不均一な膜との評価である。   “Applicability (bake, roller)” mixes the first and second coating materials, paints after stirring with a brush and paints on a steel plate with a roller, and evaluates ease of coating and film formability did. ○ is good, Δ is difficult to apply, but a uniform film can be formed.

「塗膜外観」としては、塗布性能評価後、乾燥した膜を目視評価した。○は良好、△はピンホール、斑が少しあるが、全体として許容できる外観を意味し、×はピンホール、斑などの異常が顕著で、外観不良を意味する。   As the “appearance of the coating film”, the dried film was visually evaluated after evaluating the coating performance. ○ means good, Δ means pinholes and spots slightly, but means an acceptable appearance as a whole, × means noticeable abnormalities such as pinholes and spots, and poor appearance.

「耐液沈殿性」は、第1塗材と第2塗材を混合、攪拌後の3時間静置した後、缶底の状況を確認した。○は沈殿物なし、△はやや固い沈殿があるが、容易に分散できる。×は顕著に固い沈殿物が発生し、分散が非常に困難との評価である。   “Liquid precipitation resistance” was confirmed by mixing the first coating material and the second coating material and allowing them to stand for 3 hours after stirring, and then checking the condition of the bottom of the can. ○ indicates no precipitate, and Δ indicates a slightly hard precipitate, but it can be easily dispersed. X is an evaluation that a remarkably hard precipitate is generated and dispersion is very difficult.

「付着性(碁盤目試験)」は、クロスカット法(JIS K5600―5−6:1999)にて評価(1mmを適用)した。○は分類0〜1、△は分類2〜3、×は分類4〜5を意味する。   “Adhesiveness (cross cut test)” was evaluated by applying a cross-cut method (JIS K5600-5-6: 1999) (applying 1 mm). ○ means classification 0 to 1, Δ means classification 2-3, and x means classification 4-5.

「耐腐食性(塩水噴霧試験)」は、耐中性塩水噴霧性(JIS K 5600――7:1999)にて評価した。具体的には、鋼板に形成した塗膜にカッターナイフで素地に達するクロスカットを入れ、試験開始からどれだけの時間でクロスカット部からの発錆が見られるかを目視評価した。また、クロスカット部以外の塗膜の変化についても観察した。○は1000時間以上発錆なし、塗膜異常なしを意味する。△は500〜1000時間で発錆、顕著な塗膜異常なしを意味する。×は、0〜500時間で発錆、あるいは顕著な塗膜異常(塗膜ふくれ:ブリスター等)が発生したことを意味する。   “Corrosion resistance (salt spray test)” was evaluated by neutral salt spray resistance (JIS K 5600-7: 1999). Specifically, a crosscut reaching the substrate with a cutter knife was put into the coating film formed on the steel plate, and visually evaluated how long rusting from the crosscut portion was observed from the start of the test. Moreover, it observed also about the change of the coating film other than a crosscut part. ○ means no rusting for 1000 hours or more and no coating film abnormality. Δ means rusting in 500 to 1000 hours and no noticeable coating abnormality. X means that rusting or remarkable coating film abnormality (coating blister: blister etc.) occurred in 0 to 500 hours.

「作業環境性(臭気)」としては、第1塗材と第2塗材を混合、攪拌後の塗料の臭いを確認(溶剤臭の有無、不快感を定性評価)した。○は不快感なし、問題ないことを意味し、△はやや不快臭を感じるとの意味である。×は、不快臭、または溶剤臭が問題になりうるとの評価である。   As the “working environment (odor)”, the first coating material and the second coating material were mixed, and the odor of the paint after stirring was confirmed (presence or absence of solvent odor, discomfort was qualitatively evaluated). ○ means no discomfort and no problem, and Δ means a slightly unpleasant odor. X is evaluation that an unpleasant odor or a solvent odor may become a problem.

「耐熱性(170℃24時間)」としては、鋼板に形成した塗膜を、170℃の環境(恒温器内)に24時間曝し、取り出し静置後、鋼板が室温となった状態で、付着性評価を行なった。   “Heat resistance (170 ° C., 24 hours)” means that the coating film formed on the steel sheet is exposed to an environment of 170 ° C. (in a thermostatic chamber) for 24 hours, taken out and left in a state where the steel sheet is at room temperature. Sex evaluation was performed.

図2に示す通り、水性ウレタン樹脂を含有すると共に、塗料全体に対して70%〜90%で、且つ、固体成分に対して90%〜97%の重量比の亜鉛末を含有し、塗料全体の重量比10%〜25%が揮発成分で構成され、揮発性有機化合物は、塗料全体の重量比1%未満であることによって優れた効果を発揮することが確認された。   As shown in FIG. 2, it contains a water-based urethane resin, and contains zinc powder at a weight ratio of 70% to 90% with respect to the whole paint and 90% to 97% with respect to the solid component, and the whole paint It was confirmed that 10% to 25% by weight of the volatile organic compound is composed of volatile components, and that the volatile organic compound exhibits an excellent effect when it is less than 1% by weight.

図3は、塗料に各種防錆剤を添加した実施例11〜実施例15と防錆剤添加なしの比較例11、との塗装後の浮き錆の発生状況を目視観察した結果を示す。また、図4は、同様に各種防錆剤を組み合わせて、第1塗材塗料に添加した場合の、第1塗材と第2塗材との混合。攪拌後の塗料を塗装した実施例21〜実施例26と比較例21を示したものであり、図3と図4の比較例は同一塗料である。   FIG. 3 shows the results of visual observation of the state of occurrence of floating rust after coating in Examples 11 to 15 in which various rust inhibitors were added to the paint and Comparative Example 11 in which no rust inhibitor was added. Moreover, FIG. 4 shows mixing of the first coating material and the second coating material when various anticorrosive agents are similarly combined and added to the first coating material paint. Examples 21 to 26 and Comparative Example 21 in which the paint after stirring is applied are shown, and the comparative examples in FIGS. 3 and 4 are the same paint.

ここでの評点○は問題なし、△はやや懸念され、×は問題あり、との評価である。   In this case, the rating ○ indicates that there is no problem, Δ indicates that there is some concern, and × indicates that there is a problem.

図3及び図4の記号Aは、亜鉛末表面及び鋼板表面への酸化皮膜形成剤であって、記号Bは無機皮膜形成剤、記号Cは有機皮膜形成剤、記号Dは硫化皮膜形成剤、記号Eは錆転換剤(キレート剤)である。   Symbol A in FIGS. 3 and 4 is an oxide film forming agent on the zinc powder surface and the steel sheet surface, symbol B is an inorganic film forming agent, symbol C is an organic film forming agent, symbol D is a sulfide film forming agent, Symbol E is a rust conversion agent (chelating agent).

第1塗材に添加する防錆の量は、単独あるいは組み合わせであっても、塗料全体の重量に対して、0.5重量%以下とした。なお、防錆剤の添加量及び防錆剤の組み合わせは、本発明を限定するものではない。   The amount of rust prevention added to the first coating material, whether alone or in combination, was 0.5% by weight or less based on the weight of the entire coating material. In addition, the addition amount of a rust preventive agent and the combination of a rust preventive agent do not limit this invention.

防錆剤Aの具体例としては、バナジン酸塩系、モリブデン酸塩系、マンガン酸塩系、タングステン酸塩系、亜硝酸塩系などが好適である。   Specific examples of the rust inhibitor A include vanadate, molybdate, manganate, tungstate, and nitrite.

防錆剤Bの具体例としては、リン酸塩系(リン酸、リン酸カルシウム、リン酸マグネシウム、縮合リン酸塩類)が好適である。   As a specific example of the rust inhibitor B, a phosphate system (phosphoric acid, calcium phosphate, magnesium phosphate, condensed phosphates) is preferable.

防錆剤Cの具体例としては、タンニン酸系、チオ尿素系、ベンゾトリアゾール系が好適である。   As specific examples of the rust inhibitor C, tannic acid series, thiourea series, and benzotriazole series are preferable.

