JP2013219280A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2013219280A
JP2013219280A JP2012090299A JP2012090299A JP2013219280A JP 2013219280 A JP2013219280 A JP 2013219280A JP 2012090299 A JP2012090299 A JP 2012090299A JP 2012090299 A JP2012090299 A JP 2012090299A JP 2013219280 A JP2013219280 A JP 2013219280A
Authority
JP
Japan
Prior art keywords
substrate
end surface
solar cell
cell module
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012090299A
Other languages
Japanese (ja)
Other versions
JP5921942B2 (en
Inventor
Masahiro Kawamura
政宏 河村
Shigeteru Nishikawa
茂輝 西川
Motonari Futawatari
基成 二渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012090299A priority Critical patent/JP5921942B2/en
Publication of JP2013219280A publication Critical patent/JP2013219280A/en
Application granted granted Critical
Publication of JP5921942B2 publication Critical patent/JP5921942B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell module in which its end-surface sealing material is suppressed from being partially pressed by a great force and is prevented from being parted or severed, when the end-surface sealing material is attached to the outer end surface of the peripheral edge of a solar cell module body.SOLUTION: A solar cell module comprises: a solar cell module body 10 comprising a light transmissive substrate, an encapsulation layer disposed on the substrate, a solar cell sealed with the encapsulation layer, and a back film; and an end-surface sealing material 30 in a band-shape, the sealing material 30 sealing an outer end surface 10C of the solar cell module body 10. A beveling treatment is applied to all the corners of a planar shape viewed from almost vertical direction of the substrate main surface, and/or to ridge edges formed with the substrate main surface and the substrate end surface. A parting or severance of the end-surface sealing material 30 can be prevented by the beveling treatment, when the end-surface sealing material 30 is being attached to the outer end surface 10C.

Description

本発明は、太陽電池モジュールに関し、特に、太陽電池モジュール本体の外周端面に端面封止材が取り付けられる太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module in which an end surface sealing material is attached to an outer peripheral end surface of a solar cell module main body.

近年、クリーンエネルギーを生成して利用する一つの手段として、太陽光を電気エネルギーに変換する太陽電池が注目され普及しつつある。また、住宅用には、太陽電池モジュールが提供されている。   In recent years, as one means for generating and using clean energy, solar cells that convert sunlight into electric energy have been attracting attention and are becoming popular. In addition, solar cell modules are provided for residential use.

太陽電池モジュールは、一般に、太陽電池モジュール本体と、それを支持する枠体とから構成されている。太陽電池モジュール本体は、透光性基板の上に太陽電池セルとバックフィルムとを順次配置し、透光性基板とバックフィルムとの間に充填される封止材で太陽電池セルを封止することにより形成される。この太陽電池モジュール本体の裏面側には、出力を取り出すための端子ボックスが設けられる。そして、この太陽電池モジュール本体の外周縁には、枠体が嵌め込まれて取付けられる。   The solar cell module is generally composed of a solar cell module main body and a frame body that supports it. The solar cell module body sequentially arranges the solar cells and the back film on the translucent substrate, and seals the solar cells with a sealing material filled between the translucent substrate and the back film. Is formed. A terminal box for taking out the output is provided on the back side of the solar cell module body. And a frame is fitted and attached to the outer periphery of this solar cell module main body.

また、太陽電池モジュール本体の外周縁に枠体を嵌め込んで取り付ける際には、太陽電池モジュール本体の外周縁と枠体との間には端面封止材を設けることが望ましい。たとえば、特許文献1では太陽電池モジュール本体の外周縁と枠体との間に緩衝材が設けられているが、同様に、太陽電池モジュール本体の外周縁と枠体との間に端面封止材を設けると、太陽電池モジュール本体の外周縁に枠体が直接接触するときの衝撃を抑えることができる。また、端面封止材を設けることにより、太陽電池モジュール本体の外周縁の外周端面を端面封止材で封止することができるので、太陽電池モジュール本体の防水性能を高め、太陽電池モジュール本体内部への水分(たとえば、水や水蒸気)の侵入を防ぐこともできる。   Further, when the frame body is fitted and attached to the outer peripheral edge of the solar cell module main body, it is desirable to provide an end face sealing material between the outer peripheral edge of the solar cell module main body and the frame body. For example, in Patent Document 1, a cushioning material is provided between the outer peripheral edge of the solar cell module main body and the frame body. Similarly, the end face sealing material is provided between the outer peripheral edge of the solar cell module main body and the frame body. When the frame is provided, it is possible to suppress an impact when the frame body directly contacts the outer peripheral edge of the solar cell module main body. Also, by providing the end face sealing material, the outer peripheral end face of the outer peripheral edge of the solar cell module body can be sealed with the end face sealing material, so that the waterproof performance of the solar cell module body is improved, and the inside of the solar cell module body It is also possible to prevent moisture (for example, water or water vapor) from entering.

特開2003−229590号公報JP 2003-229590 A

しかしながら、太陽電池モジュール本体の外周端面に端面封止材が取り付けられるとき、端面封止材は張力を付与された状態で外周端面に押し付けられる。このとき、太陽電池モジュール本体の基板の外周縁の角(たとえば基板の平面形状が有する角部や、基板の端面と主面とが成す稜角)が端面封止材に当接すると、その角によって端面封止材の表面が比較的大きな圧力で局所的に押圧されることにより、端面封止材に裂け目が生じたり、端面封止材が切れたりすることがある。なお、特許文献1は、太陽電池モジュール本体の外周縁と枠体との間に緩衝材を設けることを開示しているものの、その工程の内容については具体的に開示しておらず、さらに、上述のような問題点についても言及していない。   However, when the end surface sealing material is attached to the outer peripheral end surface of the solar cell module body, the end surface sealing material is pressed against the outer peripheral end surface in a state where tension is applied. At this time, when the corner of the outer peripheral edge of the substrate of the solar cell module body (for example, the corner portion of the planar shape of the substrate or the ridge angle formed by the end surface and the main surface of the substrate) contacts the end surface sealing material, When the surface of the end surface sealing material is locally pressed with a relatively large pressure, a tear may occur in the end surface sealing material or the end surface sealing material may be cut off. In addition, although patent document 1 is disclosing providing a shock absorbing material between the outer periphery of a solar cell module main body and a frame, about the content of the process, it does not disclose specifically, Furthermore, It does not mention the above-mentioned problems.

本発明は、このような状況を鑑みてなされたものであり、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、端面封止材が大きな圧力で局所的に押圧されることを抑制し、端面封止材の裂開又は破断を防止することができる太陽電池モジュールを提供することを目的とする。   The present invention has been made in view of such a situation, and when the end surface sealing material is attached to the outer peripheral end surface of the outer peripheral edge of the solar cell module body, the end surface sealing material is locally pressed with a large pressure. It aims at providing the solar cell module which can suppress that and can prevent the tearing or fracture | rupture of an end surface sealing material.

上記目的を達成するために本発明は、透光性の基板と、前記基板上に設けられる封止層と、前記封止層により封止される太陽電池セルと、バックフィルムと、を有する太陽電池モジュール本体と、前記太陽電池モジュール本体の外周端面を封止する帯状の端面封止材と、を備える太陽電池モジュールにおいて、前記基板の主面の略法線方向から見た平面形状が有する全ての角部、及び/又は、前記基板の主面と基板端面とが成す稜角に面取り処理が施され、前記面取り処理により、前記外周端面に前記端面封止材が取り付けられるとき、前記端面封止材の裂開又は切断を防止することができる。   To achieve the above object, the present invention provides a solar cell comprising a light-transmitting substrate, a sealing layer provided on the substrate, a solar battery cell sealed by the sealing layer, and a back film. In a solar cell module comprising a battery module main body and a band-shaped end surface sealing material that seals an outer peripheral end surface of the solar cell module main body, all the planar shapes of the main surface of the substrate viewed from a substantially normal direction When the chamfering process is performed on the corner portion of the substrate and / or the ridge angle formed by the main surface of the substrate and the end surface of the substrate, and the end surface sealing material is attached to the outer peripheral end surface by the chamfering process, the end surface sealing is performed. The tearing or cutting of the material can be prevented.

上記構成によれば、基板の全ての角部及び/又は稜角に面取り処理を施すことにより、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、角部及び/又は稜角に形成される面取り面によって、端面封止材が大きな圧力で局所的に押圧されることを抑制し、端面封止材の裂開や切断を防止することができる。   According to the said structure, when an end surface sealing material is attached to the outer peripheral end surface of the outer periphery of a solar cell module main body by chamfering all the corner | angular parts and / or ridge angles of a board | substrate, a corner | angular part and / or a ridge angle are attached. The chamfered surface formed on the end surface suppresses the end surface sealing material from being locally pressed with a large pressure, and prevents the end surface sealing material from being cleaved or cut.

上記構成において、前記全ての角部にR面取り処理が施されてもよい。この構成により、各角部になだらかな曲面のR面取り面を形成することができる。よって、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、R面取り面が端面封止材とより広い面積で当接するので、R面取り面が端面封止材の表面を押圧する圧力も小さくなる。従って、外周端面に端面封止材が取り付けられるとき、角部に形成されるR面取り面によって、端面封止材が大きな圧力で局所的に押圧されることを抑制することができる。   The said structure WHEREIN: R chamfering process may be given to all the said corner | angular parts. With this configuration, a smoothly curved R chamfered surface can be formed at each corner. Therefore, when the end face sealing material is attached to the outer peripheral end face of the outer peripheral edge of the solar cell module main body, the R chamfered surface comes into contact with the end face sealing material in a wider area, so that the R chamfered surface covers the surface of the end face sealing material. The pressing pressure is also reduced. Therefore, when the end surface sealing material is attached to the outer peripheral end surface, it is possible to suppress the end surface sealing material from being locally pressed with a large pressure by the R chamfered surface formed at the corner portion.

或いは、上記構成において、前記全ての角部にC面取り処理が施され、前記全ての角部から、前記C面取り処理によって、各角部の頂点から所定の長さの辺を含む部分が除去され、各角部での前記所定の長さは、2.0mm以上、且つ、該角部を成す2つの辺のうちの短い方の辺の1/4の長さ以下であってもよい。この構成により、各角部に比較的広い面積のC面取り面を形成することができる。よって、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、角部に形成されるC面取り面が端面封止材と比較的広い面積で当接するので、C面取り面が端面封止材の表面を押圧する圧力も小さくなる。従って、外周端面に端面封止材が取り付けられるとき、角部に形成されるC面取り面によって、端面封止材が大きな圧力で局所的に押圧されることを抑制することができる。さらに、各角部での所定の長さを該角部を成す2つの辺のうちの短い方の辺の1/4の長さ以下とすることにより、太陽電池モジュールの太陽電池セルを封止する領域が小さくなりすぎることを防止することができる。従って、太陽電池モジュールの変換効率に大きな影響を与えることを防ぐことができる。   Alternatively, in the above configuration, C corner chamfering processing is performed on all the corners, and a portion including a side having a predetermined length from the apex of each corner is removed from the all corners by the C chamfering processing. The predetermined length at each corner may be not less than 2.0 mm and not more than 1/4 of the shorter side of the two sides forming the corner. With this configuration, it is possible to form a C-chamfered surface having a relatively large area at each corner. Therefore, when the end surface sealing material is attached to the outer peripheral end surface of the outer peripheral edge of the solar cell module body, the C chamfered surface formed at the corner portion comes into contact with the end surface sealing material in a relatively wide area. The pressure which presses the surface of an end surface sealing material also becomes small. Therefore, when the end surface sealing material is attached to the outer peripheral end surface, it is possible to suppress the end surface sealing material from being locally pressed with a large pressure by the C chamfered surface formed at the corner portion. Furthermore, the solar cell of the solar cell module is sealed by setting the predetermined length at each corner to be equal to or less than 1/4 of the shorter side of the two sides forming the corner. It can prevent that the area | region to do becomes too small. Therefore, it is possible to prevent the conversion efficiency of the solar cell module from being greatly affected.

