JP2013219223A - Vacuum package, sensor, and manufacturing method of vacuum package - Google Patents

Vacuum package, sensor, and manufacturing method of vacuum package Download PDF

Info

Publication number
JP2013219223A
JP2013219223A JP2012089165A JP2012089165A JP2013219223A JP 2013219223 A JP2013219223 A JP 2013219223A JP 2012089165 A JP2012089165 A JP 2012089165A JP 2012089165 A JP2012089165 A JP 2012089165A JP 2013219223 A JP2013219223 A JP 2013219223A
Authority
JP
Japan
Prior art keywords
hole
sealing
vacuum package
base material
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012089165A
Other languages
Japanese (ja)
Other versions
JP5982972B2 (en
Inventor
Junya Yamashita
淳也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2012089165A priority Critical patent/JP5982972B2/en
Publication of JP2013219223A publication Critical patent/JP2013219223A/en
Application granted granted Critical
Publication of JP5982972B2 publication Critical patent/JP5982972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum package which has a sealing body securely held on a through hole provided at the vacuum package and seals the through hole without causing sealing defects, and to provide a sensor and a manufacturing method of the vacuum package.SOLUTION: A vacuum package 1 has a decompressive-sealed cavity part and includes: a through hole 4 for exhausting the cavity part; and a sealing body sealing the through hole 4. The sealing body has a stepped shape composed of a base material part 6, having a sealing surface larger than the through hole 4, and a protruding part 7 that is provided on the sealing surface and is smaller than the through hole 4. The sealing body seals the through hole 4 in the state that a sealing material 8 is sandwiched between the sealing surface and a surface of the vacuum package 1 and the protruding part 7 is inserted into the through hole 4.

Description

本発明は、機能素子を真空封止したパッケージ及びその製造方法に関する。   The present invention relates to a package in which functional elements are vacuum-sealed and a manufacturing method thereof.

赤外線センサや、圧力センサ、加速度センサ等の機能デバイスなどは、その性能を高めるために真空状態の密閉容器に収納し、機能させることが望ましい。   In order to improve the performance of functional devices such as an infrared sensor, a pressure sensor, and an acceleration sensor, it is desirable that they are housed in a vacuum sealed container to function.

赤外線センサを例にすると、熱型の赤外線センサは、赤外線透過窓を透過した赤外線を検出素子の受光部が吸収し、これにより生ずる温度変化に伴う抵抗変化を信号として検出する。このため、センサの高感度に保つには、空気を通じた熱の放出を減少させることが重要である。夜間のセキュリティ用監視カメラや、温度分布を割り出し表示するサーモグラフィなどに用いられる赤外線センサにおいては、信号を高感度に検出するために受光部を熱的に絶縁する構成を採用している。このような熱的絶縁性は、受光部を中空に浮かせたり、赤外線検出素子自体を真空パッケージ内に配置することで得られる。   Taking an infrared sensor as an example, in a thermal infrared sensor, a light receiving portion of a detection element absorbs infrared light transmitted through an infrared transmission window, and detects a resistance change caused by a temperature change as a signal. For this reason, it is important to reduce the release of heat through the air in order to keep the sensor highly sensitive. An infrared sensor used in a night security camera or a thermography for indexing and displaying a temperature distribution employs a configuration in which a light receiving portion is thermally insulated in order to detect a signal with high sensitivity. Such thermal insulation can be obtained by floating the light-receiving part in the air or placing the infrared detection element itself in the vacuum package.

赤外線センサ等の真空パッケージを封止する方法としては、例えば、特許文献1に、排気のための貫通孔を赤外線透過窓に設け、この貫通孔の開口部に封止材料を置き、パッケージ内を真空とした後に封止材料を加熱溶融させ貫通孔を封止する方法がある。   As a method of sealing a vacuum package such as an infrared sensor, for example, in Patent Document 1, a through hole for exhaust is provided in an infrared transmitting window, a sealing material is placed in an opening of the through hole, and the inside of the package is There is a method of sealing a through-hole by heating and melting a sealing material after evacuation.

特許文献2に記載の真空パッケージは、封止材料が貫通孔に固定されるよう貫通孔がテーパ状になっている。貫通孔はチャンバの外面側から内面側に向けて貫通孔の開口面積を縮小する第1テーパ面と、チャンバの内面側から外面側に向けて貫通孔の開口面積を縮小する第2テーパ面とを有し、封止材料を第1テーパ面上に配置して、加熱・減圧しながら貫通孔を封止する   In the vacuum package described in Patent Document 2, the through hole is tapered so that the sealing material is fixed to the through hole. The through hole has a first tapered surface that reduces the opening area of the through hole from the outer surface side to the inner surface side of the chamber, and a second tapered surface that reduces the opening area of the through hole from the inner surface side to the outer surface side of the chamber. The sealing material is disposed on the first tapered surface, and the through hole is sealed while heating and decompressing.

特開平11−326037号公報Japanese Patent Laid-Open No. 11-326037 特開2009−135296号公報JP 2009-135296 A

特許文献1記載の封止方法では、貫通孔の開口の周囲に金属被覆である封止材料用パッドを形成し、貫通孔にハンダボール等の封止材料を配置して減圧・加熱を行う。そのため、内部の気体を排気する時に封止材料が動いて貫通孔の開口部から外れてしまい、封止材料が貫通孔の上に保持されない問題がある。また、封止材料の加熱溶融時においては、封止材料が開口部を避けるように流動したり、貫通孔を通って落下したりして貫通孔を完全に封止することが出来ない問題も生じやすい。   In the sealing method described in Patent Document 1, a sealing material pad that is a metal coating is formed around the opening of the through hole, and a sealing material such as a solder ball is disposed in the through hole to perform pressure reduction and heating. Therefore, there is a problem in that the sealing material moves and is removed from the opening of the through hole when the internal gas is exhausted, and the sealing material is not held on the through hole. In addition, when the sealing material is heated and melted, there is a problem that the sealing material flows so as to avoid the opening, or falls through the through hole, so that the through hole cannot be completely sealed. Prone to occur.

特許文献2に記載の封止技術では、貫通孔の開口面の表面と裏面の両側からテーパ加工を実施する必要がある。このテーパ加工を実現するには、機械で片面を加工した後180度反転させ、同じ加工を実施する必要があり、加工時間が増大するという課題がある。特に、赤外線透過窓や受光素子基板、スペーサなどにしばしば用いられるシリコンやゲルマニウムなどの材料は、非常に割れやすい材料であるため、このような材料にテーパを有する貫通孔を形成すると、クラックによる封止不良が発生する問題が生じやすい。   In the sealing technique described in Patent Document 2, it is necessary to perform taper processing from both the front and back surfaces of the opening surface of the through hole. In order to realize this taper processing, it is necessary to perform 180 ° inversion after processing one side with a machine, and to perform the same processing, which increases the processing time. In particular, materials such as silicon and germanium, which are often used for infrared transmission windows, light receiving element substrates, spacers, and the like, are very fragile materials. If a tapered through hole is formed in such a material, sealing due to cracks is caused. There is a tendency for problems to occur.

本発明の目的は、かかる問題を解決するためになされたものであり、封止不良を生ずることなく、かつ貫通孔の加工時間の短縮を実現する真空パッケージ及びその製造方法を提供することである。   An object of the present invention is to provide a vacuum package and a method for manufacturing the same, which are made to solve such a problem and realize a reduction in the processing time of a through hole without causing a sealing failure. .

上記課題を解決するために、本発明の真空パッケージは、空洞部を排気するための貫通孔と、貫通孔を封止する封止体と、を有し封止体は貫通孔上面を覆う基材部と基材部に設けられた貫通孔より小さい突起部とからなる段付形状であり、基材部と真空パッケージ表面との間に封止材料を挟んで突起部を貫通孔に挿入した状態で貫通孔を封止している。   In order to solve the above problems, a vacuum package of the present invention has a through-hole for exhausting a cavity and a sealing body for sealing the through-hole, and the sealing body covers a top surface of the through-hole. It is a stepped shape consisting of a material part and a protrusion smaller than the through hole provided in the base part, and the protrusion is inserted into the through hole with a sealing material sandwiched between the base part and the vacuum package surface The through hole is sealed in the state.