防錆剤Dの具体例としては、イオウ系(硫化カルシウム、硫化マンガン、硫化鉄)が好適である。   As a specific example of the rust preventive agent D, a sulfur type (calcium sulfide, manganese sulfide, iron sulfide) is suitable.

上記したこれらの防錆剤の適切な選定法としては、それ自身が持つ水への溶解度並びに亜鉛及び鋼への反応性(電気化学的測定:サイクリックボルタモグラムでの電位―電流曲線での電気量)を尺度の1つとして採用される。   Appropriate selection methods for these rust preventives mentioned above include their own water solubility and reactivity to zinc and steel (electrochemical measurement: electric quantity in potential-current curve in cyclic voltammogram). ) As one of the measures.

図3及び図4に示すように、防錆剤の添加効果は、顕著に現れている。但し、ここでの実施例は、全ての防錆剤及びその組み合わせを示していないが、各々の防錆剤の量を選定することにより、同様な結果となることを確認している。   As shown in FIG. 3 and FIG. 4, the effect of adding the rust inhibitor appears remarkably. However, although the Example here does not show all the rust preventive agents and the combination, it has confirmed that it becomes the same result by selecting the quantity of each rust preventive agent.

図5は、亜鉛末重量に対する微粒子シリカの重量比で混練時のシリカ量の第2塗材の実施例と比較例を示したものであり、混練後である第2塗材と第1塗材とを混合、攪拌して、最終的な塗料として、これを塗装して評価した。   FIG. 5 shows an example and a comparative example of the second coating material having a silica amount at the time of kneading at a weight ratio of fine particle silica to the weight of zinc dust. The second coating material and the first coating material after kneading. Were mixed and stirred, and this was applied as a final paint and evaluated.

図5に示す微粒子シリカの添加効果は、100〜5000ppmが好適であることを、中性塩水噴霧試験での耐食性の結果から顕著に表している。   The addition effect of the fine particle silica shown in FIG. 5 remarkably indicates that 100 to 5000 ppm is suitable from the result of the corrosion resistance in the neutral salt spray test.

塗装された乾燥塗膜の電気抵抗値は、図6に示す方法で計測した。塗装塗膜の表面に直径約2mmφの銅製あるいは金メッキされた端子を接し、一方に同様の端子を塗装鋼板の裸部位(素材を露出させた鏡面)に接触させ、その両端子間の電気抵抗値を通常の抵抗計で計測するものである。なお、板厚1cmの鋼板(S40)に、50μm程度の塗膜を形成し、乾燥状態の塗膜と鋼板の鏡面に、各々、直径2mmの接触プローブ(円柱形状の銅棒)を接触させて計測した。   The electrical resistance value of the painted dry coating film was measured by the method shown in FIG. A copper or gold-plated terminal with a diameter of about 2 mmφ is in contact with the surface of the painted film, and a similar terminal is brought into contact with the bare part of the coated steel sheet (the mirror surface with the material exposed), and the electrical resistance value between the two terminals Is measured with an ordinary resistance meter. In addition, a coating film of about 50 μm is formed on a steel sheet (S40) having a thickness of 1 cm, and a contact probe (cylindrical copper bar) having a diameter of 2 mm is brought into contact with the dried coating film and the mirror surface of the steel sheet. Measured.

塗膜の電気抵抗値を測定する場合、端子の接触圧力及び塗装表面の微妙な凹凸形状、塗膜中の亜鉛粒子の分散状態等が、塗装面全体から見れば、均一とは言えない。また、微粒子シリカの量によって、塗膜抵抗値は極めて大きな差となる。   When measuring the electrical resistance value of the coating film, the contact pressure of the terminal, the fine uneven shape of the coating surface, the dispersion state of the zinc particles in the coating film, and the like cannot be said to be uniform from the whole coated surface. Further, the coating film resistance value varies greatly depending on the amount of fine particle silica.

このために、塗装面積約100cmにおいて、10箇所の塗膜の電気抵抗値を測定し、その最大値と最小値を除く8箇所の平均値を大きな概算値として、その塗装塗膜の電気抵抗値とした。 For this purpose, in the coating area of about 100 cm 2 , the electrical resistance values of 10 coatings were measured, and the average value of 8 locations excluding the maximum and minimum values was taken as a large approximate value, and the electrical resistance of the coatings Value.

なお、塗装塗膜表面に接する端子の面積は、略3mmであるが、計測された値を1mmに換算して、塗膜の電気抵抗値の概算値とした。 In addition, although the area of the terminal which contact | connects the coating-film surface is about 3 mm < 2 >, the measured value was converted into 1 mm < 2 > and it was set as the rough value of the electrical resistance value of a coating film.

図7は、図5と同一組成であり、防錆剤として亜硝酸ナトリウムとキレート剤を塗料全体の重量比0.5%の一定量を添加した第1塗材と、亜鉛末と微粒子シリカの量を変えて、混練した第2塗材を混合、攪拌して塗料としたものを塗装した。   FIG. 7 is the same composition as FIG. 5, and includes a first coating material in which a certain amount of sodium nitrite and a chelating agent as a rust preventive agent is added in an amount of 0.5% by weight, zinc dust and fine particle silica. The amount was changed and the kneaded second coating material was mixed and stirred to apply a paint.

図7の微粒子シリカ量は、図5と同様に、混練時に加えた亜鉛末重量に対する重量比を示した。ここでは、微粒子シリカの量として、50〜5000ppmの実施例と比較例である。   The amount of fine-particle silica in FIG. 7 shows the weight ratio with respect to the weight of zinc dust added during kneading, as in FIG. Here, it is an Example and comparative example of 50-5000 ppm as the quantity of fine particle silica.

図7から、防錆剤との併用作用により、微粒子シリカの量に依存して塗膜の電気抵抗値が異なる。従来の溶剤型ジンクリッチ塗膜あるいは公表されている水性型ジンクリッチ塗膜においては、塗膜自身は金属的であり、塗膜の電気抵抗値は、略ゼロΩである。   From FIG. 7, the electrical resistance value of the coating film varies depending on the amount of fine particle silica due to the combined action with the rust inhibitor. In a conventional solvent-type zinc-rich coating film or a publicly-known aqueous-type zinc-rich coating film, the coating film itself is metallic, and the electrical resistance value of the coating film is approximately zero Ω.

図7に示すように、塗装された塗膜に電気抵抗がある、との結果は、ジンクリッチ塗膜としては、極めて異例であり、且つ、電気抵抗値に限界があるものの、図5の結果と合わせて考えると、電気抵抗値が高いほど、長期の防食性を保持する、との結果を示している。   As shown in FIG. 7, the result that the coated coating film has electrical resistance is extremely unusual as a zinc rich coating film, and the electrical resistance value is limited, but the result of FIG. The results show that the higher the electric resistance value, the longer the anticorrosion property is maintained.

図5及び図7から、塗装塗膜の電気抵抗値が高いほど、クロスカット部からの錆発生に対する耐腐食性が良好である。従来の溶剤型と類似した比較例31では、電気抵抗値が略ゼロΩであり、クロスカット部からの錆発生の抑制能力は認められない。   From FIG.5 and FIG.7, the corrosion resistance with respect to rust generation | occurrence | production from a crosscut part is so favorable that the electrical resistance value of a coating film is high. In Comparative Example 31 similar to the conventional solvent type, the electric resistance value is substantially zero Ω, and the ability to suppress rust generation from the crosscut portion is not recognized.

このように塗膜の電気抵抗値に依存しているとのことは、金属的な膜では、傷部近辺の膜が犠牲となり、塗膜の電気抵抗値が高くなれば、傷部の遠方まで犠牲作用が働き、且つ、塗膜自身の犠牲作用反応が適度に抑制され、従来のような過防食性になっていない、とのことを意味している。   Thus, depending on the electrical resistance value of the coating film, in the case of a metallic film, the film in the vicinity of the scratched part is sacrificed, and if the electrical resistance value of the coating film becomes high, the distance to the scratched part is increased. This means that the sacrificial action works, the sacrificial action reaction of the coating film itself is moderately suppressed, and the conventional anticorrosive property is not achieved.

