JP2013217820A - Cesium removal method - Google Patents

Cesium removal method Download PDF

Info

Publication number
JP2013217820A
JP2013217820A JP2012089926A JP2012089926A JP2013217820A JP 2013217820 A JP2013217820 A JP 2013217820A JP 2012089926 A JP2012089926 A JP 2012089926A JP 2012089926 A JP2012089926 A JP 2012089926A JP 2013217820 A JP2013217820 A JP 2013217820A
Authority
JP
Japan
Prior art keywords
cesium
contaminant
basidiomycetes
radioactive
pollutants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089926A
Other languages
Japanese (ja)
Inventor
Masahiro Nagano
正弘 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARIHIRA KK
Original Assignee
NARIHIRA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARIHIRA KK filed Critical NARIHIRA KK
Priority to JP2012089926A priority Critical patent/JP2013217820A/en
Publication of JP2013217820A publication Critical patent/JP2013217820A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method of radioactive contaminants, capable of removing the contaminant itself such as cesium 137 basically.SOLUTION: By adding filamentous bacteria, basidiomycetes, and nutrition assisting polysaccharide to a cesium-containing radioactive contaminant X, adding moisture, agitating it and cultivating the bacteria, the cesium is removed from the contaminant. It is preferable that the bacteria are cultivated at temperature 35-70°C, and moisture 60-80%. The contaminant X includes fallen leaves of trees, rice straws, wooden chips, weeds, and vegetable residue.

Description

本発明は、原発事故により放射性汚染物質が付着した、落ち葉、麦わら、雑草、植物の残渣、木材チップ等からセシウムを除去する放射性汚染物質の除染方法に関する。   The present invention relates to a method for decontaminating radioactive pollutants that removes cesium from fallen leaves, straw, weeds, plant residues, wood chips, and the like, to which radioactive pollutants have been attached due to a nuclear accident.

福島の原発事故により放射性汚染物質が大量にまき散らされ、人々が苦しんでいることは報道等のとおりである。なかでも、セシウム137による汚染は深刻で、半減期が30年程度と長く、その間に放射線を放出し続けるという問題がある。   According to the reports, the Fukushima nuclear accident has scattered a lot of radioactive pollutants and people are suffering. Among them, contamination by cesium 137 is serious, and the half-life is as long as about 30 years, and there is a problem that radiation is continuously emitted during that period.

放射性汚染物質の除染も検討されているが、例えば汚染された土の表面を剥ぎ取り、袋詰めして他の場所に移し替える等の対策であり、セシウム137等の放射性物質自体を根本的に除去するものではない。   Decontamination of radioactive pollutants is also under consideration. For example, the surface of contaminated soil is peeled off, packed in a bag and transferred to another location, and the radioactive material itself such as cesium 137 is fundamentally used. It is not intended to be removed.

本発明は、上述の事情に基づいてなされたもので、セシウム137等の放射性物質自体を根本的に除去することができる放射性汚染物質の除染方法を提供することを目的とする。   The present invention has been made based on the above-described circumstances, and an object thereof is to provide a method for decontaminating radioactive pollutants that can fundamentally remove radioactive substances such as cesium 137 itself.

本発明の放射性汚染物質の除染方法は、セシウムを含有する放射性汚染物質に、糸状菌と担子菌と栄養補助多糖類を添加し、水分を加え、撹拌し、前記菌を培養することで、前記汚染物質から前記セシウムを除去することを特徴とする。   The method for decontaminating radioactive pollutants of the present invention includes adding fungi, basidiomycetes and nutritional supplement polysaccharides to radioactive pollutants containing cesium, adding water, stirring, and culturing the bacteria. The cesium is removed from the contaminant.

本発明によれば、糸状菌と担子菌が放射性汚染物質に作用し、セシウムを分解・分離する性質を有するので、前記汚染物質を培地として前記菌を培養することにより、前記汚染物質からセシウムを除去することが可能となる。   According to the present invention, filamentous fungi and basidiomycetes act on radioactive pollutants and have the property of decomposing / separating cesium. Therefore, by culturing the fungus using the pollutants as a medium, cesium is removed from the pollutants. It can be removed.

実験に用いた装置の説明図である。It is explanatory drawing of the apparatus used for experiment.

図1は本発明者が放射性汚染物質の除染の実験に用いた装置を示す。透明な三角フラスコ11に落ち葉等の放射性汚染物質Xを充填する。汚染物質Xは福島県南相馬市等から採取してきたもので、放射能が検出され、原発事故により飛散したセシウムを含むものと考えられる。そして、フラスコ11を恒温・恒湿槽12の内部に配置し、汚染物質Xが培地として好適な温度35−70℃、湿度60−80%となるように調整する。すなわち、この温度と湿度の範囲で、糸状菌と担子菌が最も活発に繁殖する。   FIG. 1 shows the apparatus used by the inventor for experiments on decontamination of radioactive contaminants. A transparent Erlenmeyer flask 11 is filled with radioactive contaminant X such as fallen leaves. Contaminant X has been collected from Minamisoma City, Fukushima Prefecture, etc., and is considered to contain cesium that has been detected due to radioactivity and scattered in the nuclear accident. And the flask 11 is arrange | positioned inside the constant temperature and humidity tank 12, and it adjusts so that the contaminant X may become the temperature 35-70 degreeC suitable for a culture medium, and humidity 60-80%. That is, filamentous fungi and basidiomycetes grow most actively in this temperature and humidity range.

さらに、コンプレッサ13から送気管14により空気を汚染物質Xの内部に注入する。そして、排気管15とこれに接続したフィルタ16を備え、フラスコ11の内部の空気を濾過しつつ排気する。フィルタ16は炭素とゼオライトからなる。さらに、汚染物質Xの内部を撹拌できるようになっている。従って、汚染物質Xは、温度35−70℃、湿度60−80%の恒温・恒湿下で、撹拌され、新鮮な空気が常に供給される環境になっている。   Further, air is injected from the compressor 13 into the pollutant X through the air supply pipe 14. And the exhaust pipe 15 and the filter 16 connected to this are provided, and it exhausts, filtering the air inside the flask 11. The filter 16 is made of carbon and zeolite. Furthermore, the inside of the contaminant X can be stirred. Therefore, the pollutant X is agitated and constantly supplied with fresh air at a temperature of 35 to 70 ° C. and a humidity of 60 to 80%.

この環境下で、落ち葉等の汚染物質Xを培地として、糸状菌と担子菌と、ブドウ糖、果糖、オリゴ糖等の栄養補助多糖類を添加する。この実験では、糸状菌と担子菌はナリヒラ酵素SBN−11(商品名・特許第4129470号)の製造に用いる菌と同一の菌を使用している。すると、糸状菌と担子菌とが培養され、汚染物質Xを分解しつつ、菌の繁殖が進行する。実験では40日間培養を継続した。その結果、目視では1/4程度の汚染物質Xが分解されて砂状となり、菌の増殖が観察された。   Under this environment, using a pollutant X such as fallen leaves as a culture medium, filamentous fungi, basidiomycetes, and nutritional supplement polysaccharides such as glucose, fructose, and oligosaccharide are added. In this experiment, filamentous fungi and basidiomycetes use the same fungus as that used for the production of Narihira enzyme SBN-11 (trade name: Patent No. 4129470). Then, filamentous fungi and basidiomycetes are cultured, and the propagation of the fungi progresses while decomposing the pollutant X. In the experiment, the culture was continued for 40 days. As a result, about one-fourth of the contaminant X was visually decomposed to become sandy, and bacterial growth was observed.

その時点で、培養を中止し、90−100℃に培地の温度を上げ、殺菌処理を行い、汚染物質Xの放射能を計測した。培養前後の放射能の計測結果を表1に示す。なお、放射能の計測は専門業者に依頼し、ゲルマニウム半導体検出器によるガンマ線スペクトロメトリーにより行った。  At that time, the culture was stopped, the temperature of the medium was raised to 90-100 ° C., sterilization was performed, and the radioactivity of the pollutant X was measured. Table 1 shows the measurement results of radioactivity before and after the culture. Radioactivity was measured by a specialist and was performed by gamma-ray spectrometry using a germanium semiconductor detector.

Figure 2013217820
Figure 2013217820

培養前には、セシウム134が3840Bq/kgであり、セシウム137が4880Bq/kgであった。バリウムは27mg/kg存在した。これに対し、40日間の培養後では、セシウム134が2770Bq/kgに28%減少し、セシウム137が3810Bq/kgに22%減少した。バリウムは31mg/kg存在し、15%増加した。   Prior to culture, cesium 134 was 3840 Bq / kg and cesium 137 was 4880 Bq / kg. Barium was present at 27 mg / kg. In contrast, after 40 days of culture, cesium 134 decreased 28% to 2770 Bq / kg and cesium 137 decreased 22% to 3810 Bq / kg. Barium was present at 31 mg / kg, an increase of 15%.

以上の結果から、落ち葉等の汚染物質Xを培地として、糸状菌と担子菌を培養することで、セシウム134,137が減少することが明らかである。そして、バリウムが増加していることが明らかである。なお、フィルタ16からは放射能は全く検出されないので、セシウム134,137が系外に流出したとは考え難い。   From the above results, it is clear that cesium 134 and 137 are reduced by culturing filamentous fungi and basidiomycetes using contaminant X such as fallen leaves as a medium. And it is clear that barium is increasing. In addition, since no radioactivity is detected from the filter 16, it is unlikely that cesium 134, 137 has flowed out of the system.

セシウム134,137の減少の理由を推定すると、以下が考えられる。すなわち、培養中の糸状菌と担子菌の菌糸体細胞内より酵素およびムコ多糖類(生体高分子)が分泌される。そして、酵素およびムコ多糖類の加水分解で酸類などを生成し、その某体がセシウム核を崩壊させ、ベータ線を放出し、セシウムがバリウムに変化する。これにより、セシウムが減少し、バリウムが増加したと考えられる。   If the reason for the decrease in cesium 134,137 is estimated, the following can be considered. That is, enzymes and mucopolysaccharides (biopolymers) are secreted from the mycelial cells of filamentous fungi and basidiomycetes in culture. Then, hydrolysis of the enzyme and mucopolysaccharides generates acids and the like, and the rod collapses the cesium nucleus, emits beta rays, and cesium changes to barium. As a result, cesium decreased and barium increased.

また、糸状菌と担子菌が放射性汚染物質からセシウム吸収する性質を有するので、落ち葉等の放射性汚染物質を培地として前記菌を培養することにより、前記汚染物質が分解され砂状になると共に、前記菌がセシウムを吸収し、前記汚染物質からセシウムが除去されたとも考えられる。   In addition, since filamentous fungi and basidiomycetes have the property of absorbing cesium from radioactive pollutants, by culturing the fungus using radioactive pollutants such as fallen leaves as a medium, the pollutants are decomposed and become sandy, It is considered that the bacterium absorbed cesium and the cesium was removed from the contaminant.

そもそも、セシウム137には生物濃縮という現象が知られている。例えば、海洋中に拡散したセシウム137はまずプランクトンに蓄積される。海洋中ではセシウム137は様々な化合物として存在しているのであろうが、微生物であるプランクトンが高い生物濃縮性を有することからも、本発明者が見いだした糸状菌と担子菌の培養で、微生物の作用によりセシウム137の培地からの吸収が可能となることも首肯できる。   In the first place, the phenomenon of bioconcentration is known for cesium 137. For example, cesium 137 diffused in the ocean is first accumulated in plankton. In the ocean, cesium 137 may exist as various compounds, but because the plankton, which is a microorganism, has high bioaccumulative properties, microorganisms and basidiomycetes found by the present inventors have been It can be confirmed that cesium 137 can be absorbed from the medium by the above action.

次に、本発明の利用方法例について説明する。まず、稲ワラの除染に有効である。田圃の中で、稲ワラをカッターで切断せず、稲ワラをそのままの姿で敷き、稲ワラを放置する。そして、セシウムが吸着した汚染稲ワラを集めて糸状菌と担子菌の培養の培地とする。そして、糸状菌と担子菌と栄養補助多糖類を添加し、水分を加え、撹拌し、前記菌を培養することで、稲ワラに糸状菌と担子菌が繁殖し、稲ワラを砂状に分解すると共に糸状菌と担子菌がセシウムを分解/吸収し、汚染稲ワラからセシウムを除去することができる。   Next, an example of how to use the present invention will be described. First, it is effective for decontamination of rice straw. In the rice field, do not cut the rice straw with a cutter, lay the rice straw as it is, and leave the rice straw. Then, the contaminated rice straw adsorbed with cesium is collected and used as a culture medium for filamentous fungi and basidiomycetes. Then, filamentous fungi, basidiomycetes and nutraceutical polysaccharides are added, water is added, stirred, and the fungus is cultured, so that the fungi and basidiomycetes grow on the rice straw and decompose the rice straw into sand. At the same time, filamentous fungi and basidiomycetes can decompose / absorb cesium and remove cesium from contaminated rice straw.

また、放射能を有する落ち葉、枯れ枝、枯れ木の除染に有効である。これらを集め培地とし、糸状菌と担子菌と栄養補助多糖類を添加し、水分を加え、撹拌し、前記菌を培養することで、これらを分解し砂状にすると共に、これらの菌がセシウムを分解/吸収し、汚染物質からセシウムを除去することが可能である。   It is also effective for decontamination of radioactive fallen leaves, dead branches and dead trees. These are collected and used as a medium. Filamentous fungi, basidiomycetes, and nutritional supplementary polysaccharides are added, water is added, stirred, and the fungi are cultured to decompose them into sand, and these fungi are cesium. It is possible to decompose / absorb and remove cesium from pollutants.

同様に、放射能を有する木材チップ、雑草、植物の残渣、土壌等の除染に適用が可能である。   Similarly, it can be applied to decontamination of radioactive wood chips, weeds, plant residues, soil, and the like.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

本発明は、原発事故により生じた、落ち葉、麦わら等の放射性汚染物質の除染に有用である。   The present invention is useful for decontamination of radioactive pollutants such as fallen leaves and straw caused by a nuclear accident.

Claims (3)

セシウムを含有する放射性汚染物質に、糸状菌と担子菌と栄養補助多糖類を添加し、水分を加え、撹拌し、前記菌を培養することで、前記汚染物質から前記セシウムを除去することを特徴とする放射性汚染物質の除染方法。   Addition of filamentous fungi, basidiomycetes and nutritional supplement polysaccharides to radioactive pollutants containing cesium, adding water, stirring, culturing the fungus, removing the cesium from the pollutants Decontamination method for radioactive pollutants. 前記菌の培養を、温度35−70℃、湿度60−80%で行うことを特徴とする請求項1に記載の除染方法。   The decontamination method according to claim 1, wherein the culture of the fungus is performed at a temperature of 35 to 70 ° C and a humidity of 60 to 80%. 前記汚染物質は、樹木の落ち葉、稲ワラ、木材チップ、雑草、野菜の残渣を含むことを特徴とする請求項1に記載の除染方法。   2. The decontamination method according to claim 1, wherein the pollutant includes fallen leaves of trees, rice straw, wood chips, weeds, and vegetable residues.
JP2012089926A 2012-04-11 2012-04-11 Cesium removal method Pending JP2013217820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089926A JP2013217820A (en) 2012-04-11 2012-04-11 Cesium removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089926A JP2013217820A (en) 2012-04-11 2012-04-11 Cesium removal method

Publications (1)

Publication Number Publication Date
JP2013217820A true JP2013217820A (en) 2013-10-24

Family

ID=49590069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089926A Pending JP2013217820A (en) 2012-04-11 2012-04-11 Cesium removal method

Country Status (1)

Country Link
JP (1) JP2013217820A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885354A1 (en) 2020-03-23 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Low intake cesium and parthenocarpy plants
JP2021532726A (en) * 2019-07-09 2021-12-02 コエンバイオ カンパニー リミテッド A composition for elementally converting a radioactive substance into a non-radioactive substance and a method for producing the composition.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047017A (en) * 1999-08-11 2001-02-20 Yasushi Terasawa Method for cleaning up pollutant
JP2002506979A (en) * 1998-03-10 2002-03-05 ニューケム・ニュークレア・ゲーエムベーハー Adsorbent for radionuclides
JP2003230872A (en) * 2002-02-08 2003-08-19 Hidemoto Nagata Method of decomposing heavy metal, dioxins, and agricultural chemical
JP2006272114A (en) * 2005-03-29 2006-10-12 Chiba Prefecture Agent and method for decomposing waste wood of pear tree

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506979A (en) * 1998-03-10 2002-03-05 ニューケム・ニュークレア・ゲーエムベーハー Adsorbent for radionuclides
JP2001047017A (en) * 1999-08-11 2001-02-20 Yasushi Terasawa Method for cleaning up pollutant
JP2003230872A (en) * 2002-02-08 2003-08-19 Hidemoto Nagata Method of decomposing heavy metal, dioxins, and agricultural chemical
JP2006272114A (en) * 2005-03-29 2006-10-12 Chiba Prefecture Agent and method for decomposing waste wood of pear tree

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532726A (en) * 2019-07-09 2021-12-02 コエンバイオ カンパニー リミテッド A composition for elementally converting a radioactive substance into a non-radioactive substance and a method for producing the composition.
US11244771B2 (en) 2019-07-09 2022-02-08 Coenbio Co., Ltd. Composition for converting radioactive substance into non-radioactive substance and a method of preparing the composition
EP3885354A1 (en) 2020-03-23 2021-09-29 Consejo Superior de Investigaciones Científicas (CSIC) Low intake cesium and parthenocarpy plants
WO2021191109A1 (en) 2020-03-23 2021-09-30 Consejo Superior De Investigaciones Científicas (Csic) Low intake cesium and parthenocarpy plants

Similar Documents

Publication Publication Date Title
EP3033939B1 (en) Method of afforesting infertile soil using pisolithus tinctorius
Hoseini et al. Ability of phytoremediation for absorption of strontium and cesium from soils using Cannabis sativa
CN107177529A (en) The endophyte of plant of one high-efficiency degradation phthalic acid ester and its application
CN105885855A (en) Efficient soil remediation agent and preparing method thereof
Li et al. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan
Gangola et al. Mycoremediation of imidaclopridin the presence of different soil amendments using Trichoderma longibrachiatum and Aspergillus oryzae isolated from pesticide contaminated agricultural fields of Uttarakhand
CN107457254B (en) Method and system for efficiently repairing heavy metal contaminated soil by combining plants and animals
JP2013174557A (en) Radioactive material decontamination agent and radioactive material decontamination method using microorganism and humus
JP6296832B2 (en) Cadmium absorption suppression material and crop cultivation method using the same
JP2013217820A (en) Cesium removal method
JP2008296181A (en) Purification method of harmful heavy metal polluted medium
Strizhenok et al. Assessment of the efficiency of using organic waste from the brewing industry for bioremediation of oil-contaminated soils
CN103894399A (en) Method for promoting enrichment of caesium and/or strontium to red spinach by virtue of plant hormone and chelating agent
CN111069276A (en) Method for enhancing tetracycline antibiotic reduction in soil by earthworm intestinal content
CN103190223A (en) Method for improving seed germination of solanum nigrum
JP2015045562A (en) Decontamination method of radioactive contaminated soil, etc.
JP5362926B1 (en) Decontamination of contaminated soil with radioactive materials
CN103861865A (en) Method for repairing contaminated soil by using natural pore soil-conserving and planting device
Abdel-Razek et al. Bioaccumulation of 137Cs by immobilized bacterial species isolated from radioactive wastewater
JP6196761B2 (en) How to clean up oil-contaminated soil
Yoshii et al. A composting system to decompose radiocesium contaminated baled grass silage
JP2014174161A (en) Concentration capable bacteria multiplying agent for decontamination of radioactive materials
CN105733599A (en) Cadmium-contaminated soil remediation fixing agent based on microorganism assembly synthesis as well as preparation and application method thereof
CN110523768B (en) Phytoremediation method for pentachlorophenol polluted soil
Etok et al. Bioremediation of crude oil contaminated soils using surfactants and hydrocarbonoclastic bacteria

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301