また、本発明の封止体は、貫通孔上面を覆う基材部と基材部に設けられた貫通孔より小さい突起部とからなる段付形状であり、基材部の突起部が設けられた面には封止材料が配置されている。   Moreover, the sealing body of the present invention has a stepped shape including a base material portion that covers the upper surface of the through hole and a projection portion that is smaller than the through hole provided in the base material portion, and the protrusion portion of the base material portion is provided. A sealing material is disposed on the surface.

また、本発明のセンサは、電磁波を検出する素子と素子を積載する主基板と主基板と対向し電磁波を透過する透過基板と主基板および透過基板の縁部に設けられ、主基板と透過基板とを空間を有して対向するよう設置しているスペーサと透過基板に設けられ、主基板と透過基板とスペーサとで囲まれる空洞部を排気するための貫通孔と貫通孔を封止する封止体とを有し、封止体は貫通孔上面を覆う基材部と基材部に設けられた貫通孔より小さい突起部とからなる段付形状であり、基材部と真空パッケージ表面との間に封止材料を挟んで突起部を貫通孔に挿入した状態で貫通孔を封止している。   The sensor of the present invention includes an element for detecting electromagnetic waves, a main board on which the elements are mounted, a transmission board that faces the main board and transmits electromagnetic waves, and the main board and an edge of the transmission board. A through hole for exhausting the cavity surrounded by the main substrate, the transmissive substrate, and the spacer, and a seal that seals the through hole. The sealing body has a stepped shape including a base material portion covering the top surface of the through hole and a projection smaller than the through hole provided in the base material portion. The through hole is sealed in a state where the projecting portion is inserted into the through hole with a sealing material interposed therebetween.

また、本発明の真空パッケージの製造方法は、空洞部を排気するための貫通孔に、貫通孔上面を覆う基材部と基材部に設けられた貫通孔より小さい突起部とからなる段付形状の封止体を、基材部と真空パッケージ表面との間に封止材料を挟んだ状態で突起部を貫通孔に挿入し、設置する工程と、真空チャンバ内に、貫通孔に封止体を設置したパッケージをセットする工程と、真空チャンバ内を減圧し、空洞部の排気を行う工程と真空パッケージを加熱し、封止材料を溶解させ、基材部と真空パッケージ表面との間を密閉する工程と、真空パッケージを冷却し、封止材料を固化させて貫通孔を封止する工程と、を含む。   In addition, the manufacturing method of the vacuum package according to the present invention includes a stepped portion including a base portion covering the upper surface of the through hole and a protrusion smaller than the through hole provided in the base portion, in the through hole for exhausting the cavity portion. Inserting the projecting part into the through hole with the sealing material sandwiched between the base material part and the surface of the vacuum package and installing the projecting part, and sealing the through hole in the vacuum chamber The process of setting the package on which the body is installed, the process of depressurizing the inside of the vacuum chamber, the process of exhausting the cavity and the vacuum package are heated, the sealing material is dissolved, and the space between the base part and the surface of the vacuum package A step of sealing, and a step of cooling the vacuum package and solidifying the sealing material to seal the through hole.

本発明によれば、シール構造体に設けられた突起を貫通孔に挿入することで、真空パッケージ内部を排気する時や封止材料が溶融する時にシール構造体が動くことなく貫通孔開口部上に確実に固定することができるので、封止不良の発生を防止することができる。   According to the present invention, the protrusion provided on the seal structure is inserted into the through-hole so that the seal structure does not move when the inside of the vacuum package is exhausted or when the sealing material is melted. Therefore, it is possible to prevent the occurrence of sealing failure.

また、貫通孔は単なる垂直方向に開けられた単純な穴でよく、これにより加工時間が短縮できる。   Further, the through hole may be a simple hole opened in the vertical direction, and the processing time can be shortened.

第1の実施形態に係るシール構造体を用いた真空パッケージの概略断面図を示す。The schematic sectional drawing of the vacuum package using the seal structure concerning a 1st embodiment is shown. 第2実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under the pressure reduction conditions of the vacuum package which concerns on 2nd Embodiment is shown. 第2の実施形態に係る貫通孔を封止するシール構造体の側面図、下面図および斜視図を示す。The side view, bottom view, and perspective view of the sealing structure which seals the through-hole which concerns on 2nd Embodiment are shown. 第2実施形態に係る赤外線センサの概略断面図を示す。The schematic sectional drawing of the infrared sensor which concerns on 2nd Embodiment is shown. 第3実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under the pressure reduction conditions of the vacuum package which concerns on 3rd Embodiment is shown. 第3の実施形態のシール構造体の側面図、下面図および斜視図を示す。The side view, bottom view, and perspective view of the seal structure body of 3rd Embodiment are shown. 第4実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under the pressure reduction conditions of the vacuum package which concerns on 4th Embodiment is shown. 第4の実施形態のシール構造体の側面図、下面図および斜視図を示す。The side view, bottom view, and perspective view of the seal structure body of 4th Embodiment are shown. 第5実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under pressure reduction conditions of the vacuum package concerning a 5th embodiment is shown. 第5の実施形態のシール構造体の側面図、下面図および斜視図を示す。The side view, bottom view, and perspective view of the seal structure body of 5th Embodiment are shown. 第6実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under the pressure reduction conditions of the vacuum package concerning 6th Embodiment is shown. 第6の実施形態のシール構造体の側面図、下面図および斜視図を示す。The side view, bottom view, and perspective view of the seal structure body of 6th Embodiment are shown. 第6実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。The schematic sectional drawing in the temporary sealing state under the pressure reduction conditions of the vacuum package concerning 6th Embodiment is shown.

以下、本発明の第1実施形態に係る真空パッケージについて説明する。図1に本発明の第1実施形態に係る真空パッケージの概略断面図を示す。   Hereinafter, the vacuum package according to the first embodiment of the present invention will be described. FIG. 1 is a schematic sectional view of a vacuum package according to the first embodiment of the present invention.

真空パッケージ1は、底面となる基板2と、基板2上部に空隙を確保した状態で基板上を覆う封止カバー3とを備える。封止カバーは真空引きする時に排気の出口となる貫通孔4を備えている。真空パッケージ1は、基板2および封止カバー3を真空中に置き、貫通孔4から封止カバー3内の気体を排気し、その後、貫通孔4をシール構造体5で封止することにより真空パッケージ内を気密にしている。シール構造体5は貫通孔4の開口部上面および内径を封止している。シール構造体5は貫通孔4の上面を覆う基材部6と、貫通孔6の内径を塞ぐ突起部7からなる段付形状の一体構造体に封止部材を配置した構成なっている。シール構造体5は、封止材料8を基材部6と封止カバー3とで挟んだ状態で貫通孔4に突起部7を挿入している。封止材料8は、基材部6の突起部7を有する側の面に配置している。封止材料8は加熱で溶融し冷却で固化する性質を有している。   The vacuum package 1 includes a substrate 2 serving as a bottom surface and a sealing cover 3 that covers the substrate in a state where a space is secured above the substrate 2. The sealing cover is provided with a through-hole 4 that serves as an exhaust outlet when evacuating. In the vacuum package 1, the substrate 2 and the sealing cover 3 are placed in a vacuum, the gas in the sealing cover 3 is exhausted from the through hole 4, and then the through hole 4 is sealed with the seal structure 5. The package is airtight. The seal structure 5 seals the upper surface and inner diameter of the opening of the through hole 4. The seal structure 5 has a configuration in which a sealing member is disposed in a stepped integrated structure including a base material portion 6 that covers the upper surface of the through-hole 4 and a projection 7 that closes the inner diameter of the through-hole 6. In the seal structure 5, the protruding portion 7 is inserted into the through hole 4 in a state where the sealing material 8 is sandwiched between the base material portion 6 and the sealing cover 3. The sealing material 8 is disposed on the surface of the base member 6 on the side having the protrusions 7. The sealing material 8 has a property of melting by heating and solidifying by cooling.

以下に真空パッケージの封止方法について説明する。まず、封止カバーの貫通孔にシール構造体5の突起部7を挿入し、貫通孔4をシール構造体5で仮封止する。   A vacuum package sealing method will be described below. First, the protrusion 7 of the seal structure 5 is inserted into the through hole of the sealing cover, and the through hole 4 is temporarily sealed with the seal structure 5.

次に、シール構造体5で仮封止した真空パッケージ1を真空チャンバにセットし、真空チャンバ内を減圧する。真空パッケージ内部が減圧された後、この状態を維持して、真空パッケージ1を封止材料8の融点以上の温度で加熱する。封止材料8が溶融し、基材部6と封止カバー3との隙間が溶解した封止材料8で封止された状態で真空パッケージ1を冷却する。封止材料8が固化し、シール構造体5は真空パッケージ1を減圧状態で封止する。   Next, the vacuum package 1 temporarily sealed with the seal structure 5 is set in a vacuum chamber, and the inside of the vacuum chamber is decompressed. After the pressure inside the vacuum package is reduced, this state is maintained and the vacuum package 1 is heated at a temperature equal to or higher than the melting point of the sealing material 8. The vacuum package 1 is cooled with the sealing material 8 melted and sealed with the sealing material 8 in which the gap between the base material portion 6 and the sealing cover 3 is dissolved. The sealing material 8 is solidified, and the seal structure 5 seals the vacuum package 1 in a reduced pressure state.

以上に説明したように、段付き形状のシール構造体の突起部を貫通孔に挿入することで、真空パッケージを減圧、加熱してもシール構造体は安定して貫通孔の開口部に固定しつづけ、真空パッケージの封止を行うことが可能になる。   As described above, by inserting the protruding portion of the stepped seal structure into the through hole, the seal structure can be stably fixed to the opening of the through hole even when the vacuum package is decompressed and heated. Subsequently, the vacuum package can be sealed.

以下、本発明の第2の実施形態に係る真空パッケージについて、図を参照して説明する。図2に第2実施形態に係る真空パッケージの減圧条件下における仮封止状態での概略断面図を示す。   Hereinafter, a vacuum package according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a schematic cross-sectional view of the vacuum package according to the second embodiment in a temporarily sealed state under reduced pressure conditions.

真空パッケージ21は、底面となる基板22と、基板22上部に空隙を確保した状態で基板22上を覆う封止カバー23とを備える。基板22と封止カバー23は接着用ハンダ等で接着している。封止カバー23は真空引きする時に排気の出口となる貫通孔24を備えている。貫通孔24はドリル等を利用して封止カバー23に作成する。   The vacuum package 21 includes a substrate 22 serving as a bottom surface and a sealing cover 23 that covers the substrate 22 in a state where a gap is secured above the substrate 22. The substrate 22 and the sealing cover 23 are bonded with bonding solder or the like. The sealing cover 23 is provided with a through-hole 24 that serves as an exhaust outlet when evacuating. The through hole 24 is formed in the sealing cover 23 using a drill or the like.

真空パッケージ21は、基板22および封止カバー23を真空中に置き、貫通孔24から封止カバー23内の気体を排気し、その後、貫通孔24をシール構造体25で封止することによりパッケージ内を真空にしている。シール構造体25は貫通孔4の上面および内径を封止する。   The vacuum package 21 is obtained by placing the substrate 22 and the sealing cover 23 in a vacuum, exhausting the gas in the sealing cover 23 from the through hole 24, and then sealing the through hole 24 with the seal structure 25. The inside is evacuated. The seal structure 25 seals the upper surface and the inner diameter of the through hole 4.

シール構造体25は貫通孔24の上面を覆う基材部26と、貫通孔24の内径を塞ぐ突起部27からなる段付形状の一体構造体に封止部材28を配置した構成なっている。封止材料28は、基材部26の突起部27が連結している側の面に、突起部27の周囲を取り囲むように接合している。   The seal structure 25 has a configuration in which a sealing member 28 is disposed in a stepped integrated structure including a base material portion 26 that covers the upper surface of the through hole 24 and a projection 27 that closes the inner diameter of the through hole 24. The sealing material 28 is joined to the surface of the base material portion 26 on the side where the protrusions 27 are connected so as to surround the periphery of the protrusions 27.

シール構造体25は、封止材料28を基材部26と封止カバー23とで挟んだ状態で貫通孔24に突起部27を挿入している。図3に第2の実施形態に係る貫通孔24を封止するシール構造体25の側面図、下面図および斜視図を示す。   In the sealing structure 25, the protruding portion 27 is inserted into the through hole 24 in a state where the sealing material 28 is sandwiched between the base material portion 26 and the sealing cover 23. FIG. 3 shows a side view, a bottom view, and a perspective view of a seal structure 25 that seals the through hole 24 according to the second embodiment.

基材部26と突起部27は共に円柱状であり、突起部27は基材部26の底面の円の中心に基材部26と垂直方向に連結している。基材部26の底面の直径は貫通孔24より大きく、突起部27の底面の直径は貫通孔24より小さい。挿入時での突起部27と封止カバー23との隙間は、減圧時にパッケージ内を排気する際の隙間になる。ただし、加熱溶解した封止材料28は表面張力により、隙間に入るがパッケージ内には落下しない程度の間隔になっている。基材部26と突起部27は、一体となった形状として鋳物やプレス成型で製造する。その他、円柱状の材料から旋盤などの工作機械を用いて削り出して製造してもよい。   The base material part 26 and the protrusion part 27 are both cylindrical, and the protrusion part 27 is connected to the base part 26 in the vertical direction at the center of the circle on the bottom surface of the base material part 26. The diameter of the bottom surface of the base material portion 26 is larger than that of the through hole 24, and the diameter of the bottom surface of the projection portion 27 is smaller than that of the through hole 24. A gap between the protrusion 27 and the sealing cover 23 at the time of insertion becomes a gap when the inside of the package is exhausted at the time of decompression. However, the sealing material 28 that has been heated and melted is spaced by a surface tension so that it enters the gap but does not fall into the package. The base material part 26 and the protrusion part 27 are manufactured by casting or press molding as an integrated shape. In addition, it may be manufactured by machining a cylindrical material using a machine tool such as a lathe.

なお、基材部26および突起部27の平面形状は、貫通孔24の開口部に突起部27が挿入可能で、貫通孔24の開口部の上辺を基材部26で覆うことができれば円形に限定されることなく、種々の形状を採用することができる。例えば、正方形、楕円形、十字形、平行四辺形、三角形、多角形、長方形、花形等を適用してもよい。突起部27の鉛直方向の高さは、貫通孔24を貫通し、突起部27の先端が基板22まで到達しない程度の長さになっている。   The planar shape of the base material portion 26 and the projection portion 27 is circular if the projection portion 27 can be inserted into the opening portion of the through hole 24 and the upper side of the opening portion of the through hole 24 can be covered with the base material portion 26. Without limitation, various shapes can be adopted. For example, a square, an ellipse, a cross, a parallelogram, a triangle, a polygon, a rectangle, a flower, or the like may be applied. The height of the protrusion 27 in the vertical direction is long enough to penetrate the through hole 24 and prevent the tip of the protrusion 27 from reaching the substrate 22.

封止材料28は中心に穴を有し、一部が欠けたC型の形状になっている。なお、切り欠き部分は、一部だけでなく複数あってもよい。切り欠き部分は真空引きするための通気口として利用する。   The sealing material 28 has a hole in the center and has a C-shaped shape with a part missing. Note that the cutout portion may be not only a part but also a plurality. The notch is used as a vent for evacuation.

封止材料28は、基材部26の突起部27を有する側の面に配置している。封止材料28はハンダであり、印刷により形成した後、一度溶融固化させてC型形状に製造する。溶融固化で製造する以外に、平板状のハンダ板から金型でプレスして打ち抜いて封止部材を製造してもよい。なお、封止材料28は加熱で溶融し冷却で固化する性質を有していれば、ハンダ以外の材料を用いてもよい。   The sealing material 28 is disposed on the surface of the base material portion 26 on the side having the protrusions 27. The sealing material 28 is solder, and after forming by printing, it is once melted and solidified to produce a C-shaped shape. In addition to manufacturing by melting and solidifying, a sealing member may be manufactured by pressing and punching a flat solder plate with a die. The sealing material 28 may be made of a material other than solder as long as it has a property of melting by heating and solidifying by cooling.

以下に真空パッケージ21の封止方法について説明する。   A method for sealing the vacuum package 21 will be described below.

まず、封止カバー23の貫通孔24にシール構造体25の突起部27を挿入し、貫通孔24をシール構造体25で仮封止する。   First, the protrusion 27 of the seal structure 25 is inserted into the through hole 24 of the sealing cover 23, and the through hole 24 is temporarily sealed with the seal structure 25.

次に、シール構造体25で仮封止したパッケージを真空チャンバのステージ上にセットする。   Next, the package temporarily sealed with the seal structure 25 is set on the stage of the vacuum chamber.

真空チャンバ内を1×10−6Paまで減圧する。長期間のデバイスの安定性を保つ場合はさらに真空度を高める。ここで、封止材料28の切り欠き部分29が封止材料28の通気口となり、パッケージ内部の気体は突起部27と封止カバー23との隙間と、切り欠き部分29を通じて外部に排気される。 The inside of the vacuum chamber is depressurized to 1 × 10 −6 Pa. In order to maintain the stability of the device for a long time, the degree of vacuum is further increased. Here, the cutout portion 29 of the sealing material 28 serves as a vent for the sealing material 28, and the gas inside the package is exhausted to the outside through the gap between the protrusion 27 and the sealing cover 23 and the cutout portion 29. .

パッケージ内部も1×10−6Paと同様の圧力になった後、この状態を維持して、パッケージ内部またはパッケージ自体を160℃で加熱する。この時、融点が140℃の封止材料28が溶融する。 After the inside of the package reaches the same pressure as 1 × 10 −6 Pa, this state is maintained and the inside of the package or the package itself is heated at 160 ° C. At this time, the sealing material 28 having a melting point of 140 ° C. is melted.

封止材料28の切り欠き部分である空隙は封止材料28が溶融することで消滅する。シール構造体25は貫通孔24より大きい基材部26と貫通孔24より小さい突起部27の段付き形状であり、シール構造体25の突起部27を貫通孔24に挿入しているので、チャンバ内部を排気する時や封止材料28が溶融する時もシール構造体25は動かない。このため、貫通孔24開口部上に確実にシール構造体25を固定することが可能になる。   The gap that is the cutout portion of the sealing material 28 disappears when the sealing material 28 melts. The seal structure 25 has a stepped shape with a base portion 26 larger than the through hole 24 and a projection 27 smaller than the through hole 24, and the projection 27 of the seal structure 25 is inserted into the through hole 24. The seal structure 25 does not move even when the inside is exhausted or when the sealing material 28 is melted. For this reason, the seal structure 25 can be reliably fixed on the opening of the through hole 24.

空隙が消滅した後、真空パッケージ21内部または真空パッケージ21自体を冷却する。封止材料28が融点以下に達すると封止材料28が固化し、基材部26と封止カバー23は封止材料28で隙間無く一体となった状態で固着する。シール構造体25は真空パッケージ21を真空状態で封止する。   After the gap disappears, the inside of the vacuum package 21 or the vacuum package 21 itself is cooled. When the sealing material 28 reaches the melting point or lower, the sealing material 28 is solidified, and the base material portion 26 and the sealing cover 23 are fixed together with the sealing material 28 without any gap. The seal structure 25 seals the vacuum package 21 in a vacuum state.

なお、高真空が不要である場合は、封止材料28の切り欠き部分は無くても良い。この場合は、真空パッケージ21を排気中、シール構造体25は気流により浮き上がる。しかし、シール構造体25が浮き上がっても突起部27が貫通孔24に挿入されているので、貫通孔24からシール構造体25が外れることはなく、貫通孔24開口部上にシール構造体5を固定できる。   In the case where high vacuum is not required, the notched portion of the sealing material 28 may be omitted. In this case, the seal structure 25 is lifted by the air flow while the vacuum package 21 is exhausted. However, since the protrusion 27 is inserted into the through hole 24 even when the seal structure 25 is lifted, the seal structure 25 is not detached from the through hole 24, and the seal structure 5 is placed on the opening of the through hole 24. Can be fixed.

以上に説明したように、段付き形状のシール構造体25の突起部27を封止カバー23の貫通孔24に挿入することで、真空チャンバ内で減圧、加熱してもシール構造体25は安定して貫通孔24の開口部に固定しつづけ、真空パッケージ21の気密封止を行うことが可能になる。   As described above, the protrusion 27 of the stepped seal structure 25 is inserted into the through hole 24 of the sealing cover 23, so that the seal structure 25 is stable even if the pressure is reduced and heated in the vacuum chamber. Thus, the vacuum package 21 can be hermetically sealed while being fixed to the opening of the through hole 24.

第2の実施形態の真空パッケージ1について、機能素子として赤外線受光素子を真空封止した赤外線センサを例にして説明する。図4は、本発明の第2実施形態に係る赤外線センサの概略断面図を示す。   The vacuum package 1 of the second embodiment will be described by taking an infrared sensor in which an infrared light receiving element is vacuum-sealed as a functional element as an example. FIG. 4 is a schematic cross-sectional view of an infrared sensor according to the second embodiment of the present invention.

赤外線センサ10、赤外線を検出する赤外線受光素子11と、赤外線受光素子11を搭載する基板12と、赤外線受光素子11が受光できるように赤外線を透過する赤外線透過窓13と、赤外線受光素子11を収容するチャンバ14と、を備える。   An infrared sensor 10, an infrared light receiving element 11 for detecting infrared light, a substrate 12 on which the infrared light receiving element 11 is mounted, an infrared transmission window 13 that transmits infrared light so that the infrared light receiving element 11 can receive light, and the infrared light receiving element 11 are accommodated. And a chamber 14 to be provided.

チャンバ14は、基板12とスペーサ15、接着用ハンダ16、電極パッド17、赤外線透過窓13、等によって赤外線受光素子11を覆うことで、赤外線受光素子11上に形成している。チャンバ内は、大気圧より減圧され(好ましくは1×10−6Paまで)、気密状態になっている。基板12上には電極パッド17を配置している。赤外線受光素子11は、電極パッド17と電気的に接続されている。電極パッド17は、チャンバ内からチャンバ外へ引き出した形状になっている。これにより、赤外線受光素子11が検出した信号は、ボンディングワイヤ18と電極パッド17を介して、チャンバの外部へ送信可能になっている。 The chamber 14 is formed on the infrared light receiving element 11 by covering the infrared light receiving element 11 with the substrate 12, the spacer 15, the bonding solder 16, the electrode pad 17, the infrared transmitting window 13, and the like. The inside of the chamber is depressurized from the atmospheric pressure (preferably up to 1 × 10 −6 Pa) and is in an airtight state. An electrode pad 17 is disposed on the substrate 12. The infrared light receiving element 11 is electrically connected to the electrode pad 17. The electrode pad 17 has a shape that is drawn out of the chamber. Thereby, the signal detected by the infrared light receiving element 11 can be transmitted to the outside of the chamber via the bonding wire 18 and the electrode pad 17.

電極パッド17上にはスペーサ15が接合している。スペーサ15は、赤外線受光素子11を取り囲むと共に、基板12と赤外線透過窓13との間に、所定の間隙を確保する。さらに、スペーサ15上には、接着用ハンダ16によって赤外線透過窓103が接合している。赤外線透過窓13は赤外線受光素子11上を覆っている。   A spacer 15 is bonded onto the electrode pad 17. The spacer 15 surrounds the infrared light receiving element 11 and secures a predetermined gap between the substrate 12 and the infrared transmission window 13. Further, an infrared transmission window 103 is bonded onto the spacer 15 by an adhesive solder 16. The infrared transmission window 13 covers the infrared light receiving element 11.

赤外線透過窓13は、チャンバ14を排気するために使用する貫通孔19を少なくとも1つ形有している。貫通孔19は赤外線透過窓13に対して垂直に工作機械にて開けられた貫通孔である。シール構造体100は赤外線透過窓13の貫通孔19の開口部と開口部の上辺を封止する。   The infrared transmitting window 13 has at least one through hole 19 used for exhausting the chamber 14. The through hole 19 is a through hole opened by a machine tool perpendicular to the infrared transmission window 13. The seal structure 100 seals the opening of the through hole 19 of the infrared transmission window 13 and the upper side of the opening.

第2の実施形態と同様、シール構造体100は貫通孔19の上面を覆う基材部101と、貫通孔19の内径を塞ぐ突起部102からなる段付形状の一体構造体に封止部材を配置した構成なっている。なお、基材部111と突起部112の材料は封止材料103および接着用ハンダ16よりも融点の高い金属またはそれに類する硬さの材料を使用する。封止材料113の材料は、接着用ハンダ16より融点が低いハンダを使用する。具体的には、接着用ハンダ16は融点183℃の共昌ハンダで、封止材料113はビスマスが添加されている融点140℃のハンダである。封止材料103に接着用ハンダ16より融点が低いハンダを使用する理由は、赤外線透過窓とスペーサとの接着に使用する接着用ハンダが真空封止する時の加熱で再溶融するのを防止するためである。その他の構成、封止方法については第2の実施形態と同様であるため説明を省略する。   As in the second embodiment, the seal structure 100 is formed by forming a sealing member on a stepped integrated structure including a base portion 101 that covers the upper surface of the through hole 19 and a protrusion 102 that closes the inner diameter of the through hole 19. The arrangement is arranged. The base material 111 and the protrusion 112 are made of a metal having a melting point higher than that of the sealing material 103 and the bonding solder 16 or a material having similar hardness. As the material of the sealing material 113, solder having a melting point lower than that of the bonding solder 16 is used. Specifically, the bonding solder 16 is Kyosho solder having a melting point of 183 ° C., and the sealing material 113 is solder having a melting point of 140 ° C. to which bismuth is added. The reason why solder having a melting point lower than that of the bonding solder 16 is used as the sealing material 103 is to prevent the bonding solder used for bonding the infrared transmission window and the spacer from being re-melted by heating when vacuum-sealing. Because. Other configurations and the sealing method are the same as those in the second embodiment, and thus the description thereof is omitted.

以上に説明したように、段付き形状のシール構造体の突起部を貫通孔に挿入することで、真空チャンバ内で減圧、加熱してもシール構造体は安定して貫通孔の開口部に固定しつづけ、赤外線センサの気密封止を行うことが可能になる。また、封止材料に排気のための通気口となる切り欠きを設けたことにより、高真空の赤外線センサを製作することも可能になる。   As described above, by inserting the protruding portion of the stepped seal structure into the through-hole, the seal structure is stably fixed to the opening of the through-hole even if the pressure is reduced and heated in the vacuum chamber. As a result, the infrared sensor can be hermetically sealed. In addition, a high vacuum infrared sensor can be manufactured by providing a cutout serving as a vent for exhaust in the sealing material.

次に、本発明の第3の実施形態〜第7の実施形態に係る真空パッケージ1について説明する。第3実施形態〜第7実施形態におけるシール構造体5および貫通孔4周辺以外の、その他の構成については第2の実施形態と同様であるため説明を省略する。   Next, the vacuum package 1 according to the third to seventh embodiments of the present invention will be described. Since other configurations other than the periphery of the seal structure 5 and the through hole 4 in the third to seventh embodiments are the same as those in the second embodiment, the description thereof is omitted.

本発明を好適に実施した第3の実施形態について説明する。図5に第3実施形態に係る真空パッケージ1の減圧条件下における仮封止状態での概略断面図を示す。
第3の実施形態においては、封止材料に溝を形成している。
A third embodiment in which the present invention is preferably implemented will be described. FIG. 5 shows a schematic cross-sectional view of the vacuum package 1 according to the third embodiment in a temporarily sealed state under a reduced pressure condition.
In the third embodiment, grooves are formed in the sealing material.

封止材料38は中心に円筒系の孔を有したOの字型の形状になっており、外縁から内縁まで貫通する溝39を有している。図6に第3の実施形態のシール構造体35の側面図、下面図および斜視図を示す。   The sealing material 38 has an O-shaped shape with a cylindrical hole at the center, and has a groove 39 penetrating from the outer edge to the inner edge. FIG. 6 shows a side view, a bottom view, and a perspective view of the seal structure 35 of the third embodiment.

第2の実施形態では、封止材料の切り欠き部分の空隙を排気する通気口として利用するが、第3の実施形態においては、封止材料38の溝39の空隙を排気する通気口として利用する。   In the second embodiment, the gap in the cutout portion of the sealing material is used as a vent for exhausting air. In the third embodiment, the gap in the groove 39 of the sealing material 38 is used as a vent for exhausting air. To do.

シール構造体35の突起部37を貫通孔34に挿入した際、封止材料38の溝39以外の面は封止カバー33の上面に接触するが、封止材料38の溝39は空隙となる。突起部37と封止カバー33との隙間と、封止材料38の溝39の空隙を通じて真空引きを行う。   When the protruding portion 37 of the sealing structure 35 is inserted into the through hole 34, the surface other than the groove 39 of the sealing material 38 contacts the upper surface of the sealing cover 33, but the groove 39 of the sealing material 38 becomes a gap. . Vacuuming is performed through the gap between the protrusion 37 and the sealing cover 33 and the gap 39 in the groove 39 of the sealing material 38.

なお、溝の形状、大きさ、数等は、真空引きを行える空隙が確保されていれば種々の形状を採用することができる。溝39を有する封止材料38は平板状のハンダ板から金型プレスで打ち抜いて製作する。その他の構成については第2の実施形態と同様であるため説明を省略する。   Note that various shapes can be adopted as the shape, size, number, and the like of the grooves as long as an air gap that can be evacuated is secured. The sealing material 38 having the grooves 39 is manufactured by punching a flat solder plate with a die press. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

本発明を好適に実施した第4の実施形態について説明する。図7に第4実施形態に係る真空パッケージ41の減圧条件下における仮封止状態での概略断面図を示す。第4の実施形態においては、封止材料48の突起部47側の表面が凹凸形状になっている。   A fourth embodiment in which the present invention is preferably implemented will be described. FIG. 7 shows a schematic cross-sectional view of the vacuum package 41 according to the fourth embodiment in a temporarily sealed state under reduced pressure conditions. In the fourth embodiment, the surface of the sealing material 48 on the protrusion 47 side has an uneven shape.

第2の実施形態では、封止材料の切り欠き部分の空隙を排気する通気口として利用するが、第4の実施形態においては、表面が凹凸になった封止材料の無い凹部分の隙間を排気する通気口として利用する。表面が波型の凹凸の封止材料を例とする。図8に第4の実施形態のシール構造体45の側面図、下面図および斜視図を示す。   In the second embodiment, the gap in the cutout portion of the sealing material is used as a vent for exhausting air. However, in the fourth embodiment, the gap corresponding to the concave portion without the sealing material whose surface is uneven is provided. Use as a vent to exhaust. An example is a sealing material having a corrugated surface. FIG. 8 shows a side view, a bottom view, and a perspective view of the seal structure 45 of the fourth embodiment.

シール構造体45を貫通孔44に挿入した際、封止材料48の波型の頂点が封止カバー43の上面に接触し、封止材料48と封止カバー43との間に空隙が設けられる。突起部47と封止カバー43の隙間と、封止材料48の無い凹部分の隙間を通じてチャンバ内の気体を排気する。なお、封止カバー43と封止材料48とが当接する面に真空引きを行える空隙が確保されていれば、封止材料48の突起部47側の表面の波形は振幅、波長、数等は種々の形状を採用することができる。また、特に波形でなくとも封止カバー43と封止材料48とが当接する面に凹凸があり、真空引きを行える空隙が確保されていれば表面の形状は種々採用することができる。その他の構成については第2の実施形態と同様であるため説明を省略する。   When the sealing structure 45 is inserted into the through hole 44, the wave shape apex of the sealing material 48 contacts the upper surface of the sealing cover 43, and a gap is provided between the sealing material 48 and the sealing cover 43. . The gas in the chamber is exhausted through the gap between the protrusion 47 and the sealing cover 43 and the gap corresponding to the recess without the sealing material 48. In addition, if the space | gap which can evacuate is ensured in the surface where the sealing cover 43 and the sealing material 48 contact | abut, the waveform of the surface by the side of the protrusion 47 of the sealing material 48 will have amplitude, a wavelength, a number, etc. Various shapes can be employed. Further, even if it is not particularly corrugated, the surface on which the sealing cover 43 and the sealing material 48 come into contact has irregularities, and various shapes of the surface can be adopted as long as a space that can be evacuated is secured. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

本発明を好適に実施した第5の実施の形態について説明する。図9に第5実施形態に係る真空パッケージ51の減圧条件下における仮封止状態での概略断面図を示す。第5の実施形態においては、封止材料を数個のハンダボールで構成する。   A fifth embodiment in which the present invention is preferably implemented will be described. FIG. 9 shows a schematic cross-sectional view of the vacuum package 51 according to the fifth embodiment in a temporarily sealed state under a reduced pressure condition. In the fifth embodiment, the sealing material is composed of several solder balls.

基材部56は、ハンダボールの半球が入る程度の穴を有している。ハンダボール58は、その基材部56の半球状の溝に固定されており、抜け落ちることはない。図10に第5の実施形態のシール構造体55の側面図、下面図および斜視図を示す。突起部57を封止カバー53の貫通孔54に挿入した際、ハンダボールの頂点が封止カバー53の上面に接触しハンダボールのない部分に空隙が設けられる。突起部57と封止カバー53との隙間と、このハンダボールのない部分の空隙を通じてチャンバ内の気体を排気する。   The base material portion 56 has a hole enough for a solder ball hemisphere to enter. The solder ball 58 is fixed to the hemispherical groove of the base material portion 56 and does not fall off. FIG. 10 shows a side view, a bottom view and a perspective view of the seal structure 55 of the fifth embodiment. When the protruding portion 57 is inserted into the through hole 54 of the sealing cover 53, the apex of the solder ball contacts the upper surface of the sealing cover 53, and a gap is provided in a portion without the solder ball. The gas in the chamber is exhausted through the gap between the protrusion 57 and the sealing cover 53 and the gap in the portion without the solder ball.

なお、基材部56と封止カバー53が間隔を有して略平行に対向させるために、ハンダボールは3個以上を等間隔で配置することが好ましい。ただし、封止カバー53と封止材料58とが当接する面に真空引きを行える空隙が確保されていれば、配置する個数およびハンダボールの大きさ、形状は種々採用することができる。
なお、その他の構成については第1の実施形態と同様であるため説明を省略する。
In addition, in order to make the base material part 56 and the sealing cover 53 oppose substantially parallel with a space | interval, it is preferable to arrange | position three or more solder balls at equal intervals. However, as long as an air gap that can be evacuated is secured on the surface where the sealing cover 53 and the sealing material 58 abut, various numbers and sizes and shapes of solder balls can be employed.
Since other configurations are the same as those in the first embodiment, description thereof is omitted.

本発明を好適に実施した第6の実施の形態について説明する。図11に第6実施形態に係る真空パッケージ61の減圧条件下における仮封止状態での概略断面図を示す。   A sixth embodiment in which the present invention is preferably implemented will be described. FIG. 11 is a schematic cross-sectional view of the vacuum package 61 according to the sixth embodiment in a temporarily sealed state under a reduced pressure condition.

第6の実施形態においては、基材部66の下面に外縁から内縁まで貫通する溝69が設けられている。封止材料68は基材部66の突起部67が連結している側の面に、突起部67の周囲を取り囲むように接合している。図12に第6の実施形態のシール構造体65の側面図、下面図および斜視図を示す。第6の実施形態においては、封止材料68は一部切り欠きを有するC型の形状や、側面の溝、下面の凹凸形状などは必要ない。突起部67を封止カバー63の貫通孔64に挿入した際、基材部66の溝69によって基材部66と封止材料68の間に空隙が設けられる。基材部66の溝69および突起部7と封止カバー3との隙間が真空引きの通気口となる。   In the sixth embodiment, a groove 69 penetrating from the outer edge to the inner edge is provided on the lower surface of the base material portion 66. The sealing material 68 is joined to the surface of the base member 66 on the side where the protrusion 67 is connected so as to surround the periphery of the protrusion 67. FIG. 12 shows a side view, a bottom view and a perspective view of the seal structure 65 of the sixth embodiment. In the sixth embodiment, the sealing material 68 does not need to have a C-shaped shape with a partially cutout, a groove on the side surface, a concave-convex shape on the lower surface, or the like. When the protruding portion 67 is inserted into the through hole 64 of the sealing cover 63, a gap is provided between the base material portion 66 and the sealing material 68 by the groove 69 of the base material portion 66. The groove 69 of the base material portion 66 and the gap between the protrusion 7 and the sealing cover 3 serve as a vent for vacuuming.

真空パッケージ61を減圧・加熱した時に、基材部66の溝69は溶解した封止材料68により埋められる。   When the vacuum package 61 is decompressed and heated, the groove 69 of the base member 66 is filled with the dissolved sealing material 68.

なお、溝の形状、大きさ、数等は、真空引きを行える空隙が確保されていれば種々の形状を採用することができる。その他の構成については第2の実施形態と同様であるため説明を省略する。   Note that various shapes can be adopted as the shape, size, number, and the like of the grooves as long as an air gap that can be evacuated is secured. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

本発明を好適に実施した第7の実施の形態について説明する。図13に第7実施形態に係る真空パッケージ1の減圧条件下における仮封止状態での概略断面図を示す。第7の実施形態においては、真空パッケージ71は、封止カバー73上面の貫通孔74周辺部に突出部を有している。   A seventh embodiment in which the present invention is preferably implemented will be described. FIG. 13 shows a schematic cross-sectional view of the vacuum package 1 according to the seventh embodiment in a temporarily sealed state under a reduced pressure condition. In the seventh embodiment, the vacuum package 71 has a protruding portion around the through hole 74 on the top surface of the sealing cover 73.

シール構造体75の突起部77を貫通孔74に挿入した際、封止カバー73の突出部79が封止材料78の下面に接触する。このため封止カバー73と封止材料78の間に空隙ができる。突起部77と封止カバー73との隙間と、封止カバー73と封止材料78の間の空隙を通じて真空引きを行う。   When the protruding portion 77 of the seal structure 75 is inserted into the through hole 74, the protruding portion 79 of the sealing cover 73 contacts the lower surface of the sealing material 78. For this reason, a gap is formed between the sealing cover 73 and the sealing material 78. Vacuuming is performed through the gap between the protrusion 77 and the sealing cover 73 and the gap between the sealing cover 73 and the sealing material 78.

真空パッケージ71を減圧・加熱した時に、突起による封止カバー73と封止材料78の間に空隙は溶解した封止材料78により埋められる。なお、突出部の形状、大きさ、数等は、真空引きを行える空隙が確保され、基材部76と封止カバー73が間隔を有して略平行に対向する配置であれば種々の形状を採用することができる。その他の構成については第2の実施形態と同様であるため説明を省略する。   When the vacuum package 71 is depressurized and heated, the gap is filled with the dissolved sealing material 78 between the sealing cover 73 and the sealing material 78 by the protrusions. Note that the shape, size, number, and the like of the protrusions can be various shapes as long as an air gap that can be evacuated is secured and the base material portion 76 and the sealing cover 73 are arranged substantially parallel to each other with a gap therebetween. Can be adopted. Since other configurations are the same as those of the second embodiment, description thereof is omitted.

なお、本発明は、上記実施形態を基に説明したが、上記実施形態に限定されることなく、本発明の範囲内において種々の変更、変形、改良等を含むことはいうまでもない。また、本発明の範囲内において、開示した要素の多様な組み合わせ、置換ないし選択が可能である。   In addition, although this invention was demonstrated based on the said embodiment, it cannot be overemphasized that various changes, a deformation | transformation, improvement, etc. are included in the scope of the present invention, without being limited to the said embodiment. Further, various combinations, substitutions or selections of the disclosed elements are possible within the scope of the present invention.

上記実施形態においては、機能素子として赤外線受光素子を使用する赤外線センサに係る真空パッケージについて説明したが、本発明の機能素子は赤外線受光素子に限定されることなく、圧電素子や振動素子等の真空封止が必要な種々の機能素子を本発明に適用することができる。すなわち、本発明の真空パッケージは、赤外線センサの他にも、圧力センサや加速度センサにも適用できることはいうまでもない。   In the above embodiment, the vacuum package related to the infrared sensor using the infrared light receiving element as the functional element has been described. However, the functional element of the present invention is not limited to the infrared light receiving element, and a vacuum such as a piezoelectric element or a vibration element is used. Various functional elements that require sealing can be applied to the present invention. That is, it goes without saying that the vacuum package of the present invention can be applied to a pressure sensor and an acceleration sensor in addition to the infrared sensor.

1、21、31、41、51、61、71 真空パッケージ
2、22、32、42、52、62、72 基板
3、23、33、43、53、63、73 封止カバー
4、24、34、44、54、64、74 貫通孔
5、25、35、45、55、65、75 シール構造体
6、26、36、46、56、66、76 基材部
7、27、37、47、57、67、77 突起部
8、28、38、48、58、68、78 封止材料
29 切り欠き部分
38、69 溝
79 突出部
10 赤外線センサ
11 赤外線受光素子
12 基板
13 赤外線透過窓
14 チャンバ
15 スペーサ
16 接着用ハンダ
17 電極パッド
18 ボンディングワイヤ
19 貫通孔
100 シール構造体
101 基材部
102 突起部
103 封止材料
1, 21, 31, 41, 51, 61, 71 Vacuum package
2, 22, 32, 42, 52, 62, 72 Board
3, 23, 33, 43, 53, 63, 73 Sealing cover
4, 24, 34, 44, 54, 64, 74 Through hole
5, 25, 35, 45, 55, 65, 75 Seal structure
6, 26, 36, 46, 56, 66, 76 Base material
7, 27, 37, 47, 57, 67, 77 Projection
8, 28, 38, 48, 58, 68, 78 Sealing material
29 Notch
38, 69 groove
79 Protrusion
10 Infrared sensor
11 Infrared detector
12 Board
13 Infrared transmission window
14 chambers
15 Spacer
16 Adhesive solder
17 Electrode pad
18 Bonding wire
19 Through hole
100 Seal structure
101 Base material
102 Protrusion
103 Sealing material

Claims (10)

減圧封止された空洞部を有する真空パッケージにおいて、
前記空洞部を排気するための貫通孔と、
前記貫通孔を封止する封止体と、を有し
前記封止体は前記貫通孔上面を覆う基材部と前記基材部に設けられた前記貫通孔より小さい突起部とからなる段付形状であり、前記基材部と前記真空パッケージ表面との間に封止材料を挟んで前記突起部を前記貫通孔に挿入した状態で前記貫通孔を封止していることを特徴とする真空パッケージ。
In a vacuum package having a cavity sealed under reduced pressure,
A through hole for exhausting the cavity,
A sealing body that seals the through-hole, and the sealing body includes a base material that covers the top surface of the through-hole and a projection that is smaller than the through-hole provided in the base material. The vacuum is characterized in that the through hole is sealed in a state where the projection is inserted into the through hole with a sealing material sandwiched between the base portion and the surface of the vacuum package package.
減圧封止された真空パッケージの貫通孔を封止する封止体において、
前記封止体は、前記貫通孔上面を覆う基材部と前記基材部に設けられた前記貫通孔より小さい突起部とからなる段付形状であり、前記基材部の前記突起部が設けられた面には封止材料が配置されていることを特徴とする封止体。
In a sealing body for sealing a through hole of a vacuum package sealed under reduced pressure,
The sealing body has a stepped shape including a base part that covers the upper surface of the through hole and a protrusion smaller than the through hole provided in the base part, and the protrusion of the base part is provided. A sealing body, wherein a sealing material is disposed on the provided surface.
前記基材部の突起部が設けられた面は平面であり、
前記封止材料は前記突起部の周囲に前記基材部の突起部が設けられた面に対して略平行な面を有するよう形成され、少なくとも一部に前記基材部の外縁から前記突起部まで貫通する切り欠きを有することを特徴とする請求項2記載の封止体。
The surface of the base material portion provided with the protrusion is a flat surface,
The sealing material is formed so as to have a surface substantially parallel to a surface of the base material portion provided with the protrusion portion around the protrusion portion, and at least partially from the outer edge of the base material portion to the protrusion portion. The sealing body according to claim 2, further comprising a notch penetrating to the end.
前記基材部の突起部が設けられた面は平面であり、前記封止材料は前記突起部の周囲に前記基材部の突起部が設けられた面に対して略平行な面を有するよう形成され、少なくとも一部に前記基材部の外縁から前記突起部まで貫通する溝を有することを特徴とする請求項2記載の封止体。 The surface of the base material portion provided with the protrusions is a flat surface, and the sealing material has a surface substantially parallel to the surface of the base material portion provided with the protrusions of the base material portion. The sealing body according to claim 2, wherein the sealing body is formed and has a groove penetrating from an outer edge of the base material portion to the projection portion at least partially. 前記基材部の突起部が設けられた面は平面であり、前記封止材料は前記突起部の周囲に前記基材部の突起部が設けられた面に対して全面に凸凹形状を有するよう形成されていることを特徴とする請求項2記載の封止体。 The surface of the base material portion provided with the protrusions is a flat surface, and the sealing material has an uneven shape on the entire surface with respect to the surface of the base material portion provided with the protrusions of the base material portion. The sealing body according to claim 2, wherein the sealing body is formed. 前記封止材料は球面体であり、前記基材部は、前記球面体の一部を収容する穴を有していることを特徴とする請求項2記載の封止体。 The sealing material according to claim 2, wherein the sealing material is a spherical body, and the base portion has a hole for accommodating a part of the spherical body. 前記基材部は、前記基材部の突起部が設けられた面に少なくとも一部に前記基材部の外縁から前記突起部周辺まで貫通する溝を有することを特徴とする請求項2記載の封止体。 The said base material part has a groove | channel penetrated from the outer edge of the said base material part to the periphery of the said projection part in at least one part in the surface in which the projection part of the said base material part was provided. Sealed body. 前記真空パッケージは、主基板と、前記主基板上に空洞部を有して主基板を覆う封止カバーとを有し、
前記貫通孔は、前記封止カバーに設けられており、
前記封止カバーは、前記貫通孔周辺に凸部を有していることを特徴とする請求項1記載の真空パッケージ。
The vacuum package has a main substrate and a sealing cover that has a hollow portion on the main substrate and covers the main substrate,
The through hole is provided in the sealing cover,
The vacuum package according to claim 1, wherein the sealing cover has a protrusion around the through hole.
減圧封止された空洞部を有するセンサであって、
電磁波を検出する素子と、
前記素子を積載する主基板と、
前記主基板と対向し電磁波を透過する透過基板と、
前記主基板および前記透過基板の縁部に設けられ、前記主基板と前記透過基板とを空間を有して対向するよう設置しているスペーサと、
前記透過基板に設けられ、前記主基板と前記透過基板と前記スペーサとで囲まれる前記空洞部を排気するための貫通孔と、
前記貫通孔を封止する封止体と、を有し
前記封止体は、前記貫通孔上面を覆う基材部と前記基材部に設けられた前記貫通孔より小さい突起部とからなる段付形状であり、前記基材部と前記真空パッケージ表面との間に封止材料を挟んで前記突起部を前記貫通孔に挿入した状態で前記貫通孔を封止していることを特徴とするセンサ。
A sensor having a cavity sealed under reduced pressure,
An element for detecting electromagnetic waves;
A main board on which the elements are mounted;
A transmission substrate facing the main substrate and transmitting electromagnetic waves;
A spacer that is provided at an edge of the main substrate and the transmission substrate, and is disposed so that the main substrate and the transmission substrate are opposed to each other with a space;
A through-hole for exhausting the cavity provided in the transmission substrate and surrounded by the main substrate, the transmission substrate and the spacer;
A sealing body that seals the through-hole, and the sealing body includes a base part that covers an upper surface of the through-hole and a projection that is smaller than the through-hole provided in the base part. The through hole is sealed in a state in which the protrusion is inserted into the through hole with a sealing material sandwiched between the base material portion and the surface of the vacuum package. Sensor.
減圧封止された空洞部を有する真空パッケージの製造方法において、
前記空洞部を排気するための貫通孔に、前記貫通孔上面を覆う基材部と前記基材部に設けられた前記貫通孔より小さい突起部とからなる段付形状の封止体を、前記基材部と前記真空パッケージ表面との間に封止材料を挟んだ状態で前記突起部を前記貫通孔に挿入し、設置する工程と、
真空チャンバ内に、前記貫通孔に前記封止体を設置したパッケージをセットする工程と、
前記真空チャンバ内を減圧し、前記真空パッケージ表面と前記封止材料との間の空隙を通じて前記空洞部の排気を行う工程と
前記真空パッケージを加熱し、前記封止材料を溶解させ、前記基材部と前記真空パッケージ表面との間を密閉する工程と、
前記真空パッケージを冷却し、前記封止材料を固化させて前記貫通孔を封止する工程と、を含むことを特徴とする真空パッケージの製造方法。
In a manufacturing method of a vacuum package having a cavity sealed under reduced pressure,
A stepped shaped sealing body comprising a base part covering the upper surface of the through hole and a projection smaller than the through hole provided in the base part, in the through hole for exhausting the hollow part, Inserting the protruding portion into the through-hole in a state in which a sealing material is sandwiched between the base material portion and the surface of the vacuum package, and installing it;
Setting a package in which the sealing body is installed in the through hole in a vacuum chamber;
Depressurizing the inside of the vacuum chamber, evacuating the cavity through a gap between the surface of the vacuum package and the sealing material, heating the vacuum package, dissolving the sealing material, and Sealing between the part and the vacuum package surface;
Cooling the vacuum package, and solidifying the sealing material to seal the through hole.
JP2012089165A 2012-04-10 2012-04-10 Vacuum package, sensor, and manufacturing method of vacuum package Active JP5982972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089165A JP5982972B2 (en) 2012-04-10 2012-04-10 Vacuum package, sensor, and manufacturing method of vacuum package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089165A JP5982972B2 (en) 2012-04-10 2012-04-10 Vacuum package, sensor, and manufacturing method of vacuum package

Publications (2)

Publication Number Publication Date
JP2013219223A true JP2013219223A (en) 2013-10-24
JP5982972B2 JP5982972B2 (en) 2016-08-31

Family

ID=49590990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089165A Active JP5982972B2 (en) 2012-04-10 2012-04-10 Vacuum package, sensor, and manufacturing method of vacuum package

Country Status (1)

Country Link
JP (1) JP5982972B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067833A (en) * 2017-09-29 2019-04-25 日亜化学工業株式会社 Light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618957A (en) * 1984-06-25 1986-01-16 Hitachi Ltd Assembling method of electronic device
JPS62149155A (en) * 1985-09-02 1987-07-03 Hitachi Ltd Sealed electronic device
JPH04337668A (en) * 1991-05-15 1992-11-25 Nec Corp Solid-state image pick-up element
JPH06151620A (en) * 1992-11-10 1994-05-31 Ngk Insulators Ltd Method of sealing cap of package for enclosing semiconductor chip
JP2007306068A (en) * 2006-05-08 2007-11-22 Nippon Dempa Kogyo Co Ltd Crystal device
JP2008524838A (en) * 2004-12-15 2008-07-10 コミツサリア タ レネルジー アトミーク Airtight sealing device and sealing process for electronic component cavities
US20090140146A1 (en) * 2007-11-30 2009-06-04 Nec Corporation Vacuum package and manufacturing process thereof
WO2010097907A1 (en) * 2009-02-25 2010-09-02 セイコーインスツル株式会社 Package manufacturing method, and, package, piezoelectric oscillator, oscillator, electronic device, and radio-controlled watch

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618957A (en) * 1984-06-25 1986-01-16 Hitachi Ltd Assembling method of electronic device
JPS62149155A (en) * 1985-09-02 1987-07-03 Hitachi Ltd Sealed electronic device
JPH04337668A (en) * 1991-05-15 1992-11-25 Nec Corp Solid-state image pick-up element
JPH06151620A (en) * 1992-11-10 1994-05-31 Ngk Insulators Ltd Method of sealing cap of package for enclosing semiconductor chip
JP2008524838A (en) * 2004-12-15 2008-07-10 コミツサリア タ レネルジー アトミーク Airtight sealing device and sealing process for electronic component cavities
US20090261535A1 (en) * 2004-12-15 2009-10-22 Commissariat A L'energie Atomique Device and method for hermetically sealing a cavity in an electronic component
JP2007306068A (en) * 2006-05-08 2007-11-22 Nippon Dempa Kogyo Co Ltd Crystal device
US20090140146A1 (en) * 2007-11-30 2009-06-04 Nec Corporation Vacuum package and manufacturing process thereof
JP2009135296A (en) * 2007-11-30 2009-06-18 Nec Corp Vacuum package and manufacturing method thereof
WO2010097907A1 (en) * 2009-02-25 2010-09-02 セイコーインスツル株式会社 Package manufacturing method, and, package, piezoelectric oscillator, oscillator, electronic device, and radio-controlled watch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067833A (en) * 2017-09-29 2019-04-25 日亜化学工業株式会社 Light-emitting device
JP7177328B2 (en) 2017-09-29 2022-11-24 日亜化学工業株式会社 light emitting device

Also Published As

Publication number Publication date
JP5982972B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4665959B2 (en) Vacuum package
KR102091040B1 (en) Thermal infrared sensor array in wafer-level package
US20080164413A1 (en) Infrared Sensor
CN101863449B (en) Encapsulation method of MEMS infrared sensor with infrared focusing function
JP5293655B2 (en) Wafer level package structure, sensor element, sensor device, and manufacturing method thereof
JP2007287967A (en) Electronic-component apparatus
JP4475976B2 (en) Airtight sealed package
JP5168819B2 (en) Semiconductor package and manufacturing method thereof
JP2013222735A (en) Infrared ray sensor package, infrared ray sensor module, and electronic apparatus
JP5982972B2 (en) Vacuum package, sensor, and manufacturing method of vacuum package
US20170160154A1 (en) Pressure sensor
JP5889540B2 (en) Pressure sensor
JP2007509320A5 (en)
JP2008235864A (en) Electronic device
CN107084807B (en) Piezoresistive micro-mechanical pressure sensor chip and preparation method thereof
US8890071B2 (en) Method for assembling and hermetically sealing an encapsulating package
KR101529543B1 (en) VACUUM PACKAGING METHOD FOR Micro Electro-Mechanical System Devices
JP5982973B2 (en) Vacuum package, method for manufacturing vacuum package, and sensor
JP6036113B2 (en) Method for manufacturing hermetic sealing structure
JP2011035436A (en) Method of manufacturing vacuum package
JP4282504B2 (en) Vacuum package sensor element
JP5867817B2 (en) Optical device manufacturing method
JP2009031005A (en) Semiconductor pressure sensor
CN108598283A (en) Display panel motherboard, display panel and display terminal
JP2007228347A (en) Vacuum package and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R150 Certificate of patent or registration of utility model

Ref document number: 5982972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150