このように、従来のジンクリッチ塗料は、一定の防食性を発揮するものの、その性能を制御する機能を有していない。ところが、本発明の常温乾燥型水性ジンクリッチ塗料は、その塗装塗膜の電気抵抗値を制御するとの塗装方法によって、極めて幅広い防食性を付与することを実現するものである。   Thus, although the conventional zinc rich paint exhibits a certain anticorrosion property, it does not have a function of controlling its performance. However, the room temperature dry aqueous zinc rich paint of the present invention realizes a very wide range of anticorrosion properties by a coating method for controlling the electric resistance value of the coated film.

Claims (3)

水性樹脂、分散媒たる水、添加剤、微量の揮発性有機化合物及び必須としての防錆剤を含んだ第1塗材と微粒子シリカと亜鉛末が混練された第2塗材で構成されることを特徴とする常温乾燥型水性ジンクリッチ塗料   A first coating material containing an aqueous resin, water as a dispersion medium, additives, a small amount of a volatile organic compound, and an essential rust preventive agent, and a second coating material in which fine-particle silica and zinc dust are kneaded. Room temperature dry-type water-based zinc rich paint 任意の量の微粒子シリカで混練された請求項1の第2塗材と請求項1の第1塗材を塗装現場で混合、攪拌して塗装することを特徴とする常温乾燥型の水性ジンクリッチ塗料の塗装方法   A room-temperature drying type aqueous zinc rich characterized in that the second coating material of claim 1 kneaded with an arbitrary amount of fine particle silica and the first coating material of claim 1 are mixed and stirred at the coating site and then coated. How to paint 請求項2の微粒子シリカの添加量によって塗装された塗膜の電気抵抗値を10Ω/mm以上であることを特徴とする常温乾燥型水性ジンクリッチ塗料の塗装方法 A coating method of room temperature dry type water-based zinc rich paint, characterized in that the electric resistance value of the coating film coated with the addition amount of fine particle silica of claim 2 is 10 Ω / mm 2 or more.
JP2012093308A 2012-04-16 2012-04-16 Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same Pending JP2013221081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093308A JP2013221081A (en) 2012-04-16 2012-04-16 Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093308A JP2013221081A (en) 2012-04-16 2012-04-16 Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same

Publications (1)

Publication Number Publication Date
JP2013221081A true JP2013221081A (en) 2013-10-28

Family

ID=49592303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093308A Pending JP2013221081A (en) 2012-04-16 2012-04-16 Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same

Country Status (1)

Country Link
JP (1) JP2013221081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577475B1 (en) * 2014-03-03 2014-08-20 日本ペイント株式会社 Water-based organic zinc-rich coating composition, antirust coating film forming method and multilayer coating film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254724A (en) * 1975-10-31 1977-05-04 Kansai Paint Co Ltd Zinc-rich epoxy emulsion composition
EP0513883A1 (en) * 1991-04-12 1992-11-19 Akzo Nobel N.V. Two-pack waterborne zinc-rich anticorrosion primer
JPH07133442A (en) * 1993-11-08 1995-05-23 Dainippon Toryo Co Ltd Zinc-rich paint
JPH10264301A (en) * 1997-03-26 1998-10-06 Kurimoto Ltd Method for corrosion-proof coating of steel pipe, and steel pipe provided with corrosion-proof coating
JP2002053769A (en) * 2000-05-29 2002-02-19 Mitsui Kinzoku Toryo Kagaku Kk Pigment for corrosion preventive coating composition and corrosion preventive coating composition therewith
JP2005054073A (en) * 2003-08-05 2005-03-03 Chuo Rika Kogyo Corp Rustproof coating composition
JP2005120285A (en) * 2003-10-17 2005-05-12 National Institute Of Advanced Industrial & Technology Zinc-based rustproof dispersion coating and method for producing the same
JP2008175241A (en) * 2007-01-16 2008-07-31 Tsubakimoto Chain Co Anticorrosive chain
JP2011057853A (en) * 2009-09-10 2011-03-24 Aisin Chemical Co Ltd Water-based coating agent and coated film

