JP2013219469A - Laminate type band-pass filter - Google Patents

Laminate type band-pass filter Download PDF

Info

Publication number
JP2013219469A
JP2013219469A JP2012086807A JP2012086807A JP2013219469A JP 2013219469 A JP2013219469 A JP 2013219469A JP 2012086807 A JP2012086807 A JP 2012086807A JP 2012086807 A JP2012086807 A JP 2012086807A JP 2013219469 A JP2013219469 A JP 2013219469A
Authority
JP
Japan
Prior art keywords
output
input
line
layer
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012086807A
Other languages
Japanese (ja)
Other versions
JP5633708B2 (en
Inventor
Noriaki Otsuka
識顕 大塚
Shigemitsu Tomaki
重光 戸蒔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012086807A priority Critical patent/JP5633708B2/en
Publication of JP2013219469A publication Critical patent/JP2013219469A/en
Application granted granted Critical
Publication of JP5633708B2 publication Critical patent/JP5633708B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a band-pass filter (BPF) which, compact and low profile though, exhibits excellent characteristics by restraining high frequency spurious by a simple method without requiring significant modification or complication of a laminate structure.SOLUTION: The band-pass filter comprises: an input section including an input terminal, an output terminal, a plurality of resonators, and an input line connecting a first-stage resonator and the input terminal; and an output section including an output line connecting a last-stage resonator and the output terminal. The input line has an input side additional line connected in parallel thereto, which reduces the inductance of the input section, and the output line has an output side additional line connected in parallel thereto, which reduces the inductance of the output section.

Description

本発明は、積層型バンドパスフィルタに係り、特に、高周波数領域に生じるスプリアスを抑制して良好な高調波特性を得る技術に関する。   The present invention relates to a multilayer bandpass filter, and more particularly to a technique for obtaining good harmonic characteristics by suppressing spurious generated in a high frequency region.

不要波を減衰させ使用周波数帯の信号を選択的に通過させるバンドパスフィルタ(以下「BPF」と言うことがある)は、携帯電話機やスマートフォン、ノートパソコンなど無線通信機能を備えた電子機器の送受信部に使用されるが、このようなBPFは、一般に積層基板の内部配線層に共振器を形成したチップ状電子部品(積層型BPF)として提供されている。   A band-pass filter (hereinafter sometimes referred to as “BPF”) that attenuates unwanted waves and selectively passes signals in the used frequency band is used for transmission / reception of electronic devices equipped with wireless communication functions such as mobile phones, smartphones, and notebook computers. Such a BPF is generally provided as a chip-shaped electronic component (laminated BPF) in which a resonator is formed in an internal wiring layer of a laminated substrate.

また、このような積層型電子部品を開示するものとして下記特許文献がある。   Further, the following patent documents disclose such multilayer electronic components.

特開2009‐246889号公報JP 2009-246889 A

ところで近年、電子機器に対する多機能・高機能化の要請に伴い、BPFにも小型低背化に加えて高調波対策の要求が高まっている。   By the way, in recent years, with the demand for multi-functionality and high functionality for electronic devices, the demand for harmonic countermeasures has also increased for BPF in addition to the reduction in size and height.

具体的には、図5、図6および図7A〜図7Dはそれぞれ本発明の比較例に係る積層型BPFの回路図、積層基板各層の導体パターンの配置を示す平面図ならびに周波数特性を示す線図であるが、当該BPFでは、図7Aに示すように高周波数領域においてスプリアスSが発生している。   Specifically, FIGS. 5, 6, and 7 </ b> A to 7 </ b> D are a circuit diagram of a laminated BPF according to a comparative example of the present invention, a plan view showing the arrangement of conductor patterns on each layer of the laminated substrate, and a line showing frequency characteristics. As shown in FIG. 7A, spurious S occurs in the high frequency region in the BPF.

この高域スプリアスは、雑音の原因となるなど通信品質を劣化させるため、対策が望まれる。しかしながら、スプリアスの発生原因は様々であり、また複数の要因が複雑に影響し合って生じるため原因の特定が難しく、したがってその対策は容易ではない。   Since this high-frequency spurious deteriorates communication quality such as causing noise, a countermeasure is desired. However, there are various causes for the occurrence of spurious, and since it is caused by a plurality of factors affecting each other in a complicated manner, it is difficult to identify the cause, and thus countermeasures are not easy.

一方、このような高域スプリアスを除去するため、フィルタを更に備えることも考えられる。しかし、フィルタの追加は挿入損失を増大させ、通過帯域の特性劣化を招く難があり、また部品点数の増加により当該電子機器の小型低背化の要請に反することにもなる。   On the other hand, in order to remove such high-frequency spurious, it may be possible to further include a filter. However, the addition of the filter increases the insertion loss and causes a deterioration in the characteristics of the passband, and the increase in the number of components violates the demand for a small and low-profile electronic device.

他方、前記特許文献1に記載の発明では、積層基板内における導体パターン(電極)の配置を変え、信号端子と共振器とを接続する信号経路を短くすることにより浮遊インダクタンスを小さくし、スプリアスを抑制する。しかしながら、この文献に記載した発明では、チップ内における導体(各素子や端子)の配置を特定の構造に変更する必要があり、既存の或いはどのような積層構造のチップに対しても適用できるものではない。   On the other hand, in the invention described in Patent Document 1, the arrangement of the conductor pattern (electrode) in the multilayer substrate is changed, and the signal path connecting the signal terminal and the resonator is shortened, thereby reducing the stray inductance and reducing spurious. Suppress. However, in the invention described in this document, it is necessary to change the arrangement of conductors (elements and terminals) in the chip to a specific structure, which can be applied to an existing or any stacked chip. is not.

したがって、本発明の目的は、積層構造(チップ内の導体パターンの配置)の大幅な設計変更や複雑化を伴うことなくより簡便な方法で高域スプリアスを抑制し、小型低背で良好な特性を有するBPFを実現する点にある。   Therefore, an object of the present invention is to suppress high-frequency spurious by a simpler method without significant design change or complication of the laminated structure (arrangement of the conductor pattern in the chip), and to have good characteristics with a small size and a low profile. It is in the point which implement | achieves BPF which has.

前記課題を解決し目的を達成するため、本発明に係るBPF(バンドパスフィルタ)は、信号を入力可能な入力端子と、信号を出力可能な出力端子と、これら入力端子と出力端子との間に接続されて所定の通過帯域を形成する複数の共振器と、前記複数の共振器のうち前記入力端子に最も近い初段共振器と前記入力端子との間を電気的に接続する入力線路を含む入力部と、前記複数の共振器のうち前記出力端子に最も近い終段共振器と前記出力端子との間を電気的に接続する出力線路を含む出力部とを備えたBPFであって、前記入力線路に対し並列に接続されて前記入力部のインダクタンスを低下させる入力側付加線路を前記入力部に備え、前記出力線路に対し並列に接続されて前記出力部のインダクタンスを低下させる出力側付加線路を前記出力部に備えたものである。   In order to solve the above problems and achieve the object, a BPF (band pass filter) according to the present invention includes an input terminal capable of inputting a signal, an output terminal capable of outputting a signal, and between the input terminal and the output terminal. A plurality of resonators connected to each other to form a predetermined passband, and an input line that electrically connects between the input terminal and the first-stage resonator closest to the input terminal among the plurality of resonators A BPF comprising: an input unit; and an output unit including an output line that electrically connects a final stage resonator closest to the output terminal and the output terminal among the plurality of resonators, An input side additional line connected in parallel to the input line to reduce the inductance of the input unit is provided in the input unit, and an output side additional line connected in parallel to the output line to reduce the inductance of the output unit The Those with the serial output section.

本発明は、通過帯域の高域側に生じる高域スプリアスの原因ならびにそれを抑制する方法を様々に検討する中でなされたもので、スプリアス発生の原因の一つとして、当該BPFに含まれる共振器以外の部分、具体的には、共振器に信号を入力する入力部(入力端子と共振器とを接続する入力線路)や、共振器から信号を出力する出力部(出力端子と共振器とを接続する出力線路)、あるいは、入力端子と出力端子間に備えられるバイパスキャパシタ(バイパスコンデンサ)が高周波数領域において共振することが考えられ、このようにして生じたスプリアスは、当該入力部や出力部のインダクタンスを低下させることにより効果的に抑制することが出来ることを見出した。   The present invention has been made while variously examining the cause of high-frequency spurious generated on the high-frequency side of the passband and a method for suppressing the high-frequency spurious. The resonance included in the BPF is one of the causes of spurious generation. Parts other than the resonator, specifically, an input unit that inputs a signal to the resonator (an input line connecting the input terminal and the resonator) and an output unit that outputs a signal from the resonator (the output terminal and the resonator) Output line), or a bypass capacitor (bypass capacitor) provided between the input terminal and the output terminal may resonate in a high frequency region. It has been found that it can be effectively suppressed by reducing the inductance of the part.

そこで、本発明のBPFでは、入力端子から初段共振器への信号入力経路である入力部と、終段共振器から出力端子への信号出力経路である出力部のインダクタンスを低下させるため、上述のように、入力線路および出力線路に並列に導体線路(付加線路)を追加する。なお、この付加線路によるスプリアス抑制の効果については、後の実施形態の説明においてシミュレーション結果に基づいて更に具体的に述べる。   Therefore, in the BPF of the present invention, the inductance of the input unit that is a signal input path from the input terminal to the first stage resonator and the output unit that is the signal output path from the final stage resonator to the output terminal are reduced. Thus, a conductor line (additional line) is added in parallel to the input line and the output line. The effect of suppressing spurious by this additional line will be described more specifically based on the simulation result in the description of the later embodiment.

このように本発明によれば、入力部ないし出力部への線路の付加と言う簡易な方法によりスプリアスの効果的な抑制が可能となり、積層構造の複雑化やチップサイズの大型化を招くこともなく、小型低背で従来に比べ良好な特性を有するBPFを実現することが出来る。また、本発明では、共振器を構成する他の導体の配置や基板の積層構造について特定の構造を採る必要がないから、様々な積層構造のBPFチップに本発明は広く適用することが出来る。   As described above, according to the present invention, spurious can be effectively suppressed by a simple method of adding a line to an input unit or an output unit, which may lead to a complicated stacked structure and an increased chip size. Therefore, it is possible to realize a BPF having a small size and a low profile and better characteristics than the conventional one. In the present invention, since it is not necessary to adopt a specific structure for the arrangement of other conductors constituting the resonator and the laminated structure of the substrate, the present invention can be widely applied to BPF chips having various laminated structures.

なお、上記付加線路は、入力部と出力部の双方に備えることが好ましいが、後に実施形態の説明で述べるように、入力側付加線路および出力側付加線路のいずれか一方のみを備えただけであっても、従来のBPFと比べれば良好なスプリアス抑制の効果は得られる。したがって、入力部のみに当該付加線路を備えたBPF、並びに、出力部のみに当該付加線路を備えたBPFも本発明の範囲に含まれる。   The additional line is preferably provided in both the input unit and the output unit. However, as will be described later in the description of the embodiment, only the input side additional line or the output side additional line is provided. Even if it exists, compared with the conventional BPF, the effect of a favorable spurious suppression is acquired. Therefore, a BPF having the additional line only in the input unit and a BPF having the additional line only in the output unit are also included in the scope of the present invention.

本発明のBPFは、典型的には、複数の配線層を備えた積層基板に、前記各構成、すなわち、入力端子と、出力端子と、複数の共振器と、入力部と、出力部とを備えた積層型BPF(チップ状BPF)を構成するが、当該積層型BPFの第一の態様として、入力側付加線路を入力線路と異なる導体層に配置するとともに、出力側付加線路を出力線路と異なる導体層に配置する。また、第二の態様では、入力側付加線路を入力線路と同一の導体層に配置するとともに、出力側付加線路を出力線路と同一の導体層に配置する。   The BPF of the present invention typically includes the above-described configurations, that is, an input terminal, an output terminal, a plurality of resonators, an input unit, and an output unit, on a multilayer substrate having a plurality of wiring layers. The laminated BPF (chip-shaped BPF) is provided. As a first aspect of the laminated BPF, the input side additional line is arranged on a conductor layer different from the input line, and the output side additional line is defined as the output line. Place in different conductor layers. In the second aspect, the input side additional line is arranged on the same conductor layer as the input line, and the output side additional line is arranged on the same conductor layer as the output line.

入力端子と共振器との間に入力線路(出力線路についても同様)と並列に付加線路を備えようとした場合、上記第二の態様のように両線路(付加線路と入力線路(又は出力線路))を同一の導体層に配置すれば、当該本発明に係る線路構造を実現するのに導体層1層で済む利点がある。一方、この第二の態様によると、入力線路(又は出力線路)と付加線路が入力端子(又は出力端子)と共振器との間でループ状になって後述の図4(c)に示すように当該両線路で囲まれた島状の部分(同図の入力線路Liとキャパシタ電極C1と付加線路Laとにより囲まれた部分/出力線路Loとキャパシタ電極C3と付加線路Lbとにより囲まれた部分)が生じる場合があり、このような島状部分は絶縁層相互の接着性を低下させ、積層基板内にクラックを生じさせる原因となる可能性がある。特に、チップサイズ(平面から見たときの面積)が小さくなれば相対的に絶縁体が占める面積が小さくなるから絶縁層相互の密着性は低下する。これに対し、上記第一の態様によれば、このような問題を回避することが出来る。   When an additional line is provided in parallel with the input line (the same applies to the output line) between the input terminal and the resonator, both lines (the additional line and the input line (or the output line) are used as in the second aspect. )) Is arranged in the same conductor layer, there is an advantage that only one conductor layer is required to realize the line structure according to the present invention. On the other hand, according to the second aspect, the input line (or output line) and the additional line form a loop between the input terminal (or output terminal) and the resonator as shown in FIG. The island-shaped portion surrounded by the two lines (the portion surrounded by the input line Li, the capacitor electrode C1, and the additional line La in FIG. 2 / the output line Lo, the capacitor electrode C3, and the additional line Lb. Part) may occur, and such an island-like part may deteriorate the adhesion between the insulating layers and cause cracks in the laminated substrate. In particular, when the chip size (the area when viewed from the plane) is reduced, the area occupied by the insulator is relatively reduced, so that the adhesion between the insulating layers is lowered. On the other hand, according to said 1st aspect, such a problem can be avoided.

本発明によれば、積層構造(チップ内の導体パターンの配置)の大幅な設計変更を伴うことなくより簡易な方法で高域スプリアスを抑制し、小型低背で良好な特性を有するBPFを実現することが出来る。   According to the present invention, high-frequency spurious is suppressed by a simpler method without significant design change of the laminated structure (the arrangement of conductor patterns in the chip), and a small and low-profile BPF having excellent characteristics is realized. I can do it.

本発明の他の目的、特徴および利点は、図面に基づいて述べる以下の本発明の実施の形態の説明により明らかにする。なお、各図中、同一の符号は、同一又は相当部分を示す。   Other objects, features, and advantages of the present invention will become apparent from the following description of embodiments of the present invention described with reference to the drawings. In addition, in each figure, the same code | symbol shows the same or an equivalent part.

図1は、本発明の第一の実施形態に係るBPFを示す回路図である。FIG. 1 is a circuit diagram showing a BPF according to a first embodiment of the present invention. 図2は、前記第一実施形態に係るBPFの積層構造(積層基板の各層)を示す平面図である。FIG. 2 is a plan view showing the BPF laminated structure (each layer of the laminated substrate) according to the first embodiment. 図3Aは、前記第一実施形態に係るBPFの周波数特性(通過減衰特性)を示す線図である。FIG. 3A is a diagram showing the frequency characteristics (pass attenuation characteristics) of the BPF according to the first embodiment. 図3Bは、前記第一実施形態に係るBPFの通過減衰特性(挿入損失)を拡大して示す線図である。FIG. 3B is an enlarged diagram showing the pass attenuation characteristic (insertion loss) of the BPF according to the first embodiment. 図3Cは、前記第一実施形態に係るBPFの周波数特性(反射損失)を示す線図である。FIG. 3C is a diagram showing frequency characteristics (reflection loss) of the BPF according to the first embodiment. 図3Dは、前記第一実施形態のBPFにおける入力端子側の反射係数を示すスミスチャートである。FIG. 3D is a Smith chart showing the reflection coefficient on the input terminal side in the BPF of the first embodiment. 図3Eは、前記第一実施形態の変形例に係るBPFの周波数特性(通過減衰特性)を示す線図である。FIG. 3E is a diagram showing frequency characteristics (pass attenuation characteristics) of a BPF according to a modification of the first embodiment. 図4は、本発明の第二の実施形態に係るBPFの積層構造(積層基板の各層)を示す平面図である。FIG. 4 is a plan view showing a BPF laminated structure (each layer of the laminated substrate) according to the second embodiment of the present invention. 図5は、比較例に係るBPFの一例を示す回路図である。FIG. 5 is a circuit diagram illustrating an example of a BPF according to a comparative example. 図6は、前記比較例に係るBPFの積層構造(積層基板の各層)を示す平面図である。FIG. 6 is a plan view showing a BPF laminated structure (each layer of the laminated substrate) according to the comparative example. 図7Aは、前記比較例に係るBPFの周波数特性(通過減衰特性)を示す線図である。FIG. 7A is a diagram showing the frequency characteristics (pass attenuation characteristics) of the BPF according to the comparative example. 図7Bは、前記比較例に係るBPFの通過減衰特性(挿入損失)を拡大して示す線図である。FIG. 7B is an enlarged diagram showing the pass attenuation characteristic (insertion loss) of the BPF according to the comparative example. 図7Cは、前記比較例に係るBPFの周波数特性(反射損失)を示す線図である。FIG. 7C is a diagram showing frequency characteristics (reflection loss) of the BPF according to the comparative example. 図7Dは、前記比較例に係るBPFにおける入力端子側の反射係数を示すスミスチャートである。FIG. 7D is a Smith chart showing the reflection coefficient on the input terminal side in the BPF according to the comparative example.

〔第1実施形態〕
図1に示すように本発明の第一の実施形態に係るBPF11は、所定の通過帯域を形成するため入力端子T1と出力端子T2との間に順に備えた3段の共振器12,13,14と、これらの共振器12〜14に並列に入力端子T1と出力端子T2との間に接続したバイパスキャパシタ(バイパスコンデンサ)C4と、入力端子T1を通じて入力された信号を初段の共振器12へ伝送する入力部15と、終段の共振器14から出力される信号を出力端子T2へ伝送する出力部16とを有する。なお以降の説明では、上記3段の共振器12〜14を、入力端子T1から出力端子T2に向かって順に、第1共振器、第2共振器、第3共振器と称する。
[First Embodiment]
As shown in FIG. 1, the BPF 11 according to the first embodiment of the present invention includes three stages of resonators 12, 13, which are sequentially provided between an input terminal T1 and an output terminal T2 in order to form a predetermined pass band. 14, a bypass capacitor (bypass capacitor) C4 connected between the input terminal T1 and the output terminal T2 in parallel to these resonators 12 to 14, and a signal input through the input terminal T1 to the first-stage resonator 12 It has the input part 15 which transmits, and the output part 16 which transmits the signal output from the resonator 14 of the last stage to the output terminal T2. In the following description, the three-stage resonators 12 to 14 are referred to as a first resonator, a second resonator, and a third resonator in order from the input terminal T1 toward the output terminal T2.

上記各共振器12〜14はインダクタとキャパシタとからなるLC共振器であるが、入力端子T1に最も近い位置に接続した第1共振器(初段共振器)12は、入力端子T1とグランドGとの間に並列に接続したインダクタL1とキャパシタC1とからなるLC並列共振器である。同様に、出力端子T2に最も近い位置に接続した第3共振器(最終段共振器)14は、出力端子T2とグランドGとの間に並列に接続したインダクタL4とキャパシタC3とからなるLC並列共振器である。   Each of the resonators 12 to 14 is an LC resonator composed of an inductor and a capacitor. The first resonator (first-stage resonator) 12 connected to the position closest to the input terminal T1 includes the input terminal T1 and the ground G. This is an LC parallel resonator composed of an inductor L1 and a capacitor C1 connected in parallel. Similarly, the third resonator (final stage resonator) 14 connected to the position closest to the output terminal T2 is an LC parallel circuit including an inductor L4 and a capacitor C3 connected in parallel between the output terminal T2 and the ground G. It is a resonator.

また、第2共振器13は、グランドGとグランドGとの間に順に直列に接続した第一のインダクタL2とキャパシタC2と第二のインダクタL3とからなるLC直列共振器で、各インダクタL2,L3を第1共振器のインダクタL1と第2共振器のインダクタL4にそれぞれ電磁界結合させる。   The second resonator 13 is an LC series resonator including a first inductor L2, a capacitor C2, and a second inductor L3 connected in series between the ground G and the ground G in order. L3 is electromagnetically coupled to the inductor L1 of the first resonator and the inductor L4 of the second resonator, respectively.

さらに、入力部15には、入力端子T1と第1共振器12を接続する導体線路(入力線路)Liと、これに加え、当該線路Liと並列に接続した導体線路(入力側付加線路)Laを備える。言い換えれば、入力部15は2本の導体線路Li,Laを備え、これら2本の導体線路Li,Laを通じて入力端子T1から第1共振器12へ信号を入力する。付加線路Laは、入力線路Liと同様にインダクタンス成分を有し、当該入力部15のインダクタンスを低下させ、これにより高域スプリアスが抑制される。   Further, the input unit 15 includes a conductor line (input line) Li connecting the input terminal T1 and the first resonator 12, and, in addition, a conductor line (input side additional line) La connected in parallel with the line Li. Is provided. In other words, the input unit 15 includes two conductor lines Li and La, and inputs a signal from the input terminal T1 to the first resonator 12 through the two conductor lines Li and La. The additional line La has an inductance component similar to the input line Li, reduces the inductance of the input unit 15, and thereby suppresses high-frequency spurious.

また、同様に出力部16は、第3共振器14と出力端子T2を接続する導体線路(出力線路)Loに加え、当該出力線路Loと並列に接続した導体線路(出力側付加線路)Lbを備えている。すなわち、出力部16も前記入力部15と同様に2本の導体線路Lo,Lbを備え、これらの導体線路Lo,Lbを通じて第3共振器14から出力端子T2へ信号を出力する。   Similarly, the output unit 16 includes a conductor line (output-side additional line) Lb connected in parallel with the output line Lo in addition to the conductor line (output line) Lo that connects the third resonator 14 and the output terminal T2. I have. That is, the output unit 16 is also provided with two conductor lines Lo and Lb similarly to the input unit 15, and outputs a signal from the third resonator 14 to the output terminal T2 through these conductor lines Lo and Lb.

本実施形態では、上記各回路素子や回路要素を積層基板の導体層に配置することにより、チップ状のBPF(以下「チップ」と称することがある)を構成する。積層基板としては、例えばLTCC(Low Temperature Co-fired Ceramics/低温同時焼成セラミックス)基板を使用することが出来る。この場合、複数枚のセラミックグリーンシートの表面に上記各回路素子や回路要素を構成する導体パターンやこれらの導体パターンを電気的に接続するビアホール(以下「ビア」と言う)を形成してこれらを位置合わせして重ね、チップ単位に分割した後、焼成することにより一体化する。   In the present embodiment, a chip-shaped BPF (hereinafter also referred to as “chip”) is configured by arranging the circuit elements and circuit elements in the conductor layer of the multilayer substrate. As the multilayer substrate, for example, an LTCC (Low Temperature Co-fired Ceramics) substrate can be used. In this case, conductor patterns constituting the circuit elements and circuit elements and via holes (hereinafter referred to as “vias”) for electrically connecting these conductor patterns are formed on the surface of a plurality of ceramic green sheets. After aligning and stacking and dividing into chips, they are integrated by firing.

積層基板内における各導体の具体的な配置は図2に示すとおりである。なお、本実施形態の場合、10枚のセラミックグリーンシートを重ねることにより当該積層基板を形成するが、基板裏面(チップの底面)を第1層とし、基板上面(チップの天面)に向かって上層に行くにつれ順に、第2層、第3層、第4層、・・・として、最上層の配線層を第10層と称する(後に述べる図4の第二実施形態および図6の比較例も同様)。また、図2において符号Vで示す丸はビアを表している。   The specific arrangement of each conductor in the multilayer substrate is as shown in FIG. In the case of this embodiment, the laminated substrate is formed by stacking 10 ceramic green sheets. The back surface of the substrate (the bottom surface of the chip) is the first layer, and the substrate is directed toward the top surface of the substrate (the top surface of the chip). As the second layer, the third layer, the fourth layer,..., The uppermost wiring layer is referred to as the tenth layer in order as it goes to the upper layer (the second embodiment of FIG. 4 described later and the comparative example of FIG. 6). The same). In FIG. 2, a circle indicated by a symbol V represents a via.

図2(a)に示すように、入力端子T1、出力端子T2及びグランド端子TGは基板裏面である第1層に形成する。チップ(積層基板)は長方形の平面形状を有し、長手方向の一端部に入力端子T1を、他端部に出力端子T2をそれぞれ配置する。また、これら入力端子T1と出力端子T2の間(基板の中央部)にはグランド端子TGを配置する。   As shown in FIG. 2A, the input terminal T1, the output terminal T2, and the ground terminal TG are formed on the first layer on the back surface of the substrate. The chip (laminated substrate) has a rectangular planar shape, and an input terminal T1 is disposed at one end in the longitudinal direction, and an output terminal T2 is disposed at the other end. A ground terminal TG is arranged between the input terminal T1 and the output terminal T2 (in the center of the substrate).

