JP2013216920A - Discoloration prevention method of silver-based material - Google Patents

Discoloration prevention method of silver-based material Download PDF

Info

Publication number
JP2013216920A
JP2013216920A JP2012085713A JP2012085713A JP2013216920A JP 2013216920 A JP2013216920 A JP 2013216920A JP 2012085713 A JP2012085713 A JP 2012085713A JP 2012085713 A JP2012085713 A JP 2012085713A JP 2013216920 A JP2013216920 A JP 2013216920A
Authority
JP
Japan
Prior art keywords
silver
discoloration
based material
treatment
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012085713A
Other languages
Japanese (ja)
Other versions
JP5888696B2 (en
Inventor
Tomomi Aoki
智美 青木
Junichi Katayama
順一 片山
Hidemi Nawafune
秀美 縄舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2012085713A priority Critical patent/JP5888696B2/en
Publication of JP2013216920A publication Critical patent/JP2013216920A/en
Application granted granted Critical
Publication of JP5888696B2 publication Critical patent/JP5888696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method which can efficiently perform discoloration prevention treatment of a silver-based material in a relatively simple method without using a harmful compound, such as hexavalent chromium, and by which the treated silver-based material has little deterioration in appearance and also little deterioration in various performance.SOLUTION: Discoloration prevention treatment can be performed in a simple method by performing electrolytic treatment at a liquid temperature of 55°C or less using an object to be treated including a silver-based material as a cathode in a composition for discoloration prevention treatment which comprises an aqueous solution containing a zinc ion and a nitrate ion, without decreasing reflectance and conductivity of the silver-based material.

Description

本発明は、銀、銀合金等の銀系材料の変色防止方法、特に、LED照明の反射板等として用いられている銀めっき皮膜に対して、反射率を殆ど低下させることなく、良好な変色防止性能を付与する方法に関する。   The present invention is a method for preventing discoloration of silver-based materials such as silver and silver alloys, and in particular, with respect to a silver plating film used as a reflector for LED lighting or the like, good discoloration without almost reducing the reflectance. The present invention relates to a method for imparting prevention performance.

近年、白熱電球、蛍光灯に替わる照明としてLED素子を使用する照明(LED照明)が普及している。LED照明ではLED素子で発生した光をある方向に反射させるための反射板が必要であり、白色樹脂やセラミックに加えて、金属としては可視光領域における反射率が高い銀、銀合金などの銀系皮膜が使用されており、銀系皮膜の形成方法としては、一般的には電気めっきや無電解めっきが採用される場合が多い。   In recent years, lighting using LED elements (LED lighting) has become widespread as an alternative to incandescent bulbs and fluorescent lamps. LED lighting requires a reflector to reflect the light generated by the LED element in a certain direction. In addition to white resin and ceramic, metals such as silver and silver alloys with high reflectivity in the visible light region are used. In general, electroplating or electroless plating is often employed as a method for forming a silver-based film.

しかしながら、銀系皮膜は、イオウ化合物と接触すると硫化銀を形成するために、変色し易いという欠点がある。LED照明は40000時間以上の寿命を持つものであり、反射板に使用する銀系皮膜が硫化物などにより変色することは、輝度の低下に繋がるため大きな問題である。   However, the silver-based film has a drawback that it easily changes color because it forms silver sulfide when it comes into contact with a sulfur compound. LED lighting has a lifespan of 40,000 hours or more, and discoloration of the silver-based film used for the reflector due to sulfide or the like is a big problem because it leads to a decrease in luminance.

従来、銀系皮膜の変色防止のためには、6価クロムを用いる浸漬クロメート又は電解クロメート処理や、銀表面に有機保護膜を強く吸着させることによる変色防止処理が行われている。   Conventionally, in order to prevent discoloration of the silver-based film, immersion chromate treatment or electrolytic chromate treatment using hexavalent chromium and discoloration prevention treatment by strongly adsorbing an organic protective film on the silver surface have been performed.

これらの処理の内で、クロメート処理は変色防止処理としては有効であるが6価クロムを使用するために環境問題により使用が制限される。また、有機物を吸着させる変色防止処理は、LED照明では、素子から発生する光や熱により有機物層が分解、劣化するために、長期間に亘り高い反射率を維持することはできない。   Among these treatments, the chromate treatment is effective as a discoloration prevention treatment, but use of hexavalent chromium is limited due to environmental problems. Also, the anti-discoloration treatment for adsorbing organic matter cannot maintain high reflectivity over a long period of time in LED lighting because the organic matter layer is decomposed and deteriorated by light and heat generated from the element.

有機物を使用しない変色防止処理としては金属酸化物を用いた方法が報告されている。例えば、下記特許文献1には、変色防止層としてITO、ZnO、IZO、SnO2などの金属酸化物を3〜50nm程度成膜することにより過酷な耐食性試験においても反射率が低下しないことが記載されている。 A method using a metal oxide has been reported as an anti-discoloration treatment without using organic substances. For example, the following Patent Document 1 describes that the reflectance is not lowered even in a severe corrosion resistance test by forming a metal oxide such as ITO, ZnO, IZO, SnO 2 or the like about 3 to 50 nm as a discoloration preventing layer. Has been.

特開2006-98856号公報JP 2006-98856 JP

しかしながら、この様な非常に薄い金属酸化物を均一に成膜するためには、真空蒸着法、スパッタリング法、CVD法などの真空プロセスが必要であり、めっき法によって銀系皮膜(銀めっき皮膜)を形成する場合には、めっき皮膜を形成し、乾燥させた後、真空の処理室(チャンバー)に入れて処理を行うことが必要となり、生産性が非常に低く、コストアップが避けられない。このため、真空プロセスを用いる変色防止方法は、工業的な製造方法として適したものとはいえない。   However, in order to form such a very thin metal oxide uniformly, vacuum processes such as vacuum deposition, sputtering, and CVD are necessary. In the case of forming the film, it is necessary to form a plating film and dry it, and then place it in a vacuum processing chamber (chamber) to carry out the treatment, and the productivity is very low, and an increase in cost is inevitable. For this reason, the method for preventing discoloration using a vacuum process is not suitable as an industrial production method.

本発明は、この様な従来技術の現状に鑑みてなされたものであり、その主な目的は、6価クロム等の有害な化合物を用いることなく、比較的簡単な方法によって効率よく処理が可能な銀系材料の変色防止方法であって、処理後の銀系材料について、反射率、光沢等の外観劣化が生じ難く、しかもワーヤーボンディング性、ハンダ付け性などの各種の性能の低下も少ない方法を提供することである。   The present invention has been made in view of the current state of the prior art as described above, and its main purpose is that it can be processed efficiently by a relatively simple method without using harmful compounds such as hexavalent chromium. This is a method for preventing discoloration of a silver-based material, and the silver-based material after processing is less likely to cause deterioration in appearance such as reflectivity and gloss, and has little deterioration in various performances such as wire bonding and solderability. Is to provide.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、亜鉛イオンと硝酸イオンを含む水溶液を処理液として用い、55℃以下という限定された温度条件下で、比較的低い低電流密度で電解処理を行う場合には、被処理物である銀系材料に、無定形状態の非常に薄い皮膜を均一に形成することでき、良好な変色防止性能を付与できることを見出した。しかも、この方法で変色防止処理を行った銀系材料は、非常に薄い均一な皮膜が形成されるために、反射率が殆ど低下することなく、反射板として良好な性能を維持した上で、ワイヤボンディング性、ハンダ付性などの各種の性能も良好な維持できることを見出した。本発明は、これらの知見に基づいてなされたものである。   The present inventor has intensively studied to achieve the above-described object. As a result, in the case where an aqueous solution containing zinc ions and nitrate ions is used as the treatment liquid and the electrolytic treatment is performed at a relatively low current density under a limited temperature condition of 55 ° C. or lower, the silver to be treated It has been found that a very thin film in an amorphous state can be uniformly formed on a system material and can impart good discoloration prevention performance. Moreover, since the silver-based material that has been subjected to the discoloration prevention treatment by this method is formed with a very thin uniform film, the reflectance is hardly lowered, and while maintaining good performance as a reflector, We have found that various performances such as wire bonding and solderability can be maintained well. The present invention has been made based on these findings.

即ち、本発明は、下記の銀系材料の変色防止方法、及び変色防止処理が施された物品を提供するものである。
項1. 亜鉛イオン及び硝酸イオンを含有する水溶液からなる変色防止処理用組成物中で、銀系材料を含む被処理物を陰極として、液温55℃以下で電解処理を行うことを特徴とする、銀系材料の変色防止方法。
項2. 電解処理時の陰極電流密度が0.01〜2mA/cmである項1に記載の銀系材料の変色防止方法。
項3. 変色防止処理用組成物が、亜鉛イオン0.05mol/L〜0.2mol/Lと、硝酸イオン0.05mol/L〜0.2mol/Lを含む水溶液である、項1又は2に記載の銀系材料の変色防止方法。
項4. 電解処理の時間が10秒以下である項1〜3のいずれかに記載の銀系材料の変色防止方法。
項5. 項1〜4のいずれかの方法で変色防止処理が施された、銀系材料を含む物品。
項6. LED照明用反射板である項5に記載の物品。
項7. 変色防止皮膜が形成された銀系材料であって、
該変色防止皮膜が、該銀系材料の被処理面を均一に被覆する水酸化亜鉛を含有する厚さ20nm以下の皮膜であることを特徴とする、銀系材料。
That is, the present invention provides a method for preventing discoloration of the silver-based material described below and an article subjected to discoloration prevention treatment.
Item 1. In the composition for anti-discoloration treatment comprising an aqueous solution containing zinc ions and nitrate ions, an electrolytic treatment is carried out at a liquid temperature of 55 ° C. or less, using an object to be treated containing a silver-based material as a cathode. Material discoloration prevention method.
Item 2. Item 2. The method for preventing discoloration of a silver-based material according to Item 1, wherein the cathode current density during electrolytic treatment is 0.01 to 2 mA / cm 2 .
Item 3. Item 3. The silver according to Item 1 or 2, wherein the composition for preventing discoloration is an aqueous solution containing 0.05 mol / L to 0.2 mol / L of zinc ions and 0.05 mol / L to 0.2 mol / L of nitrate ions. Method for preventing discoloration of materials.
Item 4. Item 4. The method for preventing discoloration of a silver-based material according to any one of Items 1 to 3, wherein the electrolytic treatment time is 10 seconds or less.
Item 5. Item including silver-based material, which has been subjected to discoloration prevention treatment by any one of items 1 to 4.
Item 6. Item 6. The article according to Item 5, which is a reflector for LED lighting.
Item 7. A silver-based material on which a discoloration-preventing film is formed,
The silver-based material, wherein the discoloration-preventing film is a film having a thickness of 20 nm or less containing zinc hydroxide that uniformly coats the surface to be treated of the silver-based material.

以下、本発明の銀系材料の変色防止方法について具体的に説明する。   Hereinafter, the method for preventing discoloration of the silver-based material of the present invention will be specifically described.

変色防止処理用組成物
本発明では、銀系材料の変色防止処理に用いる変色防止処理用組成物として、亜鉛イオン及び硝酸イオンを含有する水溶液を用いる。この様な水溶液としては、例えば、亜鉛イオン及び硝酸イオンの両方のイオン源となる硝酸亜鉛を含有する水溶液、亜鉛イオン源として水溶性の亜鉛塩を含有し、硝酸イオン源として硝酸又は水溶性の硝酸塩を含有する水溶液等を用いることができる。
Composition for Discoloration Prevention Treatment In the present invention, an aqueous solution containing zinc ions and nitrate ions is used as the composition for discoloration prevention treatment used for the discoloration prevention treatment of the silver-based material. As such an aqueous solution, for example, an aqueous solution containing zinc nitrate as an ion source of both zinc ions and nitrate ions, a water-soluble zinc salt as a zinc ion source, and nitric acid or water-soluble as a nitrate ion source. An aqueous solution containing nitrate can be used.

変色防止処理用組成物に配合し得る水溶性の亜鉛塩としては、特に限定はなく、例えば、硝酸亜鉛、硫酸亜鉛、塩化亜鉛、酢酸亜鉛、リン酸亜鉛、ピロリン酸亜鉛、炭酸亜鉛等を挙げることができる。また、水溶性の硝酸塩としても特に限定はなく、硝酸亜鉛、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸尿素等を挙げることができる。   The water-soluble zinc salt that can be incorporated into the composition for preventing discoloration is not particularly limited, and examples thereof include zinc nitrate, zinc sulfate, zinc chloride, zinc acetate, zinc phosphate, zinc pyrophosphate, and zinc carbonate. be able to. The water-soluble nitrate is not particularly limited, and examples thereof include zinc nitrate, ammonium nitrate, sodium nitrate, potassium nitrate, lithium nitrate, and urea nitrate.

亜鉛イオン源として使用する化合物及び硝酸イオン源として使用する化合物は、それぞれ一種類のものを用いてもよく、或いは複数のものを混合して用いてもよい。   As the compound used as the zinc ion source and the compound used as the nitrate ion source, one type of each may be used, or a plurality of types may be used in combination.

変色防止処理用組成物では、亜鉛イオン及び硝酸イオンの濃度は、広い範囲で調整できるが、濃度が低くなりすぎると電解条件を調整しても膜厚が薄い均一な変色防止膜を形成することが困難になり、濃度が高くなりすぎると水酸化亜鉛や、不均一な酸化亜鉛膜が形成される傾向にある。このため、通常、亜鉛イオン及び硝酸イオンのそれぞれの濃度が、0.05〜0.2mol/L程度の範囲にあることが適当であり、特に、それぞれの濃度が0.07〜0.15mol/L程度であることが好ましい。   In the composition for preventing discoloration, the concentration of zinc ions and nitrate ions can be adjusted in a wide range, but if the concentration is too low, a uniform discoloration preventing film having a thin film thickness can be formed even if the electrolysis conditions are adjusted. However, when the concentration is too high, zinc hydroxide and a non-uniform zinc oxide film tend to be formed. For this reason, it is usually appropriate that the respective concentrations of zinc ions and nitrate ions are in the range of about 0.05 to 0.2 mol / L, and in particular, the respective concentrations are 0.07 to 0.15 mol / L. It is preferable that it is about L.

変色防止処理用組成物のpHについては、電解液のpHが高くなりすぎると電解液中に沈殿が生成してやすくなるので、pH1〜7程度とすることが適当であり、3〜5程度とすることが好ましい。   About pH of the composition for preventing discoloration treatment, if the pH of the electrolytic solution becomes too high, precipitation tends to occur in the electrolytic solution. It is preferable to do.

変色防止処理方法
本発明の変色防止処理方法では、上記した変色防止処理用組成物を用い、無撹拌または撹拌下で、液温55℃以下、好ましくは、40〜55℃で被処理物を陰極として電解処理を行えばよい。
Discoloration prevention treatment method In the discoloration prevention treatment method of the present invention, the above-described discoloration prevention treatment composition is used, and the object to be treated is treated as a cathode at a liquid temperature of 55 ° C. or lower, preferably 40 to 55 ° C. with or without stirring. The electrolytic treatment may be performed as follows.

酸化亜鉛はn型酸化物半導体であり透明導電膜や太陽電池の構造材料としての用途が注目されているが、これらの用途では高い純度、結晶性が必要となる。硝酸亜鉛水溶液から電解法によって酸化亜鉛膜を形成する場合には、比較的高い温度で良好な結晶性が得られることが報告されており、多くの報告は60℃以上の成膜温度を用いている。(Appl. Phys. Lett. 68 (17), April 1996 M.Izaki T. Omi;Appl. Phys. Lett. 83 (24),December 2003 M.Izaki S.Watase H. Takahashi等)
しかしながら、これらの報告にある60℃以上の成膜温度では、結晶が成長して粒径の大きい酸化亜鉛が部分的に析出し、均一な皮膜を形成するためには、50〜100nm程度の比較的厚い膜厚の酸化亜鉛膜を形成することが必要となる。このため、銀系皮膜上に均一な酸化亜鉛膜を形成しても、反射率の低下や、導電性、ワイヤボンディング性等の低下が生じる。
Zinc oxide is an n-type oxide semiconductor, and its use as a transparent conductive film and a structural material for solar cells is attracting attention. However, high purity and crystallinity are required for these uses. In the case of forming a zinc oxide film from an aqueous solution of zinc nitrate by an electrolytic method, it has been reported that good crystallinity can be obtained at a relatively high temperature, and many reports use a film forming temperature of 60 ° C. or higher. Yes. (Appl. Phys. Lett. 68 (17), April 1996 M. Izaki T. Omi; Appl. Phys. Lett. 83 (24), December 2003 M. Izaki S. Watase H. Takahashi, etc.)
However, at the film formation temperature of 60 ° C. or higher as reported in these reports, in order to form a uniform film by growing crystals and partially depositing zinc oxide having a large particle size, a comparison of about 50 to 100 nm is required. It is necessary to form a thick zinc oxide film. For this reason, even if a uniform zinc oxide film is formed on the silver-based film, the reflectance, the conductivity, the wire bonding property and the like are reduced.

これに対して、上記した変色防止処理用組成物を用いて、液温55℃以下で電解処理を行う場合には、結晶の成長を抑制して、短時間の電解処理で均一な皮膜を形成することができる。このため、55℃を上回る温度で電解処理を行う場合には不可能であった20nm程度以下という非常に薄い皮膜を形成するだけで、被処理物である銀系材料を均一に被覆して、十分な変色防止性能を付与することができる。この方法による変色防止処理後の銀系材料は、反射率や光沢などの外観の低下が少なく、導電性、ワイヤボンディング性、ハンダ付け性などの各種性能も、処理前の状態とほぼ同程度に維持される。この処理方法で形成される皮膜は、結晶性の低い無定形皮膜であり、水酸化亜鉛を含む皮膜となる。   On the other hand, when the electrolytic treatment is performed at a liquid temperature of 55 ° C. or lower using the above-described composition for preventing discoloration, a uniform film is formed by short-time electrolytic treatment while suppressing crystal growth. can do. For this reason, only by forming a very thin film of about 20 nm or less, which was impossible when performing electrolytic treatment at a temperature exceeding 55 ° C., the silver-based material as the object to be treated is uniformly coated, Sufficient discoloration prevention performance can be imparted. The silver-based material after the discoloration prevention treatment by this method has little deterioration in appearance such as reflectance and gloss, and various performances such as conductivity, wire bonding property and solderability are almost the same as the state before treatment. Maintained. The film formed by this treatment method is an amorphous film having low crystallinity and a film containing zinc hydroxide.

本発明では、電解条件については、特に限定的ではないが、非常に薄い膜厚で良好な変色防止機能を付与するためには、2mA/cm程度以下することが好ましく、0.01〜2mA/m程度とすることがより好ましい。電流密度を高くしすぎると、粗大な結晶が成長することで部分的に析出が起こり、均一な皮膜が得られないため好ましくない。 In the present invention, the electrolysis conditions are not particularly limited, but in order to provide a good discoloration prevention function with a very thin film thickness, it is preferably about 2 mA / cm 2 or less, and 0.01 to 2 mA. / M 2 is more preferable. If the current density is too high, coarse crystals grow and partial precipitation occurs, and a uniform film cannot be obtained.

従って、本発明では、液温55℃以下の変色防止処理用組成物中において、特に、2mA/cm程度以下の陰極電流密度で処理を行うことによって、非常に薄い膜厚で均一な皮膜を形成することができ、20nm程度以下、好ましくは10nm程度以下の薄い膜厚の皮膜を形成するだけで、十分な変色防止性能を付与することができる。 Accordingly, in the present invention, in the composition for preventing discoloration at a liquid temperature of 55 ° C. or less, a uniform film having a very thin film thickness can be obtained by performing the treatment at a cathode current density of about 2 mA / cm 2 or less. Sufficient discoloration prevention performance can be imparted only by forming a thin film having a thickness of about 20 nm or less, preferably about 10 nm or less.

変色防止のための処理時間については、電流密度などにより異なるが、通常、15秒程度以下、好ましくは10秒程度以下、特に、5〜10秒程度とすればよい。本発明方法によれば、この様な短い処理時間で十分な変色防止性能を付与することができる。このため、銀系めっき処理と連続した一連の処理工程によって、効率よく変色防止処理を施すことができる。   The treatment time for preventing discoloration varies depending on the current density and the like, but is usually about 15 seconds or less, preferably about 10 seconds or less, particularly about 5 to 10 seconds. According to the method of the present invention, sufficient discoloration prevention performance can be imparted in such a short processing time. For this reason, the discoloration prevention treatment can be efficiently performed by a series of treatment steps that are continuous with the silver plating treatment.

電解処理に用いる陽極としては、例えば、通常の亜鉛めっき処理に用いられる陽極をいずれも使用できる。例えば、可溶性陽極である亜鉛の他に、カーボン、白金、白金めっきチタン等の不溶性陽極材料等を用いることができる。これらの内で、陽極として亜鉛を用いる場合には、溶解が均一で、電解液の組成がほぼ安定に保たれる。また、白金や白金めっきチタンなどの不溶性陽極を用いる場合には、亜鉛塩及び硝酸塩の補給を行ない、電解液のpHを調整することによって連続作業が可能となる。   As the anode used for the electrolytic treatment, for example, any anode used for ordinary galvanizing treatment can be used. For example, in addition to zinc, which is a soluble anode, insoluble anode materials such as carbon, platinum, and platinum-plated titanium can be used. Among these, when zinc is used as the anode, the dissolution is uniform and the composition of the electrolytic solution is kept almost stable. When an insoluble anode such as platinum or platinum-plated titanium is used, continuous operation is possible by supplying zinc salt and nitrate and adjusting the pH of the electrolyte.

本発明では、変色防止処理の処理対象となる物品は、銀又は銀合金からなる銀系材料を含む物品である。例えば、銀又は銀合金からなる銀系材料から形成された物品;該銀材料を一部に含む物品;銀又は銀合金からなる皮膜が形成された物品などを処理対象とすることができる。特に、銀又は銀合金のめっき皮膜が形成されたLED照明用反射板を処理対象とする場合には、銀又は銀合金からなるめっき皮膜に対して、反射率の低下を殆ど生じることなく良好な変色防止性を付与でき、しかも、良好な導電性、ワイヤボンディング性、ハンダ付け性等も維持することができる。   In the present invention, the article to be subjected to the discoloration prevention treatment is an article containing a silver-based material made of silver or a silver alloy. For example, an article formed from a silver-based material made of silver or a silver alloy; an article partially containing the silver material; an article formed with a film made of silver or a silver alloy can be treated. In particular, when an LED illumination reflector having a silver or silver alloy plating film formed thereon is used as a processing target, it is satisfactory with almost no decrease in reflectance with respect to the plating film made of silver or silver alloy. Discoloration preventing property can be imparted, and good conductivity, wire bonding property, solderability, etc. can be maintained.

尚、銀合金の種類については、銀を主成分とする合金であれば特に限定はなく、例えば、Ag-Pd合金、Ag-Au合金などの銀を80重量%程度以上、好ましくは90重量%程度以上含む合金を処理対象とすることができる。   The type of the silver alloy is not particularly limited as long as it is an alloy mainly composed of silver. For example, silver such as an Ag—Pd alloy and an Ag—Au alloy is about 80% by weight or more, preferably 90% by weight. Alloys containing more than about can be treated.

本発明の銀系材料の変色防止方法によれば、6価クロム等の有害な化合物を用いることなく、比較的簡単な方法によって、効率よく銀系材料の変色防止処理を行うことができる。本発明方法によって変色防止処理が施された銀系材料は、外観の劣化が少なく、高い反射率を維持することができ、導電性、ワイヤボンディング性などの各種の性能の低下も少ない。   According to the silver material discoloration prevention method of the present invention, the silver material can be efficiently discolored by a relatively simple method without using harmful compounds such as hexavalent chromium. The silver-based material that has been subjected to the discoloration prevention treatment by the method of the present invention has little deterioration in appearance, can maintain a high reflectance, and there is little deterioration in various performances such as conductivity and wire bonding properties.

実施例1において求めた変色防止処理用組成物の液温と、変色防止処理後の銀めっき皮膜の反射率および耐硫化試験後の反射率との関係を示すグラフ。The graph which shows the relationship between the liquid temperature of the composition for discoloration prevention processing calculated | required in Example 1, the reflectance of the silver plating film after a discoloration prevention process, and the reflectance after a sulfuration resistance test. 液温50℃で変色防止処理を行った試料と液温60℃で変色防止処理を行った試料の表面状態を示すSEM写真。The SEM photograph which shows the surface state of the sample which performed the discoloration prevention process at the liquid temperature of 50 degreeC, and the sample which performed the discoloration prevention process at the liquid temperature of 60 degreeC. 液温50℃、電流密度0.5mA/cmの陰極電流密度で10秒間処理を行った試料について、エッチング時間と光電子スペクトルより求めた各元素の存在比率との関係を示すグラフ。The graph which shows the relationship between the etching time and the abundance ratio of each element calculated | required from the photoelectron spectrum about the sample which processed for 10 second with the cathode temperature density of 50 degreeC of liquid temperature, and current density of 0.5 mA / cm < 2 >. 液温50℃、電流密度0.5mA/cmの陰極電流密度で10秒間処理を行った試料についてのAg3d光電子スペクトルとZn2p3/2光電子スペクトルを示す図面。Liquid temperature 50 ° C., a current density of 0.5 mA / Ag3d photoelectron spectrum for the cathode current density for 10 seconds processing was performed samples cm 2 and Zn2p3 / 2 illustrates the photoelectron spectrum. 液温50℃、電流密度0.5mA/cmの陰極電流密度で10秒間処理を行った試料についてのAg3d光電子スペクトルとZn2p3/2光電子スペクトルを示す図面。Liquid temperature 50 ° C., a current density of 0.5 mA / Ag3d photoelectron spectrum for the cathode current density for 10 seconds processing was performed samples cm 2 and Zn2p3 / 2 illustrates the photoelectron spectrum.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
被処理物として、圧延銅板にNiめっきを1μm成膜後に、銀めっきを1μm成膜したものを用い、0.1mol/Lの硝酸亜鉛水溶液からなる変色防止処理用組成物に浸漬し、被処理物を陰極、亜鉛板を陽極として、直流電流を通電して、変色防止処理を行った。表1に、処理時の硝酸亜鉛水溶液の液温、陰極電流密度、及び処理時間を示す。処理後の銀めっき皮膜について、下記の方法で外観及び耐変色性を評価した。結果を下記表1に示す。
Example 1
As an object to be processed, a 1 μm Ni plating film was formed on a rolled copper plate, and then a 1 μm silver plating film was used, and immersed in a composition for preventing discoloration consisting of a 0.1 mol / L zinc nitrate aqueous solution. Using a product as a cathode and a zinc plate as an anode, a direct current was applied to prevent discoloration. Table 1 shows the liquid temperature of the aqueous zinc nitrate solution, the cathode current density, and the treatment time during the treatment. About the silver plating film after a process, the external appearance and discoloration resistance were evaluated by the following method. The results are shown in Table 1 below.

*外観評価
変色防止処理後の試料を目視で外観観察した。結果を次の記号で示す。
* Appearance evaluation The appearance after the discoloration prevention treatment was visually observed. The results are indicated by the following symbols.

○:外観良好
△:わずかに黄色
×:黄色。
○: Appearance good Δ: Slightly yellow ×: Yellow

*耐変色性(耐硫化)試験
変色防止処理後の試料の反射率(波長:450nm)を測定した後、25℃の硫化アンモニウムの2ml/L水溶液に5分間浸漬し、その後、再度、反射率測定(波長:450nm)を行ない、反射率の変化で耐変色性を評価した。結果を下記の記号で示す。
* Discoloration resistance (sulfuration resistance) test After measuring the reflectance (wavelength: 450 nm) of the sample after anti-discoloration treatment, immerse it in a 2 ml / L aqueous solution of ammonium sulfide at 25 ° C for 5 minutes, and then reflect the reflectance again. Measurement (wavelength: 450 nm) was performed, and the resistance to discoloration was evaluated by the change in reflectance. The results are indicated by the following symbols.

○ : 反射率の低下が5%以下
△ : 反射率の低下が5〜10%
× : 反射率の低下が10%以上
○: Decrease in reflectance is 5% or less △: Decrease in reflectance is 5-10%
×: Decrease in reflectance is 10% or more

Figure 2013216920
Figure 2013216920

図1に、0.5mA/cmの陰極電流密度で10秒間処理を行った試料について、変色防止処理用組成物の液温と、変色防止処理後の銀めっき皮膜の反射率(波長:450nm)との関係をグラフとして示す。また、図1のグラフには、上記した方法で耐変色性試験を行った後の試料について、変色防止処理用処理液の液温と、耐変色性(耐硫化)試験後の銀めっき皮膜の反射率(波長:450nm)との関係も示す。 FIG. 1 shows a sample treated with a cathode current density of 0.5 mA / cm 2 for 10 seconds, the liquid temperature of the composition for preventing discoloration, and the reflectance of the silver plating film after the discoloration preventing treatment (wavelength: 450 nm). ) As a graph. Further, the graph of FIG. 1 shows the temperature of the anti-discoloration treatment solution and the silver plating film after the discoloration resistance (sulfuration resistance) test for the sample after the discoloration resistance test was performed by the above-described method. The relationship with the reflectance (wavelength: 450 nm) is also shown.

図1から明らかなように、55℃以下の液温で変色防止処理を行った場合には、変色防止処理後の皮膜は高い反射率を維持しており、硫化アンモニウム水溶液に浸漬して、耐変色性(耐硫化)試験を行った後も反射率の低下が少なく、良好な変色防止性を有することが確認できた。   As can be seen from FIG. 1, when the anti-discoloration treatment is performed at a liquid temperature of 55 ° C. or less, the coating after the anti-discoloration treatment maintains a high reflectance and is immersed in an aqueous ammonium sulfide solution for resistance. Even after the discoloration (sulfuration resistance) test, it was confirmed that there was little decrease in reflectivity and good discoloration prevention property.

また、図2は、0.5mA/cmの陰極電流密度で10秒間処理を行った試料の内で、液温50℃で変色防止処理を行った試料と液温60℃で変色防止処理を行った試料の表面状態を示すSEM写真である。図2から明らかなように、液温60℃で処理を行った試料については、粒子状の析出物が形成されており、銀めっき皮膜表面の大部分は露出した状態であることが分かる。このために、耐変色性(耐硫化)試験において変色が生じ、大幅な反射率の低下が生じたと考えられる。これに対して、液温50℃で変色防止処理を行った試料では、粒子状の析出物は認められず、銀めっき表面の全体に均一な薄い皮膜が形成されていることが確認できる。このため、耐変色性(耐硫化)試験においても反射率の低下が認められない結果を示したものと考えられる。 Further, FIG. 2 shows a sample subjected to the discoloration prevention treatment at a liquid temperature of 50 ° C. and a discoloration prevention treatment at a liquid temperature of 60 ° C. among the samples subjected to the treatment at a cathode current density of 0.5 mA / cm 2 for 10 seconds. It is a SEM photograph which shows the surface state of the performed sample. As is clear from FIG. 2, for the sample treated at a liquid temperature of 60 ° C., particulate precipitates are formed, and it can be seen that most of the surface of the silver plating film is exposed. For this reason, it is considered that discoloration occurred in the discoloration resistance (sulfuration resistance) test, resulting in a significant decrease in reflectance. On the other hand, in the sample subjected to the discoloration prevention treatment at a liquid temperature of 50 ° C., no particulate precipitate is observed, and it can be confirmed that a uniform thin film is formed on the entire surface of the silver plating. For this reason, it is considered that the results showed no decrease in reflectance even in the discoloration resistance (sulfuration resistance) test.

試験例1
実施例1において、液温50℃、電流密度0.5mA/cmの陰極電流密度で10秒間処理を行った試料の表面について光電子分光分析(XPS)を用い、Arイオンガンにより0.1minスパッタ毎に測定を行い、これを30回繰り返すことで深さ方向分析を行なった。測定条件は以下の通りである。
Test example 1
In Example 1, the surface of a sample treated for 10 seconds at a cathode current density of 50 ° C. and a current density of 0.5 mA / cm 2 was subjected to photoelectron spectroscopy (XPS), and each 0.1 min sputtering with an Ar ion gun. The depth direction analysis was performed by measuring and repeating this 30 times. The measurement conditions are as follows.

測定装置:アルバックファイ社製 ESCA-5800 励起X線:AlKα線 出力:400W
尚、スパッタリングによるエッチング速度については、Agめっき表面にZnO膜を90nm成膜した試料について、上記した方法と同様のスパッタリング条件で予備的に実験を行い、ZnO膜に対するスパッタリング速度が6nm/分であることを予め確認した。
Measuring equipment: ESCA-5800 made by ULVAC-PHI Excitation X-ray: AlKα ray Output: 400W
As for the etching rate by sputtering, a sample in which a ZnO film is formed to a thickness of 90 nm on the surface of the Ag plating is preliminarily tested under the same sputtering conditions as described above, and the sputtering rate for the ZnO film is 6 nm / min. It was confirmed beforehand.

図3はエッチング時間と光電子スペクトルとの関係を示すグラフである。図3から明らかなように、約0.3分のエッチング時間でZnイオンとAgイオンの濃度が同程度となっており、銀めっき皮膜上に形成された皮膜の厚さが、約2nmであることが確認できた。   FIG. 3 is a graph showing the relationship between the etching time and the photoelectron spectrum. As is apparent from FIG. 3, the Zn ion and Ag ion concentrations are about the same in an etching time of about 0.3 minutes, and the thickness of the film formed on the silver plating film is about 2 nm. I was able to confirm.

この試料について、Ag3d光電子スペクトルとZn2p3/2光電子スペクトルを図4に示す。図4において、1及び2で示される曲線はスパッタリングを行う前の表面状態を示すスペクトルであり、3、4、5及び6で示される曲線は、それぞれ、0.1分、0.2分、0.3分及び0.4分間スパッタリングを行った後のスペクトルである。Ag3d光電子スペクトルから明らかなように、スパッタリングを行う前の表面ではAgが殆ど検出されず、銀めっき皮膜上に均一な皮膜が形成されていることが確認できた。また、Zn2p3/2光電子スペクトルから明らかなように、銀めっき皮膜上に形成された皮膜は水酸化亜鉛を含むものであることが確認できた。   FIG. 4 shows the Ag3d photoelectron spectrum and Zn2p3 / 2 photoelectron spectrum of this sample. In FIG. 4, the curves indicated by 1 and 2 are spectra showing the surface state before sputtering, and the curves indicated by 3, 4, 5 and 6 are respectively 0.1 minutes, 0.2 minutes, It is a spectrum after performing sputtering for 0.3 minute and 0.4 minute. As apparent from the Ag3d photoelectron spectrum, almost no Ag was detected on the surface before sputtering, and it was confirmed that a uniform film was formed on the silver plating film. Further, as apparent from the Zn2p3 / 2 photoelectron spectrum, it was confirmed that the film formed on the silver plating film contained zinc hydroxide.

図5には、液温60℃、電流密度0.5mA/cmの陰極電流密度で10秒間処理を行った試料の表面について、上記した方法と同様にして測定したAg3d光電子スペクトルとZn2p3/2光電子スペクトルを示す。図5におけるAg3d光電子スペクトルから明らかなように、スパッタリングを行う前の試料表面において明確なAgのピークが認められており、液温60℃で電解処理を行った場合には、銀めっき皮膜表面に均一な皮膜が形成されておらず、少なくとも一部が露出した状態であることが確認できた。 Figure 5, liquid temperature of 60 ° C., a current density of 0.5 mA / cm for the surface of the sample subjected to 10 seconds treated with 2 of cathode current density, Ag3d photoelectron spectra and Zn2p3 / 2 was measured in the same manner as described above The photoelectron spectrum is shown. As is clear from the Ag3d photoelectron spectrum in FIG. 5, a clear Ag peak was observed on the sample surface before sputtering. When electrolytic treatment was performed at a liquid temperature of 60 ° C., the surface of the silver plating film was observed. It was confirmed that a uniform film was not formed and at least a part of the film was exposed.

Claims (7)

亜鉛イオン及び硝酸イオンを含有する水溶液からなる変色防止処理用組成物中で、銀系材料を含む被処理物を陰極として、液温55℃以下で電解処理を行うことを特徴とする、銀系材料の変色防止方法。 In the composition for anti-discoloration treatment comprising an aqueous solution containing zinc ions and nitrate ions, an electrolytic treatment is carried out at a liquid temperature of 55 ° C. or less, using an object to be treated containing a silver-based material as a cathode. Material discoloration prevention method. 電解処理時の陰極電流密度が0.01〜2mA/cmである請求項1に記載の銀系材料の変色防止方法。 The method for preventing discoloration of a silver-based material according to claim 1, wherein the cathode current density during the electrolytic treatment is 0.01 to 2 mA / cm2. 変色防止処理用組成物が、亜鉛イオン0.05mol/l〜0.2mol/lと、硝酸イオン0.05mol/l〜0.2mol/lを含む水溶液である、請求項1又は2に記載の銀系材料の変色防止方法。 The composition for discoloration prevention treatment is an aqueous solution containing zinc ions 0.05 mol / l to 0.2 mol / l and nitrate ions 0.05 mol / l to 0.2 mol / l. A method for preventing discoloration of silver-based materials. 電解処理の時間が10秒以下である請求項1〜3のいずれかに記載の銀系材料の変色防止方法。 The method for preventing discoloration of a silver-based material according to any one of claims 1 to 3, wherein the electrolytic treatment time is 10 seconds or less. 請求項1〜4のいずれかの方法で変色防止処理が施された、銀系材料を含む物品。 An article containing a silver-based material, which has been subjected to a discoloration prevention treatment by the method according to claim 1. LED照明用反射板である請求項5に記載の物品。 The article according to claim 5, which is a reflector for LED lighting. 変色防止皮膜が形成された銀系材料であって、
該変色防止皮膜が、該銀系材料の被処理面を均一に被覆する水酸化亜鉛を含有する厚さ20nm以下の皮膜であることを特徴とする、銀系材料。
A silver-based material on which a discoloration-preventing film is formed,
The silver-based material, wherein the discoloration-preventing film is a film having a thickness of 20 nm or less containing zinc hydroxide that uniformly coats the surface to be treated of the silver-based material.
JP2012085713A 2012-04-04 2012-04-04 Method for preventing discoloration of silver-based materials Active JP5888696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085713A JP5888696B2 (en) 2012-04-04 2012-04-04 Method for preventing discoloration of silver-based materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085713A JP5888696B2 (en) 2012-04-04 2012-04-04 Method for preventing discoloration of silver-based materials

Publications (2)

Publication Number Publication Date
JP2013216920A true JP2013216920A (en) 2013-10-24
JP5888696B2 JP5888696B2 (en) 2016-03-22

Family

ID=49589376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085713A Active JP5888696B2 (en) 2012-04-04 2012-04-04 Method for preventing discoloration of silver-based materials

Country Status (1)

Country Link
JP (1) JP5888696B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013283A (en) * 2001-07-04 2003-01-15 Canon Inc Method for forming zing oxide film, for manufacturing semiconductor element substrate therewith, and for manufacturing photovoltaic element
US20100200413A1 (en) * 2009-02-11 2010-08-12 United Solar Ovonic Llc Solution deposition method and apparatus with partiphobic substrate orientation
US20100200067A1 (en) * 2009-02-11 2010-08-12 United Solar Ovonic Llc Substrate for semiconductor device and method for its manufacture
WO2010093781A2 (en) * 2009-02-11 2010-08-19 United Solar Ovonic Llc Solution based non-vacuum method and apparatus for preparing oxide materials
JP2011208176A (en) * 2010-03-29 2011-10-20 Oriental Mekki Kk Discoloration preventive film for silver-plated film, and method for forming the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013283A (en) * 2001-07-04 2003-01-15 Canon Inc Method for forming zing oxide film, for manufacturing semiconductor element substrate therewith, and for manufacturing photovoltaic element
US20100200413A1 (en) * 2009-02-11 2010-08-12 United Solar Ovonic Llc Solution deposition method and apparatus with partiphobic substrate orientation
US20100200067A1 (en) * 2009-02-11 2010-08-12 United Solar Ovonic Llc Substrate for semiconductor device and method for its manufacture
WO2010093781A2 (en) * 2009-02-11 2010-08-19 United Solar Ovonic Llc Solution based non-vacuum method and apparatus for preparing oxide materials
JP2011208176A (en) * 2010-03-29 2011-10-20 Oriental Mekki Kk Discoloration preventive film for silver-plated film, and method for forming the same

Also Published As

Publication number Publication date
JP5888696B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
Mahalingam et al. Electrochemical deposition of ZnTe thin films
l Gawad et al. Development of electroless Ni-P-Al2O3 and Ni-P-TiO2 composite coatings from alkaline hypophosphite gluconate baths and their properties
Huang et al. Temperature dependence on p-Cu2O thin film electrochemically deposited onto copper substrate
JP5508084B2 (en) Articles including a discoloration-preventing film for silver plating film and method for producing the same
CN108138346B (en) Electroplating bath for the electrochemical deposition of a Cu-Sn-Zn-Pd alloy, method for the electrochemical deposition of said alloy, substrate comprising said alloy and use of the substrate
TWI633210B (en) Tin based alloy plated steel sheet
TWI633211B (en) Tin plated steel sheet
JP2002237606A (en) Substrate for solar cell, solar cell using the same, and method of manufacturing the solar cell
EP1930478B1 (en) Electrolyte composition and method for the deposition of quaternary copper alloys
US20120097545A1 (en) Silver electroplated and/or silver alloy electroplated article having an oxidation layer on its surface
EP3765658B1 (en) Electroplated products and electroplating bath for providing such products
JP5888696B2 (en) Method for preventing discoloration of silver-based materials
EA029324B1 (en) Electrode for oxygen evolution in industrial electrochemical processes
JP3148882B2 (en) Method for producing zinc oxide film
EP3181726A1 (en) Etching solution for treating nonconductive plastic surfaces and process for etching nonconductive plastic surfaces
Gromboni et al. Characterization and Optical Properties of ZnSe Thin Films Obtained by Electrodeosition Technique
JP4803549B2 (en) Method for forming a metallic copper layer on a cuprous oxide film
Sugawa et al. Semiconductor properties of ZnTe thin films electrodeposited from aqueous solutions
JP2001262390A (en) Palladium plating liquid
JP7417601B2 (en) Method for electrolytically passivating the surface of silver, silver alloys, gold, or gold alloys
WO2004001101A2 (en) Electrolytic bath for the electrodeposition of noble metals and their alloys
ROSLEY et al. Effect of pH in Production of Cu-Sn-Zn via Electroplating Using Less Hazardous Electrolyte
JP2018177613A (en) Structure and manufacturing method of structure
JP2023035665A (en) Surface treatment method of metallic material
KR20140101053A (en) Titanium alloy plating compositions comprising

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5888696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250