さらに、上記構成において、前記所定の長さは、2.0mm以上且つ3.0mm以下であってもよい。所定の長さを2.0mm以上とすることにより、各角部に比較的広い面積のC面取り面を形成することができる。従って、外周端面に端面封止材が取り付けられるとき、角部に形成されるC面取り面によって、端面封止材が大きな圧力で局所的に押圧されることを抑制することができる。さらに、所定の長さを3.0mm以下とすることにより、太陽電池モジュールの太陽電池セルを封止する領域がさらに小さくなりすぎることを防止することができる。   Furthermore, the said structure WHEREIN: 2.0 mm or more and 3.0 mm or less may be sufficient as the said predetermined length. By setting the predetermined length to 2.0 mm or more, a C-chamfered surface having a relatively large area can be formed at each corner. Therefore, when the end surface sealing material is attached to the outer peripheral end surface, it is possible to suppress the end surface sealing material from being locally pressed with a large pressure by the C chamfered surface formed at the corner portion. Furthermore, it can prevent that the area | region which seals the photovoltaic cell of a photovoltaic module becomes too small by making predetermined length into 3.0 mm or less.

また、上記構成において、前記稜角にR面取り処理が施され、前記R面取り処理の半径は、前記基板の厚さの半分以上であり、前記R面取り処理の中心は、前記基板の厚さ方向の断面において、前記基板の厚さが半分となる仮想線上にあってもよい。或いは、上記構成において、前記稜角にR面取り処理が施され、前記R面取り処理の半径は、前記基板の厚さの半分よりも小さく、前記R面取り処理の中心は、前記基板の厚さ方向の断面において、前記基板端面から前記基板端面の法線方向に前記半径と略同じ距離離れ、且つ、前記基板端面とともに前記稜角を成す前記基板の主面から前記主面の法線方向に前記半径と略同じ距離離れた位置にあってもよい。   In the above configuration, an R chamfering process is performed on the ridge angle, the radius of the R chamfering process is half or more of the thickness of the substrate, and the center of the R chamfering process is in the thickness direction of the substrate. In a cross section, the thickness of the substrate may be on an imaginary line that is halved. Alternatively, in the above configuration, an R chamfering process is performed on the ridge angle, and the radius of the R chamfering process is smaller than half of the thickness of the substrate, and the center of the R chamfering process is in the thickness direction of the substrate. In cross section, the radius is approximately the same distance as the radius from the substrate end surface in the normal direction of the substrate end surface, and forms the ridge angle with the substrate end surface, and the radius in the normal direction of the main surface from the main surface of the substrate. They may be located at substantially the same distance.

これらの構成により、稜角になだらかな曲面のR面取り面を形成することができる。よって、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、稜角に形成されるR面取り面によって、端面封止材が大きな圧力で局所的に押圧されることを抑制することができる。   With these configurations, it is possible to form an R chamfered surface having a gentle curved surface at the ridge angle. Therefore, when the end face sealing material is attached to the outer peripheral end face of the outer peripheral edge of the solar cell module body, the end face sealing material is prevented from being locally pressed with a large pressure by the R chamfered surface formed at the ridge angle. be able to.

また、上記構成において、前記基板の両主面と基板端面とが成す第1稜角及び第2稜角のうち、一方の稜角のみにR面取り処理が施されてもよい。この構成によれば、2つの稜角のうちの一方の稜角のみにR面取り処理を施せばよいため、2つの稜角の両方にR面取り処理を施す場合と比べて、太陽電池モジュールの製造工程数が少なくなる。   In the above configuration, the R chamfering process may be performed only on one of the first ridge angle and the second ridge angle formed by both the main surfaces of the substrate and the substrate end surface. According to this configuration, since it is only necessary to perform the R chamfering process on only one of the two ridge angles, the number of manufacturing steps of the solar cell module is larger than when the R chamfering process is performed on both of the two ridge angles. Less.

或いは、上記構成において、前記基板の両主面と基板端面とが成す第1稜角及び第2稜角にそれぞれ異なる半径のR面取り処理が施されてもよい。   Alternatively, in the above configuration, R chamfering processing with different radii may be performed on the first ridge angle and the second ridge angle formed by both main surfaces of the substrate and the substrate end surface.

本発明によれば、太陽電池モジュール本体の外周縁の外周端面に端面封止材が取り付けられるとき、端面封止材が大きな圧力で局所的に押圧されることを抑制し、端面封止材の裂開や破断を防止することができる太陽電池モジュールを提供することができる。   According to the present invention, when the end surface sealing material is attached to the outer peripheral end surface of the outer peripheral edge of the solar cell module body, the end surface sealing material is suppressed from being locally pressed with a large pressure, and the end surface sealing material It is possible to provide a solar cell module that can prevent cleavage and breakage.

太陽電池モジュールの構成を示す斜視図である。It is a perspective view which shows the structure of a solar cell module. 太陽電池モジュールの外周縁の局所断面図である。It is local sectional drawing of the outer periphery of a solar cell module. 太陽電池モジュール本体の外周端面に端面封止材を取り付ける工程を説明するための斜視図である。It is a perspective view for demonstrating the process of attaching an end surface sealing material to the outer peripheral end surface of a solar cell module main body. 太陽電池モジュール本体の外周端面に端面封止材を取り付けた状態を説明するための上面図である。It is a top view for demonstrating the state which attached the end surface sealing material to the outer peripheral end surface of a solar cell module main body. 第1比較例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。It is the top view which looked at the board | substrate of the photovoltaic module main body which concerns on a 1st comparative example from the substantially normal line direction of the main surface. 第1比較例に係る基板の角部近傍の拡大斜視図である。It is an expansion perspective view of the corner | angular part vicinity of the board | substrate which concerns on a 1st comparative example. 第2比較例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate of the photovoltaic module module main body which concerns on a 2nd comparative example. 第1実施例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。It is the top view which looked at the board | substrate of the photovoltaic module module body which concerns on 1st Example from the substantially normal line direction of the main surface. 第1実施例に係る基板の角部近傍の拡大斜視図である。It is an expansion perspective view of the corner | angular part vicinity of the board | substrate which concerns on 1st Example. 第2実施例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。It is the top view which looked at the board | substrate of the photovoltaic module main body which concerns on 2nd Example from the substantially normal line direction of the main surface. 第2実施例に係る基板の角部近傍の拡大斜視図である。It is an expansion perspective view of the corner | angular part vicinity of the board | substrate which concerns on 2nd Example. 第3実施例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate of the photovoltaic module main body which concerns on 3rd Example. 第3実施例の変形例に係る基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate which concerns on the modification of 3rd Example. 第3実施例の他の変形例に係る基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate which concerns on the other modification of 3rd Example. 第4実施例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate of the photovoltaic module main body which concerns on 4th Example. 第4実施例の変形例に係る基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate which concerns on the modification of 4th Example. 第4実施例の他の変形例に係る基板の外周縁の局所断面図である。It is local sectional drawing of the outer periphery of the board | substrate which concerns on the other modification of 4th Example.

以下に本発明の実施形態について図面を参照して説明する。
<太陽電池モジュールの構成>
Embodiments of the present invention will be described below with reference to the drawings.
<Configuration of solar cell module>

まず、太陽電池モジュール1の構成から説明する。図1は、太陽電池モジュールの構成を示す斜視図である。また、図2は、太陽電池モジュールの外周縁の局所断面図である。図1及び図2に示すように、太陽電池モジュール1は、太陽電池モジュール本体10と、枠体20と、端面封止材30と、を含んで構成されている。   First, the configuration of the solar cell module 1 will be described. FIG. 1 is a perspective view showing a configuration of a solar cell module. FIG. 2 is a local cross-sectional view of the outer peripheral edge of the solar cell module. As shown in FIGS. 1 and 2, the solar cell module 1 includes a solar cell module main body 10, a frame body 20, and an end surface sealing material 30.

太陽電池モジュール本体10は、透光性を有する基板11と、封止樹脂層12(封止層)と、太陽電池セル13と、バックフィルム14と、端子ボックス15と、ケーブル16と、を含んで構成される。   The solar cell module body 10 includes a light-transmitting substrate 11, a sealing resin layer 12 (sealing layer), a solar cell 13, a back film 14, a terminal box 15, and a cable 16. Consists of.

基板11は透明な板状体であり、たとえば板状のガラスなどが利用される。なお、この基板11の厚さは特に限定しない。また、この基板11には面取り処理(図5A〜図14参照)が施されているが、この面取り処理については後に詳述する。   The substrate 11 is a transparent plate-like body, and for example, plate-like glass is used. The thickness of the substrate 11 is not particularly limited. The substrate 11 is chamfered (see FIGS. 5A to 14). The chamfering process will be described in detail later.

基板11の上には、封止樹脂層12と、封止樹脂層12により封止される太陽電池セル13と、封止樹脂層12の上に設けられるバックフィルム14と、が配置されている。   On the substrate 11, a sealing resin layer 12, a solar battery cell 13 sealed with the sealing resin layer 12, and a back film 14 provided on the sealing resin layer 12 are disposed. .

封止樹脂層12は、基板11とバックフィルム14との間を充填する透明な充填材であり、太陽電池セル13を挟んで封止する第1封止樹脂層12a及び第2封止樹脂層12bで構成されている。なお、本実施形態では、第1封止樹脂層12a及び第2封止樹脂層12bに、EVA(エチレン酢酸ビニル共重合樹脂)を用いているが、これに限定しない。第1封止樹脂層12a及び第2封止樹脂層12bは、他の材料(たとえば、ポリオレフィン樹脂や、その他の透明な樹脂材料)を用いてもよい。   The sealing resin layer 12 is a transparent filler that fills the space between the substrate 11 and the back film 14. The first sealing resin layer 12 a and the second sealing resin layer that are sealed with the solar battery cell 13 interposed therebetween. 12b. In the present embodiment, EVA (ethylene vinyl acetate copolymer resin) is used for the first sealing resin layer 12a and the second sealing resin layer 12b. However, the present invention is not limited to this. The first sealing resin layer 12a and the second sealing resin layer 12b may use other materials (for example, a polyolefin resin or other transparent resin material).

太陽電池セル13は、特に限定しないが、たとえば、GaAs系、Cu−In−Se系(CIS)、Cu−In−Ga−Se系(CIGS)、CdTe系などの材料を用いた化合物半導体太陽電池セル、結晶系または薄膜系のシリコン太陽電池セル、色素増感型太陽電池などを用いることができる。また、太陽電池セル13は、1の太陽電池セルであってもよいし、電気的に接続された複数の太陽電池セルであってもよい。   Although the solar cell 13 is not specifically limited, For example, the compound semiconductor solar cell using materials, such as GaAs type | system | group, Cu-In-Se type | system | group (CIS), Cu-In-Ga-Se type | system | group (CIGS), and CdTe type | system | group. A cell, a crystalline or thin film silicon solar cell, a dye-sensitized solar cell, or the like can be used. The solar battery cell 13 may be one solar battery cell or a plurality of electrically connected solar battery cells.

端子ボックス15は、太陽電池モジュール本体10の出力を取り出し、ケーブル16を通じて外部に出力するための出力インターフェースである。端子ボックス15は、太陽電池モジュール本体10の裏面10a(すなわち、太陽電池モジュール本体10の受光面10bとは反対側の面)に取り付けられている。   The terminal box 15 is an output interface for taking out the output of the solar cell module body 10 and outputting it to the outside through the cable 16. The terminal box 15 is attached to the back surface 10a of the solar cell module body 10 (that is, the surface opposite to the light receiving surface 10b of the solar cell module body 10).