第1共振器12のインダクタL1は、第9層の基板一端部と第10層の基板一端部にそれぞれ配置したU字状の導体をビアVで接続して形成する。また、第3層の基板中心部に左右に並べて2つのキャパシタ電極C1,C3を配置し、このうちの左側のキャパシタ電極C1と第2層の基板中心部に配置したグランド電極Gによって第1共振器12のキャパシタC1を形成する。   The inductor L1 of the first resonator 12 is formed by connecting U-shaped conductors arranged at one end of the ninth-layer substrate and one end of the tenth-layer substrate by vias V, respectively. Further, two capacitor electrodes C1 and C3 are arranged side by side at the center of the third layer substrate, and the first resonance is caused by the left capacitor electrode C1 and the ground electrode G disposed at the center of the second layer substrate. The capacitor C1 of the vessel 12 is formed.

第3共振器14のインダクタL4も上記第1共振器12のインダクタL1と同様に、第9層の基板他端部と第10層の基板他端部にそれぞれ配置したU字状の導体をビアVで接続して形成する。また、第3共振器14のキャパシタC3は、上記第1共振器12のキャパシタC1と同様に、第3層に配置した前記キャパシタ電極C1,C3のうちの右側のキャパシタ電極C3と第2層の基板中心部に配置したグランド電極Gとにより形成する。   Similarly to the inductor L1 of the first resonator 12, the inductor L4 of the third resonator 14 has via-shaped U-shaped conductors disposed on the other end of the ninth layer substrate and the other end of the substrate of the tenth layer. V is connected and formed. Similarly to the capacitor C1 of the first resonator 12, the capacitor C3 of the third resonator 14 has a capacitor electrode C3 on the right side of the capacitor electrodes C1 and C3 arranged on the third layer and the capacitor C3 of the second layer. It is formed by a ground electrode G disposed at the center of the substrate.

さらに、第4層の基板中心部に左右に広がるように且つ前記第3層の両キャパシタ電極C1,C3と対向するように電極C4を配置し、これらの電極C1,C3,C4によりバイパスキャパシタC4を構成する。   Further, an electrode C4 is disposed so as to spread left and right at the center of the substrate of the fourth layer and to face both the capacitor electrodes C1, C3 of the third layer, and the bypass capacitor C4 is formed by these electrodes C1, C3, C4. Configure.

また、第2共振器13の第一インダクタL2は、第2層のグランド電極Gから第3層、第4層、第5層、第6層、第7層、第8層および第9層を貫通して第10層の基板中央部に配置した電極に電気的に接続したビアVと、当該第10層の中央部に配置した電極とにより構成する。また同時に、この第10層の中央部に配置した電極と第9層の中央部に配した電極と第8層の中央部に配した電極とより第2共振器のキャパシタC2を形成する。このように第10層中央部の電極は、キャパシタC2を構成する電極であると同時にインダクタL2を構成する電極でもあり、当該電極に符号C2とL2を併記したのはこのことを示したものである(第9層中央部の電極も同様)。さらに、前記第9層の中央部に配した電極と、当該第9層中央部の電極から第8層および第7層を貫通して第6層へ延びるビアVによって第2共振器の第二インダクタL3を形成する。   The first inductor L2 of the second resonator 13 includes the third layer, the fourth layer, the fifth layer, the sixth layer, the seventh layer, the eighth layer, and the ninth layer from the second layer ground electrode G. A via V that penetrates and is electrically connected to an electrode disposed in the central portion of the substrate of the tenth layer and an electrode disposed in the central portion of the tenth layer are configured. At the same time, the capacitor C2 of the second resonator is formed by the electrode disposed at the center of the tenth layer, the electrode disposed at the center of the ninth layer, and the electrode disposed at the center of the eighth layer. Thus, the electrode at the center of the tenth layer is the electrode that constitutes the capacitor C2 and the electrode that constitutes the inductor L2, and the fact that the reference numerals C2 and L2 are also written on the electrode indicates this. Yes (the same applies to the electrode at the center of the ninth layer). Further, the second resonator of the second resonator is provided by an electrode arranged at the center of the ninth layer and a via V extending from the electrode at the center of the ninth layer to the sixth layer through the eighth and seventh layers. An inductor L3 is formed.

そして第10層において、第1共振器12のインダクタL1と、第2共振器13のインダクタL2(前記第10層の基板中央部の電極)と、第3共振器14のインダクタL4とを順に並べて配置することにより、インダクタL1とインダクタL2を電磁界結合させるとともに、インダクタL2とインダクタL4を電磁界結合させる。   In the tenth layer, the inductor L1 of the first resonator 12, the inductor L2 of the second resonator 13 (the electrode at the center of the substrate of the tenth layer), and the inductor L4 of the third resonator 14 are arranged in order. By arranging, the inductor L1 and the inductor L2 are electromagnetically coupled, and the inductor L2 and the inductor L4 are electromagnetically coupled.

同様に第9層において、第1共振器12のインダクタL1と、第2共振器13のインダクタL3(前記第9層の基板中央部の電極)と、第3共振器14のインダクタL4とを順に並べて配置することにより、インダクタL1とインダクタL3を結合させるとともに、インダクタL3とインダクタL4を結合させる。   Similarly, in the ninth layer, the inductor L1 of the first resonator 12, the inductor L3 of the second resonator 13 (the electrode at the center of the substrate of the ninth layer), and the inductor L4 of the third resonator 14 are sequentially arranged. By arranging them side by side, the inductor L1 and the inductor L3 are coupled, and the inductor L3 and the inductor L4 are coupled.

さらに第1層の入力端子T1と第1共振器12との接続は、第1層から第4層まで延びるビアVにより入力端子T1と前記第3層左側のキャパシタ電極C1を接続することにより行う。また、入力端子T1と第1共振器12のインダクタL1との接続は、当該第1層から第4層まで延びるビアVと、第3層左側のキャパシタ電極C1と、このキャパシタ電極C1から第10層まで延びるビアVとを介して行う。   Further, the first layer input terminal T1 and the first resonator 12 are connected by connecting the input terminal T1 and the capacitor electrode C1 on the left side of the third layer by a via V extending from the first layer to the fourth layer. . The input terminal T1 and the inductor L1 of the first resonator 12 are connected to the via V extending from the first layer to the fourth layer, the capacitor electrode C1 on the left side of the third layer, and the capacitor electrode C1 to the tenth. Via via V extending to the layer.

さらに、第4層には前記入力側付加線路Laを配し、前記入力端子T1から第4層まで延びるビアVの先端をこの第4層の付加線路Laの一端に接続する。入力側付加線路Laの他端は、ビアVを介して前記第3層左側のキャパシタ電極C1(第1共振器12のキャパシタC1)に接続してあり、これにより入力線路Liに並列に付加線路Laを入力部15に備えた。   Furthermore, the input side additional line La is arranged on the fourth layer, and the tip of the via V extending from the input terminal T1 to the fourth layer is connected to one end of the fourth layer additional line La. The other end of the input side additional line La is connected to the capacitor electrode C1 on the left side of the third layer through the via V (the capacitor C1 of the first resonator 12), and thereby the additional line in parallel with the input line Li. La was provided in the input unit 15.

第1層の出力端子T2と第3共振器14との接続も、上記入力部15と同様に出力線路Loと出力側付加線路Lbとにより行う。具体的には、第1層から第4層まで延びる別のビアVにより出力端子T2と前記第3層右側のキャパシタ電極C3を接続することにより行う。また、出力端子T2と第3共振器14のインダクタL4との接続は、当該第1層から第4層まで延びるビアVと、第3層右側のキャパシタ電極C3と、このキャパシタ電極C3から第10層まで延びるビアVとを介して行う。   The connection between the output terminal T2 of the first layer and the third resonator 14 is also made by the output line Lo and the output side additional line Lb as in the case of the input unit 15. Specifically, this is performed by connecting the output terminal T2 and the capacitor electrode C3 on the right side of the third layer by another via V extending from the first layer to the fourth layer. The output terminal T2 and the inductor L4 of the third resonator 14 are connected to the via V extending from the first layer to the fourth layer, the capacitor electrode C3 on the right side of the third layer, and the capacitor electrode C3 to the tenth. Via via V extending to the layer.

さらに、第4層に出力側付加線路Lbを配し、前記出力端子T2から第4層まで延びるビアVの先端をこの第4層の付加線路Lbの一端に接続する一方、出力側付加線路Lbの他端を、ビアVを介して前記第3層右側のキャパシタ電極C3(第3共振器14のキャパシタC3)に接続し、これにより出力線路Loに並列に付加線路Lbを出力部16に備える。   Further, an output side additional line Lb is arranged on the fourth layer, and the tip of the via V extending from the output terminal T2 to the fourth layer is connected to one end of the fourth layer additional line Lb, while the output side additional line Lb is connected. Is connected to the capacitor electrode C3 on the right side of the third layer (capacitor C3 of the third resonator 14) via the via V, whereby the output line 16 includes the additional line Lb in parallel with the output line Lo. .

このように形成したBPFチップの周波数特性を図3A〜図3Dに示した。また、図5、図6および図7A〜図7Dは前述したようにそれぞれ比較例に係る積層型BPFの回路図、積層基板各層の導体パターンの配置を示す平面図ならびに周波数特性を示す線図であるが、この比較例のBPFは上記本実施形態のBPFと比べて、入力側付加線路Laと出力側付加線路Lbを備えていない点だけが異なるものである(図5および図6(d)参照)。   The frequency characteristics of the BPF chip thus formed are shown in FIGS. 3A to 3D. 5, FIG. 6 and FIGS. 7A to 7D are a circuit diagram of a multilayer BPF according to a comparative example, a plan view showing the arrangement of conductor patterns on each layer of the multilayer substrate, and a diagram showing frequency characteristics, respectively. However, the BPF of this comparative example differs from the BPF of the present embodiment only in that the input side additional line La and the output side additional line Lb are not provided (FIGS. 5 and 6 (d)). reference).

図3Aと図7Aを対比すれば明らかなように、比較例のBPFでは高周波数領域においてスプリアスSが発生しているのに対して、本実施形態によればこのような高域スプリアスの発生を抑えることが出来る。   As is clear from the comparison between FIG. 3A and FIG. 7A, the spurious S is generated in the high frequency region in the BPF of the comparative example, whereas according to the present embodiment, such high frequency spurious is generated. It can be suppressed.

さらに図3Eは、前記実施形態において入力側付加線路Laと出力側付加線路Lbのうちの一方のみを備えた場合の通過減衰特性を示す線図である。この結果から明らかなように、入出力双方に付加線路La,Lbを備えた前記実施形態よりはスプリアス抑制の効果が多少劣るものの、このように入力部と出力部のうちの一方にのみ付加線路を備えた場合でも、前記比較例と比べれば良好なスプリアス抑制の効果を得ることが可能である。なお、図3Eは、入力側付加線路Laを備えずに出力側付加線路Lbのみを備えた場合の結果であるが、逆に、出力側付加線路Lbを備えず入力側付加線路Laのみを備えた場合も同様であった。   Furthermore, FIG. 3E is a diagram showing a passing attenuation characteristic when only one of the input side additional line La and the output side additional line Lb is provided in the embodiment. As is apparent from this result, the spurious suppression effect is somewhat inferior to that of the above-described embodiment in which the input lines La and Lb are provided on both the input and output sides. Even if it is provided, it is possible to obtain a better spurious suppression effect than the comparative example. FIG. 3E shows the result when only the output side additional line Lb is provided without the input side additional line La, but conversely, only the input side additional line La is provided without the output side additional line Lb. The same was true for the case.

〔第2実施形態〕
図4は本発明の第二の実施形態に係るBPFを示すものである。同図に示すようにこのBPFは、入力側付加線路Laと出力側付加線路Lbを入力線路Liおよび出力線路Loと異なる層に配置した前記第1実施形態とは異なり、入力側付加線路Laと出力側付加線路Lbを、入力線路Liおよび出力線路Loと同一の層に配置したものである。
[Second Embodiment]
FIG. 4 shows a BPF according to the second embodiment of the present invention. As shown in the figure, the BPF is different from the first embodiment in which the input side additional line La and the output side additional line Lb are arranged in a different layer from the input line Li and the output line Lo. The output side additional line Lb is arranged in the same layer as the input line Li and the output line Lo.

具体的には、第1層の入力端子T1から第3層まで延びるビアVの先端に一端を、第3層左側のキャパシタ電極C1に他端をそれぞれ接続するように入力側付加線路Laを第3層に配置することで、入力端子T1からビアVを介して第1共振器12(キャパシタ電極C1)に信号を入力する経路を入力線路Liと並行して形成する。   Specifically, the input side additional line La is connected to the tip of the via V extending from the input terminal T1 of the first layer to the third layer and the other end is connected to the capacitor electrode C1 on the left side of the third layer. By arranging in three layers, a path for inputting a signal from the input terminal T1 to the first resonator 12 (capacitor electrode C1) via the via V is formed in parallel with the input line Li.

また、出力部16についても同様に、第1層の出力端子T2から第3層まで延びるビアVの先端に一端を、第3層右側のキャパシタ電極C3に他端をそれぞれ接続するように出力側付加線路Lbを第3層に配置することで、第3共振器14(キャパシタ電極C3)から出力端子T2へビアVを介して信号を出力する経路を出力線路Loと並行して形成する。   Similarly, for the output unit 16, one end is connected to the tip of the via V extending from the output terminal T2 of the first layer to the third layer, and the other end is connected to the capacitor electrode C3 on the right side of the third layer. By arranging the additional line Lb on the third layer, a path for outputting a signal from the third resonator 14 (capacitor electrode C3) to the output terminal T2 via the via V is formed in parallel with the output line Lo.

他の構成は、前記第1実施形態と同一であるから、同一の符号を付して重複した説明を省略する。   Since the other configuration is the same as that of the first embodiment, the same reference numerals are given and redundant description is omitted.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it is obvious to those skilled in the art that various modifications can be made within the scope of the claims. is there.

例えば、前記積層構造や共振器の具体的な回路構成、接続段数は前記実施形態のものに限定されない。また、前記実施形態では入力部および出力部に2本の線路をそれぞれ備えたが、3本以上の線路により入力部や出力部を構成すること(付加線路を2本以上設けること)を本発明は除外するものではない。   For example, the specific circuit configuration and the number of connection stages of the laminated structure and the resonator are not limited to those of the embodiment. In the above embodiment, the input section and the output section are each provided with two lines. However, the present invention includes that the input section and the output section are constituted by three or more lines (provided with two or more additional lines). Is not excluded.

さらに、本発明に係る付加線路(以下、入力側付加線路について述べるが、出力側付加線路についても同様)は、一端が入力端子に、他端が初段共振器にそれぞれ接続されたもの、即ち入力線路と完全に(入力端子から初段共振器までの経路の全長に亘って)並行するものである必要は必ずしもなく、例えば、入力端子と初段共振器を接続する入力線路の途中から分岐して初段共振器に接続されていても良いし、入力端子に一端が直接接続されているが他端は入力線路の途中に接続されていても良いし、更には、付加線路の両端がいずれも入力線路の途中に接続された構造(入力線路の途中から分岐して第1共振器に接続する手前で再び入力線路に合流する構造)であっても良い。入力線路の全長に亘ってこれと並行するように付加線路を備えることがインダクタンスを低下させる観点から望ましいが、上記いずれの構造であっても入力部のインダクタンスを低下させることは可能だからである。また、入力端子と初段共振器との間の信号経路の途中には、入力線路を経由する経路ならびに付加線路を経由する経路のいずれについても、導体層の表面に形成された導体線路ではない他の導体(例えばビアやチップ側面に設けられる側面電極等の層間接続導体)が介在されていて構わない。   Furthermore, the additional line according to the present invention (hereinafter, the input side additional line is described, but the same applies to the output side additional line) is one in which one end is connected to the input terminal and the other end is connected to the first-stage resonator. It is not always necessary to be completely parallel to the line (over the entire length of the path from the input terminal to the first stage resonator). For example, the first stage branches off from the middle of the input line connecting the input terminal and the first stage resonator. It may be connected to the resonator, one end is directly connected to the input terminal, the other end may be connected in the middle of the input line, and both ends of the additional line are both input line May be connected in the middle (a structure that branches from the middle of the input line and joins the input line again before connecting to the first resonator). Although it is desirable from the viewpoint of reducing the inductance that the additional line is provided so as to be parallel to the entire length of the input line, it is possible to reduce the inductance of the input unit in any of the above structures. Also, in the middle of the signal path between the input terminal and the first stage resonator, neither the path via the input line nor the path via the additional line is a conductor line formed on the surface of the conductor layer. (For example, an interlayer connection conductor such as a side electrode provided on a side surface of a via or a chip) may be interposed.

11 バンドパスフィルタ
12 第1共振器
13 第2共振器
14 第3共振器
15 入力部
16 出力部
C1,C2,C3 キャパシタ
C4 バイパスキャパシタ(バイパスコンデンサ)
G グランド電極
L1,L2,L3,L4 インダクタ
La 入力側付加線路
Lb 出力側付加線路
Li 入力線路
Lo 出力線路
S 高域スプリアス
T1 入力端子
T2 出力端子
TG グランド端子
V ビアホール
DESCRIPTION OF SYMBOLS 11 Band pass filter 12 1st resonator 13 2nd resonator 14 3rd resonator 15 Input part 16 Output part C1, C2, C3 Capacitor C4 Bypass capacitor (bypass capacitor)
G ground electrode L1, L2, L3, L4 Inductor La Input side additional line Lb Output side additional line Li Input line Lo Output line S High band spurious T1 Input terminal T2 Output terminal TG Ground terminal V Via hole

Claims (5)

信号を入力可能な入力端子と、
信号を出力可能な出力端子と、
これら入力端子と出力端子との間に接続されて所定の通過帯域を形成する複数の共振器と、
前記複数の共振器のうち前記入力端子に最も近い初段共振器と前記入力端子との間を電気的に接続する入力線路を含む入力部と、
前記複数の共振器のうち前記出力端子に最も近い終段共振器と前記出力端子との間を電気的に接続する出力線路を含む出力部と
を備えたバンドパスフィルタであって、
前記入力線路に対し並列に接続されて前記入力部のインダクタンスを低下させる入力側付加線路を前記入力部に備えた
ことを特徴とするバンドパスフィルタ。
An input terminal capable of inputting a signal;
An output terminal capable of outputting a signal;
A plurality of resonators connected between the input terminal and the output terminal to form a predetermined passband;
An input unit including an input line that electrically connects a first-stage resonator closest to the input terminal and the input terminal among the plurality of resonators;
A band-pass filter comprising: an output line that electrically connects a final-stage resonator closest to the output terminal and the output terminal among the plurality of resonators;
A band-pass filter comprising: an input side additional line connected in parallel to the input line to reduce inductance of the input unit.
信号を入力可能な入力端子と、
信号を出力可能な出力端子と、
これら入力端子と出力端子との間に接続されて所定の通過帯域を形成する複数の共振器と、
前記複数の共振器のうち前記入力端子に最も近い初段共振器と前記入力端子との間を電気的に接続する入力線路を含む入力部と、
前記複数の共振器のうち前記出力端子に最も近い終段共振器と前記出力端子との間を電気的に接続する出力線路を含む出力部と
を備えたバンドパスフィルタであって、
前記出力線路に対し並列に接続されて前記出力部のインダクタンスを低下させる出力側付加線路を前記出力部に備えた
ことを特徴とするバンドパスフィルタ。
An input terminal capable of inputting a signal;
An output terminal capable of outputting a signal;
A plurality of resonators connected between the input terminal and the output terminal to form a predetermined passband;
An input unit including an input line that electrically connects a first-stage resonator closest to the input terminal and the input terminal among the plurality of resonators;
A band-pass filter comprising: an output line that electrically connects a final-stage resonator closest to the output terminal and the output terminal among the plurality of resonators;
An output side additional line connected in parallel to the output line to reduce inductance of the output unit is provided in the output unit.
前記出力線路に対し並列に接続されて前記出力部のインダクタンスを低下させる出力側付加線路を前記出力部にさらに備えた
請求項1に記載のバンドパスフィルタ。
The band-pass filter according to claim 1, further comprising an output-side additional line connected to the output line in parallel to reduce inductance of the output unit.
前記入力端子と、前記出力端子と、前記複数の共振器と、前記入力部と、前記出力部とを、複数の配線層を備えた積層基板に備えたバンドパスフィルタであって、
前記入力側付加線路を前記入力線路と異なる導体層に配置するとともに、
前記出力側付加線路を前記出力線路と異なる導体層に配置した
請求項3に記載のバンドパスフィルタ。
A band-pass filter comprising a laminated substrate having a plurality of wiring layers, the input terminal, the output terminal, the plurality of resonators, the input unit, and the output unit;
While arranging the input side additional line in a conductor layer different from the input line,
The band-pass filter according to claim 3, wherein the output side additional line is arranged in a conductor layer different from the output line.
前記入力端子と、前記出力端子と、前記複数の共振器と、前記入力部と、前記出力部とを、複数の配線層を備えた積層基板に備えたバンドパスフィルタであって、
前記入力側付加線路を前記入力線路と同一の導体層に配置するとともに、
前記出力側付加線路を前記出力線路と同一の導体層に配置した
請求項3に記載のバンドパスフィルタ。
A band-pass filter comprising a laminated substrate having a plurality of wiring layers, the input terminal, the output terminal, the plurality of resonators, the input unit, and the output unit;
While arranging the input side additional line in the same conductor layer as the input line,
The band-pass filter according to claim 3, wherein the output side additional line is disposed on the same conductor layer as the output line.
JP2012086807A 2012-04-05 2012-04-05 Multilayer bandpass filter Active JP5633708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086807A JP5633708B2 (en) 2012-04-05 2012-04-05 Multilayer bandpass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086807A JP5633708B2 (en) 2012-04-05 2012-04-05 Multilayer bandpass filter

Publications (2)

Publication Number Publication Date
JP2013219469A true JP2013219469A (en) 2013-10-24
JP5633708B2 JP5633708B2 (en) 2014-12-03

Family

ID=49591137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086807A Active JP5633708B2 (en) 2012-04-05 2012-04-05 Multilayer bandpass filter

Country Status (1)

Country Link
JP (1) JP5633708B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929710B2 (en) 2015-04-14 2018-03-27 Tdk Corporation Laminated composite electronic device including coil and capacitor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178401U (en) * 1984-10-29 1986-05-26
JPH06314911A (en) * 1993-04-28 1994-11-08 Tokin Corp Dielectric filter and dielectric resonator
JPH07263910A (en) * 1994-03-22 1995-10-13 Ngk Insulators Ltd Laminated dielectric filter
JPH11195902A (en) * 1997-12-26 1999-07-21 Taiyo Yuden Co Ltd Laminated filter
JPH11205006A (en) * 1998-01-20 1999-07-30 Matsushita Electric Ind Co Ltd Laminated filter
JP2003046303A (en) * 2001-07-31 2003-02-14 Ngk Insulators Ltd Laminated dielectric filter
JP2003283209A (en) * 2003-04-25 2003-10-03 Taiyo Yuden Co Ltd Laminated dielectric filter
JP2008271485A (en) * 2006-10-13 2008-11-06 Kyocera Corp Bandpass filter, high-frequency module using the same, and radio communication device using them
JP2009200988A (en) * 2008-02-25 2009-09-03 Kyocera Corp Filter device
JP2009246889A (en) * 2008-03-31 2009-10-22 Tdk Corp Multi-layer type electronic component
JP2010154176A (en) * 2008-12-25 2010-07-08 Kyocera Corp Bandpass filter, wireless communication module using the same and communication equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178401U (en) * 1984-10-29 1986-05-26
JPH06314911A (en) * 1993-04-28 1994-11-08 Tokin Corp Dielectric filter and dielectric resonator
JPH07263910A (en) * 1994-03-22 1995-10-13 Ngk Insulators Ltd Laminated dielectric filter
JPH11195902A (en) * 1997-12-26 1999-07-21 Taiyo Yuden Co Ltd Laminated filter
JPH11205006A (en) * 1998-01-20 1999-07-30 Matsushita Electric Ind Co Ltd Laminated filter
JP2003046303A (en) * 2001-07-31 2003-02-14 Ngk Insulators Ltd Laminated dielectric filter
JP2003283209A (en) * 2003-04-25 2003-10-03 Taiyo Yuden Co Ltd Laminated dielectric filter
JP2008271485A (en) * 2006-10-13 2008-11-06 Kyocera Corp Bandpass filter, high-frequency module using the same, and radio communication device using them
JP2009200988A (en) * 2008-02-25 2009-09-03 Kyocera Corp Filter device
JP2009246889A (en) * 2008-03-31 2009-10-22 Tdk Corp Multi-layer type electronic component
JP2010154176A (en) * 2008-12-25 2010-07-08 Kyocera Corp Bandpass filter, wireless communication module using the same and communication equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929710B2 (en) 2015-04-14 2018-03-27 Tdk Corporation Laminated composite electronic device including coil and capacitor

Also Published As

Publication number Publication date
JP5633708B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5817795B2 (en) High frequency module
JP5310768B2 (en) Multilayer bandpass filter
JP5787046B2 (en) High frequency module
JP6249023B2 (en) Filter parts
JP4766354B1 (en) Multilayer bandpass filter
JP6183461B2 (en) High frequency module
JP6669132B2 (en) Multiplexer, transmitting device and receiving device
JP5751265B2 (en) High frequency module
JP2009044303A (en) Attenuator composite coupler
KR101672342B1 (en) Filter apparatus
JP2008113432A (en) Multi-layered band pass filter
JP4845503B2 (en) Duplexer and portable communication device
JP5804076B2 (en) LC filter circuit and high frequency module
JP2010154138A (en) Layered multiplexer
KR102424038B1 (en) multiplexer
JP5633708B2 (en) Multilayer bandpass filter
US7782157B2 (en) Resonant circuit, filter circuit, and multilayered substrate
JP2013009411A (en) Antenna branching filter
JP5660223B2 (en) Demultiplexer
KR100969660B1 (en) Semiconductor package substrate having a double-stacked electromagnetic bandgap structure around a via hole
WO2012176576A1 (en) Filter device
JP2010183513A (en) Laminated band pass filter and radio frequency module
JP2007243797A (en) Balanced/unbalanced conversion circuit
JP2008053912A (en) Passive component

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5633708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150