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254724A (en) * 1975-10-31 1977-05-04 Kansai Paint Co Ltd Zinc-rich epoxy emulsion composition
EP0513883A1 (en) * 1991-04-12 1992-11-19 Akzo Nobel N.V. Two-pack waterborne zinc-rich anticorrosion primer
JPH05186714A (en) * 1991-04-12 1993-07-27 Akzo Nv Two-pack, water-base corrosion resistant primer having high zinc content
JPH07133442A (en) * 1993-11-08 1995-05-23 Dainippon Toryo Co Ltd Zinc-rich paint
JPH10264301A (en) * 1997-03-26 1998-10-06 Kurimoto Ltd Method for corrosion-proof coating of steel pipe, and steel pipe provided with corrosion-proof coating
JP2002053769A (en) * 2000-05-29 2002-02-19 Mitsui Kinzoku Toryo Kagaku Kk Pigment for corrosion preventive coating composition and corrosion preventive coating composition therewith
JP2005054073A (en) * 2003-08-05 2005-03-03 Chuo Rika Kogyo Corp Rustproof coating composition
JP2005120285A (en) * 2003-10-17 2005-05-12 National Institute Of Advanced Industrial & Technology Zinc-based rustproof dispersion coating and method for producing the same
JP2008175241A (en) * 2007-01-16 2008-07-31 Tsubakimoto Chain Co Anticorrosive chain
JP2011057853A (en) * 2009-09-10 2011-03-24 Aisin Chemical Co Ltd Water-based coating agent and coated film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577475B1 (en) * 2014-03-03 2014-08-20 日本ペイント株式会社 Water-based organic zinc-rich coating composition, antirust coating film forming method and multilayer coating film
CN104893242A (en) * 2014-03-03 2015-09-09 日本油漆株式会社 Aqueous organic zinc-rich paint composition, method for forming rust-proof film and multilayer film

Similar Documents

Publication Publication Date Title
Bethencourt et al. Inhibitor properties of “green” pigments for paints
EP3131978B1 (en) Corrosion-resistant coating composition
CN105062245A (en) Water-based rust conversion paint and preparation method thereof
JP6967079B2 (en) Anti-corrosion paint composition and its uses
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
CN101960047A (en) Chrome-free coating compositions for surface-treating steel sheet including carbon nanotube, methods for surface-treating steel sheet and surface-treated steel sheets using the same
JP6242318B2 (en) Weak solvent type high corrosion resistance coating composition using Sn ions
KR20100007990A (en) Aqueous fluid for surface treatment of zinc-plated steel sheets and zinc-plated steel sheets
KR101865092B1 (en) Anti-corrosion water-soluble paint and varnish composition
JP5993799B2 (en) High corrosion resistance coating composition using Sn ions
KR20110076215A (en) Two component zinc type water base paint composition
Song et al. The influence of aluminum tripolyphosphate on the protective behavior of an acrylic water-based paint applied to rusty steels
KR20180061933A (en) A chrome-free water-based corrosion inhibitor coating composition
JP2002053769A (en) Pigment for corrosion preventive coating composition and corrosion preventive coating composition therewith
JP2013221081A (en) Normal temperature-drying type aqueous zinc-rich coating material, and method for coating the same
JP5750318B2 (en) Water-based paint and repair method using the same
JP2016121221A (en) Aqueous rustproof coating composition
JP2018517055A (en) Anticorrosion pigments made of aluminum polyphosphate and rare earths
WO2021193082A1 (en) One-component aqueous coating composition
KR20100012494A (en) Rust fixative compound
JP6517134B2 (en) One-component high corrosion resistant paint composition using Sn ion
RU2260608C2 (en) Priming-enamel of aqueous dispersion anti-corrosive series &#34;kronakril&#34;
RU2384599C1 (en) Anticorrosion coating composition
KR101695865B1 (en) Aqueous rust deactivator composition and aqueous rust deactivator comprising the same
RU2460748C2 (en) Universal thick-layer anticorrosion paint system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804