枠体20は、端面封止材30を介して、太陽電池モジュール本体10の外周縁に嵌め込まれて取り付けられる枠状部材である。枠体20は、たとえばアルミニウムを用いて、押し出し加工によりその断面形状が枠状となるように形成されている。   The frame body 20 is a frame-like member that is fitted and attached to the outer peripheral edge of the solar cell module body 10 via the end surface sealing material 30. The frame 20 is formed, for example using aluminum, so that the cross-sectional shape becomes a frame shape by extrusion.

端面封止材30は、たとえば幅25mmの帯状の封止部材である。端面封止材30は、太陽電池モジュール本体10の全ての外周縁に沿って、太陽電池モジュール本体10の外周縁の外周端面10cに取り付けられており、太陽電池モジュール本体10の外周縁と枠体20との間に設けられる。本実施形態では、端面封止材30にエプトシーラー(登録商標)を用いているが、これに限定されず、端面封止材30に、柔軟性を有する他の発泡体や、ブチルゴムなどの弾性樹脂材料などを用いてもよい。   The end surface sealing material 30 is a band-shaped sealing member having a width of 25 mm, for example. The end surface sealing material 30 is attached to the outer peripheral end face 10c of the outer peripheral edge of the solar cell module main body 10 along all the outer peripheral edges of the solar cell module main body 10, and the outer peripheral edge of the solar cell module main body 10 and the frame body. 20 is provided. In the present embodiment, EPT SEALER (registered trademark) is used for the end surface sealing material 30, but the present invention is not limited to this, and the end surface sealing material 30 is made of other flexible foam or elastic resin such as butyl rubber. A material or the like may be used.

また、端面封止材30は、太陽電池モジュール本体10の外周縁の外周端面10cに取り付けられた後、太陽電池モジュール本体10の外周縁に枠体20が嵌め込まれる際に、太陽電池モジュール本体10の外周縁及び枠体20により幅方向の断面形状がコの字状となるように変形され、太陽電池モジュール本体10の裏面10a側の外周縁近傍の領域、受光面10b側の外周縁近傍の領域、及び外周端面10cを被覆する。   In addition, after the end surface sealing material 30 is attached to the outer peripheral end surface 10 c of the outer peripheral edge of the solar cell module main body 10, when the frame body 20 is fitted into the outer peripheral edge of the solar cell module main body 10, the solar cell module main body 10. The outer peripheral edge of the solar cell module 10 and the frame 20 are deformed so that the cross-sectional shape in the width direction becomes a U-shape, and the area in the vicinity of the outer peripheral edge on the back surface 10a side of the solar cell module body 10 and The region and the outer peripheral end face 10c are covered.

また、端面封止材30の太陽電池モジュール本体10の外周縁に接する側の面には接着層が設けられている。この接着層により、端面封止材30は太陽電池モジュール本体10の外周縁に接着されるとともに、太陽電池モジュール本体10の裏面10aの外周縁近傍の領域、受光面10bの外周縁近傍の領域、及び外周端面10cを被覆して封止している。なお、端面封止材30は、少なくとも外周端面10c(特に、太陽電池モジュール本体10の外部に露出する封止樹脂層12の外周縁の端面)を封止できていればよい。こうすれば、端面封止材30により、太陽電池モジュール本体10の内部(特に封止樹脂層12)への水分(たとえば水や水蒸気)の侵入を防止すること、及び、枠体20内部での太陽電池モジュール本体10の受光面10b側から裏面10a側への水分の進入を防止することができる。   Further, an adhesive layer is provided on the surface of the end surface sealing material 30 on the side in contact with the outer peripheral edge of the solar cell module body 10. With this adhesive layer, the end surface sealing material 30 is bonded to the outer peripheral edge of the solar cell module body 10, and the region near the outer peripheral edge of the back surface 10a of the solar cell module body 10, the region near the outer peripheral edge of the light receiving surface 10b, The outer peripheral end face 10c is covered and sealed. The end surface sealing material 30 only needs to seal at least the outer peripheral end surface 10c (particularly, the end surface of the outer peripheral edge of the sealing resin layer 12 exposed to the outside of the solar cell module body 10). If it carries out like this, the end surface sealing material 30 will prevent the penetration | invasion of the water | moisture content (for example, water and water vapor | steam) into the inside (especially sealing resin layer 12) of the solar cell module main body 10, and inside the frame 20 It is possible to prevent moisture from entering from the light receiving surface 10b side of the solar cell module body 10 to the back surface 10a side.

なお、太陽電池モジュール1は直射日光や風雨に曝される環境におかれることが多い。そのため、端面封止材30が枠体20からはみ出ていると、端面封止材30が日光などに直接に曝されることにより端面封止材30の劣化が局所的に早まる可能性があり、その結果、太陽電池モジュール1の耐候性に問題が生じる恐れがある。また、端面封止材30が枠体20からはみ出ていると、見栄えが悪く、外観上の汚れとして視認されるなど、意匠的にも好ましくない。そのため、本実施形態では、図1及び図2に示すように、端面封止部材30は、枠体20からはみ出さないように設けられている。こうすれば、端面封止材30が直射日光や風雨に直接に曝されることがないので、端面封止材30の局所的な劣化が早まることを防止することができる。従って、太陽電池モジュール1の耐候性も維持し易くなり、さらに、太陽電池モジュール1の外観も良くすることができる。
<太陽電池モジュールの製造方法>
The solar cell module 1 is often placed in an environment exposed to direct sunlight or wind and rain. Therefore, when the end surface sealing material 30 protrudes from the frame 20, the end surface sealing material 30 may be locally exposed to sunlight or the like so that deterioration of the end surface sealing material 30 may be locally accelerated. As a result, a problem may occur in the weather resistance of the solar cell module 1. Moreover, when the end surface sealing material 30 protrudes from the frame body 20, it does not look good and is visually unfavorable as a stain on the appearance. Therefore, in this embodiment, as shown in FIGS. 1 and 2, the end surface sealing member 30 is provided so as not to protrude from the frame body 20. By so doing, the end face sealing material 30 is not directly exposed to direct sunlight or wind and rain, and therefore, local deterioration of the end face sealing material 30 can be prevented from being accelerated. Therefore, the weather resistance of the solar cell module 1 can be easily maintained, and the appearance of the solar cell module 1 can be improved.
<Method for manufacturing solar cell module>

次に、太陽電池モジュール1の製造工程について説明する。   Next, the manufacturing process of the solar cell module 1 will be described.

まず、基板11上に、第1封止樹脂層12a、太陽電池セル13、第2封止樹脂層12b、バックフィルム14を順次重ねて配置した後、加熱・加圧処理を施すことにより、第1封止樹脂層12aにより基板11と太陽電池セル13とを接着し、第2封止樹脂層12bにより太陽電池セル13とバックフィルム14とを接着する。このとき、さらに、第1封止樹脂層12a及び第2封止樹脂層12bの接着により、太陽電池セル13が封止される。こうして、太陽電池モジュール本体10を得ることができる。なお、太陽電池モジュール本体10の他の例として、例えば、太陽電池セル13として薄膜系のシリコン太陽電池セルを用いる場合、封止樹脂層12は第1封止樹脂層12bのみとなる。基板11上に太陽電池セル13を直接形成するためである。   First, the first sealing resin layer 12a, the solar battery cell 13, the second sealing resin layer 12b, and the back film 14 are sequentially stacked on the substrate 11 and then subjected to a heating / pressurizing process. The substrate 11 and the solar battery cell 13 are bonded by the first sealing resin layer 12a, and the solar battery cell 13 and the back film 14 are bonded by the second sealing resin layer 12b. At this time, the solar battery cell 13 is further sealed by adhesion of the first sealing resin layer 12a and the second sealing resin layer 12b. In this way, the solar cell module main body 10 can be obtained. As another example of the solar cell module body 10, for example, when a thin-film silicon solar cell is used as the solar cell 13, the sealing resin layer 12 is only the first sealing resin layer 12b. This is because the solar battery cell 13 is directly formed on the substrate 11.

得られた太陽電池モジュール本体10の外周縁の外周端面10cには、帯状の端面封止材30が取り付けられる。図3は、太陽電池モジュール本体の外周端面に端面封止材を取り付ける工程を説明するための斜視図である。図3に示すように、太陽電池モジュール本体10の受光面10bの略法線方向が鉛直下方に向いた状態で、太陽電池モジュール本体10が取り付け台(不図示)に取り付けられる。このとき、太陽電池モジュール本体10の外周端面10cは鉛直方向と略平行となる。そして、帯状の端面封止材30の一端を外周端面10cに接着した後、太陽電池モジュール本体10の全ての外周縁に沿って、端面封止材30が外周端面10cに取り付けられる。このとき、端面封止材30は、所定の張力(たとえば2.5〜3.0N・m)が付与された状態で、受光面10bの略中央部を通る略法線方向zを中心として取り付けられる。   A band-shaped end surface sealing material 30 is attached to the outer peripheral end surface 10 c of the outer peripheral edge of the obtained solar cell module body 10. FIG. 3 is a perspective view for explaining a process of attaching an end face sealing material to the outer peripheral end face of the solar cell module main body. As shown in FIG. 3, the solar cell module body 10 is attached to a mounting base (not shown) in a state where the substantially normal direction of the light receiving surface 10 b of the solar cell module body 10 is directed vertically downward. At this time, the outer peripheral end surface 10c of the solar cell module body 10 is substantially parallel to the vertical direction. And after adhering one end of the strip | belt-shaped end surface sealing material 30 to the outer peripheral end surface 10c, the end surface sealing material 30 is attached to the outer peripheral end surface 10c along all the outer periphery of the solar cell module main body 10. FIG. At this time, the end surface sealing material 30 is attached with a predetermined tension (for example, 2.5 to 3.0 N · m) being applied, with a substantially normal direction z passing through a substantially central portion of the light receiving surface 10b as a center. It is done.

図4は、太陽電池モジュール本体の外周端面に端面封止材を取り付けた状態を説明するための上面図である。図4に示すように、太陽電池モジュール本体10の全ての外周縁に沿う外周端面10cに帯状の端面封止材30が取り付けられるとともに、取り付けられた端面封止材30の長さ方向の一端及び他端が所定の長さn重複する。言い換えると、端面封止材30は、外周端面10cに一周分取り付けられたのち、最初に外周端面10cに接着した端面封止材30の一端に所定の長さn重ねられる。本実施形態では、この長さnを10〜30mmに設定している。このように、取り付けた端面封止材30が長さn重なるように設定しておくと、太陽電池モジュール本体10の大きさの公差を吸収することができる。   FIG. 4 is a top view for explaining a state in which an end surface sealing material is attached to the outer peripheral end surface of the solar cell module main body. As shown in FIG. 4, a strip-shaped end surface sealing material 30 is attached to the outer peripheral end surface 10 c along all the outer peripheral edges of the solar cell module body 10, and one end in the length direction of the attached end surface sealing material 30 and The other end overlaps with a predetermined length n. In other words, after the end surface sealing material 30 is attached to the outer peripheral end surface 10c by one turn, the end surface sealing material 30 is overlapped with a predetermined length n on one end of the end surface sealing material 30 that is first bonded to the outer peripheral end surface 10c. In this embodiment, this length n is set to 10 to 30 mm. Thus, if the attached end surface sealing material 30 is set so as to overlap the length n, the tolerance of the size of the solar cell module body 10 can be absorbed.

