JP2013217357A - Fluid accelerating penetrating type blade - Google Patents

Fluid accelerating penetrating type blade Download PDF

Info

Publication number
JP2013217357A
JP2013217357A JP2012098167A JP2012098167A JP2013217357A JP 2013217357 A JP2013217357 A JP 2013217357A JP 2012098167 A JP2012098167 A JP 2012098167A JP 2012098167 A JP2012098167 A JP 2012098167A JP 2013217357 A JP2013217357 A JP 2013217357A
Authority
JP
Japan
Prior art keywords
blade
fluid
wind
pressure
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098167A
Other languages
Japanese (ja)
Other versions
JP5093629B1 (en
Inventor
Akihisa Matsuzono
明久 松園
Masaki Suzuki
雅紀 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012098167A priority Critical patent/JP5093629B1/en
Application granted granted Critical
Publication of JP5093629B1 publication Critical patent/JP5093629B1/en
Publication of JP2013217357A publication Critical patent/JP2013217357A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the following problems: spread of compact wind power generation capable of generating electric power anywhere regardless of day and night and sunshine, as clean energy that requires minimum power generation cost when a global environment and energy problems are considered totally from raw material generation to disposal cost; it is important to generate electric power even in a light-wind area (1.6-3.3 m/sec: a Meteorological Agency wind power class table) which occupies a long time under an actual operation condition, to ensure stable operation, easy and inexpensive manufacturing, and safety even in a severe natural environment such as a typhoon and a sudden gust, without requiring long-term maintenance.SOLUTION: A wind turbine can be started from a light wind area. The wind turbine is configured to allow a fluid to flow through a blade with a pressure difference, in addition to a double-sided lift blade that enhances rotation efficiency even with a weak wind, based on a vertical shaft type, with a simple structure requiring no control for the wind direction, and to increase torque with exhaust force. A compact wind power generation can be achieved, which expands operation time of a weak wind area due to a structure for increasing rotation speed by lift acceleration.

Description

本発明は風力発電、水力発電等において弱い流速域での発電効率を向上させるためのブレード形状に関するものである。  The present invention relates to a blade shape for improving power generation efficiency in a weak flow velocity region in wind power generation, hydroelectric power generation, and the like.

特に風力発電用の風車は、軟風(3.4〜5.4m/秒:気象庁風力階級表)から雄風(10.8〜13.8m/秒)程度の風さえあれば発電容易で環境にも優しく、古くから利用されている優れた発電手段の一つである。しかし市街地などでは、軽風域(1.6〜3.3m/秒)が長時間続くため発電能力が低下し、如何に発電効率を向上させるかが大きな課題となっている。  In particular, wind turbines for wind power generation are easy to generate electricity for the environment as long as there are winds from soft wind (3.4 to 5.4 m / sec: Meteorological Agency wind class) to male wind (10.8 to 13.8 m / sec). It is one of the excellent means of power generation that has been used gently since ancient times. However, in an urban area or the like, a light wind region (1.6 to 3.3 m / sec) continues for a long time, so that the power generation capacity is lowered, and how to improve the power generation efficiency is a big issue.

そこで低風速でも発電可能な小型翼型風車と、この回転軸に小さい風力でも駆動トルクを発生する起動用風車を介在させ起動力を向上させたものがある(例えば特許文献1:本書類添付図7)。しかしこの発明は起動用風車も組み込む為、部品点数が増大し構造が複雑になり耐久性や製造コスト等が増えるという問題や、強風時には風の抵抗が大きいためブレーキシステム等も大きくなり全体が重く不安定になる。  Thus, there are small wing type wind turbines that can generate power even at low wind speeds, and those that improve the starting force by interposing a starting wind turbine that generates driving torque even with a small wind force on this rotating shaft (for example, Patent Document 1: Figure attached to this document). 7). However, since the starter wind turbine is incorporated in the present invention, the number of parts increases, the structure becomes complicated, and the durability and manufacturing cost increase. In addition, the wind resistance is large during strong winds, so the brake system is large and the whole is heavy. It becomes unstable.

またブレード形状の特許例として特許文献2「全方向風力タービン」(本書類添付図8)「抽気流路を有する翼形をした垂直支持壁の断面図」は翼の厚い部分が後縁にありしかも湾曲形状や後縁の長いフラップも有しないため本願発明と構造が異なる。また風向きに対する迎え角による裏面の加圧揚力も無く更に抽気流路の出口が斜め上下に分かれているため排出量も分割される構造も異なり推力も弱くなっている。  In addition, as an example of a blade-shaped patent, Patent Document 2 “Omnidirectional wind turbine” (FIG. 8 attached to this document) “Cross sectional view of an airfoil-shaped vertical support wall having a bleed passage” has a thick portion of the blade at the trailing edge. Moreover, since it does not have a curved shape or a flap with a long trailing edge, the structure differs from the present invention. Further, there is no pressurized lift on the back surface due to the angle of attack with respect to the wind direction, and the outlet of the bleed passage is divided obliquely up and down, so that the discharge amount is also divided and the thrust is weak.

同、特許文献2「全方向風力タービン」(本書類添付図9)の「抽気流路を有する環状体導入口ブレードの断面図」は全体をブレード翼と考えた場合、翼弦長を3ケ所の貫通穴で4つに分断し、しかも途中の3ケの貫通穴により翼弦長が1/4と短い構造は本願発明の形状や吸入位置、排出位置の組み合わせも異なる。またブレードの4分割により圧力差がなく重要な揚力能力が生じないため異なる。  In the same document, “Cross sectional view of an annular body inlet blade having an extraction passage” in Patent Document 2 “Omnidirectional wind turbine” (FIG. 9 attached to this document) has three chord lengths when considered as a blade blade as a whole. In the structure in which the chord length is as short as ¼ due to three through holes in the middle, the combination of the shape, suction position, and discharge position of the present invention is also different. Further, the blades are divided into four parts because there is no pressure difference and no significant lift capacity is generated.

特許文献3、(本書類添付図10)は、主翼4と副翼5を有する複翼を備え...気流W2に対して負角βを持たせ揚力翼で、副翼5を、主翼4の受風面6側に「所定間隔N1及び所定ずれ幅N2をもって配置し気流W2により主翼4にベルヌーイの定理で説明される揚力が発生する。」とあるが、副翼5が主翼4に比べN2区間が短く副翼5の後縁に上下面で圧力差を生じさせる長いフラップも下面に無く異なる。  Patent Document 3, (FIG. 10 attached to this document) includes a double wing having a main wing 4 and a sub wing 5. . . With a lift wing having a negative angle β with respect to the air flow W2, the sub wing 5 is arranged on the wind receiving surface 6 side of the main wing 4 with a predetermined interval N1 and a predetermined deviation width N2, and Bernoulli's theorem is applied to the main wing 4 by the air flow W2. However, the sub-blade 5 has a shorter N2 section than the main wing 4 and a long flap that causes a pressure difference between the upper and lower surfaces at the rear edge of the sub-wing 5 is not different on the lower surface.

また長い圧力遮断フラップが無い為、副翼5の下面の高圧域と分離できず排出口に減圧域が生じないため圧力変化が無く主翼4と副翼5の間の気流は抜け難くなるので本願発明案の「入口と出口の圧力差を高め排出気体を加速させる」原理と異なる。更にブレード前衛先端上部の内側空洞面のU字型形状による逆向きの流体の抗力活用機能も無いので構造・機能とも異なったものである。  In addition, since there is no long pressure shut-off flap, it cannot be separated from the high pressure area on the lower surface of the sub wing 5, and no depressurization area is generated at the discharge port, so there is no pressure change and the air flow between the main wing 4 and the sub wing 5 is difficult to escape. This is different from the principle of “Increase pressure difference between inlet and outlet to accelerate exhaust gas”. Further, since there is no reverse fluid drag utilization function due to the U-shaped shape of the inner cavity surface at the top of the blade vane tip, the structure and function are also different.

特開平11−201020号公報  Japanese Patent Laid-Open No. 11-201020 特許公表2008−525682  Patent publication 2008-525682 特許公開平6−159222  Patent Publication No. Hei 6-159222

以上述べたように従来のブレードは軽風(1.6〜3.3m/秒)時の抗力を中心に考えられ、揚力や圧力差を活かしていないため最も時間の長い弱風域では駆動力不足や、風速が頻繁に変わる環境下での駆動力不足となり発電効率も良くない。  As mentioned above, the conventional blades are thought to be centered on drag in light winds (1.6 to 3.3 m / sec), and because they do not take advantage of lift and pressure differences, the driving force is insufficient in the longest weak wind regions. In addition, power generation efficiency is not good due to insufficient driving force in an environment where the wind speed changes frequently.

また風力発電の実運用においては風向きが頻繁に変化したり、強風、暴風等過酷な自然環境下では発電機能を抑えたりして発電効率が低下していた。  Moreover, in the actual operation of wind power generation, the wind direction frequently changes, and the power generation function is suppressed under severe natural environments such as strong winds and storms, resulting in a decrease in power generation efficiency.

更には構造が複雑になり製造コストが上がり、長期間の耐久性も劣るためメンテナンスコストも高くなっていた。また風速が変化したときブレード形状も変形する可動部分があると更に弱く、形状がいびつになると稼働時の風きり音を発する等、騒音問題も生じる可能性があるので静かに安定して稼動すること重要である。  Furthermore, the structure is complicated, the manufacturing cost is increased, and the long-term durability is inferior, so that the maintenance cost is high. Also, when there is a moving part that deforms the blade shape when the wind speed changes, it will be weaker, and if the shape becomes distorted, it may cause noise problems such as generating wind noise during operation, so it operates quietly and stably It is important.

流体に保存されたエネルギー(速度、圧力、位置)を効率的に得る手段として、オイラーの運動方程式(数1式)があり、流体の密度によって変化するものとして、流線sに沿って積分(数2式)すれば、ベルヌーイの定理(数3式)として知られ、加速度は流速と位置の関数になる。
ここで、
p :圧力
P :流体の密度
s :流線の方向
u :流速
gz :重力加速度の垂直方向成分
As a means of efficiently obtaining energy (velocity, pressure, position) stored in the fluid, Euler's equation of motion (Equation 1) is available, and it is integrated along the streamline s as it changes with the density of the fluid ( (Expression 2), known as Bernoulli's theorem (Expression 3), acceleration is a function of flow velocity and position.
here,
p: Pressure P: Fluid density s: Streamline direction u: Flow velocity gz: Vertical component of gravitational acceleration

具体的な手段として、抗力の少ない流線形を鳥の羽根の形状に倣って湾曲させたカルマン・トレフツ型翼により、翼の表裏面の流速差から圧力差を生じさせて効率的に揚力を得ることが知られている。  As a specific means, a Kalman-Treftz type wing, which is a curved streamline with a low drag force that follows the shape of a bird's wing, creates a pressure difference from the flow velocity difference between the front and back surfaces of the wing and efficiently obtains lift. It is known.

そして、この流体の流れを粒子の動きとして捉え数学的に解析する手法として、ラグランジェ方があり、更にその全体を鳥瞰図的に高所から捉えて流体の経路と加速度を表す手法としてオイラーの方法が知られ、この手法によるカルマン・トレフツ型翼のコンピュータ流体シミユレーション例を図1に示す。  And there is Lagrangian method as a method of mathematically analyzing this fluid flow as particle motion, and Euler's method as a method of expressing the whole fluid path and acceleration from a bird's eye view from the height. FIG. 1 shows an example of computer fluid simulation of a Kalman-Trefts wing by this method.

この図1を説明すれば、カルマン・トレフツ型ブレード(101)に対して流れ場の各方向ベクトル表示を流線部分表示マーカ(102)を、縦方向均等間隔(103のA〜H)に流速の同時開始位置から、横方向に均等な時系列間隔(105の流れ順序1〜5)に並べてシミユレーション処理すれば、そのマーカの位置と方向が解析結果として表示される。  Referring to FIG. 1, each direction vector display of the flow field with respect to the Kalman-Treftz type blade (101) is indicated by streamline partial display markers (102), and the flow velocity at vertical equal intervals (A to H of 103). If the simulation process is performed with the time series intervals (105 flow order 1 to 5) arranged in the horizontal direction from the simultaneous start position, the marker position and direction are displayed as an analysis result.

そして、このブレード表面の加速変化による等速位置を結んだ線を縦方向流線表示マーカ等速線(破線104〜108)として表し、加速変化が全体として視覚化される。これにより等速線の間隔が密な部分(112)は低速で圧力が高く、間隔が粗な部分(113)は高速で圧力が低く表される。  A line connecting the constant velocity positions due to the acceleration change on the blade surface is represented as a vertical streamline display marker constant velocity line (broken lines 104 to 108), and the acceleration change is visualized as a whole. As a result, the portion (112) where the interval between the constant velocity lines is close is low and the pressure is high, and the portion (113) where the interval is rough is high and the pressure is low.

更に、ブレード表面の流線を連結して表示したのが上部層流線(110)で、減圧揚力とコアンダー効果の反力により生ずる外向きの推進力となる。またブレード裏面の流線を連結して表示したのが下部層流線(111)として表され、その凹曲表面に沿った流れで後縁下部のフラップ(114)による加圧揚力が生じ、このブレード背面と腹面の速度差による圧力差からベルヌーイの定理に基づく揚力が生れ、上向きの合成推進力(115)となる。  Further, the upper laminar flow line (110) is shown by connecting the stream lines on the blade surface, which is the outward thrust generated by the reaction force of the decompression lift force and the Counder effect. Also, the streamline on the backside of the blade is connected and displayed as the lower laminar streamline (111), and the flow along the concave curved surface generates a pressurized lift force by the flap (114) at the lower part of the trailing edge. Lifting force based on Bernoulli's theorem is generated from the pressure difference due to the speed difference between the blade back surface and the abdominal surface, resulting in an upward combined propulsion force (115).

図2は図1のブレードの背面の流速と圧力分布を表した図である。これを説明すればX軸に図1に対応するブレード翼弦長方向軸(201)を、右Y軸2を流速軸(202)に対してブレード背面の流速変化曲線(203)で表し、左Y軸1を圧力軸(204)に対してブレード背面の圧力変化曲線(205)を表している。  FIG. 2 is a diagram showing the flow velocity and pressure distribution on the back surface of the blade of FIG. Explaining this, the blade chord length direction axis (201) corresponding to FIG. 1 is represented on the X axis, the right Y axis 2 is represented by the flow velocity change curve (203) on the back of the blade with respect to the flow velocity axis (202), and the left The Y axis 1 represents the pressure change curve (205) on the back surface of the blade with respect to the pressure axis (204).

そして図1のブレード背面前縁の流体入口位置は(206)に対応し、ブレード背面後縁の流体出口位置を(207)と対応して流体入口と出口の圧力差(208)となって大きく強調される。  1 corresponds to (206), and the fluid outlet position at the rear edge of the blade corresponds to (207), resulting in a large pressure difference (208) between the fluid inlet and outlet. To be emphasized.

次に図3は図2の圧力差(208)を更に活かし、全く新しい機能として付加したのが本発明の流体加速貫通型ブレード構造の流体シミュレーション図である。この図を説明すれば、前記図1のカルマン・トレフツ翼型ブレードから更にエネルギーを得るためブレード形状の外表面形状の外枠(301,303)を活かし、内部を空洞にして前縁部(302)に流体を取入れる開口部を設けブレード内を貫通してブレ−ドの背面後縁部まで流体(305)が抜ける中空構造を翼内に形成させる。  Next, FIG. 3 is a fluid simulation diagram of the fluid acceleration penetrating blade structure of the present invention, which is added as a completely new function by further utilizing the pressure difference (208) of FIG. Explaining this figure, in order to obtain more energy from the Kalman-Trefts airfoil blade of FIG. 1, the blade-shaped outer surface outer frames (301, 303) are utilized to make the interior hollow and the front edge (302 A hollow structure is formed in the blade to allow fluid (305) to pass through the blade to the rear rear edge of the blade.

これを詳細に述べれば先ずブレードの内部を貫通する流体を取り入れ易くする為、図2の(206)に対応して流体の流入口を圧力が最も高い位置になるブレード先端の前縁部(302)に形成させる。  In detail, first, in order to make it easy to take in the fluid penetrating the inside of the blade, the leading edge (302) of the blade tip where the pressure of the fluid inlet is the highest corresponding to (206) in FIG. ) To form.

そして更に流体の排出口を図2の(207)に対応しブレードの下面から隔てられ最も圧力が低くなり圧力差で流体を排出し易く、しかもその排出流体を反力として活かして加速し易い位置になるブレード後縁上面部(304)に形成させる。  Further, the fluid discharge port corresponds to (207) in FIG. 2 and is located away from the lower surface of the blade, so that the pressure becomes the lowest and the fluid is easily discharged by the pressure difference, and the drained fluid is utilized as a reaction force to accelerate the position. Is formed on the upper surface portion (304) of the trailing edge of the blade.

これにより先の図2の(208)で表した入口の加圧流体と出口の減圧域の圧力差増による流速増が(数3式u)の二乗倍の効果となりブレード内を通る流体の吸排量の増加による反力が増えブレードの推進力を増強させ、更に圧力差が増えると増速する加速効果により加速ブレード機能が形成される。  As a result, the increase in flow velocity due to the pressure difference between the pressurized fluid at the inlet and the decompressed area at the outlet shown in (208) of FIG. 2 has the effect of the square of (Equation 3) and the absorption of the fluid passing through the blade. An acceleration blade function is formed by an acceleration effect in which the reaction force due to the increase in the amount of exhaust increases and the propulsive force of the blade is increased, and the speed increases as the pressure difference further increases.

以上前記説明のブレードの背面後縁部の減圧揚力、腹面の加圧揚力に加え、新しい概念としてブレード前縁の高圧域で取り入れた流体をブレードの後縁上部の減圧域で吸い出すことにより3種類の反力の合成推進力となり、自然揚力回転を増強させる仕組みの本発明の揚力加速ブレードが構成される。  As described above, in addition to the decompression lift at the rear trailing edge of the blade and the pressurized lift at the abdominal surface as described above, three types of fluids are introduced by sucking out the fluid taken in the high pressure area of the blade leading edge in the decompression area above the blade trailing edge. Thus, the lift acceleration blade of the present invention having a mechanism for enhancing the natural lift rotation is configured.

そして、前記、基本揚力増速ブレードを垂直な回転軸のまわりに複数枚設けることにより360度全方向の風力により回転させる垂直軸型風車を構成する。  Then, a plurality of the basic lift speed increasing blades are provided around the vertical rotation shaft to constitute a vertical axis type wind turbine that is rotated by wind power in all directions of 360 degrees.

上述したように本発明に係る風力発電用の垂直軸型風車では、垂直回転軸のまわりに設けたブレードの表/裏両面後部の減圧/加圧揚力と、ブレード前縁の高圧域で流体を取り込み、圧力差で排気力を高める構造による自然揚力加速で従来型のモータアシストの電力も要らず、弱風域でもより効率的に風力エネルギーを取り出せ、しかも風向きや風速が頻繁に変化する自然環境においても発電機を廻し易くなる。  As described above, in the vertical axis type wind turbine for wind power generation according to the present invention, fluid is supplied in the high pressure region of the blade leading edge and the decompression / pressurization lift of the front / back both sides of the blade provided around the vertical rotation shaft. Natural lift acceleration with a structure that increases exhaust power by taking in and pressure difference eliminates the need for conventional motor-assisted power, allows wind energy to be taken out more efficiently even in low wind ranges, and the natural environment where the wind direction and wind speed change frequently It will be easier to turn the generator on.

更に強風域以上ではブレードの裏面後縁のフラップの抗力により回転速度抑制効果が働き、暴走回転による過大な電圧発生を抑えるため、ブレーキシステムや電力制御システム等も簡単になり軽くなることにより過酷な自然環境でも壊れにくく稼働率の高い小型風力発電機が可能となる。  Furthermore, in the high wind range and above, the rotational speed suppression effect works by the drag of the rear edge of the blade on the back of the blade, and it suppresses excessive voltage generation due to runaway rotation. Small wind power generators that are not damaged in the natural environment and that have a high operating rate are possible.

なおブレードの材質としては軽金属、FRP、炭素繊維等、多様で安価な素材が利用でき、構造が簡単で小型や中型の風車を安価に製造すれば、素材生成から廃棄までの製品ライフサイクルにおける総エネルギーコストも小さい。また家庭用の手軽な発電から、マンション、学校、工場、事業所等のビル屋上、ビル周りの風や、公園、草原、山間、離島、日の当らない北側や、縦積による立体空間活用、高緯度地域等、天候を問わず昼夜稼働させることが可能となる。  The blades can be made from a variety of inexpensive materials such as light metal, FRP, and carbon fiber. If a small or medium-sized wind turbine with a simple structure is manufactured at a low cost, the entire life cycle of the product from material generation to disposal can be achieved. Energy costs are also low. In addition, from the simple power generation for home use, the rooftops of buildings such as condominiums, schools, factories, offices, the wind around the buildings, parks, grasslands, mountains, remote islands, the north side where there is no sun, and the use of three-dimensional space by vertical stacking, It can be operated day and night regardless of the weather, such as in high latitude areas.

更には電力配電網システム等、膨大な設備投資や継続的な維持管理コスト、待機維持電力も不要な自立分散型発電で、電力グリッド的粗結合共助システム化も実現可能となる。また使い慣れた見える技術を進歩させ改良を加えることにより環境・資源問題や安心・安全面からも優れ、扱いやすいエネルギー取得装置と成る。  Furthermore, it is possible to realize a power grid-like coarse coupling co-help system with self-sustained distributed power generation that does not require enormous capital investment, continuous maintenance costs, and standby maintenance power, such as a power distribution network system. In addition, by improving and improving the familiar visual technology, it becomes an easy-to-handle energy acquisition device that is superior in terms of environmental and resource issues, safety and security.

カルマン・トレフツ型翼におけるオイラーの方法によるラグランジュ表示シミュレーション図である。  It is a Lagrange display simulation figure by the Euler's method in a Kalman-Trefts type wing. 本発明に関するブレードの背面の流速と圧力分布グラフである。  It is the flow velocity and pressure distribution graph of the back surface of the braid | blade regarding this invention. 本発明の流体加速貫通型ブレード翼枠流体シミュレーション図である。  It is a fluid acceleration penetration type blade blade frame fluid simulation figure of the present invention. 本発明の流体加速貫通型ブレードの斜視図である。  It is a perspective view of the fluid acceleration penetration type blade of the present invention. 本発明の流体加速貫通型ブレードの流体説明図である。  It is fluid explanatory drawing of the fluid acceleration penetration type | mold blade of this invention. 本発明の流体加速貫通型ブレードによる風車の斜視図である。  It is a perspective view of the windmill by the fluid acceleration penetration type blade of the present invention. 特許文献1の小型風力発電装置の風車本体を示す斜視図である。  It is a perspective view which shows the windmill main body of the small wind power generator of patent document 1. 特許文献2の抽気流路を有する翼形をした垂直支持壁の断面図である。  FIG. 6 is a cross-sectional view of an airfoil-shaped vertical support wall having an extraction channel of Patent Document 2. 特許文献2の抽気流路を有する環状体導入口ブレードの断面図である。  6 is a cross-sectional view of an annular body inlet blade having a bleed passage of Patent Document 2. FIG. 特許文献3の風車の一実施例の要部断面図である。  It is principal part sectional drawing of one Example of the windmill of patent document 3. FIG.

以下、本発明の実施の形態を図1〜図6に基づいて説明する。図4は本発明の揚力増強型ブレード外観図を示し、図5はそのブレードの流体説明図で、回転稼動状態でのブレードの風の流れの概念と圧力変化による各種揚力のベクトル図を示し、図6はそれを垂直軸風力発電用回転ブレードとして組み込んだ外観図を示す。  Hereinafter, embodiments of the present invention will be described with reference to FIGS. FIG. 4 shows an external view of the lift-enhancing blade of the present invention, FIG. 5 is a fluid explanatory view of the blade, and shows the concept of the wind flow of the blade in a rotating operation state and a vector diagram of various lifts due to pressure changes, FIG. 6 shows an external view incorporating it as a rotary blade for vertical axis wind power generation.

先ず請求項1を実現するため風力増速ブレードは図4の斜視図と図5のブレードの流体図で実施例を説明すれば、流線形を湾曲させた翼型で前縁(307)を丸く厚くして後縁(403)を薄くし、ブレードの背面側(301)を凸曲面にして、腹面側(303)を凹曲面にしてフラップ(308)を出したカルマン・トレフツ型翼外形形状を形成する。  First, in order to realize Claim 1, the wind speed increasing blade will be described with reference to the perspective view of FIG. 4 and the fluid diagram of the blade of FIG. 5, and the leading edge (307) is rounded with a streamlined airfoil. The Kalman-Trefts type wing outer shape with the trailing edge (403) thinned, the back side (301) of the blade made convex and the abdomen side (303) turned concave and the flap (308) was raised. Form.

これにより、裏面の凹曲面の迎角により弱風での揚力を高め、凹曲表面に沿った流れで後縁下部のフラップによる加圧揚力(509)とダウンウオッシュ(507)の反力と、ブレード背面凸曲表面に沿って流れる風による後縁上部の減圧揚力(508)により生ずる外向きの反力で回転力(511)を与える。  Thereby, the lift force in the weak wind is increased by the angle of attack of the concave curved surface on the back surface, and the reaction force of the pressurized lift force (509) and the downwash (507) by the flap at the lower end of the trailing edge in the flow along the concave curved surface, A rotational force (511) is applied by an outward reaction force generated by the decompression lift (508) at the upper part of the trailing edge by the wind flowing along the convex surface of the back surface of the blade.

更に圧力が高くなるブレード先端の前縁部(307)に流体を取入れる開口部(302)を設け、ブレード内を貫通して圧力の低いブレ−ドの表面後縁部の減圧領域(501)まで最短で流体が抜ける中空内部構造(402)を翼内に形成することにより、開口部入口(302)の加圧流体と排出口(304)の減圧域(501)の圧力差を有効に活かしブレード内中空部を通る排出流体(506)の反力との3種目の合成推進力により、更に自然揚力加速回転を促進させる仕組みのブレード構造を実現している。  Further, an opening (302) for taking in fluid is provided at the leading edge (307) of the blade tip where the pressure becomes higher, and the pressure reducing region (501) at the rear edge of the blade surface with low pressure penetrating the blade. By forming a hollow internal structure (402) in the blade that allows fluid to escape in the shortest time, the pressure difference between the pressurized fluid at the opening inlet (302) and the reduced pressure area (501) at the outlet (304) is effectively utilized. A blade structure having a mechanism for further promoting natural lift acceleration and rotation is realized by the third combined thrust with the reaction force of the discharged fluid (506) passing through the hollow portion in the blade.

また弱風時の抗力を活かして起動性能を良くするため、ブレードの前衛先端上部の内側空洞面をU字枠(307)に形成させ、弱風時にブレードの後縁開口部から流入した逆流体エネルギー(306)を抗力として取り出し易くしている。更にU字枠(307)によりブレード先端の機械的な強度を高めたブレード構造を形成している。  In addition, in order to improve the starting performance by utilizing the drag force in the weak wind, the inner cavity surface of the blade vane tip upper part is formed in the U-shaped frame (307), and the reverse fluid that flows in from the rear edge opening of the blade in the weak wind Energy (306) is easily taken out as a drag force. Further, the U-shaped frame (307) forms a blade structure with increased mechanical strength at the blade tip.

図6は本発明の流体加速貫通型ブレード(602)を、発電機に連結される垂直な回転軸(601)のまわりに複数枚設け、360度全方向の風力により回転させる垂直軸型風車を構成することにより水平方向のあらゆる風向きに対し瞬時に回転力を増強させることが出来る。  FIG. 6 shows a vertical axis type windmill in which a plurality of fluid acceleration penetrating blades (602) according to the present invention are provided around a vertical rotating shaft (601) connected to a generator and rotated by wind force in all directions of 360 degrees. By configuring, the rotational force can be instantaneously increased for all wind directions in the horizontal direction.

また高速回転ではブレードの裏面後縁のフラップ(308)で風の抗力も大きくなるので暴走回転が抑制され適度な発電機駆動回転が得られる。更には高速回転時のジャイロ効果により風車全体の姿勢安定化が得られ強風に煽られにくくなる。  Further, at high speed rotation, the wind drag is increased by the flap (308) at the rear edge of the back surface of the blade, so that runaway rotation is suppressed and appropriate generator drive rotation is obtained. Further, the gyro effect during high-speed rotation stabilizes the attitude of the entire wind turbine and makes it difficult to be blown by strong winds.

環境とエネルギー問題として、特に電気エネルギーは産業だけでなく人類の生活維持に不可欠であり、究極的に、子子孫孫に環境負荷を与えず再生可能なものが望まれる。そこで手軽な分散小型発電装置により家庭レベルから電気を“創り”補うことが出来、普及すれば、徐々に問題が軽減されていくと考え、本発明の発電効率向上が見込める弱風対応型小型風力発電システムを提唱する。  As environmental and energy issues, electrical energy is particularly essential not only for industry but also for the maintenance of human life. Ultimately, it is desired that it can be regenerated without causing an environmental burden on offspring and offspring. Therefore, it is possible to “create” electricity from the household level with a handy distributed small power generator, and if it spreads, the problem will gradually be reduced, and the small wind power that can improve the power generation efficiency of the present invention can be expected. Propose a power generation system.

101 カルマン・トレフツ型翼シミュレーション用基本ブレード
102 流線部分表示マーカ(流れ場での層流表示ベクトルを縦・横に表示)
103 縦方向流線表示マーカ均等位置番号(A〜H)
104〜108 横方向流線表示マーカ等速線
109 横方向流線表示マーカ等速線番号(1〜5)
110 ブレード背面部層流線(上部流線表示マーカ連結線)
111 ブレード腹面部層流線(下部流線表示マーカ連結線)
112 高圧域(ブレード前縁部)
113 低圧域(ブレード背面後縁部)
114 ブレード後縁フラップ部
115 合成推進力ベクトル
201 流速と圧力分布グラフX軸(ブレードモデル翼弦長方向)
202 流速と圧力分布グラフ右Y軸2(流速表示)
203 ブレード背面の流速
204 流速と圧力分布グラフ左Y軸1(圧力表示)
205 ブレード背面の圧力変化
206 ブレード前縁の流体入口近傍
207 ブレード背面後縁の流体出口近傍
208 ブレード流体入口〜流体出口の圧力差
301 新型ブレードモデル前縁背面部(上面側凸曲面)
302 ブレード前縁流体流入口
303 ブレード腹面後縁部(下面側凹曲面)
304 ブレード背面後縁部流体排出口
305 ブレード内貫通流体線(太破線表示)
306 後縁開口部から逆流入する想定流入線(2点鎖線表示)
307 ブレード前衛先端上部(裏側はU字枠)
308 ブレードフラップ部(背面後縁部流体排出口より後縁部)
401 ブレード内補強部材
402 ブレード内中空構造部
403 ブレード背面後縁部
501 ブレード背面後縁部流体排出口付近の揚力減圧域
502 ブレード腹面後縁部の揚力加圧域
503 ブレード背面部への流体の流れ
504 ブレード腹面部への流体の流れ
506 ブレード内から吸い出された排出流体
507 ダウンウオシュの流れ(2点鎖線)
508 表面の減圧揚力のベクトル方向
509 裏面の加圧揚力のベクトル方向
510 新型ブレード支えアーム
511 新型ブレード回転方向
601 回転軸
602 新型ブレード
101 Basic blade for Kalman-Trefts type wing simulation 102 Streamline display marker (displays laminar flow display vector in the flow field vertically and horizontally)
103 Vertical streamline display marker equal position number (A to H)
104 to 108 Horizontal streamline display marker constant velocity line 109 Horizontal direction streamline display marker constant velocity line number (1 to 5)
110 Blade rear laminar flow line (upper stream line display marker connecting line)
111 Blade abdominal surface laminar flow line (lower stream line display marker connecting line)
112 High pressure range (blade leading edge)
113 Low pressure range (blade rear edge)
114 Blade trailing edge flap portion 115 Composite thrust vector 201 Flow velocity and pressure distribution graph X-axis (blade model chord length direction)
202 Flow velocity and pressure distribution graph right Y axis 2 (flow velocity display)
203 Flow velocity on the back of the blade 204 Flow velocity and pressure distribution graph Left Y-axis 1 (pressure display)
205 Pressure change on the back side of the blade 206 Near the fluid inlet on the leading edge of the blade 207 Near the fluid outlet on the trailing edge of the blade 208 Pressure difference between the blade fluid inlet and the fluid outlet 301 Rear side of the leading edge of the new blade model (upper convex surface)
302 Blade leading edge fluid inlet 303 Blade abdominal surface trailing edge (lower concave surface)
304 Blade rear edge fluid discharge port 305 Blade through fluid line (indicated by bold broken line)
306 Assumed inflow line flowing backward from the trailing edge opening (indicated by a two-dot chain line)
307 Top of blade avant-garde tip (U-frame on back side)
308 Blade flap (rear edge from rear rear edge fluid outlet)
401 Blade internal reinforcing member 402 Blade internal hollow structure 403 Blade rear rear edge 501 Lift pressure reduction area 502 near blade rear rear edge fluid discharge port Lift pressure application area 503 at blade rear edge rear edge of fluid Flow 504 Fluid flow to the blade ventral surface 506 Exhaust fluid 507 sucked out from inside the blade Downwash flow (two-dot chain line)
508 Vector direction of decompression lift force on the surface 509 Vector direction 510 of pressure lift force on the back surface New blade support arm 511 New blade rotation direction 601 Rotating shaft 602 New blade

Claims (3)

流体のエネルギーを効率よく取り出す為のブレードの形状に関し、前縁を丸く厚くして後縁を薄くした流線形をベースにブレードの上側背面を凸曲面に、下側腹面を凹曲面に湾曲させたカルマン・トレフツ翼とも称されるブレード形状をベースに、外表面形状を外枠とし、内部を空洞にして前縁部に流体を取入れる開口部を設けブレード内を貫通してブレ−ドの背面後縁部まで流体が抜ける中空構造をブレード内に形成させたことを特徴とする流体加速貫通型ブレード。  Regarding the shape of the blade to efficiently extract the energy of the fluid, the upper back surface of the blade is curved into a convex curved surface and the lower abdominal surface is curved into a concave curved surface based on a streamline with a thick leading edge and a thin trailing edge. Based on the blade shape, also called the Kalman Treffts wing, the outer surface shape is the outer frame, the inside is hollow and an opening is formed to take in fluid at the front edge. A fluid acceleration penetrating blade characterized in that a hollow structure is formed in the blade to allow fluid to escape to the trailing edge. 前記ブレードの詳細構造で、ブレードの内部を貫通する流体を取り入れ易くする為、流体の流入口を流れ時に圧力が最も高くなり且つ、吸い込み易い位置となるブレード先端の前縁部に形成させ、更に流体の排出口をブレードの下面と隔てられ、最も圧力が低くなり圧力差で流体を排出し易く、しかもその排出流体を反力として活かして加速し易い位置となる、ブレード上部背面後縁部に形成させたことを特徴とする流体加速貫通型ブレード。  In the detailed structure of the blade, in order to make it easy to take in the fluid penetrating the inside of the blade, the fluid inlet is formed at the leading edge of the blade tip where the pressure is highest during flow and is easy to suck, The fluid discharge port is separated from the lower surface of the blade, and the pressure is the lowest, it is easy to discharge the fluid due to the pressure difference, and it is easy to accelerate using the discharged fluid as a reaction force. A fluid acceleration penetrating blade characterized by being formed. 前記ブレードにおいて、弱風時の抗力を活用して起動性能を高めるため、ブレードの前縁先端上部の内側空洞面をU字型に形成させたことにより、起動時や低速動作時にブレードの後縁開口部から流入する逆流流体を抗力エネルギーとして取り込み易く且つ、ブレード先端部の機械的な強度を高めたことを特徴とする流体加速貫通型ブレード。  The blade has a U-shaped inner cavity surface at the top edge of the leading edge of the blade in order to improve the starting performance by utilizing the drag force when the wind is weak. A fluid acceleration penetrating blade characterized in that it can easily take backflow fluid flowing from an opening as drag energy and has increased mechanical strength of the blade tip.
JP2012098167A 2012-04-06 2012-04-06 Fluid acceleration penetrating blade Expired - Fee Related JP5093629B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098167A JP5093629B1 (en) 2012-04-06 2012-04-06 Fluid acceleration penetrating blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098167A JP5093629B1 (en) 2012-04-06 2012-04-06 Fluid acceleration penetrating blade

Publications (2)

Publication Number Publication Date
JP5093629B1 JP5093629B1 (en) 2012-12-12
JP2013217357A true JP2013217357A (en) 2013-10-24

Family

ID=47469479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098167A Expired - Fee Related JP5093629B1 (en) 2012-04-06 2012-04-06 Fluid acceleration penetrating blade

Country Status (1)

Country Link
JP (1) JP5093629B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2050686A1 (en) * 2020-06-10 2021-12-11 Carlson Bjoern Vertical wind turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2050686A1 (en) * 2020-06-10 2021-12-11 Carlson Bjoern Vertical wind turbine
SE544250C2 (en) * 2020-06-10 2022-03-15 Carlson Bjoern Vertical wind turbine

Also Published As

Publication number Publication date
JP5093629B1 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR100810990B1 (en) Power generation system having vertical wind turbine of jet-wheel type for wind power
US9512817B2 (en) Diffuser augmented wind turbines
JP2008540928A (en) Hydro turbine with bisymmetric airfoil
JP2008525682A (en) Omnidirectional wind turbine
RU132140U1 (en) Cone Hollow Spiral Turbine for Energy Conversion
AU2012246089A1 (en) Diffuser augmented wind turbines
US20150300183A1 (en) Fluid Turbine With Turbine Shroud And Ejector Shroud Coupled With High Thrust-Coefficient Rotor
WO2014038661A1 (en) Wind-collecting wind turbine
JP2012514158A (en) Prime mover
US20100215488A1 (en) Fluid flow energy concentrator
CN102109051A (en) One-way fluid permeation door and application thereof
Tong et al. Innovative Power‐Augmentation‐Guide‐Vane Design of Wind‐Solar Hybrid Renewable Energy Harvester for Urban High Rise Application
JP5093629B1 (en) Fluid acceleration penetrating blade
CN107811364A (en) A kind of energy mix power generating umbrella
US20100295314A1 (en) Floating wind turbine
JP2016188697A (en) Wing simulating part of dragonfly's wing structure
CN201757029U (en) System for generating power by recycling vented air
CN203248313U (en) Novel wind driven generator
KR101063786B1 (en) Vertical Blades for Wind Power Generators
JP2012233466A (en) Lift speed-up type windmill and power generator driving method
CN103244356A (en) Circular air duct fan-made wind, wind wheel, wind flow diverter and wind driven generator set
JP2013029056A (en) Wind turbine blade having wind bag
CN201363234Y (en) Novel wind-collecting type wind power generator
CN206280197U (en) A kind of fan blade for wind-driven generator
WO2018150563A1 (en) Wind power generation device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20180928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees