JP2013217542A - Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same - Google Patents

Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same Download PDF

Info

Publication number
JP2013217542A
JP2013217542A JP2012087098A JP2012087098A JP2013217542A JP 2013217542 A JP2013217542 A JP 2013217542A JP 2012087098 A JP2012087098 A JP 2012087098A JP 2012087098 A JP2012087098 A JP 2012087098A JP 2013217542 A JP2013217542 A JP 2013217542A
Authority
JP
Japan
Prior art keywords
heat exchange
air passage
exchange element
exhaust
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012087098A
Other languages
Japanese (ja)
Inventor
Takuya Murayama
拓也 村山
Hiroyuki Kondo
広幸 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012087098A priority Critical patent/JP2013217542A/en
Publication of JP2013217542A publication Critical patent/JP2013217542A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Abstract

PROBLEM TO BE SOLVED: To reduce power consumption of blowing means of a heat exchange type ventilation apparatus since a counterflow type heat exchange element can suppress flexure of a heat exchanger plate without increasing a pressure loss.SOLUTION: A counterflow type heat exchange element 11 has an air exhaust path 14 and an air supply path 15 constructed alternately, layer by layer, by stacking a plurality of heat transfer means each including interval holding means of holding an interval, and can suppress flexure of a heat exchanger plate without increasing a pressure loss since an exhaust air flow 1 flowing in the air exhaust path 14 and a supply air flow 2 flowing in the air supply path 15 are orthogonal or oblique at both ends and face each other at a center portion between both the ends, and the air exhaust path 14 and air supply path 15 are parallel and corrugated at the center part.

Description

本発明は、対向流型熱交換素子とそれを用いた熱交換型換気機器に関するものである。   The present invention relates to a counterflow type heat exchange element and a heat exchange type ventilation device using the same.

近年、地球温暖化にともなって居住分野の省エネが重視されるようになってきた。住宅の消費エネルギーの中では給湯、照明、空調の消費エネルギーが比較的大きいため、これらの消費エネルギーを低減する技術が望まれている。   In recent years, with the global warming, the energy saving in the residential field has become important. Since the energy consumption of hot water supply, lighting, and air conditioning is relatively large among the energy consumption of houses, a technology for reducing these energy consumptions is desired.

この中で住宅の空調負荷に着目すると、住宅の躯体から逃げる熱(冷房の場合は冷熱)と換気によって逃げる熱がある。住宅の躯体から逃げる熱は、ここ数十年での住宅の断熱、気密性能の大幅な向上により、かなり低減されるようになってきた。一方、換気によって逃げる熱を低減させるには、排気流と給気流の間で熱交換を行う熱交換型換気機器が有効である。   Focusing on the air conditioning load of the house, there is heat that escapes from the housing of the house (cooling in the case of cooling) and heat that escapes due to ventilation. The heat escaping from the housing of housing has been significantly reduced due to the significant improvement in heat insulation and airtightness of the housing in recent decades. On the other hand, in order to reduce the heat escaped by ventilation, a heat exchange type ventilator that exchanges heat between the exhaust flow and the supply airflow is effective.

熱交換素子は熱交換型換気機器の内部で排気流と給気流の間で熱交換を行うものであり、熱交換素子の熱交換効率が高いほど排出空気から多くの熱を回収することができる。また、省エネルギーの観点から、熱交換型換気機器の送風機の消費電力を低減するため、熱交換素子の低圧力損失化も重要となる。これまで熱交換素子の熱交換効率向上や低圧力損失化のために多くのアイディアが提案されてきた。   The heat exchange element exchanges heat between the exhaust flow and the supply air flow inside the heat exchange type ventilation device, and the higher the heat exchange efficiency of the heat exchange element, the more heat can be recovered from the exhaust air. . Further, from the viewpoint of energy saving, it is important to reduce the pressure loss of the heat exchange element in order to reduce the power consumption of the blower of the heat exchange type ventilation device. Many ideas have been proposed so far for improving the heat exchange efficiency of the heat exchange element and reducing the pressure loss.

一般的には熱交換素子の容積を大きくすれば熱交換効率は向上し、圧力損失は低下する。しかし日本、中国、欧州などの地域では住宅内部に地下室、機械室等の熱交換型換気機器を設置する充分なスペースがないため、機器のサイズそのものをコンパクトにすることが求められている。したがって、熱交換素子の容積を小さく保ちながら熱交換効率の向上と圧力損失の低減の両立を図ることが課題になっている。   Generally, if the volume of the heat exchange element is increased, the heat exchange efficiency is improved and the pressure loss is reduced. However, in areas such as Japan, China, and Europe, there is not enough space to install heat exchange type ventilation equipment such as basements and machine rooms inside the house, so it is required to make the equipment itself compact. Therefore, it is an object to achieve both improvement in heat exchange efficiency and reduction in pressure loss while keeping the volume of the heat exchange element small.

従来のこの種の熱交換素子としては、排気流と給気流が伝熱板を介して対向して熱交換する対向流型熱交換素子が知られている(例えば、特許文献1参照)。   As a conventional heat exchange element of this type, a counterflow type heat exchange element is known in which an exhaust flow and a supply airflow are opposed to each other via a heat transfer plate (see, for example, Patent Document 1).

以下、その対向流型熱交換素子について図6を参照しながら説明する。図6(a)は従来の対向流型熱交換素子101の外観を示す斜視図であり、図6(b)は対向流型熱交換素子101から伝熱板103を除いた間隔リブ102を示す平面図である。   Hereinafter, the counterflow type heat exchange element will be described with reference to FIG. FIG. 6A is a perspective view showing the appearance of a conventional counter flow type heat exchange element 101, and FIG. 6B shows the spacing rib 102 obtained by removing the heat transfer plate 103 from the counter flow type heat exchange element 101. It is a top view.

図6(a)に示すように、対向流型熱交換素子101は間隔を保持する間隔リブ102を備えた複数の六角形の伝熱板103を積層して排気風路104と給気風路105を1層ずつ交互に構成し、排気風路104を流通する排気流106(図中の実線矢印)と給気風路105を流通する給気流107(図中の破線矢印)とが、排気風路104および給気風路105の両端部で斜交し、この両端部の間の中央部で対向するように構成し、特に中央部の風路は、間隔リブ102を波形状にすることにより、一定容積内で排気風路104と給気風路105の流路を長くすることで熱交換効率を向上させている。   As shown in FIG. 6 (a), the counter-flow heat exchange element 101 is formed by stacking a plurality of hexagonal heat transfer plates 103 provided with spacing ribs 102 that maintain a spacing, and an exhaust air passage 104 and a supply air passage 105. Are alternately arranged, and an exhaust air flow 106 (solid arrow in the figure) flowing through the exhaust air flow path 104 and a supply air flow 107 (broken arrow in the figure) flowing through the air supply air flow path 105 are 104 and the supply air passage 105 are obliquely crossed at both ends, and are opposed to each other at the center between the both ends. In particular, the air passage at the center is fixed by making the interval rib 102 into a wave shape. Heat exchange efficiency is improved by lengthening the flow path of the exhaust air path 104 and the supply air path 105 within the volume.

特開平8−121986号公報JP-A-8-121986

このような従来の対向流型熱交換素子は、理論的熱交換効率が高い対向流方式の構成に加え、中央部の風路は、間隔リブ102を波形状にすることにより、一定容積内で排気風路104と給気風路105の流路を長くすることで熱交換効率を向上させている。ここで圧力損失に注目すると、図6(b)から分かるように排気風路104と給気風路105が斜交する両端部では、伝熱板103は上下の間隔リブ102によって井形状に保持されているため、排気風路104と給気風路105にそれぞれ排気流106および給気流107を流通させた場合も、気流の圧力で伝熱板103はたわむことが少なく、圧力損失の増大を抑制することができる。一方、排気風路104と給気風路105が対向する中央部では、伝熱板103を保持する間隔リブ102の間隔が広いため、気流の圧力によって伝熱板103がたわむことにより、排気風路104および給気風路105の開口面積が減少し、圧力損失が増大する構成となっている。   In such a conventional counter flow type heat exchange element, in addition to the configuration of the counter flow system having a high theoretical heat exchange efficiency, the air passage in the center portion is formed in a constant volume by making the interval rib 102 into a wave shape. Heat exchange efficiency is improved by lengthening the flow path of the exhaust air path 104 and the supply air path 105. If attention is paid to the pressure loss, the heat transfer plate 103 is held in a well shape by the upper and lower spacing ribs 102 at both ends where the exhaust air passage 104 and the supply air passage 105 cross each other as can be seen from FIG. Therefore, even when the exhaust air flow 106 and the air supply air flow 107 are circulated through the exhaust air flow passage 104 and the air supply air flow passage 105, respectively, the heat transfer plate 103 is hardly bent by the pressure of the air flow, and the increase in pressure loss is suppressed. be able to. On the other hand, in the central portion where the exhaust air passage 104 and the supply air passage 105 are opposed to each other, the interval rib 102 that holds the heat transfer plate 103 is wide. The opening area of 104 and the supply air path 105 decreases, and the pressure loss increases.

そこで、対向流型熱交換素子の中央部の伝熱板103のたわみを抑制する構成として図7を参照しながら説明する。図7(a)は従来の対向流型熱交換素子101の排気風路104および給気風路105の中央部の伝熱板103のたわみを抑制する対向流型熱交換素子101aの平面図であり、図7(b)は図7(a)F−F断面図である。なお、図7(a)は対向流型熱交換素子101aの内部構成が理解しやすいように伝熱板103を除いた図とし、図7(b)は排気風路104および給気風路105の断面部を理解しやすいように伝熱板103を点線と斜線で示した図としている。   Therefore, a configuration for suppressing the deflection of the heat transfer plate 103 at the center of the counter flow type heat exchange element will be described with reference to FIG. FIG. 7A is a plan view of a counterflow type heat exchange element 101 a that suppresses the deflection of the heat transfer plate 103 in the center of the exhaust airflow path 104 and the supply airflow path 105 of the conventional counterflow type heat exchange element 101. FIG. 7B is a sectional view taken along line FF in FIG. 7A is a view in which the heat transfer plate 103 is removed so that the internal configuration of the counterflow type heat exchange element 101a can be easily understood, and FIG. 7B is a view of the exhaust air flow path 104 and the supply air flow path 105. In order to facilitate understanding of the cross section, the heat transfer plate 103 is shown by dotted lines and diagonal lines.

図7(a)に示すように、対向流型熱交換素子101aは排気風路104および給気風路105の中央部の風路の中に、中央部の伝熱板103のたわみを抑制するため、格子状の補強手段108を備えた構成である。図7(a)は補強手段108を1つ設けたが、伝熱板103のたわみの大きさや対向流型熱交換素子101aの中央部の大きさによって、適宜補強手段108の個数を設定すれば良い。補強手段108を備えたことで、排気風路104と給気風路105にそれぞれ排気流106および給気流107を流通させた場合も、気流の圧力で中央部の伝熱板103はたわむことが少なくなり、伝熱板103のたわみに起因した圧力損失の増大を抑制することができる。   As shown in FIG. 7 (a), the counter-flow heat exchange element 101a suppresses the deflection of the heat transfer plate 103 in the central portion in the central air passage of the exhaust air passage 104 and the supply air passage 105. In this configuration, the grid-like reinforcing means 108 is provided. In FIG. 7A, one reinforcing means 108 is provided. However, if the number of reinforcing means 108 is appropriately set according to the size of the deflection of the heat transfer plate 103 and the size of the central portion of the counter flow type heat exchange element 101a. good. Since the reinforcing means 108 is provided, even when the exhaust air flow 106 and the air supply air flow 107 are circulated through the exhaust air flow passage 104 and the air supply air flow passage 105, respectively, the heat transfer plate 103 in the central portion is less likely to bend by the pressure of the air flow. Thus, an increase in pressure loss due to the deflection of the heat transfer plate 103 can be suppressed.

しかし、図7(b)に示すように補強手段108は排気風路104と給気風路105の内部にあるため、補強手段108自体が抵抗となり、更に排気流106および給気流107が補強手段108を通過する際に急縮小と急拡大となり、気流の圧力損失が増大する。   However, as shown in FIG. 7B, since the reinforcing means 108 is inside the exhaust air passage 104 and the air supply air passage 105, the reinforcing means 108 itself becomes a resistance, and the exhaust air flow 106 and the air supply air 107 are further strengthened. When passing through the air, the air pressure decreases and expands rapidly, and the pressure loss of the airflow increases.

このように対向流型熱交換素子において、排気風路104を流通する排気流106と給気風路105を流通する給気流107が対向する中央部において、圧力損失を増大させずに伝熱板103のたわみを抑制するという課題があった。   As described above, in the counterflow type heat exchange element, the heat transfer plate 103 is formed without increasing the pressure loss in the central portion where the exhaust airflow 106 flowing through the exhaust airflow passage 104 and the supply airflow 107 flowing through the air supply airflow passage 105 face each other. There was a problem of suppressing the deflection of the.

そこで本発明は上記従来の課題を解決するものであり、排気風路を流通する排気流と給気風路を流通する給気流が対向する中央部において、圧力損失を増大させずに伝熱板のたわみを抑制する対向流型熱交換素子を提供することを目的とする。また、この対向流型熱交換素子を用いることで熱交換型換気機器の送風手段の消費電力の低減を図り、省エネ効果のある熱交換型換気機器を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problem, and in the central portion where the exhaust air flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are opposed to each other, the heat transfer plate is not increased without increasing the pressure loss. It is an object of the present invention to provide a counterflow heat exchange element that suppresses deflection. Another object of the present invention is to provide a heat exchange ventilator having an energy saving effect by reducing the power consumption of the air blowing means of the heat exchange ventilator by using the counter flow type heat exchange element.

そして、この目的を達成するために、本発明は、間隔を保持する間隔保持手段を備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する対向流型熱交換素子であって、前記対向流型熱交換素子は前記中央部の前記排気風路および前記給気風路が並行で波形とするものであり、これにより所期の目的を達成するものである。   And in order to achieve this object, the present invention comprises a plurality of heat transfer means provided with interval holding means for holding intervals, and alternately configured exhaust air passages and supply air passages one by one, The exhaust airflow flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are orthogonal or oblique at both ends of the exhaust air passage and the air supply air passage, and are opposed at the center between the both ends. The counterflow type heat exchange element is configured such that the exhaust air passage and the air supply air passage in the central portion have a waveform in parallel, thereby achieving the intended purpose. To do.

本発明によれば、対向流型熱交換素子は中央部の排気風路および給気風路が並行で波形とする構成にしたことにより、排気風路を流通する排気流と給気風路を流通する給気流が対向する中央部において、圧力損失を増大させずに伝熱板のたわみを抑制することができるという効果を得ることができる。   According to the present invention, the counterflow type heat exchange element is configured such that the exhaust air passage and the supply air passage in the center are corrugated in parallel, so that the exhaust flow and the supply air passage that circulate through the exhaust air passage are circulated. The effect that the deflection of the heat transfer plate can be suppressed without increasing the pressure loss in the central portion where the air supply air faces is obtained.

また、本発明の請求項1から3のいずれか一項に記載の対向流型熱交換素子を用いた熱交換型換気機器という構成にしてもよい。これにより、熱交換型換気機器の送風手段の消費電力を低減することができ、省エネ効果のある熱交換型換気機器を提供するという効果を得ることができる。   Moreover, you may make it the structure of the heat exchange type ventilation apparatus using the counterflow type heat exchange element as described in any one of Claim 1 to 3 of this invention. Thereby, the power consumption of the ventilation means of a heat exchange type | mold ventilation apparatus can be reduced, and the effect of providing the heat exchange type | mold ventilation apparatus with an energy-saving effect can be acquired.

本発明の実施の形態1の熱交換型換気機器の構成を示す概念図The conceptual diagram which shows the structure of the heat exchange type | mold ventilation apparatus of Embodiment 1 of this invention. 同対向流型熱交換素子11の外観を示す斜視図The perspective view which shows the external appearance of the counterflow type heat exchange element 11 (a)同対向流型熱交換素子11を分解した排気風路側の平面図、(b)同対向流型熱交換素子11を分解した給気風路側の平面図(A) A plan view of the exhaust air passage side where the counterflow type heat exchange element 11 is disassembled, (b) a plan view of the supply air passage side where the counterflow type heat exchange element 11 is disassembled. 同対向流型熱交換素子11から伝熱板12を除いた平面図The top view which removed the heat exchanger plate 12 from the counterflow type heat exchange element 11 (a)本発明の実施の形態2の対向流型熱交換素子11aの構成を示す平面図、(b)同対向流型熱交換素子11bの構成を示す平面図(A) The top view which shows the structure of the counterflow type heat exchange element 11a of Embodiment 2 of this invention, (b) The top view which shows the structure of the counterflow type heat exchange element 11b (a)従来の対向流型熱交換素子101の外観を示す斜視図、(b)同対向流型熱交換素子101から伝熱板103を除いた平面図(A) The perspective view which shows the external appearance of the conventional counterflow type heat exchange element 101, (b) The top view which remove | excluded the heat exchanger plate 103 from the counterflow type heat exchange element 101 (a)従来の対向流型熱交換素子101aから伝熱板103を除いた平面図、(b)同対向流型熱交換素子101aの中央部の排気風路104と給気風路105の各1層の形状を示すF−F断面図(A) The top view which remove | excluded the heat exchanger plate 103 from the conventional counterflow type heat exchange element 101a, (b) 1 each of the exhaust air path 104 and the supply air path 105 of the center part of the counterflow type heat exchange element 101a. FF sectional view showing the shape of the layer

本発明の請求項1記載の対向流型熱交換素子は、間隔を保持する間隔保持手段を備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する対向流型熱交換素子であって、前記中央部の前記排気風路および前記給気風路が並行で波形であるという構成を有する。これにより、排気風路と給気風路が直交または斜交する両端部では、伝熱手段は上下の間隔保持手段によって井形状に保持される構成のため、排気風路と給気風路にそれぞれ排気流および給気流を流通させた場合も、気流の圧力で伝熱手段はたわむことが少なく、圧力損失を増大させずに伝熱手段のたわみを抑制することができるという効果を奏する。また、排気風路と給気風路が対向する中央部では、排気風路および給気風路を並行で波形としたことで、特別な部材を用いなくても伝熱手段は上下の間隔保持手段よって略井形状に保持される構成のため、排気風路と給気風路にそれぞれ排気流および給気流を流通させた場合も、気流の圧力で伝熱手段はたわむことが少なく、圧力損失を増大させずに伝熱手段のたわみを抑制することができるという効果を奏する。   The counterflow type heat exchange element according to claim 1 of the present invention is configured by stacking a plurality of heat transfer means each having a gap holding means for holding a gap, and alternately configuring an exhaust air passage and a supply air passage one by one. The exhaust air flowing through the exhaust air passage and the air supply air flowing through the air supply air passage are orthogonal or oblique at both ends of the exhaust air passage and the air supply air passage. The exhaust air flow path and the air supply air path in the central portion have a configuration that is corrugated in parallel. As a result, at both ends where the exhaust air passage and the supply air passage are orthogonal or obliquely crossed, the heat transfer means is held in a well shape by the upper and lower spacing holding means, so that the exhaust air passage and the supply air passage are exhausted respectively. Even when the flow and the supply airflow are circulated, the heat transfer means is hardly deflected by the pressure of the airflow, and it is possible to suppress the deflection of the heat transfer means without increasing the pressure loss. Further, in the central portion where the exhaust air passage and the air supply air passage are opposed to each other, the exhaust air passage and the air supply air passage are corrugated in parallel, so that the heat transfer means can be held by the upper and lower spacing holding means without using a special member. Because the structure is maintained in a substantially well shape, even when the exhaust air flow and the air supply air flow are circulated through the exhaust air passage and the air supply air passage, respectively, the heat transfer means is less likely to bend due to the pressure of the air flow, increasing the pressure loss. The effect that the deflection | deviation of a heat-transfer means can be suppressed is produced.

また、前記中央部において、一層ごとに波形が逆向きであるという構成を有する。これにより、排気風路と給気風路が対向する中央部では、排気風路と給気風路は一定の開口面積を維持した構成にすることができるので、気流の急縮小や急拡大がなく圧力損失の増大を抑制することができるという効果を奏する。   Moreover, in the said center part, it has the structure that a waveform is reverse direction for every layer. As a result, in the central portion where the exhaust air passage and the supply air passage face each other, the exhaust air passage and the supply air passage can be configured to maintain a constant opening area. There is an effect that an increase in loss can be suppressed.

また、前記中央部において、逆向きの波形の頂点部同士または前記逆向きの波形の頂点部を含む周辺部が重なり合うという構成を有する。これにより、特別な部材を用いなくても伝熱手段は上下の間隔保持手段によって井形状に保持される構成のため、排気風路と給気風路にそれぞれ排気流および給気流を流通させた場合も、気流の圧力で伝熱手段はたわむことが少なく、圧力損失を増大させずに伝熱手段のたわみを抑制することができるという効果を奏する。更に排気風路と給気風路が対向する中央部では、排気風路の波形の間隔保持手段の頂点部と給気風路の波形の間隔保持手段の頂点部が重なり合う構成または逆向きの波形の頂点部を含む周辺部が重なり合う構成にすることで、上下の間隔保持手段が接触しているため、積層の上下方向の強度を向上することができるという効果を奏する。   Further, in the central portion, the apex portions of the reverse waveform or the peripheral portion including the apex portion of the reverse waveform overlap each other. As a result, the heat transfer means is held in a well shape by the upper and lower gap holding means without using special members, so that when the exhaust flow and the supply air flow are circulated through the exhaust air flow path and the supply air flow path, respectively. However, the heat transfer means hardly bends due to the pressure of the airflow, and there is an effect that the deflection of the heat transfer means can be suppressed without increasing the pressure loss. Further, in the central portion where the exhaust air passage and the supply air passage are opposed to each other, the apex portion of the exhaust air passage waveform interval holding means and the apex portion of the supply air passage waveform interval holding means overlap or the apex of the reverse waveform. By making the peripheral part including the part overlap, there is an effect that the vertical strength of the stack can be improved because the upper and lower spacing holding means are in contact with each other.

また、本発明の請求項1から3のいずれか一項に記載の対向流型熱交換素子を用いた熱交換型換気機器という構成にしてもよい。これにより、理論的熱交換効率が高い対向流方式の対向流型熱交換素子の搭載により、建物の換気による空調負荷を低減する効果が高く、更に圧力損失を増大させずに対向流型熱交換素子の伝熱手段のたわみを抑制することで低圧力損失化が図れるため、熱交換型換気機器の送風手段の消費電力を低減することができ、省エネ効果のある熱交換型換気機器を提供することができるという効果を奏する。   Moreover, you may make it the structure of the heat exchange type ventilation apparatus using the counterflow type heat exchange element as described in any one of Claim 1 to 3 of this invention. This makes it possible to reduce the air-conditioning load due to ventilation of the building by installing a counter-flow type counter-current heat exchange element with high theoretical heat exchange efficiency, and counter-current type heat exchange without increasing pressure loss. Since the pressure loss can be reduced by suppressing the deflection of the heat transfer means of the element, the power consumption of the air blowing means of the heat exchange type ventilator can be reduced, and a heat exchange type ventilator having an energy saving effect is provided. There is an effect that can be.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は熱交換型換気機器の構成を示す概念図である。図1に示すように、熱交換型換気機器は、排気流、給気流の送風路と、排気流、給気流を送風する送風手段と、排気流と給気流の間で熱交換する対向流型熱交換素子で構成されている。
(Embodiment 1)
FIG. 1 is a conceptual diagram showing a configuration of a heat exchange type ventilation device. As shown in FIG. 1, the heat exchange type ventilator has an exhaust flow and a supply air flow passage, an exhaust flow and a blowing means for blowing the supply air flow, and a counter flow type that exchanges heat between the exhaust flow and the supply air flow. It is composed of a heat exchange element.

排気流1(図中の実線矢印)、給気流2(図中の破線矢印)の送風路には、内気(RA)を導入する内気口3から屋外に排気(EA)する排気口4にかけての排気送風路5と、外気(OA)を導入する外気口6から室内に給気(SA)を吹き出す給気口7にかけての給気送風路8と、排気送風路5に内気口3から排気口4に向かう排気流1を発生させる排気送風手段9と、給気送風路8に外気口6から給気口7に向かう給気流2を発生させる給気送風手段10と、排気送風路5と給気送風路8が交差する位置に、排気送風路5を流通する排気流1と給気送風路8を流通する給気流2との間で熱交換する対向流型熱交換素子11が設けられている。   In the air flow path of the exhaust flow 1 (solid line arrow in the figure) and the supply air flow 2 (broken line arrow in the figure), the air flow from the inside air port 3 for introducing the inside air (RA) to the exhaust port 4 for exhausting the air to the outside (EA) An exhaust air supply path 8, an air supply air path 8 extending from an outside air inlet 6 for introducing outside air (OA) to an air supply opening 7 for blowing supply air (SA) into the room, and an exhaust air outlet from the inside air outlet 3 to the exhaust air supply path 5. Exhaust air blowing means 9 for generating an exhaust flow 1 directed to 4, an air supply air blowing means 10 for generating an air supply air flow 2 directed from the outside air port 6 to the air supply port 7 in the air supply air passage 8, A counter flow type heat exchange element 11 that exchanges heat between the exhaust air flow 1 that flows through the exhaust air passage 5 and the air supply air 2 that flows through the air supply air passage 8 is provided at a position where the air air passage 8 intersects. Yes.

ここで対向流型熱交換素子11の構成について図2、図3、図4を用いて説明する。   Here, the configuration of the counter flow type heat exchange element 11 will be described with reference to FIGS. 2, 3, and 4.

図2は対向流型熱交換素子11の外観を示す斜視図であり、図3(a)は対向流型熱交換素子11を分解した時の排気風路側の平面図であり、図3(b)は対向流型熱交換素子11を分解した時の給気風路側の平面図であり、図4は対向流型熱交換素子11から伝熱板を除いた平面図である。   FIG. 2 is a perspective view showing the external appearance of the counterflow type heat exchange element 11, and FIG. 3A is a plan view of the exhaust air passage side when the counterflow type heat exchange element 11 is disassembled. ) Is a plan view of the supply air passage side when the counterflow type heat exchange element 11 is disassembled, and FIG. 4 is a plan view of the counterflow type heat exchange element 11 excluding the heat transfer plate.

図2および図3に示すように、対向流型熱交換素子11は伝熱手段としての外形が略六角形の伝熱板12と、伝熱板12どうしの間隔を保持する間隔保持手段としての間隔リブ13を備え、これらが排気風路14と給気風路15を1層ずつ交互に構成している。積層数は対向流型熱交換素子11を搭載する熱交換型換気機器の大きさや風量によって決定される。   As shown in FIG. 2 and FIG. 3, the counter flow type heat exchange element 11 is an interval holding unit that holds an interval between the heat transfer plate 12 having a substantially hexagonal outer shape as the heat transfer unit and the heat transfer plate 12. The spacing ribs 13 are provided, and these constitute the exhaust air passages 14 and the supply air passages 15 one by one alternately. The number of stacked layers is determined by the size and air volume of the heat exchange type ventilation device on which the counterflow type heat exchange element 11 is mounted.

伝熱板12は排気流1と給気流2の間で熱交換する役割を持つものであり、温度だけを交換するときは伝熱板12にアルミニウムや銅などの金属や樹脂を用い、温度と湿度を交換するときは伝熱板12に紙や透湿膜などを用い、目的に応じて適宜選択して良い。   The heat transfer plate 12 has a role of exchanging heat between the exhaust flow 1 and the supply air flow 2. When only the temperature is exchanged, a metal or resin such as aluminum or copper is used for the heat transfer plate 12, and the temperature and When exchanging the humidity, paper or a moisture permeable film may be used for the heat transfer plate 12 and may be appropriately selected according to the purpose.

間隔リブ13は樹脂や金属で構成される。特に間隔リブ13は伝熱板12を金型内に挿入し、樹脂によるインサート射出成形による一体成形で形成すると良い。   The spacing rib 13 is made of resin or metal. In particular, the spacing rib 13 is preferably formed by integral molding by inserting the heat transfer plate 12 into a mold and insert injection molding with resin.

図3に示すように、排気風路14を流通する排気流1と給気風路15を流通する給気流2とは、排気風路14および給気風路15の両端部(図3のB部およびD部:以降省略)では直交または斜交し、この両端部の間の中央部(図3のC部:以降省略)で対向する対向流型の熱交換素子である。なお、この明細書における両端部は図3のB部およびD部の範囲を指し、中央部は図3のC部を指す。中央部の排気風路14および給気風路15は並行で波形であり、一層ごとに波形が逆向きに構成されている。本実施の形態1の対向流型熱交換素子11は、図3(a)の対向流型熱交換素子11を分解した時の排気風路側の平面図と、図3(b)の対向流型熱交換素子11を分解した時の給気風路側の平面図とがA−A線に対して、線対称の関係となる構成である。   As shown in FIG. 3, the exhaust air flow 1 that flows through the exhaust air passage 14 and the air supply air flow 2 that flows through the air supply air passage 15 are both ends of the exhaust air passage 14 and the air supply air passage 15 (B portion in FIG. 3 and This is a counter-flow type heat exchange element that is orthogonal to or obliquely crossed at D part (hereinafter omitted) and is opposed at the central part (C part in FIG. 3: omitted hereinafter) between both ends. In addition, the both ends in this specification refer to the range of B part and D part of FIG. 3, and a center part refers to C part of FIG. The central exhaust air passage 14 and the air supply air passage 15 have a waveform in parallel, and the waveforms are formed in opposite directions for each layer. The counter flow type heat exchange element 11 of the first embodiment includes a plan view on the exhaust air passage side when the counter flow type heat exchange element 11 of FIG. 3A is disassembled, and a counter flow type of FIG. 3B. The plan view on the side of the air supply path when the heat exchange element 11 is disassembled is a configuration that is line-symmetric with respect to the line AA.

図4は対向流型熱交換素子11の内部構成が理解しやすいように伝熱板12を除いた平面図である。図4に示すように、排気風路14と給気風路15が直交または斜交する両端部では、伝熱板12(図中は削除)は上下の間隔リブ13によって井形状に保持される構成である。また、排気風路14と給気風路15が対向する中央部では、排気風路14および給気風路15を並行で波形とし、一層ごとに波形が逆向きに構成したことで、伝熱板12(図中は削除)は上下の間隔リブ13によって略井形状に保持される構成である。   FIG. 4 is a plan view excluding the heat transfer plate 12 so that the internal configuration of the counterflow type heat exchange element 11 can be easily understood. As shown in FIG. 4, at both ends where the exhaust air passage 14 and the supply air passage 15 are orthogonal or obliquely crossed, the heat transfer plate 12 (not shown in the figure) is held in a well shape by the upper and lower spacing ribs 13. It is. Further, in the central portion where the exhaust air passage 14 and the supply air passage 15 are opposed to each other, the exhaust air passage 14 and the supply air passage 15 are corrugated in parallel, and the corrugations are reversed in each layer. (Deleted in the figure) is configured to be held in a substantially well shape by the upper and lower spacing ribs 13.

上記のように構成された熱交換型換気機器および対向流型熱交換素子の作用と効果について、以下に説明する。   The operation and effect of the heat exchange type ventilation device and the counter flow type heat exchange element configured as described above will be described below.

図1に示すように熱交換型換気機器において、排気流1は排気送風手段9の運転により、内気(RA)を内気口3から導入し、排気送風路5を通り、対向流型熱交換素子11の排気風路14を通過する時に、対向流型熱交換素子11の給気風路15を通過する給気流2と熱交換した後、排気口4から屋外に排出される。一方、給気流2は給気送風手段10の運転により、外気(OA)を外気口6から導入し、給気送風路8を通り、対向流型熱交換素子11の給気風路15を通過する時に、対向流型熱交換素子11の排気風路14を通過する排気流1と熱交換した後、給気口7から室内に給気される。   As shown in FIG. 1, in the heat exchange type ventilation device, the exhaust air flow 1 introduces the inside air (RA) from the inside air port 3 by the operation of the exhaust air blowing means 9, passes through the exhaust air passage 5, and passes through the counter flow type heat exchange element. After passing through the exhaust air passage 14, the heat exchange with the air supply air 2 passing through the air supply air passage 15 of the counterflow heat exchange element 11 is performed and then discharged to the outside from the exhaust port 4. On the other hand, as the air supply air 2 is operated, the external air (OA) is introduced from the external air opening 6 through the air supply air blowing means 10, passes through the air supply air passage 8, and passes through the air supply air passage 15 of the counterflow type heat exchange element 11. Sometimes, after heat exchange with the exhaust flow 1 passing through the exhaust air flow path 14 of the counter flow type heat exchange element 11, the air is supplied into the room through the air supply port 7.

対向流型熱交換素子11は理論的熱交換効率が高い対向流方式の構成に加え、中央部の排気風路14と給気風路15は、間隔リブ13を波形状にすることにより、一定容積内で排気風路14と給気風路15の流路を長くすることで熱交換効率を向上させている。   The counter-flow heat exchange element 11 has a constant volume by forming the interval ribs 13 in a wave shape in addition to the counter-flow configuration having a high theoretical heat exchange efficiency, and the exhaust air passage 14 and the supply air passage 15 at the center. The heat exchange efficiency is improved by lengthening the flow path of the exhaust air path 14 and the supply air path 15.

そして、図4に示すように、排気風路14と給気風路15が直交または斜交する両端部では、伝熱板12(図中は削除)は上下の間隔リブ13によって井形状に保持される構成のため、排気風路14と給気風路15にそれぞれ排気流1および給気流2を流通させた場合も、気流の圧力で伝熱板12はたわむことが少なく、圧力損失を増大させずに伝熱板12のたわみを抑制することができる。また、排気風路14と給気風路15が対向する中央部では、排気風路14および給気風路15を並行で波形とし、一層ごとに波形が逆向きに構成したことで、特別な部材を用いなくても伝熱板12(図中は削除)は上下の間隔リブ13によって略井形状に保持される構成のため、排気風路14と給気風路15にそれぞれ排気流1および給気流2を流通させた場合も、気流の圧力で伝熱板12はたわむことが少なく、圧力損失を増大させずに伝熱板12のたわみを抑制することができる。   As shown in FIG. 4, the heat transfer plate 12 (not shown in the figure) is held in a well shape by the upper and lower spacing ribs 13 at both ends where the exhaust air passage 14 and the supply air passage 15 are orthogonal or obliquely crossed. Therefore, even when the exhaust air flow 1 and the air supply air flow 2 are circulated through the exhaust air passage 14 and the air supply air passage 15, respectively, the heat transfer plate 12 is hardly bent by the pressure of the air flow, and the pressure loss is not increased. In addition, the deflection of the heat transfer plate 12 can be suppressed. Further, in the central portion where the exhaust air passage 14 and the supply air passage 15 face each other, the exhaust air passage 14 and the air supply air passage 15 are formed in a waveform in parallel, and the waveforms are configured in reverse directions for each layer. Even if it is not used, the heat transfer plate 12 (not shown in the figure) is held in a substantially well shape by the upper and lower spacing ribs 13, so that the exhaust air flow 1 and the air supply air flow 2 are respectively supplied to the exhaust air passage 14 and the air supply air passage 15. When the heat transfer plate 12 is circulated, the heat transfer plate 12 is hardly deflected by the pressure of the airflow, and the deflection of the heat transfer plate 12 can be suppressed without increasing the pressure loss.

更に排気風路14と給気風路15が対向する中央部では、排気風路14と給気風路15は一定の開口面積を維持した構成のため、気流の急縮小や急拡大がなく圧力損失の増大を抑制することができる。   Further, in the central portion where the exhaust air passage 14 and the air supply air passage 15 are opposed to each other, the exhaust air passage 14 and the air supply air passage 15 are configured to maintain a constant opening area. The increase can be suppressed.

このように熱交換型換気機器は、理論的熱交換効率が高い対向流方式の対向流型熱交換素子の搭載により、建物の換気による空調負荷を低減する効果が高く、更に圧力損失を増大させずに対向流型熱交換素子の伝熱板のたわみを抑制することで低圧力損失化が図れるため、熱交換型換気機器の送風手段の消費電力を低減することができ、省エネ効果のある熱交換型換気機器を提供することができる。   In this way, the heat exchange type ventilation equipment is highly effective in reducing the air conditioning load due to ventilation of the building by installing the counter flow type heat exchange element of the counter flow type with high theoretical heat exchange efficiency, and further increases the pressure loss. Therefore, it is possible to reduce the pressure loss by suppressing the deflection of the heat transfer plate of the counter-flow type heat exchange element without reducing the power consumption of the air blowing means of the heat exchange type ventilator. Exchangeable ventilation equipment can be provided.

(実施の形態2)
次に、本発明の実施の形態2について、図5を用いて説明する。図5aは対向流型熱交換素子11aの構成を示す平面図であり、図5bは対向流型熱交換素子11bの構成を示す平面図である。なお、対向流型熱交換素子11aおよび対向流型熱交換素子11bの内部構成が理解しやすいように伝熱板12を除いた平面図としている。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described with reference to FIG. FIG. 5A is a plan view showing the configuration of the counter flow type heat exchange element 11a, and FIG. 5B is a plan view showing the configuration of the counter flow type heat exchange element 11b. In addition, in order to make it easy to understand the internal configuration of the counter flow type heat exchange element 11a and the counter flow type heat exchange element 11b, a plan view is shown in which the heat transfer plate 12 is removed.

実施の形態1と同一部分は同一番号とし、同一の作用効果を有するものとし、詳細な説明は省略する。   The same parts as those in the first embodiment are denoted by the same reference numerals and have the same operational effects, and detailed description thereof is omitted.

図5aに示すように、対向流型熱交換素子11aは中央部において、逆向きの波形の頂点部同士が重なり合う構成としたものである。すなわち、排気風路14と給気風路15が対向する中央部では、排気風路14の波形の間隔リブ13の頂点部と給気風路15の波形の間隔リブ13の頂点部が重なり合う構成となる。   As shown in FIG. 5a, the counter-flow heat exchange element 11a has a configuration in which the apexes of the waveform in the opposite direction overlap each other at the center. That is, at the central portion where the exhaust air passage 14 and the supply air passage 15 are opposed to each other, the apex portion of the corrugated spacing rib 13 of the exhaust air passage 14 and the apex portion of the corrugation spacing rib 13 of the supply air passage 15 are overlapped. .

次に図5bに示すように、対向流型熱交換素子11bは中央部において、逆向きの波形の頂点部を含む周辺部が重なり合う構成としたものである。すなわち、排気風路14と給気風路15が対向する中央部では、排気風路14の波形の間隔リブ13の頂点部を含む周辺部と給気風路15の波形の間隔リブ13の頂点部を含む周辺部が重なり合う構成となり、図5bの斜線部Eに該当する部分が重なり合う。   Next, as shown in FIG. 5b, the counter flow type heat exchange element 11b has a configuration in which the peripheral part including the apex part of the waveform in the opposite direction is overlapped in the central part. That is, in the central portion where the exhaust air passage 14 and the supply air passage 15 face each other, the peripheral portion including the apex portion of the corrugated interval rib 13 of the exhaust air passage 14 and the apex portion of the corrugation interval rib 13 of the supply air passage 15 are provided. The surrounding peripheral part overlaps, and the part corresponding to the shaded part E in FIG. 5b overlaps.

上記のように構成された対向流型熱交換素子の作用と効果について、以下に説明する。   The operation and effect of the counterflow heat exchange element configured as described above will be described below.

図5aに示すように対向流型熱交換素子11aにおいて、排気風路14と給気風路15が対向する中央部では、排気風路14および給気風路15を並行で波形とし、一層ごとに波形が逆向きに構成し、更に逆向きの波形の頂点部同士が重なり合う構成としたことで、特別な部材を用いなくても伝熱板12(図中は削除)は上下の間隔リブ13によって井形状に保持される構成のため、排気風路14と給気風路15にそれぞれ排気流1および給気流2を流通させた場合も、気流の圧力で伝熱板12はたわむことが少なく、圧力損失を増大させずに伝熱板12のたわみを抑制することができる。   As shown in FIG. 5a, in the counter flow type heat exchange element 11a, the exhaust air passage 14 and the supply air passage 15 have a waveform in parallel at the central portion where the exhaust air passage 14 and the supply air passage 15 face each other, and the waveform is formed for each layer. Are arranged in the opposite direction, and the apexes of the waveform in the opposite direction are overlapped with each other, so that the heat transfer plate 12 (not shown in the figure) can be well defined by the upper and lower spacing ribs 13 without using a special member. Due to the configuration maintained in the shape, even when the exhaust air flow 1 and the air supply air flow 2 are circulated through the exhaust air passage 14 and the air supply air passage 15, respectively, the heat transfer plate 12 is less likely to bend by the pressure of the air flow, and the pressure loss The deflection of the heat transfer plate 12 can be suppressed without increasing the value.

更に排気風路14と給気風路15が対向する中央部では、排気風路14の波形の間隔リブ13の頂点と給気風路15の波形の間隔リブ13の頂点が重なり合う構成にすることで、上下の間隔リブ13が接触しているため、積層の上下方向の強度を向上することができる。   Further, in the central portion where the exhaust air passage 14 and the supply air passage 15 face each other, the top of the corrugated spacing rib 13 of the exhaust air passage 14 and the top of the corrugated spacing rib 13 of the air supply air passage 15 overlap each other, Since the upper and lower spacing ribs 13 are in contact with each other, the vertical strength of the stack can be improved.

また、図5bに示すように対向流型熱交換素子11bにおいて、排気風路14と給気風路15が対向する中央部では、排気風路14および給気風路15を並行で波形とし、一層ごとに波形が逆向きに構成し、更に逆向きの波形の頂点部を含む周辺部が重なり合う構成としたことで、特別な部材を用いなくても伝熱板12(図中は削除)は上下の間隔リブ13によって略井形状に保持される構成のため、排気風路14と給気風路15にそれぞれ排気流1および給気流2を流通させた場合も、気流の圧力で伝熱板12はたわむことが少なく、圧力損失を増大させずに伝熱板12のたわみを抑制することができる。   Further, as shown in FIG. 5b, in the counter flow type heat exchange element 11b, at the central portion where the exhaust air passage 14 and the supply air passage 15 face each other, the exhaust air passage 14 and the supply air passage 15 are corrugated in parallel. In this case, the heat transfer plate 12 (not shown in the figure) can be moved up and down without using a special member. Since the structure is held in a substantially well shape by the spacing ribs 13, the heat transfer plate 12 bends with the pressure of the airflow even when the exhaust airflow 1 and the airflow 2 are circulated through the exhaust air passage 14 and the air supply air passage 15, respectively. Therefore, the deflection of the heat transfer plate 12 can be suppressed without increasing the pressure loss.

更に排気風路14と給気風路15が対向する中央部では、排気風路14の波形の間隔リブ13の頂点部を含む周辺部と給気風路15の波形の間隔リブ13の頂点部を含む周辺部が重なり合う構成にすることで、上下の間隔リブ13が接触しているため、積層の上下方向の強度を向上することができる。   Further, in the central portion where the exhaust air passage 14 and the supply air passage 15 are opposed to each other, the peripheral portion including the apex portion of the corrugated interval rib 13 of the exhaust air passage 14 and the apex portion of the corrugation interval rib 13 of the supply air passage 15 are included. Since the upper and lower spacing ribs 13 are in contact with each other, the strength in the vertical direction of the stack can be improved.

本発明にかかる対向流型熱交換素子とそれを用いた熱交換型換気機器は、圧力損失を増大させずに伝熱板のたわみを抑制することができるので、熱交換型換気機器の送風手段の消費電力低減を可能とするものであるので、省エネ効果のある対向流型熱交換素子とそれを用いた熱交換型換気機器として有用である。   Since the counterflow type heat exchange element and the heat exchange type ventilator using the same according to the present invention can suppress the deflection of the heat transfer plate without increasing the pressure loss, the air blowing means of the heat exchange type ventilator Therefore, it is useful as a counterflow type heat exchange element having an energy saving effect and a heat exchange type ventilation device using the same.

1 排気流
2 給気流
3 内気口
4 排気口
5 排気送風路
6 外気口
7 給気口
8 給気送風路
9 排気送風手段
10 給気送風手段
11、11a、11b 対向流型熱交換素子
12 伝熱板
13 間隔リブ
14 排気風路
15 給気風路
DESCRIPTION OF SYMBOLS 1 Exhaust flow 2 Supply air flow 3 Inside air port 4 Exhaust port 5 Exhaust air passage 6 Outside air port 7 Air supply port 8 Supply air air passage 9 Exhaust air blower means 10 Supply air blower means 11, 11a, 11b Counterflow type heat exchange element 12 Transmission Hot plate 13 Spacing rib 14 Exhaust air passage 15 Supply air passage

Claims (4)

間隔を保持する間隔保持手段を備えた複数の伝熱手段を積層して排気風路と給気風路を1層ずつ交互に構成し、前記排気風路を流通する排気流と前記給気風路を流通する給気流とが、前記排気風路および前記給気風路の両端部で直交または斜交し、この両端部の間の中央部で対向する対向流型熱交換素子であって、前記中央部の前記排気風路および前記給気風路が並行で波形であることを特徴とする対向流型熱交換素子。 A plurality of heat transfer means each having a gap holding means for holding a gap are stacked to alternately constitute an exhaust air passage and a supply air passage one layer at a time, and the exhaust flow passing through the exhaust air passage and the supply air passage are arranged. A counter current type heat exchange element that is perpendicular to or obliquely intersects at both ends of the exhaust air passage and the air supply air passage, and is opposed to a central portion between the both ends, The exhaust air flow path and the air supply air path of the countercurrent type heat exchange element are characterized by being corrugated in parallel. 前記中央部において、一層ごとに波形が逆向きであることを特徴とする請求項1に記載の対向流型熱交換素子。 2. The countercurrent heat exchange element according to claim 1, wherein in the central portion, the waveform is reversed in each layer. 前記中央部において、逆向きの波形の頂点部同士または前記逆向きの波形の頂点部を含む周辺部が重なり合うことを特徴とする請求項2に記載の対向流型熱交換素子。 The counterflow type heat exchange element according to claim 2, wherein in the center portion, apexes of the reverse waveform overlap each other or a peripheral portion including the apex of the reverse waveform. 請求項1から3のいずれか一項に記載の対向流型熱交換素子を用いた熱交換型換気機器。 The heat exchange type ventilation apparatus using the counterflow type heat exchange element as described in any one of Claim 1 to 3.
JP2012087098A 2012-04-06 2012-04-06 Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same Pending JP2013217542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012087098A JP2013217542A (en) 2012-04-06 2012-04-06 Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012087098A JP2013217542A (en) 2012-04-06 2012-04-06 Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same

Publications (1)

Publication Number Publication Date
JP2013217542A true JP2013217542A (en) 2013-10-24

Family

ID=49589843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012087098A Pending JP2013217542A (en) 2012-04-06 2012-04-06 Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same

Country Status (1)

Country Link
JP (1) JP2013217542A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it
US10408479B2 (en) 2013-11-28 2019-09-10 F2A-Fabrication Aeraulique Et Acoustique Dual-flow air/air exchanger, apparatus for processing air and method for protecting such an exchanger against ice and for cleaning same

Similar Documents

Publication Publication Date Title
KR20140001200A (en) Dual air flow exchanger with enhanced heat and humidity transfers
JP2011075118A (en) Outside air treating air conditioner
JP2015087058A (en) Total heat exchanger type ventilation fan
JP2013113493A (en) Heat exchange element and heat exchange ventilator using the same
JP2013217542A (en) Counterflow type heat exchange element, and heat exchange type ventilation apparatus using the same
KR20160074734A (en) Plume reducing cooling tower having dried air path
KR20080073488A (en) Ventilation apparatus
KR100803376B1 (en) Heat exchange device
KR101784135B1 (en) Ventilating system for reducing fire damage
KR200384504Y1 (en) Sensible heat exchanging block and device thereby
JP2009121727A (en) Total enthalpy heat exchange-type ventilation device
KR20140113023A (en) Heat recovery ventilation system with counter-flow heat exchanger
KR101431211B1 (en) Electrical Heating Element Using Counterflow Ventilation Unit
JP2013245871A (en) Heat exchanging ventilator
CN202853043U (en) Thinned heat exchanging type air interchanger
JP5654670B2 (en) Cooling device and sensible heat exchanger
JP2014062656A (en) Heat exchange element and heat exchange type ventilator using the same
JP6028214B2 (en) Heat exchange element and heat exchange type ventilation equipment using it
KR100740404B1 (en) Energy recovery exchange of device
KR101207875B1 (en) a ventilating apparatus for building
KR200212983Y1 (en) Heat exchange unit
JPS61110831A (en) Ventilator with heat exchanger
JP2013167392A (en) Heat transfer element and heat exchange type ventilation device using the same
WO2010047066A1 (en) Heat exchanger
KR200247535Y1 (en) Heat recovery device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312