また、端面封止材30を外周端面10cに取り付けるとき、太陽電池モジュール本体10は、固定した状態としてもよいし、受光面10bの略中心部を通る略法線方向zを回転軸として受光面10bと略平行な面内で回転させてもよい。   Moreover, when attaching the end surface sealing material 30 to the outer peripheral end surface 10c, the solar cell module main body 10 may be in a fixed state, or a light receiving surface with a substantially normal direction z passing through a substantially central portion of the light receiving surface 10b as a rotation axis. You may rotate in the surface substantially parallel to 10b.

また、帯状の端面封止材30は、外周端面10cに対して略平行な状態(傾角θ=0°)で外周端面10cに取り付けてもよいが、太陽電池モジュール本体10の外周端面10cに対して略平行な状態で端面封止材30を外周端面10cに取り付けた場合には、端面封止材30は自重により鉛直下方にたわみが発生することがある。この場合、太陽電池モジュール本体10の外周縁において端面封止材30が予め設定した位置から離れた位置で外周端面10cに接着する。そのため、太陽電池モジュール本体10に枠体が嵌め込まれて取り付けられたときに端面封止材30が枠体からはみ出したり、端面封止材30が外周端面10cを被覆できなかったりするなどの取り付け不良が発生する。   Further, the band-shaped end surface sealing material 30 may be attached to the outer peripheral end surface 10c in a state substantially parallel to the outer peripheral end surface 10c (inclination angle θ = 0 °), but with respect to the outer peripheral end surface 10c of the solar cell module body 10. When the end surface sealing material 30 is attached to the outer peripheral end surface 10c in a substantially parallel state, the end surface sealing material 30 may bend vertically downward by its own weight. In this case, the end surface sealing material 30 is bonded to the outer peripheral end surface 10 c at a position away from a preset position on the outer peripheral edge of the solar cell module body 10. Therefore, when the frame body is fitted and attached to the solar cell module main body 10, the end surface sealing material 30 protrudes from the frame body, or the end surface sealing material 30 cannot cover the outer peripheral end surface 10c. Will occur.

よって、帯状の端面封止材30は、外周端面10cに対して受光面10bの略法線方向zに傾けた状態(傾角θ>0°)で外周端面10cに取り付けることが望ましい。略法線方向zに傾けた状態で外周端面10cに取り付けることにより、外周端面10cに取り付けた端面封止材30の自重によるたわみを防止することができる。従って、上述のような取り付け不良の発生を防止することができる。   Therefore, it is desirable that the belt-shaped end surface sealing material 30 is attached to the outer peripheral end surface 10c in a state where the belt-shaped end surface sealing material 30 is inclined in the substantially normal direction z of the light receiving surface 10b (tilt angle θ> 0 °). By attaching to the outer peripheral end surface 10c while being inclined in the substantially normal direction z, it is possible to prevent the end surface sealing material 30 attached to the outer peripheral end surface 10c from being bent due to its own weight. Therefore, it is possible to prevent the occurrence of poor attachment as described above.

外周端面10cに端面封止材30が取り付けられた後、バックフィルム14上に、端子ボックス15及びケーブル16を取り付け、太陽電池モジュール本体10の外周縁に端面封止材30を介して枠体20が取り付けられる。
<基板に施される面取り処理>
After the end face sealing material 30 is attached to the outer peripheral end face 10c, the terminal box 15 and the cable 16 are attached on the back film 14, and the frame body 20 is attached to the outer peripheral edge of the solar cell module body 10 via the end face sealing material 30. Is attached.
<Chamfering treatment applied to the substrate>

太陽電池モジュール本体10の基板11には、基板11の主面の略法線方向から見た基板11の平面形状が有する全ての角部111、及び/又は、基板11の主面と基板11の外周縁の端面(以下では、基板端面112と呼ぶ。)とが成す稜角115に面取り処理(C面取り処理やR面取り処理など)が施されている。   The substrate 11 of the solar cell module main body 10 includes all the corners 111 of the planar shape of the substrate 11 viewed from a substantially normal direction of the main surface of the substrate 11 and / or the main surface of the substrate 11 and the substrate 11. A chamfering process (C chamfering process, R chamfering process, etc.) is performed on a ridge angle 115 formed by an end surface of the outer peripheral edge (hereinafter referred to as a substrate end surface 112).

以下に、基板11に施される面取り処理について、比較例及び実施例を参照して詳細に説明する。まず、本発明の理解を容易にするために、比較例から説明する。
(第1比較例)
Below, the chamfering process performed to the board | substrate 11 is demonstrated in detail with reference to a comparative example and an Example. First, in order to facilitate understanding of the present invention, a comparative example will be described.
(First comparative example)

第1比較例では、基板11の主面の略法線方向から見た基板11の平面形状の全ての角部111にC面取り処理を施した。図5Aは、第1比較例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。また、図5Bは、第1比較例に係る基板の角部近傍の拡大斜視図である。なお、図5A及び図5Bにおいて、点線は面取り処理前の角部111の形状を示している。図5A及び図5Bに示すように、第1比較例では、基板11の主面の略法線方向から見た基板11の平面形状の全ての角部111から、C面取り処理によって、その頂点から長さLc=0.5〜1.8mmの辺を含む部分を除去することにより、全ての角部111にC面取り面113を形成した。このC面取り面113を含む基板端面112には、糸面取り処理を施した。なお、この糸面処理としては、たとえば、厚さt=3.2mmの基板11に対して、0.3mmのC面取り処理、又は、半径が0.3mm程度のR面取り処理を施した。   In the first comparative example, the C chamfering process was performed on all the corners 111 of the planar shape of the substrate 11 as viewed from the substantially normal direction of the main surface of the substrate 11. FIG. 5A is a plan view of the substrate of the solar electric module main body according to the first comparative example as viewed from the direction of the normal to the main surface. FIG. 5B is an enlarged perspective view of the vicinity of the corner of the substrate according to the first comparative example. 5A and 5B, the dotted line indicates the shape of the corner 111 before the chamfering process. As shown in FIGS. 5A and 5B, in the first comparative example, from all corners 111 of the planar shape of the substrate 11 viewed from the substantially normal direction of the main surface of the substrate 11, from the apex thereof by C chamfering processing. C chamfered surfaces 113 were formed on all corners 111 by removing a portion including a side having a length Lc = 0.5 to 1.8 mm. The substrate end surface 112 including the C chamfered surface 113 was subjected to a thread chamfering process. As the yarn surface treatment, for example, a 0.3 mm C chamfering process or an R chamfering process having a radius of about 0.3 mm was performed on the substrate 11 having a thickness t = 3.2 mm.

しかしながら、第1比較例では、C面取り処理によって形成されるC面取り面113の面積が比較的狭い。そのため、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、基板11のC面取り面113によって端面封止材30の表面が比較的大きな圧力で局所的に押圧される。よって、端面封止材30に裂け目が生じたり、端面封止材30が切れたりすることがあった。
(第2比較例)
However, in the first comparative example, the area of the C chamfered surface 113 formed by the C chamfering process is relatively small. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10 c of the outer peripheral edge of the solar cell module body 10, the surface of the end surface sealing material 30 is locally pressed with a relatively large pressure by the C chamfered surface 113 of the substrate 11. Is done. Therefore, a tear may occur in the end surface sealing material 30 or the end surface sealing material 30 may be cut off.
(Second comparative example)

第2比較例では、基板11の稜角115にR面取り処理を施した。図6は、第2比較例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。なお、図6において、点線は面取り処理前の稜角115の形状を示している。図6に示すように、第2比較例では、たとえば厚さt=3.2mmの基板11の2つの稜角115a及び115bに、基板11の厚さtの半分よりも大きな半径rc(たとえばrc=2.0mm)のR面取り処理を施すことにより、R面取り面116a及び116bを形成した。さらに、一方の稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線Tc−Tcよりも他方の稜角115b側に寄った位置caにある。また、他方の稜角115bに施したR面取り処理の中心は、一点鎖線Tc−Tcよりも一方の稜角115a側に寄った位置cbにある。   In the second comparative example, the chamfering process was performed on the ridge angle 115 of the substrate 11. FIG. 6 is a local cross-sectional view of the outer peripheral edge of the substrate of the photovoltaic module module body according to the second comparative example. In FIG. 6, a dotted line indicates the shape of the ridge angle 115 before the chamfering process. As shown in FIG. 6, in the second comparative example, for example, two ridge angles 115a and 115b of a substrate 11 having a thickness t = 3.2 mm are provided with a radius rc (for example, rc = greater than half the thickness t of the substrate 11). R chamfering surfaces 116a and 116b were formed by performing an R chamfering process of 2.0 mm). Further, the center of the R chamfering process applied to one ridge angle 115a is the other of the other than the phantom one-dot chain line Tc-Tc indicating the position where the thickness t of the substrate 11 becomes half in the cross section in the thickness direction of the substrate 11. It is in a position ca close to the ridge angle 115b side. The center of the R chamfering process applied to the other ridge angle 115b is at a position cb that is closer to the one ridge angle 115a side than the alternate long and short dash line Tc-Tc.

しかしながら、第2比較例では、基板端面112において、各稜角115a及び115bに形成されたR面取り面116a及び116bが接するため、基板端面112に尖った形状の尖端が形成される。そのため、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、基板端面112の尖端によって、端面封止材30の表面が比較的大きな圧力で局所的に押圧される。よって、端面封止材30に裂け目が生じたり、端面封止材30が切れたりすることがあった。   However, in the second comparative example, since the R chamfered surfaces 116 a and 116 b formed at the ridge angles 115 a and 115 b are in contact with each other at the substrate end surface 112, a sharp point is formed on the substrate end surface 112. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10 c of the outer peripheral edge of the solar cell module body 10, the surface of the end surface sealing material 30 is locally pressed with a relatively large pressure by the sharp end of the substrate end surface 112. The Therefore, a tear may occur in the end surface sealing material 30 or the end surface sealing material 30 may be cut off.

本発明は、このような問題を解決すべくなされたものであり、基板11の角部111や稜角115に施す面取り処理により、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、端面封止材30の裂開又は切断を防止することができるようにしている。なお、この面取り処理の具体的な形状や寸法などの条件は、端面封止材30の材質,形状及びサイズや、太陽電池モジュール本体10の外周端面11cに端面封止材30を取り付ける方法(端面封止材30の張力や傾角θなど)を考慮して、たとえば実験的あるいはシミュレーションで求められる。   The present invention has been made to solve such a problem, and the end surface sealing material is formed on the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module main body 10 by the chamfering treatment applied to the corner portion 111 and the ridge angle 115 of the substrate 11. When 30 is attached, tearing or cutting of the end face sealing material 30 can be prevented. In addition, conditions, such as a specific shape and dimension of this chamfering process, are a method of attaching the end surface sealing material 30 to the outer peripheral end surface 11c of the solar cell module body 10 (end surface). In consideration of the tension and the inclination angle θ of the sealing material 30, it can be obtained, for example, experimentally or by simulation.

以下に、本発明の実施例を順に説明する。
(第1実施例)
Below, the example of the present invention is described in order.
(First embodiment)

第1実施例では、基板11の主面の略法線方向から見た基板11の平面形状の全ての角部111にR面取り処理を施した。図7Aは、第1実施例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。また、図7Bは、第1実施例に係る基板の角部近傍の拡大斜視図である。なお、図7A及び図7Bにおいて、点線は面取り処理前の角部111の形状を示している。図7A及び図7Bに示すように、第1実施例では、基板11の全ての角部111に、たとえば半径R1が2.0〜3.0mmのR面取り処理を施すことにより、R面取り面114を形成した。このR面取り面114を含む基板端面112には、糸面取り処理を施した。なお、この糸面処理としては、たとえば、厚さt=3.2mmの基板11に対して、0.3mm程度のC面取り処理を行ったが、半径が0.3mm程度のR面取り処理を施してもよい。   In the first example, the R chamfering process was performed on all corner portions 111 of the planar shape of the substrate 11 as viewed from the direction of the substantially normal line of the main surface of the substrate 11. FIG. 7A is a plan view of the substrate of the solar electric module main body according to the first embodiment when viewed from a direction substantially normal to the main surface. FIG. 7B is an enlarged perspective view of the vicinity of the corner portion of the substrate according to the first embodiment. 7A and 7B, the dotted line indicates the shape of the corner 111 before the chamfering process. As shown in FIGS. 7A and 7B, in the first embodiment, an R chamfered surface 114 is formed by subjecting all corners 111 of the substrate 11 to an R chamfering process with a radius R1 of 2.0 to 3.0 mm, for example. Formed. The substrate end surface 112 including the R chamfered surface 114 was subjected to a thread chamfering process. As the yarn surface treatment, for example, a C chamfering process of about 0.3 mm was performed on the substrate 11 having a thickness t = 3.2 mm, but an R chamfering process having a radius of about 0.3 mm was performed. May be.

このように、基板11の全ての角部111にR面取り処理を施すことにより、各角部111になだらかな曲面のR面取り面114を形成することができる。よって、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、R面取り面114が端面封止材30とより広い面積で当接するので、R面取り面114が端面封止材30の表面を押圧する圧力も小さくなる。従って、外周端面10cに端面封止材30が取り付けられるとき、角部111に形成されるR面取り面114によって、端面封止材30が大きな圧力で局所的に押圧されることを抑制し、端面封止材30の裂開や破断を防止することができる。
(第2実施例)
In this way, by performing the R chamfering process on all the corners 111 of the substrate 11, the gently curved R chamfering surface 114 can be formed on each corner 111. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module body 10, the R chamfered surface 114 contacts the end surface sealing material 30 in a wider area, so that the R chamfered surface 114 is the end surface. The pressure for pressing the surface of the sealing material 30 is also reduced. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c, the end surface sealing material 30 is suppressed from being locally pressed by a large pressure by the R chamfered surface 114 formed in the corner portion 111, and the end surface It is possible to prevent the sealing material 30 from being cleaved or broken.
(Second embodiment)

第2実施例では、基板11の主面の略法線方向から見た基板11の平面形状の全ての角部111に、比較例よりも大きな寸法のC面取り処理を施した。図8Aは、第2実施例に係る太陽電地モジュール本体の基板をその主面の略法線方向から見た平面図である。また、図8Bは、第2実施例に係る基板の角部近傍の拡大斜視図である。なお、図8A及び図8Bにおいて、点線は面取り処理前の角部111の形状を示している。図8A及び図8Bに示すように、第2実施例では、基板11の全ての角部111から、C面取り処理によって、各角部111の頂点からたとえば所定の長さL1=2.0〜3.0mmの辺を含む部分を除去することにより、第1比較例に比べて面積の広いC面取り面113を形成した。このC面取り面113を含む基板端面112には、糸面取り処理を施した。なお、この糸面処理としては、たとえば、3.2mmの厚さの基板11に対して、0.3mm程度のC面取り処理を行ったが、半径が0.3mm程度のR面取り処理を施してもよい。   In the second example, all corners 111 of the planar shape of the substrate 11 viewed from the substantially normal direction of the main surface of the substrate 11 were subjected to C-chamfering processing having a size larger than that of the comparative example. FIG. 8A is a plan view of the substrate of the solar electric module main body according to the second embodiment when viewed from the direction of the substantially normal line of the main surface. FIG. 8B is an enlarged perspective view of the vicinity of the corner of the substrate according to the second embodiment. 8A and 8B, the dotted line indicates the shape of the corner 111 before the chamfering process. As shown in FIGS. 8A and 8B, in the second embodiment, for example, a predetermined length L1 = 2.0 to 3 from the apex of each corner 111 from all corners 111 of the substrate 11 by C chamfering processing. By removing a portion including a side of 0.0 mm, a C chamfered surface 113 having a larger area than that of the first comparative example was formed. The substrate end surface 112 including the C chamfered surface 113 was subjected to a thread chamfering process. As this yarn surface treatment, for example, a C chamfering process of about 0.3 mm was performed on the substrate 11 having a thickness of 3.2 mm, but an R chamfering process having a radius of about 0.3 mm was performed. Also good.

このように、基板11の全ての角部111により寸法の大きなC面取り処理(たとえば寸法L1が2.0mm以上)を施すことにより、各角部111に比較的広い面積のC面取り面113を形成することができる。よって、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、角部111に形成されるC面取り面113が端面封止材30と比較的広い面積で当接するので、C面取り面113が端面封止材30の表面を押圧する圧力も小さくなる。従って、外周端面10cに端面封止材30が取り付けられるとき、角部111に形成されるC面取り面113によって、端面封止材30が大きな圧力で局所的に押圧されることを抑制し、端面封止材30の裂開や破断を防止することができる。   In this way, a large chamfering process (for example, the dimension L1 is 2.0 mm or more) is performed on all the corners 111 of the substrate 11 to form the chamfering surface 113 having a relatively large area on each corner 111. can do. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module body 10, the C chamfered surface 113 formed in the corner portion 111 contacts the end surface sealing material 30 with a relatively wide area. Therefore, the pressure with which the C chamfered surface 113 presses the surface of the end surface sealing material 30 is also reduced. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c, the end surface sealing material 30 is suppressed from being locally pressed by a large pressure by the C chamfered surface 113 formed in the corner portion 111, and the end surface It is possible to prevent the sealing material 30 from being cleaved or broken.

なお、第2実施例では、各角部111でのC面取り処理の寸法L1が2.0mm以上且つ3.0mm以下であることを例示したが、寸法L1はこの数値範囲に限定されない。たとえば、各角部111での寸法L1は、その角部111を成す2つの辺のうちの短い方の辺の1/4の長さ以下としてもよい。こうすれば、太陽電池モジュールの太陽電池セルを封止する領域が小さくなりすぎることを防止することができる。従って、太陽電池モジュールの変換効率に大きな影響を与えることを防ぐことができる。
(第3実施例)
In the second embodiment, the C-chamfering dimension L1 at each corner 111 is exemplified as 2.0 mm or more and 3.0 mm or less, but the dimension L1 is not limited to this numerical range. For example, the dimension L1 at each corner 111 may be equal to or less than ¼ of the shorter side of the two sides forming the corner 111. If it carries out like this, it can prevent that the area | region which seals the photovoltaic cell of a solar cell module becomes small too much. Therefore, it is possible to prevent the conversion efficiency of the solar cell module from being greatly affected.
(Third embodiment)

第3実施例では、基板11の両主面と基板端面112とが成す2つの稜角115の両方に、半径及び中心の位置が略同じR面取り処理を施した。図9は、第3実施例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。なお、図9において、点線はR面取り処理前の稜角115の形状を示している。   In the third embodiment, both of the two ridge angles 115 formed by both main surfaces of the substrate 11 and the substrate end surface 112 were subjected to R chamfering processing with substantially the same radius and center position. FIG. 9 is a local cross-sectional view of the outer peripheral edge of the substrate of the photovoltaic module body according to the third embodiment. In FIG. 9, the dotted line shows the shape of the ridge angle 115 before the R chamfering process.

図9に示すように、第3実施例では、2つの稜角115a及び115bの両方に、基板11の厚さtの半分以上の半径r1のR面取り処理を施した(r1≧t/2)。たとえば、厚さt=3.2mmの基板11に対して、R面取り処理の半径r1を4.0mmとした。さらに、2つの稜角115a及び115bの両方に施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線T1−T1上の位置C1にある。その他は、第1実施例や第2実施例と同様である。   As shown in FIG. 9, in the third embodiment, both of the two ridge angles 115a and 115b were subjected to an R chamfering process with a radius r1 that is at least half the thickness t of the substrate 11 (r1 ≧ t / 2). For example, for the substrate 11 having a thickness t = 3.2 mm, the radius c1 of the R chamfering process is set to 4.0 mm. Furthermore, the center of the R chamfering process applied to both the two ridge angles 115a and 115b is a virtual alternate long and short dash line T1-T1 indicating a position where the thickness t of the substrate 11 is halved in the cross section in the thickness direction of the substrate 11. It is in the upper position C1. Others are the same as the first embodiment and the second embodiment.

こうすれば、基板端面112全体に、基板11の厚さ方向になだらかな曲面のR面取り面116を形成することができる。そのため、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、なだらかな曲面のR面取り面116を端面封止材30に当接させることができる。従って、基板端面112全体に形成されるR面取り面116によって、端面封止材30が大きな圧力で局所的に押圧されることを抑制し、端面封止材30の裂開や破断を防止することができる。
(第3実施例の変形例)
In this way, an R chamfered surface 116 having a gently curved surface in the thickness direction of the substrate 11 can be formed on the entire substrate end surface 112. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10 c of the outer peripheral edge of the solar cell module body 10, the gently curved R chamfered surface 116 can be brought into contact with the end surface sealing material 30. Therefore, the R chamfered surface 116 formed on the entire substrate end surface 112 suppresses the end surface sealing material 30 from being locally pressed with a large pressure, and prevents the end surface sealing material 30 from being cleaved or broken. Can do.
(Modification of the third embodiment)

上述の第3実施例では、2つの稜角115a及び稜角115bに略同じ半径のR面取り処理を施したが、各稜角115a及び115bに異なる半径のR面取り処理を施してもよい。図10は第3実施例の変形例に係る基板の外周縁の局所断面図である。なお、図10において、点線はR面取り処理前の稜角115の形状を示している。   In the third embodiment described above, the R chamfering process with substantially the same radius is performed on the two ridge angles 115a and 115b, but the R chamfering process with different radii may be performed on each of the ridge angles 115a and 115b. FIG. 10 is a local sectional view of the outer peripheral edge of the substrate according to a modification of the third embodiment. In FIG. 10, a dotted line indicates the shape of the ridge angle 115 before the R chamfering process.

図10に示すように、第3実施例の変形例では、一方の稜角115aに半径r1aのR面取り処理を施して、R面取り面116aを形成した。また、他方の稜角115bに半径r1bのR面取り処理を施して、R面取り面116bを形成した。また、各半径r1a及びr1bは基板11の厚さtの半分以上とした(r1a,r1b≧t/2)。ここで、図10では、半径r1aは半径r1bよりも小さくなっているが、これに限定されず、半径r1aは半径r1bよりも大きくてもよい。さらに、稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線T1−T1上の位置C1aとした。稜角115bに施したR面取り処理の中心も、同様に、仮想の一点鎖線T1−T1上の位置C1bとした。その他は、第3実施例と同様である。こうすれば、各R面取り面116a及び116bの間に尖った形状の尖端が形成されないので、第2比較例のような問題の発生を防止することができる。
(第3実施例の他の変形例)
As shown in FIG. 10, in the modification of the third embodiment, an R chamfered surface 116a is formed by applying an R chamfering process with a radius r1a to one ridge angle 115a. Further, an R chamfering process with a radius r1b was performed on the other ridge angle 115b to form an R chamfering surface 116b. Further, the radii r1a and r1b were set to be more than half of the thickness t of the substrate 11 (r1a, r1b ≧ t / 2). Here, in FIG. 10, the radius r1a is smaller than the radius r1b. However, the present invention is not limited to this, and the radius r1a may be larger than the radius r1b. Furthermore, the center of the R chamfering process applied to the ridge angle 115a is a position C1a on a virtual one-dot chain line T1-T1 indicating a position where the thickness t of the substrate 11 is halved in the cross section in the thickness direction of the substrate 11. . Similarly, the center of the R chamfering process applied to the ridge angle 115b is set to a position C1b on the virtual one-dot chain line T1-T1. Others are the same as the third embodiment. By so doing, no sharp pointed tip is formed between each of the R chamfered surfaces 116a and 116b, thereby preventing the occurrence of the problem as in the second comparative example.
(Other variations of the third embodiment)

また、上述の第3実施例では、2つの稜角115a及び115bの両方にR面取り処理を施したが、それらのうちの一方の稜角のみにR面取り処理を施すようにしてもよい。図11は、第3実施例の他の変形例に係る基板の外周縁の局所断面図である。なお、図11において、点線はR面取り処理前の稜角115aの形状を示している。また、基板11の上側(稜角115aを含む面)は裏面10a側となっており、基板11の下側(稜角116aを含む面)は受光面10b側となっている。   In the third embodiment described above, the R chamfering process is performed on both of the two ridge angles 115a and 115b, but the R chamfering process may be performed only on one of the ridge angles. FIG. 11 is a local sectional view of the outer peripheral edge of the substrate according to another modification of the third embodiment. In FIG. 11, the dotted line shows the shape of the ridge angle 115a before the R chamfering process. Further, the upper side (surface including the ridge angle 115a) of the substrate 11 is the back surface 10a side, and the lower side (surface including the ridge angle 116a) of the substrate 11 is the light receiving surface 10b side.

図11に示すように、第3実施例の他の変形例では、基板11の両主面と基板端面112とが成す2つの稜角115a(第1稜角)及び稜角115b(第2稜角)のうちの一方の稜角115aのみに、基板11の厚さtの半分以上の半径r1のR面取り処理を施した(r1≧t/2)。こうして、裏面10a側の稜角115aのみに、基板11の厚さ方向になだらかな曲面のR面取り面116aを形成した。なお、稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線T1−T1線上の位置C1にある。その他は、第3実施例と同様である。   As shown in FIG. 11, in another modification of the third embodiment, of the two ridge angles 115a (first ridge angle) and ridge angle 115b (second ridge angle) formed by both main surfaces of the substrate 11 and the substrate end surface 112. Only one of the ridge angles 115a was subjected to an R chamfering process with a radius r1 that is half or more of the thickness t of the substrate 11 (r1 ≧ t / 2). In this way, an R-chamfered surface 116a having a gently curved surface in the thickness direction of the substrate 11 was formed only at the ridge angle 115a on the back surface 10a side. The center of the R chamfering process applied to the ridge angle 115a is located at a position C1 on a virtual one-dot chain line T1-T1 indicating the position where the thickness t of the substrate 11 is halved in the cross section in the thickness direction of the substrate 11. . Others are the same as the third embodiment.

こうすれば、2つの稜角115のうちの一方の稜角115aのみにR面取り処理を施せばよいため、2つの稜角115a及び115bの両方にR面取り処理を施す場合と比べて、太陽電池モジュール1の製造工程数が少なくなる。   In this way, since it is only necessary to perform the R chamfering process on only one of the two ridge angles 115, the solar cell module 1 can be compared with the case of performing the R chamfering process on both of the two ridge angles 115 a and 115 b. The number of manufacturing processes is reduced.

なお、太陽電池モジュール本体10の受光面10bの略法線方向を鉛直下方に向け、端面封止材30を受光面10bの略法線方向に傾けた状態(たとえば図3において傾角θ>0°の状態)で、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられる場合、最初に、太陽電池モジュール本体10の裏面10a側の稜角115aが端面封止材30と当接する。このとき、特に、稜角115aが端面封止材30を大きな圧力で局所的に押圧するため、端面封止材30に裂け目が生じたり、端面封止材30が切れたりすることがある。このような場合には、最初に、なだらかな曲面のR面取り面116aに端面封止材30を当接させた後、外周端面10cに端面封止材30を取り付ければよい。こうすれば、なだらかな曲面のR面取り面116aにより端面封止材30が大きな圧力で局所的に押圧されることが抑制されるので、端面封止材30の裂開や破断をより効果的に防止することができる。   It should be noted that the substantially normal direction of the light receiving surface 10b of the solar cell module body 10 is directed vertically downward, and the end surface sealing material 30 is inclined in the substantially normal direction of the light receiving surface 10b (for example, an inclination angle θ> 0 ° in FIG. 3). When the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module main body 10 in the state of (1), first, the ridge angle 115a on the back surface 10a side of the solar cell module main body 10 is the end surface sealing material 30. Abut. At this time, in particular, since the ridge angle 115a locally presses the end surface sealing material 30 with a large pressure, a tear may occur in the end surface sealing material 30 or the end surface sealing material 30 may be cut. In such a case, first, the end surface sealing material 30 may be attached to the outer peripheral end surface 10c after the end surface sealing material 30 is brought into contact with the gently curved R chamfered surface 116a. By so doing, the end surface sealing material 30 is prevented from being locally pressed by a large pressure by the gently curved R chamfered surface 116a, so that the end surface sealing material 30 can be more efficiently cleaved and broken. Can be prevented.

また、太陽電池モジュール本体10の裏面10aの略法線方向を鉛直下方に向け、端面封止材30を裏面10aの略法線方向に傾けた状態で、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられる場合には、受光面10b側の稜角115bのみに同様のR面取り処理を施せばよい。そして、最初に、なだらかな曲面のR面取り面116bに端面封止材30を当接させた後、外周端面10cに端面封止材30を取り付ければよい。こうすれば、なだらかな曲面のR面取り面116bにより端面封止材30が大きな圧力で局所的に押圧されることが抑制されるので、端面封止材30の裂開や破断をより効果的に防止することができる。   Moreover, the outer periphery of the outer periphery of the solar cell module main body 10 in the state which turned the substantially normal line direction of the back surface 10a of the solar cell module body 10 vertically downward, and inclined the end surface sealing material 30 in the substantially normal direction of the back surface 10a. When the end surface sealing material 30 is attached to the end surface 10c, the same R chamfering process may be performed only on the ridge angle 115b on the light receiving surface 10b side. First, after the end surface sealing material 30 is brought into contact with the gently curved R chamfered surface 116b, the end surface sealing material 30 may be attached to the outer peripheral end surface 10c. In this way, the end surface sealing material 30 is prevented from being locally pressed by a large pressure by the gently curved R chamfered surface 116b, so that the end surface sealing material 30 can be more efficiently cleaved and broken. Can be prevented.

上述の第3実施形態の他の変形例では、太陽電池モジュール本体10の外周端面10cに端面封止材30を傾けた状態で取り付ける場合について説明したが、太陽電池モジュール本体10の外周端面10cに端面封止材30を傾けない状態(たとえば図3において傾角θ=0°の状態)で取り付ける場合にも第3実施形態の他の変形例を適用してもよい。   In the other modified example of the third embodiment described above, the case where the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the solar cell module body 10 while being inclined is described. Another modification of the third embodiment may also be applied when the end surface sealing material 30 is attached without being inclined (for example, with the inclination angle θ = 0 ° in FIG. 3).

また、上述の第3実施例及びそれらの変形例では、基板端面112の稜角115にR面取り処理を施したが、R面取り処理に替えてC面取り処理を施してもよい。
(第4実施例)
Moreover, in the above-mentioned 3rd Example and those modifications, although the R chamfering process was performed to the ridge angle 115 of the board | substrate end surface 112, it may replace with R chamfering process and may perform a C chamfering process.
(Fourth embodiment)

第4実施例では、基板11の2つの稜角115の両方に略同じ半径のR面取り処理を施した。図12は、第4実施例に係る太陽電地モジュール本体の基板の外周縁の局所断面図である。なお、図12において、点線はR面取り処理前の稜角115の形状を示している。   In the fourth embodiment, both of the two ridge angles 115 of the substrate 11 were subjected to R chamfering processing with substantially the same radius. FIG. 12 is a local cross-sectional view of the outer peripheral edge of the substrate of the solar electric module body according to the fourth embodiment. In FIG. 12, the dotted line indicates the shape of the ridge angle 115 before the R chamfering process.

図12に示すように、第4実施例では、2つの稜角115a及び115bの両方に、基板11の厚さtの半分よりも小さい半径r2のR面取り処理を施した(r2<t/2)。たとえば、厚さt=3.2mmの基板11に対して、R面取り処理の半径r2を1.2mmとした。なお、各稜角115a及び115bに施すR面取り処理の半径r2は、実際ではそれぞれのR面取り処理工程で多少の誤差が生じるため、必ずしも全く同じとなるわけではない。よって、各稜角115a及び115bに施すR面取り処理の半径r2は略同じであればよい。   As shown in FIG. 12, in the fourth embodiment, both of the two ridge angles 115a and 115b were subjected to an R chamfering process with a radius r2 smaller than half the thickness t of the substrate 11 (r2 <t / 2). . For example, for a substrate 11 having a thickness t = 3.2 mm, the radius c2 of the R chamfering process is set to 1.2 mm. It should be noted that the radius c2 of the R chamfering process applied to each ridge angle 115a and 115b is not necessarily exactly the same because a slight error actually occurs in each R chamfering process. Therefore, the radius r2 of the R chamfering process applied to each ridge angle 115a and 115b may be substantially the same.

さらに、稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板端面112からその法線方向に半径r2と略同じ距離離れ、且つ、基板端面112とともに稜角115aを成す基板11の主面からその法線方向に半径r2と略同じ距離離れた位置C2aにある。この位置C2aは、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線T2−T2よりも稜角115a側に寄っている。また、稜角115bに施したR面取り処理の中心は、同様の位置C2bにある。この位置C2bも、基板11の厚さ方向の断面において、仮想の一点鎖線T2−T2よりも稜角115b側に寄っている。その他は、第1実施例や第2実施例と同様である。   Further, the center of the R chamfering process applied to the ridge angle 115 a is separated from the substrate end surface 112 in the normal direction in the cross section in the thickness direction of the substrate 11 by a distance substantially the same as the radius r 2, and the ridge angle 115 a together with the substrate end surface 112. It is at a position C2a that is substantially the same distance as the radius r2 in the normal direction from the main surface of the substrate 11 to be formed. This position C2a is closer to the ridge angle 115a side than a virtual one-dot chain line T2-T2 indicating a position at which the thickness t of the substrate 11 is halved in the cross section in the thickness direction of the substrate 11. The center of the R chamfering process applied to the ridge angle 115b is at the same position C2b. This position C2b is also closer to the ridge angle 115b side than the virtual one-dot chain line T2-T2 in the cross section in the thickness direction of the substrate 11. Others are the same as the first embodiment and the second embodiment.

こうすれば、2つの稜角115a及び115bに、基板11の厚さ方向になだらかな曲面のR面取り面116a及び116bを形成することができる。そのため、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、端面封止材30には、なだらかな曲面のR面取り面116a及び116bを含む基板端面112を当接させることができる。従って、端面封止材30が大きな圧力で局所的に押圧されることを抑制することができるので、端面封止材30の裂開や破断を防止することができる。
(第4実施例の変形例)
By doing so, it is possible to form the R chamfered surfaces 116 a and 116 b having gentle curved surfaces in the thickness direction of the substrate 11 at the two ridge angles 115 a and 115 b. Therefore, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module body 10, the end surface sealing material 30 abuts the substrate end surface 112 including the gently curved R chamfered surfaces 116a and 116b. Can be touched. Therefore, since it can suppress that the end surface sealing material 30 is pressed locally with a big pressure, the tearing and the fracture | rupture of the end surface sealing material 30 can be prevented.
(Modification of the fourth embodiment)

上述の第4実施例では、2つの稜角115a及び稜角115bの両方に同様のR面取り処理を施したが、2つの稜角115a及び115bにそれぞれ半径の異なるR面取り処理を施すようにしてもよい。図13は第4実施例の変形例に係る基板の外周縁の局所断面図である。なお、図13において、点線はR面取り処理前の稜角115の形状を示している。また、基板11の上側は裏面10a側となっており、基板11の下側は受光面10b側となっている。   In the fourth embodiment described above, the same R chamfering process is performed on both the two ridge angles 115a and 115b. However, the two ridge angles 115a and 115b may be subjected to R chamfering processes having different radii. FIG. 13 is a local sectional view of the outer periphery of the substrate according to a modification of the fourth embodiment. In FIG. 13, a dotted line indicates the shape of the ridge angle 115 before the R chamfering process. The upper side of the substrate 11 is the back surface 10a side, and the lower side of the substrate 11 is the light receiving surface 10b side.

図13に示すように、第4実施例の変形例では、裏面10a側の一方の稜角115a(第1稜角)に半径r2aのR面取り処理を施し、受光面10b側の他方の稜角115b(第2稜角)に半径r2bのR面取り処理を施した。また、各半径r2a及びr2bは基板11の厚さtの半分よりも小さくした(r2a,r2b<t/2)。なお、図13では、半径r2aは半径r2bよりも大きくなっているが、これに限定されず、半径r2aは半径r2bよりも小さくてもよい。   As shown in FIG. 13, in the modification of the fourth embodiment, one ridge angle 115a (first ridge angle) on the back surface 10a side is subjected to an R chamfering process with a radius r2a, and the other ridge angle 115b (first ridge angle on the light receiving surface 10b side). R chamfering treatment with a radius r2b was performed at (2 ridge angles). The radii r2a and r2b are smaller than half the thickness t of the substrate 11 (r2a, r2b <t / 2). In FIG. 13, the radius r2a is larger than the radius r2b. However, the present invention is not limited to this, and the radius r2a may be smaller than the radius r2b.

さらに、稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板端面112からその法線方向に半径r2aと略同じ距離離れ、且つ、基板端面112とともに稜角115aを成す基板11の主面(裏面10a)からその法線方向に半径r2aと略同じ距離離れた位置C2aにある。この位置C2aは、基板11の厚さ方向の断面において、基板11の厚さtが半分となる位置を示す仮想の一点鎖線T2−T2よりも稜角115a側に寄っている。また、稜角115bに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板端面112からその法線方向に半径r2bと略同じ距離離れ、且つ、基板端面112とともに稜角115bを成す基板11の主面(受光面10b)からその法線方向に半径r2bと略同じ距離離れた位置C2bにある。この位置C2bも、基板11の厚さ方向の断面において、仮想の一点鎖線T2−T2よりも稜角115b側に寄っている。その他は、第4実施例と同様である。こうすれば、各R面取り面116a及び116bの間に尖った形状の尖端が形成されないので、第2比較例のような問題の発生を防止することができる。
(第4実施例の他の変形例)
Further, the center of the R chamfering process applied to the ridge angle 115a is substantially the same distance as the radius r2a in the normal direction from the substrate end surface 112 in the cross section in the thickness direction of the substrate 11, and the ridge angle 115a is set together with the substrate end surface 112. It is at a position C2a that is substantially the same distance as the radius r2a in the normal direction from the main surface (back surface 10a) of the substrate 11 to be formed. This position C2a is closer to the ridge angle 115a side than a virtual one-dot chain line T2-T2 indicating a position at which the thickness t of the substrate 11 is halved in the cross section in the thickness direction of the substrate 11. Further, the center of the R chamfering process applied to the ridge angle 115b is separated from the substrate end surface 112 in the normal direction in the cross section in the thickness direction of the substrate 11 by a distance substantially the same as the radius r2b, and the ridge angle 115b is set together with the substrate end surface 112. It is at a position C2b that is substantially the same distance as the radius r2b in the normal direction from the main surface (light receiving surface 10b) of the substrate 11 to be formed. This position C2b is also closer to the ridge angle 115b side than the virtual one-dot chain line T2-T2 in the cross section in the thickness direction of the substrate 11. Others are the same as the fourth embodiment. By so doing, no sharp pointed tip is formed between each of the R chamfered surfaces 116a and 116b, thereby preventing the occurrence of the problem as in the second comparative example.
(Other variations of the fourth embodiment)

また、上述の第4実施例では、2つの稜角115a及び115bの両方にR面取り処理を施したが、それらのうちの一方の稜角のみにR面取り処理を施すようにしてもよい。図14は、第4実施例の他の変形例に係る基板の外周縁の局所断面図である。なお、図14において、点線はR面取り処理前の稜角115の形状を示している。また、基板11の上側は裏面10a側となっており、基板11の下側は受光面10b側となっている。   In the fourth embodiment described above, the R chamfering process is performed on both of the two ridge angles 115a and 115b. However, the R chamfering process may be performed only on one of the ridge angles. FIG. 14 is a local sectional view of the outer peripheral edge of the substrate according to another modification of the fourth embodiment. In FIG. 14, a dotted line indicates the shape of the ridge angle 115 before the R chamfering process. The upper side of the substrate 11 is the back surface 10a side, and the lower side of the substrate 11 is the light receiving surface 10b side.

図14に示すように、第4実施例の他の変形例では、2つの稜角115a(第1稜角)及び稜角115b(第2稜角)のうちの一方の稜角115aのみに、基板11の厚さtの半分よりも小さい半径r2のR面取り処理を施した(r2<t/2)。こうして、裏面10a側の稜角115aのみに、基板11の厚さ方向になだらかな曲面のR面取り面116aを形成した。なお、稜角115aに施したR面取り処理の中心は、基板11の厚さ方向の断面において、基板端面112からその法線方向に半径r2と略同じ距離離れ、且つ、基板端面112とともに稜角115aを成す基板11の主面からその法線方向に半径r2と略同じ距離離れた位置C2aにある。その他は、第4実施例と同様である。   As shown in FIG. 14, in another modification of the fourth embodiment, the thickness of the substrate 11 is only at one ridge angle 115a of the two ridge angles 115a (first ridge angle) and ridge angle 115b (second ridge angle). An R chamfering process with a radius r2 smaller than half of t was performed (r2 <t / 2). In this way, an R-chamfered surface 116a having a gently curved surface in the thickness direction of the substrate 11 was formed only at the ridge angle 115a on the back surface 10a side. Note that the center of the R chamfering process applied to the ridge angle 115a is substantially the same distance as the radius r2 from the substrate end surface 112 in the normal direction in the cross section in the thickness direction of the substrate 11, and the ridge angle 115a together with the substrate end surface 112 is the same. It is at a position C2a that is substantially the same distance as the radius r2 in the normal direction from the main surface of the substrate 11 to be formed. Others are the same as the fourth embodiment.

こうすれば、2つの稜角115のうちの一方の稜角115aのみにR面取り処理を施せばよいため、2つの稜角115a及び115bの両方にR面取り処理を施す場合と比べて、太陽電池モジュール1の製造工程数が少なくなる。   In this way, since it is only necessary to perform the R chamfering process on only one of the two ridge angles 115, the solar cell module 1 can be compared with the case of performing the R chamfering process on both of the two ridge angles 115 a and 115 b. The number of manufacturing processes is reduced.

また、太陽電池モジュール本体10の受光面10bの略法線方向を鉛直下方に向け、受光面10bの略法線方向に端面封止材30を傾けた状態で、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられる場合、最初に、なだらかな曲面のR面取り面116aに端面封止材30を当接させた後、外周端面10cに端面封止材30を取り付ければよい。こうすれば、なだらかな曲面のR面取り面116aにより端面封止材30が大きな圧力で局所的に押圧されることが抑制されるので、端面封止材30の裂開や破断をより効果的に防止することができる。   Further, the outer peripheral edge of the solar cell module body 10 with the end surface sealing material 30 tilted in the substantially normal direction of the light receiving surface 10b with the substantially normal direction of the light receiving surface 10b of the solar cell module body 10 directed vertically downward. When the end surface sealing material 30 is attached to the outer peripheral end surface 10c, the end surface sealing material 30 is first brought into contact with the gently curved R-chamfered surface 116a, and then the end surface sealing material 30 is attached to the outer peripheral end surface 10c. That's fine. By so doing, the end surface sealing material 30 is prevented from being locally pressed by a large pressure by the gently curved R chamfered surface 116a, so that the end surface sealing material 30 can be more efficiently cleaved and broken. Can be prevented.

また、太陽電池モジュール本体10の裏面10aの略法線方向を鉛直下方に向け、端面封止材30を裏面10aの略法線方向に傾けた状態で、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられる場合には、受光面10b側の稜角115bのみに、同様のR面取り処理を施せばよい。このようにしても、上述のような作用効果を同様に得ることができる。   Moreover, the outer periphery of the outer periphery of the solar cell module main body 10 in the state which turned the substantially normal line direction of the back surface 10a of the solar cell module body 10 vertically downward, and inclined the end surface sealing material 30 in the substantially normal direction of the back surface 10a. When the end surface sealing material 30 is attached to the end surface 10c, the same R chamfering process may be performed only on the ridge angle 115b on the light receiving surface 10b side. Even if it does in this way, the above effects can be obtained similarly.

なお、第4実施形態の他の変形例では、太陽電池モジュール本体10の外周端面10cに端面封止材30を傾けた状態で取り付ける場合について説明したが、太陽電池モジュール本体10の外周端面10cに端面封止材30を傾けない状態(たとえば図3において傾角θ=0°の状態)で取り付ける場合にも第4実施形態の他の変形例を適用してもよい。   In addition, in the other modification of 4th Embodiment, although the case where it attached to the outer peripheral end surface 10c of the solar cell module main body 10 in the state which inclined the end surface sealing material 30 was demonstrated, it is attached to the outer peripheral end surface 10c of the solar cell module main body 10. Another modification of the fourth embodiment may also be applied when the end surface sealing material 30 is attached without being inclined (for example, with the inclination angle θ = 0 ° in FIG. 3).

また、上述の第4実施例及びそれらの変形例では、基板端面112の稜角115にR面取り処理を施したが、R面取り処理に替えてC面取り処理を施してもよい。   Moreover, in the above-mentioned 4th Example and those modifications, although the R chamfering process was performed to the ridge angle 115 of the board | substrate end surface 112, it may replace with an R chamfering process and a C chamfering process may be performed.

上述の本実施形態の太陽電池モジュール1では、透光性の基板11と、前記基板11上に設けられる封止層(封止樹脂層12)と、前記封止層により封止される太陽電池セル13と、を有する太陽電池モジュール本体10と、前記太陽電池モジュール本体10の外周端面111を封止する帯状の端面封止材30と、を備え、前記外周端面10cに前記端面封止材30が取り付けられる太陽電池モジュール1において、前記基板11の主面の略法線方向から見た平面形状が有する全ての角部111、及び/又は、前記基板11の主面と基板端面112とが成す稜角115に面取り処理(たとえばC面取り処理やR面取り処理)が施され、この面取り処理により、外周端面10cに端面封止材30が取り付けられるとき、端面封止材30の裂開又は切断を防止することができる。   In the solar cell module 1 of the above-described embodiment, the light-transmitting substrate 11, the sealing layer (sealing resin layer 12) provided on the substrate 11, and the solar cell sealed by the sealing layer. A solar cell module main body 10 having cells 13 and a band-shaped end surface sealing material 30 for sealing the outer peripheral end surface 111 of the solar cell module main body 10, and the end surface sealing material 30 on the outer peripheral end surface 10 c. In the solar cell module 1 to which the main surface of the substrate 11 is attached, all corner portions 111 of the planar shape viewed from a substantially normal direction of the main surface of the substrate 11 and / or the main surface of the substrate 11 and the substrate end surface 112 are formed. When chamfering processing (for example, C chamfering processing or R chamfering processing) is performed on the ridge angle 115 and the end surface sealing material 30 is attached to the outer peripheral end surface 10c by this chamfering processing, It is possible to prevent the cutting.

このように、基板11の全ての角部111及び/又は稜角115に面取り処理を施すことにより、太陽電池モジュール本体10の外周縁の外周端面10cに端面封止材30が取り付けられるとき、角部111及び/又は稜角115に形成される面取り面(たとえばC面取り面113やR面取り面114,116)によって、端面封止材30が大きな圧力で局所的に押圧されることを抑制し、端面封止材の裂開や切断を防止することができる。   As described above, when the end surface sealing material 30 is attached to the outer peripheral end surface 10c of the outer peripheral edge of the solar cell module body 10 by performing the chamfering process on all the corner portions 111 and / or the ridge angles 115 of the substrate 11, the corner portion The chamfered surface (for example, the C chamfered surface 113 and the R chamfered surfaces 114 and 116) formed at the ridge angle 115 and / or the ridge angle 115 suppresses the end surface sealing material 30 from being locally pressed with a large pressure, thereby sealing the end surface. It is possible to prevent tearing and cutting of the stopper.

以上、本発明について実施形態をもとに説明した。この実施形態は例示であり、その各構成要素や各処理の組み合わせに色々な変形が可能であり、本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to each component and combination of processes, and are within the scope of the present invention.

1 太陽電池モジュール
10 太陽電池モジュール本体
10a 裏面
10b 受光面
10c 外周端面
11 基板
111 角部
112 基板端面
113 C面取り面
114、116 R面取り面
115 稜角
12 封止樹脂層(封止層)
12a 第1封止樹脂層
12b 第2封止樹脂層
13 太陽電池セル
14 バックフィルム
15 端子ボックス
16 ケーブル
20 枠体
30 端面封止材
DESCRIPTION OF SYMBOLS 1 Solar cell module 10 Solar cell module main body 10a Back surface 10b Light-receiving surface 10c Outer peripheral end surface 11 Substrate 111 Corner | angular part 112 Substrate end surface 113 C chamfered surface 114, 116 R chamfered surface 115 Edge angle 12 Sealing resin layer (sealing layer)
12a 1st sealing resin layer 12b 2nd sealing resin layer 13 Solar cell 14 Back film 15 Terminal box 16 Cable 20 Frame 30 End face sealing material

Claims (8)

透光性の基板と、前記基板上に設けられる封止層と、前記封止層により封止される太陽電池セルと、バックフィルムと、を有する太陽電池モジュール本体と、前記太陽電池モジュール本体の外周端面を封止する帯状の端面封止材と、を備える太陽電池モジュールにおいて、
前記基板の主面の略法線方向から見た平面形状が有する全ての角部、及び/又は、前記基板の主面と基板端面とが成す稜角に面取り処理が施され、
前記面取り処理により、前記外周端面に前記端面封止材が取り付けられるとき、前記端面封止材の裂開又は切断を防止することができることを特徴とする太陽電池モジュール。
A solar cell module body having a light-transmitting substrate, a sealing layer provided on the substrate, a solar cell sealed by the sealing layer, and a back film; and In a solar cell module comprising a band-shaped end surface sealing material that seals the outer peripheral end surface,
All corners of the planar shape seen from the substantially normal direction of the main surface of the substrate, and / or ridge angle formed by the main surface of the substrate and the substrate end surface, chamfering is performed,
The solar cell module, wherein when the end surface sealing material is attached to the outer peripheral end surface by the chamfering process, the end surface sealing material can be prevented from being cleaved or cut.
前記全ての角部にR面取り処理が施されることを特徴とする請求項1に記載の太陽電池モジュール。   The solar cell module according to claim 1, wherein an R chamfering process is performed on all the corners. 前記全ての角部にC面取り処理が施され、
前記全ての角部から、前記C面取り処理によって、各角部の頂点から所定の長さの辺を含む部分が除去され、
各角部での前記所定の長さは、2.0mm以上、且つ、該角部を成す2つの辺のうちの短い方の辺の1/4の長さ以下であることを特徴とする請求項1に記載の太陽電池モジュール。
C corner chamfering is applied to all the corners,
From all the corners, the C chamfering process removes a part including a side having a predetermined length from the apex of each corner,
The predetermined length at each corner is not less than 2.0 mm and not more than 1/4 of the shorter one of the two sides forming the corner. Item 2. The solar cell module according to Item 1.
前記所定の長さは、2.0mm以上且つ3.0mm以下であることを特徴とする請求項3に記載の太陽電池モジュール。   The solar cell module according to claim 3, wherein the predetermined length is 2.0 mm or more and 3.0 mm or less. 前記稜角にR面取り処理が施され、
前記R面取り処理の半径は、前記基板の厚さの半分以上であり、
前記R面取り処理の中心は、前記基板の厚さ方向の断面において、前記基板の厚さが半分となる仮想線上にあることを特徴とする請求項1〜請求項4のいずれかに記載の太陽電池モジュール。
R chamfering treatment is applied to the ridge angle,
The radius of the R chamfering process is more than half of the thickness of the substrate,
5. The sun according to claim 1, wherein the center of the R chamfering process is on an imaginary line in which the thickness of the substrate is halved in a cross section in the thickness direction of the substrate. Battery module.
前記稜角にR面取り処理が施され、
前記R面取り処理の半径は、前記基板の厚さの半分よりも小さく、
前記R面取り処理の中心は、前記基板の厚さ方向の断面において、前記基板端面から前記基板端面の法線方向に前記半径と略同じ距離離れ、且つ、前記基板端面とともに前記稜角を成す前記基板の主面から前記主面の法線方向に前記半径と略同じ距離離れた位置にあることを特徴とする請求項1〜請求項4のいずれかに記載の太陽電池モジュール。
R chamfering treatment is applied to the ridge angle,
The radius of the R chamfering process is smaller than half of the thickness of the substrate,
The center of the R chamfering process is the substrate that is substantially the same distance as the radius from the substrate end surface in the normal direction of the substrate end surface, and forms the ridge angle with the substrate end surface in the cross section in the thickness direction of the substrate. The solar cell module according to any one of claims 1 to 4, wherein the solar cell module is located at a position that is substantially the same distance as the radius in the normal direction of the main surface from the main surface.
前記基板の両主面と基板端面とが成す第1稜角及び第2稜角のうち、一方の稜角のみにR面取り処理が施されることを特徴とする請求項5又は請求項6に記載の太陽電池モジュール。   7. The sun according to claim 5, wherein an R chamfering process is performed only on one of the first ridge angle and the second ridge angle formed by both main surfaces of the substrate and the substrate end surface. Battery module. 前記基板の両主面と基板端面とが成す第1稜角及び第2稜角にそれぞれ異なる半径のR面取り処理が施されることを特徴とする請求項5又は請求項6に記載の太陽電池モジュール。   7. The solar cell module according to claim 5, wherein R chamfering processing with different radii is performed on a first ridge angle and a second ridge angle formed by both main surfaces of the substrate and a substrate end surface.
JP2012090299A 2012-04-11 2012-04-11 Solar cell module Expired - Fee Related JP5921942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090299A JP5921942B2 (en) 2012-04-11 2012-04-11 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012090299A JP5921942B2 (en) 2012-04-11 2012-04-11 Solar cell module

Publications (2)

Publication Number Publication Date
JP2013219280A true JP2013219280A (en) 2013-10-24
JP5921942B2 JP5921942B2 (en) 2016-05-24

Family

ID=49591034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012090299A Expired - Fee Related JP5921942B2 (en) 2012-04-11 2012-04-11 Solar cell module

Country Status (1)

Country Link
JP (1) JP5921942B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642083A (en) * 1992-07-24 1994-02-15 Shin Nikkei Co Ltd Face bar wood frame structure and wood frame method thereof
JPH11240397A (en) * 1998-02-24 1999-09-07 Honda Access Corp On-vehicle solar battery mounting member
JPH11298025A (en) * 1998-04-16 1999-10-29 Mitsubishi Electric Corp Solar battery panel and waterproof material thereof
JP2003292028A (en) * 2002-03-29 2003-10-15 Nippon Muki Co Ltd Method for packing separator sheet roll for battery
JP2005209960A (en) * 2004-01-23 2005-08-04 Kyocera Corp Solar battery module
JP2006093848A (en) * 2004-09-21 2006-04-06 Funai Electric Co Ltd Liquid crystal display device with radio
JP2006310680A (en) * 2005-05-02 2006-11-09 Kaneka Corp Thin film solar cell module
JP2007266041A (en) * 2006-03-27 2007-10-11 Kyocera Corp Frameless solar cell module
JP2009065030A (en) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd Photoelectric converting device, and manufacturing method for the photoelectric converting device
JP2010129804A (en) * 2008-11-28 2010-06-10 Sharp Corp Corner-cutting device for solar-battery module, manufacturing method of solar-battery module, and solar-battery module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642083A (en) * 1992-07-24 1994-02-15 Shin Nikkei Co Ltd Face bar wood frame structure and wood frame method thereof
JPH11240397A (en) * 1998-02-24 1999-09-07 Honda Access Corp On-vehicle solar battery mounting member
JPH11298025A (en) * 1998-04-16 1999-10-29 Mitsubishi Electric Corp Solar battery panel and waterproof material thereof
JP2003292028A (en) * 2002-03-29 2003-10-15 Nippon Muki Co Ltd Method for packing separator sheet roll for battery
JP2005209960A (en) * 2004-01-23 2005-08-04 Kyocera Corp Solar battery module
JP2006093848A (en) * 2004-09-21 2006-04-06 Funai Electric Co Ltd Liquid crystal display device with radio
JP2006310680A (en) * 2005-05-02 2006-11-09 Kaneka Corp Thin film solar cell module
JP2007266041A (en) * 2006-03-27 2007-10-11 Kyocera Corp Frameless solar cell module
JP2009065030A (en) * 2007-09-07 2009-03-26 Mitsubishi Heavy Ind Ltd Photoelectric converting device, and manufacturing method for the photoelectric converting device
JP2010129804A (en) * 2008-11-28 2010-06-10 Sharp Corp Corner-cutting device for solar-battery module, manufacturing method of solar-battery module, and solar-battery module

Also Published As

Publication number Publication date
JP5921942B2 (en) 2016-05-24

Similar Documents

Publication Publication Date Title
JP5367230B2 (en) Solar cell module
WO2015152020A1 (en) Solar cell module and method for manufacturing same
JP5879537B2 (en) Solar cell panel, solar cell module, and method for manufacturing solar cell module
JP2008288547A (en) Solar cell module
WO2012063612A1 (en) Solar battery module and manufacturing method thereof
KR20120096175A (en) Frame system for solar cell module
US20180366606A1 (en) Solar cell module
JP2007141967A (en) Photovoltaic element, photovoltaic module, and method of manufacturing photovoltaic element
TWI476938B (en) Solar module
JP4703231B2 (en) Solar cell module and manufacturing method thereof
JP5921942B2 (en) Solar cell module
JP2009071274A (en) Solar cell module
JP2008282944A (en) Solar cell module and manufacturing method
WO2008132989A9 (en) Solar cell module
JP2014078668A (en) Solar cell module
US20130153005A1 (en) Reinforcement element for thin film photovoltaic devices and their methods of manufacture
JP2011155217A (en) Solar cell module
JP2011253903A (en) Solar cell module and the manufacturing method thereof
JP2015023283A (en) Solar cell
JPWO2018181817A1 (en) Solar cell module
KR101128460B1 (en) Solar Cell Module
KR101273186B1 (en) Solar cell apparatus
CN209912879U (en) Solar cell module and hollow solar glass
JP2011233639A (en) Photoelectric conversion device
JP2005223150A (en) Solar cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5921942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees