JP2013216325A - Air bubble holding device of ship - Google Patents

Air bubble holding device of ship Download PDF

Info

Publication number
JP2013216325A
JP2013216325A JP2013137343A JP2013137343A JP2013216325A JP 2013216325 A JP2013216325 A JP 2013216325A JP 2013137343 A JP2013137343 A JP 2013137343A JP 2013137343 A JP2013137343 A JP 2013137343A JP 2013216325 A JP2013216325 A JP 2013216325A
Authority
JP
Japan
Prior art keywords
ship
bubbles
air
gas
bubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013137343A
Other languages
Japanese (ja)
Other versions
JP5799982B2 (en
Inventor
Hidemiki Kawashima
英幹 川島
Munehiko Hinatsu
宗彦 日夏
Yoshiaki Kodama
良明 児玉
Toshifumi Hori
利文 掘
Masahiko Makino
雅彦 牧野
Masashi Onawa
将史 大縄
Shunya Takeko
春弥 竹子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Maritime Research Institute
Original Assignee
National Maritime Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Maritime Research Institute filed Critical National Maritime Research Institute
Priority to JP2013137343A priority Critical patent/JP5799982B2/en
Publication of JP2013216325A publication Critical patent/JP2013216325A/en
Application granted granted Critical
Publication of JP5799982B2 publication Critical patent/JP5799982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Vibration Prevention Devices (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air bubble holding device of a ship in which air bubbles are held even at the inclination of the ship which occurs depending on a ship navigation status and a ship status when, for example, the ship turns, and at a disturbance such as waves and flows, and which avoids to be a resistance hindering the progress of the ship.SOLUTION: An air bubble holding device of a ship comprises: gas injection ports 21, 22, 23, 24, 25 for injecting air bubbles along a ship bottom 3 formed at the ship bottom 3 of the ship 1; blowers 10, 11, 12, 13, 14 for air-sending gases to the gas injection ports 21, 22, 23, 24, 25; an electric motor for driving the blowers 10, 11, 12, 13, 14; and an air liquid separator 200 for sucking the injected air bubbles to the rear of at least the air injection ports 21, 22, 23, 24, 25 of the ship bottom 3.

Description

本発明は、船舶の気泡保持装置に係り、特に船体の摩擦抵抗低減の目的で水中に噴出される気泡を船底部分に保持させる船舶の気泡保持装置に関するものである。   The present invention relates to a ship bubble holding device, and more particularly to a ship bubble holding device that holds bubbles blown into water at the bottom of a ship for the purpose of reducing the frictional resistance of the hull.

船舶の抵抗低減の研究として、造波抵抗については数多くの成果が得られているが、大型船で全抵抗の約8割を占めるといわれる摩擦抵抗については、複雑な乱流現象が関係するため、今まで目立った成果が得られていなかった。船舶の航行時においては、喫水線以下の船体表面に沿って乱流境界層が発達することにより、船体表面に摩擦抵抗が作用し、船舶の推進性能を低下させる。このような船体表面の摩擦抵抗を低減する手段として、表面に沿う境界層中に微細な気泡を注入することにより低減させる気泡噴出式が、近年、有望な摩擦抵抗低減策として注目され、研究されて来ている。気泡噴出式は、その摩擦抵抗低減効果が顕著であること、比較的汚損に強いこと、海洋や水系に対する環境汚染の問題が無いことから、今後の省エネルギーが希求される時代の有望な摩擦抵抗低減策と考えられている。   As a study of ship drag reduction, many achievements have been obtained for wave resistance, but friction resistance, which is said to account for about 80% of the total resistance of large ships, is related to complex turbulence phenomena. Until now, no outstanding results have been obtained. During the navigation of the ship, a turbulent boundary layer develops along the surface of the hull below the waterline, so that frictional resistance acts on the hull surface and reduces the propulsion performance of the ship. As a means to reduce the frictional resistance of the hull surface, the bubble jet type, which is reduced by injecting fine bubbles into the boundary layer along the surface, has recently attracted attention and researched as a promising measure for reducing frictional resistance. Is coming. The bubble jet type has a remarkable frictional resistance reduction effect, is relatively resistant to contamination, and has no problem of environmental pollution to the ocean or water system. It is considered a measure.

ただ、この気泡噴出式は、水面下の船側や船底から水圧に打ち勝って気泡を発生させているため動力を要し、摩擦抵抗低減効果と気泡発生動力の双方を考慮した正味の低減効果を増すような配慮が必要であった。また、海洋や河川等を航行する船舶は、波や流れ等様々な外乱を受け、また積荷の状態や航行状態等にも影響を受ける中で、如何に有効に摩擦抵抗を低減するかが課題とされていた。今迄の研究は主として実験室レベルのものや模型船を用いた研究が主であり、これらの実際の外乱や航行状態を考慮に入れた研究とは厳密にはなっていなかった。   However, this bubble jet type requires power because it generates bubbles by overcoming the water pressure from the bottom of the ship or from the bottom of the ship, and increases the net reduction effect considering both the frictional resistance reduction effect and the bubble generation power. Such consideration was necessary. In addition, ships navigating oceans and rivers are subject to various disturbances such as waves and currents, and are also affected by the state of cargo and navigation, how to effectively reduce frictional resistance. It was said. The research so far has mainly been research at the laboratory level and using model ships, and these studies have not been rigorous, taking into account these actual disturbances and navigational conditions.

本願発明者らは、こういった研究の現状に対し実船を用い、この船体に気体噴出装置を装備し、船舶状況、航行状態、海象状況等、実際に近い状況の中で、気泡噴出と摩擦抵抗低減効果の関係を調査し、正味の低減効果を増すことを模索し、数多くの知見を得てきている。さらに、該気体噴出装置から噴出された気体を、海中内で拡散させず船底から離脱させないための部材、装置及び船底の形状についての研究も進められている。   The inventors of the present application used an actual ship for the current state of research, equipped with a gas jetting device on this hull, and in a situation close to the actual situation such as a ship situation, a sailing condition, a sea condition, By investigating the relationship between the frictional resistance reduction effect and seeking to increase the net reduction effect, we have gained a lot of knowledge. In addition, research is being conducted on members, devices, and the shape of the bottom of the ship so that the gas ejected from the gas ejection device does not diffuse in the sea and does not leave the bottom of the ship.

一方、特許の分野においては、このような船舶から噴出した気泡を逃がさないようにするために、例えば、特許文献1、2、3,4に示すような対策が取られてきた。   On the other hand, in the field of patents, for example, the measures shown in Patent Documents 1, 2, 3, and 4 have been taken in order not to escape such bubbles ejected from the ship.

この特許文献1は、船体前方に海水取入部を形成し、この海水取入部に設けられ航行の際に海水取入部に浸入する海水を船底側に吹き出す噴流発生手段と、船底側に空気を噴射する空気噴射手段とを有し、船底には噴流発生手段により船底側に吹き出された海水および空気噴射手段により噴射された空気が船体側方に逃げないように規制する規制部材を設けたものである。   This patent document 1 forms a seawater intake part in front of the hull, jet flow generating means for blowing seawater entering the seawater intake part at the time of navigation to the bottom of the ship and injecting air to the bottom of the ship. And a regulating member that regulates the seawater blown to the bottom of the ship by the jet generating means and the air jetted by the air jetting means so as not to escape to the side of the hull. is there.

こうした構成をとっているため、空気が船体の中央部から噴射される構成であり、摩擦力低減効果に限りがあった。また、規制部材自体が船舶の推進力を妨げる抵抗体となり、空気による正味の摩擦抵抗低減効果を減少させていた。また、船舶の底面と空気噴射手段から噴射された空気との間に浸入する水の影響により、摩擦抵抗低減効果の増幅を図ることが困難であった。   Since such a configuration is adopted, air is injected from the center of the hull, and the effect of reducing the frictional force is limited. In addition, the regulating member itself becomes a resistor that hinders the propulsive force of the ship, reducing the net frictional resistance reduction effect by air. In addition, it is difficult to amplify the frictional resistance reduction effect due to the influence of water entering between the bottom surface of the ship and the air jetted from the air jetting means.

また、特許文献2は、船底にエアを送り込む構造の船舶に於いて、流れに対して船底が略平面状の構造として、船底に多数の溝部を形成させて、エアを溝部に入れる構造として、エアを入れることにより船底と水とを隔離する構造としたものである。   Patent Document 2 describes a ship having a structure in which air is sent to the bottom of the ship. As a structure in which the bottom of the ship is substantially planar with respect to the flow, a large number of grooves are formed on the bottom of the ship, and air is introduced into the groove. It is structured to isolate the ship bottom and water by putting air.

こうした構成をとっているため、船底に空気を敷き込む構成であり、船底に空気が付随するものの、空気を保持する部材等がなく、波や流れ等の外乱で、船舶が傾くことにより空気は水圧の低い方へ拡散してしまい船底に付随する空気量が減少し、摩擦低減効果も減少してしまうことが避けられない。また、上記と同様に、船舶の底面と空気との間に侵入する水の影響により、摩擦抵抗低減効果の増幅を図ることが困難であった。   Since this structure is adopted, air is laid on the bottom of the ship, and air is attached to the bottom of the ship, but there are no members to hold the air. It is inevitable that the water pressure will diffuse to the lower water pressure and the amount of air attached to the bottom of the ship will decrease, and the friction reduction effect will also decrease. Further, as described above, it is difficult to amplify the frictional resistance reduction effect due to the influence of water entering between the bottom surface of the ship and the air.

また、特許文献3は、没水表面から気体を噴出して、没水表面に接する境界層に気泡及び気体層を介在させて、没水表面の摩擦抵抗を減少させる場合に、没水表面に、加圧気体を水中に噴出する噴出口が配されるとともに、噴出口の下流位置に、噴出口の外側縁部よりも内方位置で、噴出口の内側壁と没水表面とを緩やかに接続した状態の誘導面が形成されるというものである。   Patent Document 3 discloses that when gas is ejected from a submerged surface and bubbles and a gas layer are interposed in a boundary layer in contact with the submerged surface to reduce the frictional resistance of the submerged surface, A jet outlet for jetting pressurized gas into the water is arranged, and the inner wall of the jet outlet and the submerged surface are gently placed at a position downstream of the jet outlet and inward of the outer edge of the jet outlet. A connected guide surface is formed.

こういう構成をとっているため、上記と同様、誘導面に空気が付随するものの、空気を保持する部材等がなく、波や流れ等の外乱で、船舶が傾くことにより空気は水圧の低い方へ拡散してしまい船底に付随する空気量が減少し、摩擦低減効果も減少してしまうこととならざるを得ない。また、上記と同様に、船舶の底面と空気との間に侵入する水の影響により、摩擦抵抗低減効果の増幅を図ることが困難であった。   Since this structure is adopted, air is attached to the guide surface as described above, but there is no member to hold the air, and the air is moved to a lower water pressure by tilting the ship due to disturbances such as waves and flows. As a result, the amount of air accompanying the ship bottom decreases and the friction reduction effect also decreases. Further, as described above, it is difficult to amplify the frictional resistance reduction effect due to the influence of water entering between the bottom surface of the ship and the air.

また、特許文献4は、エネルギー効率化装置により、船舶の船体に生じる水摩擦を低減し、常態で水と係合する船舶の船体の外面と水との接触が、その外面を覆うように加圧または圧縮された空気またはガスの有利な導入によって、低減されるというものである。   Further, Patent Document 4 uses an energy efficiency device to reduce water friction generated in the hull of a ship, and the contact between the outer surface of the ship's hull and the water that is normally engaged with water covers the outer surface. It is reduced by the advantageous introduction of pressurized or compressed air or gas.

こういう構成をとっているため、圧縮空気が船舶の船首輪郭を超えて逃げないようにするため、溝またはチャンネルに捕捉されるようにベントまたはノズルが配置されなければならず、波や流れ等の外乱時に船舶の傾きに対応した空気の保持が困難であり、摩擦低減効果も減少してしまっていた。   Because of this configuration, vents or nozzles must be placed to be trapped in the grooves or channels to prevent compressed air from escaping beyond the vessel's bow profile, such as waves and flows. It was difficult to maintain the air corresponding to the inclination of the ship at the time of disturbance, and the friction reduction effect was also reduced.

特開平5−116672号公報Japanese Patent Laid-Open No. 5-116672 特開平6−191396号公報JP-A-6-191396 特開平9−150785号公報JP-A-9-150785 特表2001−524421号公報Special table 2001-524421 gazette

本発明は、上記の従来技術の問題点を解決するもので、船舶の航行状況や船舶状況、たとえば船舶が波や流れ等の外乱時や旋回する際に生じる船舶の傾きにも気泡が保持され、かつ、船舶の進行を妨げる抵抗体となることを回避する船舶の気泡保持装置を提供することを目的としている。   The present invention solves the above-described problems of the prior art, and bubbles are also retained in the navigational state of the ship and the state of the ship, for example, the inclination of the ship that occurs when the ship is disturbed by waves or flows or when turning. And it aims at providing the bubble holding | maintenance apparatus of a ship which avoids becoming a resistor which obstructs advancing of a ship.

かかる目的を達成するために、本発明の船舶の気体保持装置は、船舶と、この船舶の船底に設けた前記船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置とを備え、少なくとも前記気体噴出口以降の前記船底の略端部に複数の端板を前記船底の長手方向に配設し、複数の前記端板は各々が平断面でほぼ対称形であり、少なくともその後端部において流線型を有しかつ後部平断面が外側へ開く形状を有する構成してもよい。 In order to achieve such an object, a gas holding device for a ship according to the present invention includes a ship, a gas jet for ejecting bubbles along the bottom of the ship provided on the bottom of the ship, and a gas to the gas jet. A plurality of end plates arranged in a longitudinal direction of the bottom of the ship at least at a substantially end of the bottom of the ship after the gas ejection port. Each of the end plates may be substantially symmetrical with a flat cross section, and may have a streamline shape at least at the rear end thereof and a shape in which the rear flat cross section opens outward.

ここで、送気手段とは気泡発生に有効な量の送気量が確保できる、ブロワーやタービン駆動のコンプレッサー、船舶に予め装備されている空気圧供給源、機関の排気ガスを加圧したもの等を言い、特に吐出側圧力が変動しても、その送気量の変動が少ないものが好ましい。   Here, the air supply means can secure an air supply amount effective for generating bubbles, a compressor driven by a blower or a turbine, an air pressure supply source pre-installed in a ship, an engine exhaust gas pressurized, etc. In particular, it is preferable that the amount of air supply is small even when the discharge side pressure fluctuates.

また、駆動装置とは、電動機、液体燃料やガス燃料により駆動されるエンジン等の他、船舶の機関からの排気を利用して回転力を得るタービン、また油圧や空気圧で駆動される油圧モータや空気圧モータ等を言う。   In addition to an electric motor, an engine driven by liquid fuel or gas fuel, a driving device is a turbine that obtains rotational force using exhaust from a ship engine, a hydraulic motor driven by hydraulic pressure or pneumatic pressure, It refers to pneumatic motors.

また、端板とは、鉄、鋼及びスチールを含む金属素材や杉やヒノキを含む木材、FRP等の素材から形成される板状の材料をいい、硬性を有し、水分等の影響による錆を誘発しにくいものが好ましい。防錆のために、該素材の表面を塗装することもより好ましい。また該端板の配設方法は、接合部材をネジ、釘、及び接着剤を含む接合方法により船底に接合・配設させる方法を含むが、該船底に係る船舶本体と該端板がその形状において嵌め込まれていること及び/或いは噛み合せていること、あるいは溶接により接合されていることにより配設させる方法が好ましい。配設の際には、該接合部材を補強的に用いることで配設強度を向上させるようにしてもよい。   The end plate refers to a plate-like material formed from iron, steel, metal materials including steel, wood including cedar and cypress, materials such as FRP, etc., which are hard and rusted by the influence of moisture and the like. Those that are less likely to induce aging are preferred. It is more preferable to paint the surface of the material for rust prevention. Further, the method for arranging the end plate includes a method for joining and arranging the joining member to the ship bottom by a joining method including a screw, a nail, and an adhesive. It is preferable to dispose them by fitting and / or meshing with each other, or by welding. At the time of disposition, the disposing strength may be improved by using the joining member in a reinforcing manner.

上記のような構成によれば、駆動装置より駆動された送気手段により、気体噴出口から気体が噴出されるところ、該気体噴出口を基準として船尾方向に複数の端板が船底の略端部に長手方向に配設されていることにより、噴出された気泡は水中において船底に保持されて流れることが可能である。   According to the above configuration, when the gas is ejected from the gas ejection port by the air supply means driven by the driving device, the plurality of end plates are arranged in the stern direction with respect to the gas ejection port as a substantial end of the ship bottom. By being disposed in the longitudinal direction in the section, the ejected bubbles can flow while being held on the ship bottom in water.

また、本装置は、上記構成に加え船舶の気体保持装置は、該端板を複数対、該船舶の船底の平面形状に合わせて対称的に配設し、前部端板の長さを後部端板の長さよりも短くするように構成してもよい。   Further, in addition to the above-described configuration, this apparatus has a gas holding device for a ship in which a plurality of the end plates are symmetrically arranged in accordance with the planar shape of the bottom of the ship, and the length of the front end plate is set to the rear. You may comprise so that it may become shorter than the length of an end plate.

上記のような構成によれば、船舶の平面形状に合わせて略対称に端板が複数対配設されるので、該端板(の集合体)が該船舶の進行を妨げる抵抗体となることを実質的に回避することが可能となる。   According to the above configuration, a plurality of pairs of end plates are arranged substantially symmetrically in accordance with the planar shape of the ship, so that the end plates (aggregates thereof) become resistors that obstruct the progress of the ship. Can be substantially avoided.

またこのとき、該前部端板の長さを後部端板の長さよりも短くするように構成することもでき、この構成をとる場合には、該端板(の集合体)を船底の平面形状に近似させることになるため、気泡の保持効果を一層高めることが可能となる。   Also, at this time, the length of the front end plate can be made shorter than the length of the rear end plate. Since the shape is approximated, the effect of retaining bubbles can be further enhanced.

また、本装置は、上記構成に加え、該端板はその断面が該船底側を底辺とした略三角形もしくは二次関数曲線を含む曲線を用いた形で規定される形状を有するように構成してもよい。   Further, in addition to the above-described configuration, the device has a configuration in which the end plate has a shape defined by a shape using a curve including a substantially triangular shape or a quadratic function curve whose cross section is the bottom side of the ship bottom. May be.

ここで、略三角形とは、直角三角形、二等辺三角形及び正三角形に限定されることなく、一定の角度及び辺の長さを有する三角形であれば、全てが含まれる。また、二次関数曲線とは、二次関数の基本方程式(y=αx+βx+γ)に係る二次曲線であり、所定の変数α、β、γであれば、全てが含まれる。また、任意の曲線を組み合わせて略三角形を構成してもよい。 Here, the approximate triangle is not limited to a right triangle, an isosceles triangle, and an equilateral triangle, but includes all triangles having a certain angle and side length. Further, the quadratic function curve is a quadratic curve related to the basic equation (y = αx 2 + βx + γ) of the quadratic function, and includes all of the predetermined variables α, β, and γ. Moreover, you may comprise a substantially triangle combining arbitrary curves.

上記のような構成によれば、該端板は断面視により船底側を底辺とした略三角形もしくは二次関数曲線等の曲線を用いた形に係る形状を有することになり、この断面形状によって端板(の集合体)が該船舶の進行を妨げる抵抗を実質的に回避する効果が一層促進されるため、噴出された気泡は水中において船底に保持されて流れることが可能となる。   According to the configuration as described above, the end plate has a shape related to a shape using a curve such as a substantially triangular shape or a quadratic function curve with the bottom side at the bottom in a cross-sectional view. Since the effect of the plate (aggregate) substantially avoiding the resistance that hinders the progress of the ship is further promoted, the ejected bubbles can flow while being held at the bottom of the ship in water.

また、上記構成に加え、本発明に係る船舶の気体保持装置は、該端板はその前端部が流線型を有するように構成してもよい。   Further, in addition to the above configuration, the gas holding device for a ship according to the present invention may be configured such that the front end portion of the end plate has a streamlined shape.

ここで、流線型とは、船舶の進行における水の抵抗を最小限とするため曲線を有する形状であり、たとえば、空気抵抗による進行の妨げを回避するために自動車、列車及び飛行機等の先頭部で採用される形状が含まれるが、これらの形状に限定されることはない。   Here, the streamlined shape is a shape having a curve in order to minimize the resistance of water in the progression of the ship. For example, in order to avoid obstruction of the progression due to air resistance, at the head of an automobile, train, airplane, etc. Although the shape employ | adopted is included, it is not limited to these shapes.

このような構成によれば、端板はその前後端部においてその前端部及び/もしくは後端部が流線型を有することから水の抵抗を最小限化するので、噴出された空気に係る水中での気泡は船底に保持されて流れるものである。   According to such a configuration, the end plate has a streamlined front end portion and / or rear end portion at the front and rear end portions thereof, thereby minimizing water resistance. Bubbles flow while being held at the bottom of the ship.

また、本発明の船舶の気体保持装置は、この船舶の船底に設けた前記船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置と、少なくとも前記気体噴出口以降の前記船底に凹部が長手方向に形成されることを特徴として構成してもよい。 Further, a ship gas holding device according to the present invention includes a gas jet port for jetting bubbles along the bottom of the ship provided on the bottom of the ship, an air feeding means for feeding gas to the gas jet port, A driving device for driving the air means and a recess may be formed in the longitudinal direction at least on the bottom of the ship after the gas outlet.

ここで、凹部は、船舶の船底自体を凹部に係る形状に屈曲・形成・取り付け或いは切削したものをいう。船底に凹部に係る形状部材を、上記端板の配設方法と同様、ネジ、釘、及び接着剤を含む接合部材、あるいは溶接により船底に配設させるようにしてもよい。   Here, the concave portion means a shape obtained by bending, forming, attaching or cutting a ship bottom itself of the ship into a shape related to the concave portion. The shape member related to the recess on the bottom of the ship may be disposed on the bottom of the ship by welding, including a screw, a nail, and an adhesive, or by welding, in the same manner as the end plate is disposed.

上記の構成によれば、駆動装置より駆動された送気手段により、気体噴出口から気体が噴出されるところ、該気体噴出口を基準として船尾方向に該船底に凹部が長手方向に形成されていることにより、噴出された空気に係る水中での気泡は、該船底の該凹部の終端に至るまで保持されて流れる効果が一層促進される。   According to the above configuration, when the gas is ejected from the gas ejection port by the air supply means driven by the driving device, the concave portion is formed in the longitudinal direction in the ship bottom in the stern direction with respect to the gas ejection port. As a result, the bubbles in the water related to the jetted air are retained and flowed until reaching the end of the recess on the bottom of the ship, thereby further promoting the effect of flowing.

また、本発明の船舶の気体保持装置は、この船舶の船底に設けた前記船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置とを備え、少なくとも前記気体噴出口以降の前記船舶の前記船底に係る長手方向に底辺の断面幅が高さに対して1以上の凹凸断面を形成するように構成してもよい。   Further, a ship gas holding device according to the present invention includes a gas jet port for jetting bubbles along the bottom of the ship provided on the bottom of the ship, an air feeding means for feeding gas to the gas jet port, And a driving device that drives the air means, and is configured to form at least a concave-convex cross section having a cross-sectional width of one or more bases relative to a height in a longitudinal direction of the ship bottom after the gas ejection port. May be.

ここで、凹凸断面とは、断面視で任意の角度で折り曲げられた直線もしくは曲線が連接される形状をいい、凹部と凸部の数や総面積及び凹部と凸部との勾配は限定されない。   Here, the concavo-convex cross section refers to a shape in which straight lines or curved lines bent at an arbitrary angle in a cross-sectional view are connected, and the number of concave portions and convex portions, the total area, and the gradient between the concave portions and the convex portions are not limited.

上記の構成によれば、駆動装置より駆動された送気手段により、気体噴出口から気体が噴出されるところ、該気体噴出口を基準として船舶の進行方向とは逆の方向に、長手方向に底辺の断面幅が高さに対して1以上の凹凸断面を形成されるので、噴出された空気に係る水中での気泡は、その抵抗により凹部に付随し、該船底の該凹凸断面の終端に至るまで保持されて流れることが可能となる。   According to the above configuration, when the gas is ejected from the gas ejection port by the air supply means driven by the driving device, the longitudinal direction is opposite to the traveling direction of the ship with respect to the gas ejection port. Since the cross-sectional width of the bottom is 1 or more with respect to the height, a bubble in the water related to the ejected air is attached to the concave portion due to its resistance, and at the end of the concave-convex cross section on the bottom of the ship. It is possible to flow while being held.

また、上記構成に加え、本発明に係る船舶の気体保持装置は、該凹凸断面は略三角形状が横に連なる形状とし、該略三角形の高さは気泡に十分覆われる高さ(たとえば10mm以下)以下に形成されるように構成してもよい。   Further, in addition to the above-described configuration, the ship gas holding device according to the present invention is configured such that the concavo-convex cross-section has a shape in which a substantially triangular shape is connected horizontally, and the height of the substantially triangular shape is a height sufficiently covered with bubbles (for example, 10 mm or less). ) You may comprise so that it may be formed below.

ここで、略三角形とは、上記同様、直角三角形、二等辺三角形及び正三角形に限定されることなく、所定の角度及び辺の長さを有する三角形であれば、全てが含まれる。また、任意の曲線を用いて略三角形を形成してもよい。   Here, the substantially triangular shape is not limited to a right-angled triangle, an isosceles triangle, and an equilateral triangle, but includes all triangles having a predetermined angle and side length. Moreover, you may form a substantially triangular shape using arbitrary curves.

上記の構成によれば、凹凸断面は略三角形状が横に連なる形状となり、該略三角形の高さが気泡に十分覆われる高さ以下に形成されることで、気泡は実際上その抵抗により該略三角形に係る凹部に付随し、船底の凹凸断面の終端に至るまで気泡が保持されて流れることが可能となる。   According to the above configuration, the concavo-convex cross-section has a shape in which a substantially triangular shape is continuous side by side, and the height of the substantially triangular shape is less than or equal to a height sufficiently covered with the bubble, so that the bubble is actually caused by the resistance. Attached to the concave portion related to the substantially triangular shape, bubbles can be held and flow until reaching the end of the concave-convex cross section of the ship bottom.

また、本発明の船舶の気体保持装置は、この船舶の船底に設けた該船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置と、少なくとも該気体噴出口以降の前記船底の略端部に設けた複数の端板とを備え、該端板は船舶の安定化手段を兼ねるように適合されることを特徴として構成してもよい。   Further, the ship gas holding device of the present invention comprises a gas jet port for jetting bubbles along the ship bottom provided on the ship bottom, an air feed means for feeding gas to the gas jet port, A driving device for driving the air means, and at least a plurality of end plates provided at substantially end portions of the ship bottom after the gas ejection port, the end plates being adapted to serve as a stabilizing means for the ship. May be configured as a feature.

ここで、船舶の安定化手段とは、ビルジキール、フィンスタビライザー、アンチローリング
タンク等、航行中での大波、横波、横風、暴風、突風、台風、暴雨及び雷雨を含む自然現象若しくは他の船舶、流氷、流木及び魚類を含む衝突物体に対し、該船舶の横揺れや横転を抑制するための装置、機械、器具を含む概念であり、これには船舶の船体及び船底に付設するもの及び所定のアルゴリズムを有する自動制御に係るものも含まれる。
Here, ship stabilization means include bilge keels, fin stabilizers, anti-rolling tanks, etc., natural phenomena including large waves, side waves, cross winds, storms, gusts, typhoons, storms and thunderstorms during navigation, other ships, drift ice The concept includes a device, a machine, and an instrument for suppressing the rolling and rollover of the ship against a collision object including driftwood and fish, which are attached to the hull and bottom of the ship and a predetermined algorithm. The thing which concerns on the automatic control which has is included.

上記のように構成されることで、駆動装置によって駆動された送気手段により、気体噴出口から気体が噴出されるところ、気体噴出口を基準として船舶の進行方向とは逆の方向に、略端部に設けた複数の端板が船舶の安定化手段を兼ねているため、自然現象及び衝突物体による船舶の横揺れ及び横転を抑制する効果が一層働き、噴出された気泡は水中において、船底の終端に至るまで保持されて流れることが可能となる。   By being configured as described above, when the gas is ejected from the gas ejection port by the air feeding means driven by the driving device, the gas jetting port is used as a reference in a direction opposite to the traveling direction of the ship. Since the plurality of end plates provided at the end also serve as a means for stabilizing the ship, the effect of suppressing the rolling and rollover of the ship due to natural phenomena and collision objects is more effective. It is possible to flow while being held until the end of the.

また、上記構成に加え船舶の気体保持装置は、該端板の安定化機能への寄与分、該安定化手段の性能を変えて構成してもよい。   Further, in addition to the above-described configuration, the ship gas holding device may be configured by changing the performance of the stabilizing means for the contribution to the stabilizing function of the end plate.

上記のように構成されることで、安定化手段を別途設ける必要をなくし、もしくは安定化手段の性能、機能、装備を最小化することができるので、船舶の経済効率化を推進することができる。   By being configured as described above, it is not necessary to separately provide stabilizing means, or the performance, function, and equipment of the stabilizing means can be minimized, so that the economic efficiency of the ship can be promoted. .

また、上記構成に加え船舶の気体保持装置は、該端板の兼ねる安定化手段はビルジキールとし、ビルジキール高さよりも端板高さを小さく設定して構成してもよい。   Further, in addition to the above-described configuration, the ship gas holding device may be configured such that the stabilizing means also serving as the end plate is a bilge keel, and the end plate height is set smaller than the bilge keel height.

ここで、ビルジキールとは、一般的には船底の両舷端部に、船首から船底へ、あるいは船側
と船底のつなぎ目部に長手方向に伸びる細い板のことで、横揺れ防止などのために取り付けられている部品のことを示す。
Here, bilge keels are generally thin plates that extend in the longitudinal direction from the bow to the bottom of the ship's bottom or to the joint between the ship's side and the bottom of the ship. Indicates the part that is being used.

上記のように構成されることで、ビルジキールの装備を節制することが可能となり、また端板の高さがビルジキール高さよりも小さいため、船舶にかかる潮流の抵抗を減らすことができる。   By being comprised as mentioned above, it becomes possible to control the equipment of a bilge keel, and since the height of an end plate is smaller than a bilge keel height, the resistance of the tidal current concerning a ship can be reduced.

また、本発明の船舶の気体保持装置は、この船舶の船底に設けた該船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置とを備え、該船底の該気体噴出口の後方に噴出した気泡を引き付ける段差を設けたことを特徴として構成してもよい。   Further, the ship gas holding device of the present invention comprises a gas jet port for jetting bubbles along the ship bottom provided on the ship bottom, an air feed means for feeding gas to the gas jet port, And a driving device for driving the air means, and a step for attracting the bubbles ejected to the rear of the gas outlet at the bottom of the ship may be provided.

ここで、段差とは、気体噴出口の船底後方で気泡が船底から離れ拡散し出す箇所に設けた
翼状の隆起部や船尾方向に係る船底が階段状にて形成される構造をいい、その流体的作用により、拡散しかけた気泡を再び船底に引き寄せる効果を有するものをいう。
Here, the level difference means a structure in which a wing-like raised portion provided in a place where bubbles are separated and diffused from the bottom of the gas outlet and the bottom of the stern is formed in a stepped shape. It has the effect of attracting diffused bubbles to the bottom of the ship again due to the target action.

上記の構成によれば、駆動装置より駆動された送気手段により、気体噴出口から噴出された気泡が、かかる段差に係る流体的作用により船底表面に付随し、該船底の段差の終端に至るまで保持されて流れることが可能となる。   According to the above configuration, the bubbles ejected from the gas ejection port by the air feeding means driven by the driving device are attached to the surface of the ship bottom by the fluid action related to the level difference and reach the end of the level difference on the level of the ship bottom. It is possible to flow until it is held.

また、本発明の請求項1に対応した船舶の気体保持装置は、この船舶の船底に設けた該船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置と、該船舶の該船底の少なくとも該気体噴出口の後方に噴出した前記気泡を吸引する気泡吸引手段を設けたことを特徴として構成される。   According to a first aspect of the present invention, there is provided a gas holding device for a ship, which includes a gas outlet that jets bubbles along the bottom of the ship and a gas that sends gas to the gas outlet. An air means, a driving device for driving the air supply means, and a bubble suction means for sucking the bubbles ejected at least behind the gas outlet on the bottom of the ship are provided.

ここで、気泡吸引手段とは、水中に存在する気泡を吸引する機能を有する装置、機械、器具を意味する概念であり、たとえばブロワーやポンプ、空気圧縮機等を用いて気泡や気泡混じりの水を吸引する構造も含まれる。   Here, the bubble suction means is a concept that means a device, a machine, or an instrument having a function of sucking bubbles present in water. For example, using a blower, a pump, an air compressor, etc. Also included is a structure for sucking.

上記の構成によれば、駆動装置より駆動された送気手段により、気体噴出口から噴出された気泡が船底から離れ拡散し出すところで気泡吸引手段によって吸引することが可能となり、該気泡の水中での拡散が回避されることが可能となる。   According to the above configuration, the air blowing means driven by the driving device makes it possible to suck the bubbles blown from the gas outlet through the bubble sucking means where the bubbles are separated from the ship bottom and start to diffuse. Can be avoided.

また、上記構成に加え船舶の気体保持装置は、前記気泡吸引手段で吸引した気泡が再び船底から噴出されて構成してもよい。   Further, in addition to the above configuration, the gas holding device of the ship may be configured such that the bubbles sucked by the bubble sucking means are again ejected from the ship bottom.

上記の構成によれば、船底から離れ拡散し出すところで気泡吸引手段にて気泡が吸い込まれることが可能となり、この吸い込まれた気泡を再吐出することで、さらに有効に船体全体に亘って摩擦抵抗の低減が可能となる。 According to the above configuration, it is possible that the bubbles in the bubble suction section where begin to diffuse away from the ship's bottom is written Sucking, by re-discharge the sucked air bubbles, more effectively friction throughout the hull Resistance can be reduced.

上記構成によれば、気体噴出口から気体が噴出されるところ、該気体噴出口を基準として船尾方向に複数の端板が船底の略端部に長手方向に配設されていることにより、噴出された気泡が水中において船底全体に亘って船底に沿って流れることが可能となり、有効に摩擦抵抗の低減が図れる。また端板の作用で、波や流れ等の外乱により船舶が傾いても、気泡が水圧の低い方へ拡散することが防止でき、安定して摩擦抵抗の低減が図れる。   According to the above configuration, when the gas is ejected from the gas ejection port, the plurality of end plates are arranged in the stern direction in the longitudinal direction at the stern direction with respect to the gas ejection port. The generated bubbles can flow along the bottom of the ship in the water, and the frictional resistance can be effectively reduced. In addition, the action of the end plate can prevent the bubbles from diffusing toward the lower water pressure even when the ship is inclined due to disturbances such as waves and flows, and the frictional resistance can be stably reduced.

また、上記構成によれば、船底の平面形状に合わせて略対称に端板が複数対配設されるので、該端板(の集合体)が該船舶の進行を妨げる抵抗体となることを実質的に回避することが可能となる。また、船底の前部の平面形状に合わせて、船首部近傍の最前面まで気体噴出口を配設することが可能となり、摩擦抵抗の低減が船底全体に亘って図れる。   Further, according to the above configuration, since a plurality of end plates are arranged substantially symmetrically in accordance with the planar shape of the ship bottom, the end plates (aggregates thereof) serve as resistors that prevent the vessel from proceeding. This can be substantially avoided. In addition, it is possible to dispose the gas outlet to the forefront near the bow in accordance with the planar shape of the front part of the ship bottom, and the frictional resistance can be reduced over the entire ship bottom.

また、上記構成によれば、該端板(の集合体)を船底の平面形状に近似させることになるため、気泡の保持効果を一層高めることが可能となる。   Moreover, according to the said structure, since this end plate (the aggregate | assembly) is approximated to the planar shape of a ship bottom, it becomes possible to further improve the bubble holding effect.

また、上記構成によれば、端板は断面視により船底側を底辺とした略三角形もしくは二次関数曲線等の曲線を用いた形で規定される構成としているため、この断面形状によって平板を用いた場合に比較して、水との接触面積が低減でき、端板を設置することによる摩擦抵抗が低減できる。これにより、端板(の集合体)が該船舶の進行を妨げる抵抗を実質的に回避する効果が一層促進され、噴出された空気に係る水中での気泡は、有効に船底に沿って保持されて流れる。   In addition, according to the above configuration, the end plate is defined as a shape using a curve such as a substantially triangular shape or a quadratic function curve with the bottom side at the bottom in a cross-sectional view. Compared with the case where it contacted, the contact area with water can be reduced and the frictional resistance by installing an end plate can be reduced. As a result, the effect of the end plate (aggregate) substantially avoiding the resistance that hinders the progress of the ship is further promoted, and the bubbles in the water related to the ejected air are effectively held along the ship bottom. Flowing.

また、上記構成によれば、端板はその前後端部においてその前端部及び/もしくは後端部が流線型を有することから水の抵抗を最小限化するので、端板を設置することによる摩擦抵抗がさらに低減でき、噴出された空気に係る水中での気泡は、有効に船底に沿って保持されて流れる。   Further, according to the above configuration, since the front end and / or the rear end of the end plate has a streamlined shape at the front and rear end portions thereof, the resistance of water is minimized, so that the friction resistance by installing the end plate is reduced. Can be further reduced, and bubbles in the water related to the ejected air are effectively held along the ship bottom and flow.

また、上記構成によれば、該気体噴出口を基準として船尾方向に該船底に凹部が長手方向に形成されていることにより、噴出された空気に係る水中での気泡は、該船底の該凹部の終端に至るまで有効に船底に沿って保持されて流れる効果が一層促進される。また凹部の作用で、波や流れ等の外乱により船舶が傾いても、気泡が水圧の低い方へ拡散することが防止でき、安定して摩擦抵抗の低減が図れる。   In addition, according to the above configuration, since the concave portion is formed in the ship bottom in the longitudinal direction in the stern direction with respect to the gas outlet, the bubbles in the water related to the jetted air are The effect of being held and flowed effectively along the bottom of the ship is further promoted until the end of the ship. Moreover, even if a ship inclines by disturbances, such as a wave and a flow, by the effect | action of a recessed part, it can prevent that a bubble is spread | diffused to the direction where water pressure is low, and can aim at reduction of frictional resistance stably.

また、上記構成によれば、該気体噴出口を基準として長手方向に底辺の断面幅が高さに対して1以上の凹凸断面が形成されるので、噴出された空気に係る水中での気泡は、その抵抗により凹部に付随し、該船底の該凹凸断面の終端に至るまで保持されて流れることが可能となる。   In addition, according to the above configuration, since the cross-sectional width of the base of the base is 1 or more with respect to the height in the longitudinal direction with reference to the gas outlet, bubbles in the water related to the ejected air are The resistance accompanies the concave portion and can flow while being held up to the end of the concave-convex cross section of the ship bottom.

また、上記構成によれば、凹凸断面は略三角形状が横に連なる形状となり、該略三角形の高さが気泡に十分覆われる高さ以下に形成されることで、気泡は実際上その差圧により該略三角形に係る凹部に付随し、船底の凹凸断面の終端に至るまで気泡が保持されて流れることが可能となる。また、略三角形状が横に連なる形のため、略三角形状の頂点が多数存在し、ドック入り時の台座の上に乗せることが容易にでき、作業が改善できる。   In addition, according to the above configuration, the concave and convex cross section has a shape in which a substantially triangular shape is connected sideways, and the height of the substantially triangular shape is less than or equal to a height that is sufficiently covered by the bubbles, so that the bubbles actually have the differential pressure. Accordingly, the bubbles can be retained and flow until they reach the end of the concavo-convex cross section of the ship bottom, accompanying the concave portion related to the substantially triangular shape. Moreover, since the substantially triangular shape is connected horizontally, there are a large number of substantially triangular vertices, which can be easily placed on the pedestal when entering the dock, and the work can be improved.

また、上記構成によれば、気体噴出口を基準として船尾方向に、船底の略端部に設けた複数の端板が船舶の安定化手段を兼ねているため、自然現象及び衝突物体による船舶の横揺れ及び横転を抑制する効果が一層働き、噴出された気泡は水中において、船底の終端に至るまで保持されて流れることが可能となる。また安定化手段を兼ねた複数の端板の作用で、波や流れ等の外乱があっても船舶が傾きにくく、また多少傾いても端板の作用で、気泡が水圧の低い方へ拡散することが防止でき、安定して摩擦抵抗の低減が図れる。   In addition, according to the above configuration, since the plurality of end plates provided at the substantially end portion of the ship bottom also serve as a ship stabilization means in the stern direction with respect to the gas jet outlet, The effect of suppressing roll and rollover is further exerted, and the ejected bubbles can be held and flow in water until reaching the end of the ship bottom. In addition, due to the action of multiple end plates that also serve as stabilization means, even if there is a disturbance such as a wave or flow, the ship is difficult to tilt, and even if it is slightly tilted, the bubbles diffuse to the lower water pressure due to the action of the end plates. Therefore, the frictional resistance can be stably reduced.

また、上記構成によれば、安定化手段を別途設ける必要をなくし、もしくは安定化手段の性能、機能、装備を最小化することができるので、船舶の経済効率化を推進することができる。   Moreover, according to the said structure, since there is no need to provide a stabilization means separately or the performance, function, and equipment of a stabilization means can be minimized, the economic efficiency improvement of a ship can be promoted.

また、上記構成によれば、ビルジキールの装備を節制することが可能となり、また端板の高さがビルジキール高さよりも小さいために船舶にかかる潮流の抵抗を減らすことができる。   Moreover, according to the said structure, it becomes possible to control the installation of a bilge keel, and since the height of an end plate is smaller than a bilge keel height, the resistance of the tidal current concerning a ship can be reduced.

また、上記構成によれば、駆動装置より駆動された送気手段により、気体噴出口から噴出された気泡が、気泡を引き付ける段差の流体的作用により船底表面に付随し、該船底の全体に亘り保持されて流れることが可能となり、摩擦抵抗の低減効果を増すことができる。   Further, according to the above configuration, the air bubbles that are ejected from the gas ejection port by the air supply means driven by the driving device are attached to the surface of the ship bottom due to the fluid action of the step that attracts the air bubbles, and the entire ship bottom is covered. It becomes possible to flow while being held, and the effect of reducing frictional resistance can be increased.

また、上記構成によれば、気体噴出口から噴出された気泡が船底から離れ拡散し出すところで気泡吸引手段によって吸引することが可能となり、該気泡の水中での拡散が回避されることが可能となる。   Further, according to the above configuration, the bubbles ejected from the gas outlet can be sucked by the bubble sucking means where the bubbles leave and diffuse from the ship bottom, and the diffusion of the bubbles in water can be avoided. Become.

また、本発明によれば、気泡吸引手段にて気泡が吸い込まれ、船底から離れ拡散し出すところで気泡吸引手段にて気泡が吸い込まれることが可能となり、この吸い込まれた気泡を再吐出することで、さらに有効に船体全体に亘って摩擦抵抗が低減されることが可能となる。   In addition, according to the present invention, bubbles are sucked in by the bubble sucking means, and bubbles can be sucked in by the bubble sucking means when they are separated from the ship bottom and diffused, and the sucked bubbles are re-discharged. In addition, the frictional resistance can be reduced more effectively over the entire hull.

(a)本発明の一実施例における船舶の気泡保持装置を適用した船舶の側面図、(b)同船舶の上面図、(c)同船舶の下面図(a) A side view of a ship to which the bubble holding device for a ship in one embodiment of the present invention is applied, (b) a top view of the ship, (c) a bottom view of the ship 本発明の一実施形態に係る船体4の(図1の)X−X断面図XX sectional view (of FIG. 1) of a hull 4 according to an embodiment of the present invention. 本発明の別の一実施形態に係る船体4の(図1の)X−X断面図XX sectional view (of FIG. 1) of a hull 4 according to another embodiment of the present invention. 本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図XX sectional drawing (of FIG. 1) of the hull 4 which concerns on another one Embodiment of this invention. 本発明の更に別の一実施形態に係る図2の点線Y部の拡大図The enlarged view of the dotted-line Y part of FIG. 2 which concerns on another one Embodiment of this invention. 本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図XX sectional drawing (of FIG. 1) of the hull 4 which concerns on another one Embodiment of this invention. 本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図XX sectional drawing (of FIG. 1) of the hull 4 which concerns on another one Embodiment of this invention. 本発明の一実施形態に係る端板5、5´の配設時の気泡保持状態を示す概念図The conceptual diagram which shows the bubble holding | maintenance state at the time of arrangement | positioning of the end plates 5 and 5 'which concern on one Embodiment of this invention. 本発明の一実施形態に係る前部及び後部を流線型とする端板5、5´に係る配設時の船舶船航中の気泡流動状態を示す概念図The conceptual diagram which shows the bubble flow state during the ship navigation at the time of arrangement | positioning which concerns on the end plates 5 and 5 'which make the front part and rear part which concern on one Embodiment of this invention into a streamline type 本発明の更に別の一実施形態に係り、船底3を断面視で三角形に係る凹凸状とした船舶の船航中に係る気泡保持状態を示す断面概念図The cross-sectional conceptual diagram which shows the bubble holding | maintenance state which concerns on another one Embodiment of this invention, and the ship bottom 3 is made into the uneven | corrugated shape which concerns on a triangle by sectional view. 本発明の更に別の一実施形態に係り、船底3に断面視で翼断面型マウンドを有する構成とした船舶の船航中に係る気泡保持状態を示す断面概念図The cross-sectional conceptual diagram which shows the bubble holding | maintenance state which concerns on another one Embodiment of this invention during the ship navigation of the ship made into the structure which has a wing | blade cross-section type mound by cross-sectional view in the ship bottom 3. 本発明の更に別の一実施形態に係り、船底3を断面視で後部に向かい緩やかな段差を有する構成とした船舶の船航中に係る気泡保持状態を示す断面概念図The cross-sectional conceptual diagram which shows the bubble holding | maintenance state which concerns on another one Embodiment of this invention, and has the structure which has the gentle level | step difference toward the rear part in the ship bottom 3 by sectional view. 本発明の第2の実施形態に係る気泡保持装置における気液分離器200の構成を説明するための断面図Sectional drawing for demonstrating the structure of the gas-liquid separator 200 in the bubble holding | maintenance apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る気泡保持装置における気液分離器200の使用方法を示す概念図The conceptual diagram which shows the usage method of the gas-liquid separator 200 in the bubble holding | maintenance apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る気泡保持装置における気液分離器200の使用方法を示す概念図The conceptual diagram which shows the usage method of the gas-liquid separator 200 in the bubble holding | maintenance apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る気泡保持装置における気液分離器200の使用に係る状況図The situation figure which concerns on use of the gas-liquid separator 200 in the bubble holding | maintenance apparatus which concerns on the 2nd Embodiment of this invention.

以下、図面を参照して本発明を実施するための最良の形態について説明する。なお、以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明することとし、説明を省略する箇所については公知技術によるものとする。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following, the range necessary for the description for achieving the object of the present invention is schematically shown, and the range necessary for the description of the relevant part of the present invention will be mainly described. Are according to known techniques.

(第1の実施形態)
図1は、本発明の一実施形態に係る気泡保持装置を、海洋で使用する船舶に適用した実施例を示す。図1(a)は、当該船舶の側面図を、図1(b)は、その上面図を、図1(c)は下面図を示すもので、一部説明のために要部構成を露出させて表現している。
(First embodiment)
FIG. 1 shows an example in which a bubble holding device according to an embodiment of the present invention is applied to a ship used in the ocean. 1 (a) shows a side view of the ship, FIG. 1 (b) shows a top view thereof, and FIG. 1 (c) shows a bottom view. Let me express.

船舶1の甲板2上に、送気手段としてのブロワー10、11、12、13、14が並べて設置されている。これらのブロワー10、11、12、13、14は甲板2上で、船首で破砕された潮の飛沫を避けるため格納庫に入れられて設置されていて、少しでも飛沫を避ける意味から気体である空気の取り込みを、船体の進行方向の反対側から行っている。   On the deck 2 of the ship 1, blowers 10, 11, 12, 13, and 14 as air supply means are installed side by side. These blowers 10, 11, 12, 13, 14 are installed on the deck 2 in a hangar in order to avoid splashing tides crushed at the bow. Is taken from the opposite side of the direction of travel of the hull.

このブロワー10、11、12、13、14は、ルーツ式の容積型ブロワーであり、駆動装置であるインバータ型の電動機60(図示しない)により、ベルトを介してブロワー内部の2つのロータが回転され、ブロワー内壁とロータとの間に取り込まれた空気がロータの回転に伴い圧縮され、供給される構造である(図示しない)。ブロワー10、11、12、13、14は容積型であるため、先での圧力変動があっても安定して決まった量の空気を供給できるものとなっている。また、このルーツ式ブロワーは、同じ容積型であってもピストン式と異なりほぼ連続的に空気の加圧が行われるため脈動が少なく、圧力平滑化のためのタンク等も廃止することが可能である。さらに、回転が滑らかで振動や騒音が少ないため、甲板2上にブロワー10、11、12、13、14が配置されても、下部の船室で共鳴音が発生しにくいものとなっている。   These blowers 10, 11, 12, 13, and 14 are Roots type positive displacement blowers, and two rotors inside the blower are rotated via a belt by an inverter type electric motor 60 (not shown) as a driving device. The air taken in between the blower inner wall and the rotor is compressed and supplied as the rotor rotates (not shown). Since the blowers 10, 11, 12, 13, and 14 are of the positive displacement type, they can supply a fixed amount of air stably even if there is a pressure fluctuation. In addition, unlike the piston type, this Roots type blower has almost no pulsation because air is pressurized almost continuously unlike the piston type, and it is possible to eliminate tanks for pressure smoothing. is there. Furthermore, since the rotation is smooth and there is little vibration and noise, even if the blowers 10, 11, 12, 13, and 14 are arranged on the deck 2, resonance sound is hardly generated in the lower cabin.

ブロワー10、11、12、13、14に取り込まれた空気がそれぞれ加圧され、屈曲部を有した送気管16、17、18、19、20を通って、船底3の近傍に設置された空気噴出口21、22、23、24、25に導かれる。この気体噴出口21、22、23、24、25は、この実施例の場合、船底3の前部平面で船体4の平面中心線CLに対して略対称的に、略一列に配置されている。気体噴出口21、22、23、24、25を船底3に設けることは、噴出した気泡の船底3部への滞在を長引かせ、波等による圧力変動を緩和する狙いからであり、また船底3の前部に設けることは、噴出した気泡を船底3へ極力全体に亘って滞在させる目的からである。   Air taken into the blowers 10, 11, 12, 13, and 14 is pressurized, passes through the air supply pipes 16, 17, 18, 19, and 20 having bent portions, and is installed near the ship bottom 3 It is guided to the ejection ports 21, 22, 23, 24, 25. In this embodiment, the gas outlets 21, 22, 23, 24, and 25 are arranged in a substantially line in a substantially plane with respect to the plane center line CL of the hull 4 on the front plane of the ship bottom 3. . The provision of the gas ejection ports 21, 22, 23, 24, 25 on the bottom 3 is for the purpose of prolonging the stay of the ejected bubbles on the bottom 3 and mitigating pressure fluctuations caused by waves or the like. Is provided for the purpose of allowing the ejected bubbles to stay on the bottom 3 as much as possible.

また、気体噴出口21、22、23、24、25を略一列に配置することは、構成を簡素化し、対応して設けたブロワー10、11、12、13、14や送気管16、17、18、19、20等の配置も容易化するためである。また、空気噴出口21、22、23、24、25は、この例の場合、奇数個の5個としているため、真中の一つ(空気噴出口23)を平面中心線CL上に持ってくることにより、船舶1の直進性を有した上での、気泡の1箇所噴出が実現できる。この場合、空気噴出口21、22、23、24、25は、船体4の平面中心線CLに対して略対称的に、船底3の前部平面形状に沿うように配置されるように構成することが可能である。   In addition, the arrangement of the gas outlets 21, 22, 23, 24, 25 in approximately one line simplifies the configuration, and the blowers 10, 11, 12, 13, 14 and the air supply pipes 16, 17, provided correspondingly are arranged. This is for facilitating the arrangement of 18, 19, 20 and the like. In this example, the air outlets 21, 22, 23, 24, and 25 are an odd number of five, so the middle one (the air outlet 23) is brought on the plane center line CL. Thus, it is possible to realize one-point ejection of bubbles while the ship 1 has the straight traveling property. In this case, the air outlets 21, 22, 23, 24, and 25 are configured to be arranged so as to be substantially symmetrical with respect to the plane center line CL of the hull 4 and along the front plane shape of the ship bottom 3. It is possible.

船底3には、空気噴出口21、22、23、24、25から噴出された気泡を逃さないように気泡のガイドを行う端板5、5´、6、6´、7、7´がこれも船体4の平面中心線CLに対して対称に配置されている。端板6、6´及び7、7´は、同図上では寸法が略等しく描かれているが、端板7、7´が端板6、6´よりも短い寸法でもよく、端板の数も同図に示すものに限定されるものではない。船底3にはこの他、海水や気泡による船体4に作用する剪断力を検出する剪断力検出器である剪断力センサー50、51、52、53、54が船尾側に設けられている。   The ship bottom 3 has end plates 5, 5 ′, 6, 6 ′, 7, 7 ′ for guiding the air bubbles so as not to escape the air bubbles ejected from the air outlets 21, 22, 23, 24, 25. Are arranged symmetrically with respect to the plane center line CL of the hull 4. The end plates 6, 6 'and 7, 7' are drawn with substantially the same dimensions in the figure, but the end plates 7, 7 'may be shorter than the end plates 6, 6'. The numbers are not limited to those shown in FIG. In addition, the ship bottom 3 is provided with shear force sensors 50, 51, 52, 53, 54 on the stern side, which are shear force detectors for detecting the shear force acting on the hull 4 due to seawater or bubbles.

また、相対速度検出器である相対速度センサー55、56が船尾側に設けられている。船側8には、別の相対速度センサー57が設けられている。これらの相対速度センサー55、56は、空気噴出口21、22、23、24、25から離して、あるいは相対速度センサー57は、近くても船側8の気泡の影響が無い箇所に設けられている。特に、相対速度センサー57は、船側8でも波の影響を受けない下方に設置されている。これらの相対速度センサー55、56、57は、超音波式を採用しており、水中での使用を可能として、波や潮による影響を少なくしている。   In addition, relative speed sensors 55 and 56, which are relative speed detectors, are provided on the stern side. Another relative speed sensor 57 is provided on the ship side 8. These relative velocity sensors 55 and 56 are provided away from the air jets 21, 22, 23, 24, and 25, or the relative velocity sensor 57 is provided at a location where there is no influence of air bubbles on the ship side 8 even when close. . In particular, the relative speed sensor 57 is installed below the ship side 8 so as not to be affected by waves. These relative velocity sensors 55, 56, and 57 employ an ultrasonic method, can be used in water, and are less affected by waves and tides.

また、船底3の後部と前部には、噴出された気泡の状態を監視するビデオカメラ58、59が設けられている。このビデオカメラ58、59の撮影した映像を、人が監視し、気泡の噴出状態を解析することに役立てている。   Video cameras 58 and 59 for monitoring the state of the jetted bubbles are provided at the rear and front of the ship bottom 3. The images taken by the video cameras 58 and 59 are monitored by a person and used to analyze the bubble ejection state.

図2は、本発明の一実施形態に係る船体4の(図1の)X−X断面図である。同図に示されるように、端板5、5´及びビルジキール101、101´が配備される。このように、通常、船舶は船行上の安定化を図るため、船底3と船側8の接合部(ビルジ部)に、たとえばビルジキールが配設される。これにより、船舶は波浪や潮流といった自然現象及び衝突物体に対し、横揺れや横転を抑制することができる。また、本発明に係る端板5、5´は、ビルジキール101、101´とは別途配設することができる。配設位置は、ビルジキール101、101´よりも平面中心線CLを基準として内側が好ましい。   FIG. 2 is a cross-sectional view taken along the line XX (of FIG. 1) of the hull 4 according to one embodiment of the present invention. As shown in the figure, end plates 5, 5 'and bilge keels 101, 101' are provided. In this way, for example, a bilge keel is usually provided at the joint (bilge part) between the ship bottom 3 and the ship side 8 in order to stabilize the ship on the ship. Thereby, the ship can suppress rolling and rollover against natural phenomena such as waves and tidal currents and collision objects. Further, the end plates 5 and 5 'according to the present invention can be disposed separately from the bilge keels 101 and 101'. The arrangement position is preferably on the inner side with respect to the plane center line CL rather than the bilge keels 101, 101 ′.

一方、端板5、5´を、船舶の安定化を図るために用いることもできる。この場合、端板5、5´が安定化機能を担う分、ビルジキール101、101´の安定化に係る性能を変更することもできる。その際には、端板5、5´及びビルジキール101、101´の構造、寸法及び配設位置等、船舶の船行を妨げないことを配慮して設計することが好ましい。なお、端板5、5´に係る本来の目的は、気泡を船底3に保持しつつ流すことであるため、そのことを十分に配慮した端板5、5´及びビルジキール101、101´の設計とする。   On the other hand, the end plates 5, 5 ′ can also be used to stabilize the ship. In this case, the performance relating to the stabilization of the bilge keels 101 and 101 ′ can be changed by the amount of the end plates 5 and 5 ′ responsible for the stabilization function. In that case, it is preferable to design in consideration of the structure, dimensions and arrangement positions of the end plates 5 and 5 'and the bilge keels 101 and 101' so as not to hinder the ship's ship. In addition, since the original purpose concerning the end plates 5 and 5 'is to flow while holding the bubbles on the ship bottom 3, the design of the end plates 5 and 5' and the bilge keels 101 and 101 'with sufficient consideration thereof. And

図3は、本発明の別の一実施形態に係る船体4の(図1の)X−X断面図である。同図には、端板の断面形状を略三角形として構成する場合の態様が示されている。同図に示されるように、端板5a、5´aは船底3を底辺とした略三角形となる形状を有している。図2に係る端板5、5´とは、その形状を異にする点のみが相違するため、その他詳細な説明は省略する。   FIG. 3 is a cross-sectional view taken along the line XX (of FIG. 1) of the hull 4 according to another embodiment of the present invention. The figure shows an aspect in which the cross-sectional shape of the end plate is configured as a substantially triangular shape. As shown in the figure, the end plates 5a, 5'a have a shape that is a substantially triangular shape with the bottom 3 as a base. Since the end plates 5 and 5 'according to FIG. 2 are different from each other only in the shape, the other detailed description is omitted.

ここで、この略三角形の断面形状と平板の端板5あるいは5’を用いた場合の水との接触面積を比較すると、3角形の2辺の和は1辺より長いことになり、略三角形とすることで水との接触面積が小さくなり、端板を設置することによる摩擦抵抗が低減できる。この略三角形となる形状の端板5a、5´aにより、端板の摩擦抵抗の増加を低減することができる。   Here, when the cross-sectional shape of the substantially triangular shape is compared with the contact area with water in the case where the flat end plate 5 or 5 ′ is used, the sum of the two sides of the triangle is longer than one side. By doing so, the contact area with water becomes small, and the frictional resistance by installing the end plate can be reduced. The increase in the frictional resistance of the end plate can be reduced by the end plates 5a and 5'a having a substantially triangular shape.

図4は、本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図である。同図には、端板の断面形状を二次関数曲線等の曲線とする場合の態様が示されている。同図に示されるように、端板5b、5´bは船底3を底辺とした二次関数曲線等の曲線となる形状を有している。図2に係る端板5、5´とは、その形状を異にする点のみが相違するため、その他詳細な説明は省略する。この二次関数曲線等の曲線となる形状の端板5a、5´aにより、端板の摩擦抵抗の増加を低減することができる。   FIG. 4 is a cross-sectional view taken along the line XX (of FIG. 1) of the hull 4 according to still another embodiment of the present invention. The figure shows a mode in which the cross-sectional shape of the end plate is a curve such as a quadratic function curve. As shown in the figure, the end plates 5b and 5'b have a shape that is a curve such as a quadratic function curve with the bottom 3 as a base. Since the end plates 5 and 5 'according to FIG. 2 are different from each other only in the shape, the other detailed description is omitted. With the end plates 5a and 5'a having a shape such as a quadratic function curve, an increase in frictional resistance of the end plates can be reduced.

図5は、本発明の更に別の一実施形態に係る図2の点線Y部の拡大図である。同図には、端板の前部を流線型とする場合の態様が示されている。同図に示されるように、端板5は、平面中心線CLを基準として内側を流線型とする形状が好ましく、船舶の船行を妨げないことを配慮して設計する必要がある。具体的には、端板5の先端は、刀の先端のように表面の角度を微妙に変化させ、刀が物体を切りやすくするために有する形状に類似した形状が好ましい。なお、端板5が船底3に既設されている場合には、流線型に係る部材を端板5に付設してもよい。また、端板の後部も流線型とすることが好ましい(図示しない)。   FIG. 5 is an enlarged view of a dotted line Y portion of FIG. 2 according to still another embodiment of the present invention. The figure shows a mode in which the front part of the end plate is streamlined. As shown in the figure, the end plate 5 preferably has a streamlined shape with respect to the plane center line CL as a reference, and needs to be designed in consideration of not hindering the ship's navigation. Specifically, the tip of the end plate 5 preferably has a shape similar to the shape that the sword has in order to slightly change the angle of the surface like the tip of the sword and make it easier to cut an object. When the end plate 5 is already provided on the ship bottom 3, a streamlined member may be attached to the end plate 5. Also, the rear part of the end plate is preferably streamlined (not shown).

図6は、本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図である。同図には、船底3に凹部を形成した場合の態様が示されている。同図に示されるように、図2に示す端板5、5´の代わりに、端部5c、5´cを残し、その他の部分を切削する構成、若しくは端部5c、5´cを有する凹部に係る形状部材を配設する構成、又は端部5c、5´cを既設の船底3に付設する構成、又は船底3そのものを凹部を有した構成とする。端部5c、5´cの前部は、図5に示すような流線型としてもよい。なお、図2に係る端部5、5´とは、その形状を異にする点のみが相違するため、その他詳細な説明は省略する。この端部5c、5´c及びこの端部間に挟まれる凹部により、気泡を船底に保持しつつ流すことが可能となる。   FIG. 6 is a cross-sectional view taken along the line XX (of FIG. 1) of the hull 4 according to still another embodiment of the present invention. In the figure, a mode in which a concave portion is formed in the ship bottom 3 is shown. As shown in FIG. 2, instead of the end plates 5 and 5 ′ shown in FIG. 2, the end portions 5c and 5′c are left, and other portions are cut, or the end portions 5c and 5′c are provided. A configuration in which the shape member related to the recess is disposed, a configuration in which the end portions 5c and 5'c are attached to the existing ship bottom 3, or a configuration in which the ship bottom 3 itself has a recess. The front portions of the end portions 5c and 5'c may be streamlined as shown in FIG. Note that the end portions 5 and 5 'according to FIG. 2 are different only in that their shapes are different, and thus other detailed descriptions are omitted. Due to the end portions 5c and 5'c and the concave portion sandwiched between the end portions, it becomes possible to flow the air bubbles while holding them on the ship bottom.

図7は、本発明の更に別の一実施形態に係る船体4の(図1の)X−X断面図である。同図には、船底3に凹部を形成した場合の態様が示されている。同図に示されるように、図2に示す端板5、5´の代わりに、端部5d、5´dを残し、その他の部分を切削する構成、若しくは端部5d、5´dを有する凹部に係る形状部材を配設構成、又は端部5d、5´dを既設の船底3に付設する構成とする。図6に係る端部5c、5c´とは、二次曲線とする部分において、その形状を異にする。端部5d、5´dの前部は、図5に示す流線型としてもよい。なお、図2に係る端部5、5´とは、その形状を異にする点のみが相違するため、その他詳細な説明は省略する。この端部5d、5´d及びこの端部間に挟まれる凹部により、気泡を船底に保持しつつ流すことが可能となる。   FIG. 7 is a cross-sectional view taken along the line XX (of FIG. 1) of the hull 4 according to still another embodiment of the present invention. In the figure, a mode in which a concave portion is formed in the ship bottom 3 is shown. As shown in the figure, instead of the end plates 5 and 5 'shown in FIG. 2, the end portions 5d and 5'd are left, and other portions are cut, or the end portions 5d and 5'd are provided. The shape member related to the concave portion is disposed or the end portions 5d and 5'd are attached to the existing ship bottom 3. The shapes of the end portions 5c and 5c ′ according to FIG. The front portions of the end portions 5d and 5'd may be streamlined as shown in FIG. Note that the end portions 5 and 5 'according to FIG. 2 are different only in that their shapes are different, and thus other detailed descriptions are omitted. Due to the end portions 5d and 5'd and the concave portion sandwiched between the end portions, it becomes possible to flow the air bubbles while holding them on the ship bottom.

次に、本発明の一実施形態に係る気泡保持装置の動作及び使用方法について、概念図を用いて説明する。   Next, operation | movement and the usage method of the bubble holding | maintenance apparatus which concern on one Embodiment of this invention are demonstrated using a conceptual diagram.

図8は、本発明の一実施形態に係る端板5、5´の配設時の気泡保持状態を示す概念図である。同図においては、船舶が傾いたときの気泡の保持状態を説明している。この場合、図1のX−X断面において、船舶の傾きにより船底3の両端部に差圧が生じ、圧力の低いほうへ気泡は移動する。これにより、気泡は船底3の範囲外に拡散するため、気泡による摩擦低減効果が低減してしまう。これに対し本願では、端板5、5´を船底3の両端部に配設することで、気泡の拡散を抑制する。具体的には、気泡は圧力の高いほうから低いほうへ移動するものであり、低いほうから高いほうへの移動は不可能である。したがって、気泡は圧力の低いほうへ移動するためには、端板5に係る障壁を迂回しなければならず、そのためには圧力の高いほうへ移動することを要するため、前述の原理により、気泡は船底3に保持されることとなる。傾きが逆の場合も同様である。また、同図ほどの傾きがないとしても、船航中の微妙な横揺れ等により気泡は微小な差圧を感知し、同様にして気泡が圧力の低いほうへ移動してしまうが、端板5により気泡の移動による拡散を抑制し、端板5の終端地点まで保持されつつ流れる。これにより、波や流れ等の外乱時や旋回する際に生じる船舶の傾きにも気泡が保持され有効に摩擦抵抗の低減が図れる。   FIG. 8 is a conceptual diagram showing a bubble holding state when the end plates 5 and 5 ′ according to the embodiment of the present invention are arranged. In the same figure, the holding | maintenance state of the bubble when a ship inclines is demonstrated. In this case, in the XX cross section of FIG. 1, a differential pressure is generated at both ends of the bottom 3 due to the inclination of the ship, and the bubbles move toward the lower pressure. As a result, the bubbles diffuse out of the range of the ship bottom 3, and the friction reducing effect by the bubbles is reduced. On the other hand, in the present application, by disposing the end plates 5 and 5 ′ at both ends of the ship bottom 3, the bubble diffusion is suppressed. Specifically, the bubbles move from the higher pressure to the lower pressure, and cannot move from the lower pressure to the higher pressure. Therefore, in order for the bubbles to move to the lower pressure side, it is necessary to bypass the barrier on the end plate 5, and for that purpose, it is necessary to move to the higher pressure side. Is held on the bottom 3 of the ship. The same applies when the slope is reversed. Even if there is no tilt as much as the figure, the bubbles sense a minute differential pressure due to subtle rolls while navigating, and the bubbles move to the lower pressure in the same way. The diffusion due to the movement of the bubbles is suppressed by 5 and flows while being held up to the end point of the end plate 5. As a result, the bubbles are retained even in the case of disturbance such as waves and flows or when the ship is tilted, and the frictional resistance can be effectively reduced.

図9は、本発明の一実施形態に係る前部及び後部を流線型とする端板5、5´に係る配設時の船舶船航中の気泡流動状態を示す概念図である。同図においては、端板5、5´の前部を、中心線を基準として対称となる形状とすることにより、端板5、5´は船舶の船航を妨げる抵抗体となることを極力回避できる。また、端板5、5´の後部は、中心線を基準として水深の深い方の後部からなだらかな湾曲又は傾斜を有して水深の浅い方の後部を終端する流線形状を有することにより、気泡は端板5、5´の後部に係る終端地点を境にして急激に保持状態が解除されるのではなく、後部に係る緩やかな湾曲又は傾斜の始点を境に端板5、5´の寸法が小さくなり、かかる形状により気泡の保持状態は緩やかに解除されるため、気泡は水中に徐々に拡散していく。また、後部を開くように形成することにより、船底を十分に覆って流れてきた気泡が、外側に向かう流れとなり、船尾に設けたプロペラ(図示せず)への気泡の巻きこみを無くし、推進力が落ちることを防止できる。   FIG. 9 is a conceptual diagram showing a bubble flow state during marine vessel navigation at the time of disposition related to the end plates 5 and 5 ′ having streamlined front and rear portions according to one embodiment of the present invention. In the figure, it is as much as possible that the end plates 5 and 5 'become resistors that prevent the ship from navigating by making the front portions of the end plates 5 and 5' symmetrical with respect to the center line. Can be avoided. Further, the rear part of the end plates 5 and 5 ′ has a streamline shape that has a gentle curve or inclination from the rear part of the deeper water depth with respect to the center line and terminates the rear part of the shallower water depth, The air bubbles are not suddenly released from the end point at the rear part of the end plates 5 and 5 ', but are released from the end of the end plates 5 and 5' at the start point of the gentle curve or inclination according to the rear part. Since the dimensions are reduced and the shape of the bubbles is gradually released by this shape, the bubbles gradually diffuse into the water. In addition, by forming the rear part to open, the air bubbles that have sufficiently flown over the bottom of the ship become a flow toward the outside, eliminating the entrainment of air bubbles in the propeller (not shown) provided at the stern, and the propulsive force Can be prevented from falling.

図10は、本発明の更に別の一実施形態に係り、船底3を断面視で三角形に係る凹凸状とした船舶の船航中に係る気泡保持状態を示す断面概念図である。同図において、船底3の断面を三角形に係る凹凸形状とした場合、気泡は凹凸断面に係る船底3を底辺とする隣り合う第一の三角形状と第二の三角形状にて勾配が形成され、かかる勾配にて発生する差圧により、気泡は圧力の低いほうへ移動する。また、一つの三角形断面に取りこまれた気泡は、三角形の頂点を乗り越えるには抵抗があることから、抵抗の少ない長手方向に沿って船尾の方へ流れる。これにより、船舶船航中に発生する船体の傾きにて発生する差圧または微妙な横揺れ等により生じる微小な差圧によっても、気泡の移動及び拡散は抑制され、気泡は船底3に保持されつつ流れる。なお、船底3を底辺とする三角形の高さ寸法は船底3を基準として10mm以下とすることが好ましいが、この考え方の基本は、三角形の高さが、気泡に十分覆われる高さ以下に形成されることである。すなわち、船底3を底辺とする三角形の高さ寸法は船底3を基準として10mm以下に限定されることはなく、気泡に十分覆われる程度の高さであればよい。   FIG. 10 is a conceptual cross-sectional view showing a bubble holding state during the navigation of a ship according to still another embodiment of the present invention. In the same figure, when the cross-section of the ship bottom 3 is a concavo-convex shape related to a triangle, the bubbles are formed with a gradient in the first triangular shape and the second triangular shape, which are adjacent to the bottom 3 of the concavo-convex cross section, Due to the differential pressure generated at such a gradient, the bubbles move to a lower pressure. In addition, since the air bubbles trapped in one triangular cross section have resistance to get over the apex of the triangle, they flow toward the stern along the longitudinal direction with less resistance. Accordingly, the movement and diffusion of the bubbles are suppressed and the bubbles are held on the bottom 3 even by the differential pressure generated by the inclination of the hull generated during the navigation of the ship or the slight differential pressure caused by the slight roll. While flowing. The height of the triangle with the bottom 3 as the base is preferably 10 mm or less based on the bottom 3, but the basis of this concept is that the height of the triangle is less than the height that is sufficiently covered with bubbles. It is to be done. That is, the height dimension of the triangle with the bottom 3 as the base is not limited to 10 mm or less with respect to the bottom 3 as long as it is sufficiently high to be covered with bubbles.

図11は、本発明の更に別の一実施形態に係り、船底3に断面視で翼断面型マウンドを有する構成とした船舶の船航中に係る気泡保持状態を示す断面概念図である。同図において、船舶の進行方向とは逆向きに水が流れるが、同様にして気泡も水流の向きに流れる。一方、下流に流れるに従って、気泡は水中で拡散するため、気泡による摩擦低減効果が低減する。しかし、船底3に翼断面型マウンド102を配設することで、気泡を再び船底3に付随させて摩擦低減効果を増進させることができる。具体的には、気泡は翼断面型マウンド102の形状に従って流動する。翼断面型マウンド102の形状に従って気泡が流動するには、翼断面型マウンド102の表面形状を断面視で緩やかな湾曲を有する形状とする必要がある。翼断面型マウンド102の始端部分が緩やかではない角度を有する場合、翼断面型マウンド102の表面が障壁となり、気泡が衝突時点で拡散してしまうおそれがあるからである。また、翼断面型マウンド102の終端部分が緩やかでない角度を有する場合、気泡は終端部と船底3との勾配により発生する差圧により、急激に船底3に係る低圧部に移動することとなり、かかる形状により船底3に気泡が付随しない部分ができてしまうからである。したがって、このような形状を有する翼断面型マウンド102にて発生する差圧を利用して、気泡の拡散を抑制し、摩擦低減効果の増進を実現することができる。   FIG. 11 is a conceptual cross-sectional view showing a bubble holding state during the navigation of a ship having a structure in which the ship bottom 3 has a wing cross-sectional mound in a cross-sectional view according to still another embodiment of the present invention. In the figure, water flows in the direction opposite to the traveling direction of the ship, but bubbles also flow in the direction of the water flow. On the other hand, as the bubbles flow downstream, the bubbles diffuse in water, so that the friction reducing effect by the bubbles is reduced. However, by disposing the wing cross-section mound 102 on the ship bottom 3, it is possible to increase the friction reduction effect by causing bubbles to accompany the ship bottom 3 again. Specifically, the bubbles flow according to the shape of the blade cross-section mound 102. In order for bubbles to flow according to the shape of the blade cross-section mound 102, the surface shape of the blade cross-section mound 102 needs to be a shape having a gentle curve in a cross-sectional view. This is because when the starting end portion of the blade cross-section mound 102 has a non-gradual angle, the surface of the blade cross-section mound 102 becomes a barrier and bubbles may diffuse at the time of collision. In addition, when the terminal portion of the wing cross-section mound 102 has a non-gradual angle, the bubbles suddenly move to the low pressure portion related to the bottom 3 due to the differential pressure generated by the gradient between the end portion and the bottom 3. This is because a portion where no bubbles are attached to the bottom 3 is formed due to the shape. Therefore, by utilizing the differential pressure generated in the blade cross-section mound 102 having such a shape, it is possible to suppress the diffusion of bubbles and achieve the enhancement of the friction reduction effect.

図12は、本発明の更に別の一実施形態に係り、船底3を断面視で後部に向かい緩やかな段差を有する構成とした船舶の船航中に係る気泡保持状態を示す断面概念図である。同図において、上記と同様、船舶の進行方向とは逆向きに水が流れるが、同様にして気泡も水流の向きに流れる。一方、下流に流れるに従って、気泡は水中で拡散するため、気泡による摩擦低減効果が低減する。しかし、船底3が断面視にて後部に向かい緩やかな段差を有することで、気泡を再び船底3に付随させて摩擦低減効果を増進させることができる。具体的には、第一の段差と第二の段差の形状による流体力作用により、気泡の拡散を抑制し、摩擦低減効果を維持することができる。なお、上記と同様、段差の終端部は緩やかな湾曲形状を有する必要がある。かかる形状でない場合、気泡は第一の段差に係る終端部と第二の段差に係る始端部との勾配により発生する差圧により、急激に船底3に係る低圧部に移動することとなり、段差又は船底3に気泡が付随しない部分ができてしまうからである。   FIG. 12 is a conceptual cross-sectional view showing a state of holding bubbles during ship navigation, in which the ship bottom 3 is configured to have a gradual step toward the rear in a cross-sectional view, according to another embodiment of the present invention. . In the same figure, as described above, water flows in the direction opposite to the traveling direction of the ship, but bubbles also flow in the direction of the water flow. On the other hand, as the bubbles flow downstream, the bubbles diffuse in water, so that the friction reducing effect by the bubbles is reduced. However, since the ship bottom 3 has a gradual step toward the rear in a cross-sectional view, bubbles can be attached to the ship bottom 3 again to increase the friction reduction effect. Specifically, by the hydrodynamic action due to the shape of the first step and the second step, the bubble diffusion can be suppressed and the friction reducing effect can be maintained. As described above, the end portion of the step needs to have a gently curved shape. If it is not such a shape, the bubble will suddenly move to the low pressure part related to the ship bottom 3 due to the differential pressure generated by the gradient between the terminal end part related to the first step and the start part related to the second step, This is because there is a portion where no bubbles are attached to the bottom 3.

(第2の実施形態)
図13Aは、本発明の第2の実施形態に係る気泡保持装置における気液分離器200の構成を説明するための断面図である。同図に示されるように、気液分離器200は、本体201、気泡分離促進フィルター202、気体移送菅203、気体開放口204、液体移送部205、バルブ206a、206b及び206cを備えて構成される。なお、気液分離器200は水上置換法の原理を応用している。また、図13B及び図13Cは、本発明の第2の実施形態に係る気泡保持装置における気液分離器200の使用方法を示す概念図である。
(Second Embodiment)
FIG. 13A is a cross-sectional view for explaining the configuration of the gas-liquid separator 200 in the bubble holding device according to the second embodiment of the present invention. As shown in the figure, the gas-liquid separator 200 includes a main body 201, a bubble separation promoting filter 202, a gas transfer rod 203, a gas release port 204, a liquid transfer unit 205, and valves 206a, 206b and 206c. The The gas-liquid separator 200 applies the principle of the water replacement method. FIGS. 13B and 13C are conceptual diagrams showing a method of using the gas-liquid separator 200 in the bubble holding device according to the second embodiment of the present invention.

本体201は、水分吸込口Bを有し、常時開口している。また、本体201は、その内部において、気泡分離促進フィルター202を介して液体と気体が分離される機能を有する。気泡分離促進フィルター202は、水分吸込口を有する空洞状の円柱を囲む円錐形状を有し、フィルターが円錐状に形成されている。気体移送菅203は、一方の開口部を本体201の内部に、他方の開口部を本体201の外部に、それぞれ配置させた構成とする。ブロワー208は、外部に係る開口部からバルブ206aを介して吸気する機能を有している。このブロワー208は、水が混入しても空気を送れる構成が好ましい。本体201の上部には、気体開放口204を設け、バルブ206bを介して不要な気体を大気へ開放できる構成とする。一方、本体201内部で気泡分離促進フィルター202を境界として液体移送部205を設け、バルブ206cを介して、ポンプ207にて吸水できる構成とする。   The main body 201 has a moisture inlet B and is always open. In addition, the main body 201 has a function of separating the liquid and the gas through the bubble separation promoting filter 202 therein. The bubble separation promoting filter 202 has a conical shape surrounding a hollow cylinder having a moisture suction port, and the filter is formed in a conical shape. The gas transfer rod 203 has a configuration in which one opening is disposed inside the main body 201 and the other opening is disposed outside the main body 201. The blower 208 has a function of sucking air from the outside opening through the valve 206a. The blower 208 is preferably configured to send air even when water is mixed. A gas release port 204 is provided in the upper part of the main body 201 so that unnecessary gas can be released to the atmosphere via the valve 206b. On the other hand, a liquid transfer unit 205 is provided inside the main body 201 with the bubble separation promotion filter 202 as a boundary, and water can be absorbed by the pump 207 via the valve 206c.

次に、図14は本発明の第2の実施形態に係る気泡保持装置における気液分離器200の使用に係る状況図である。同図内の(a)(以下、「(a)」ともいう。)は、本発明の一実施形態に係るブロワー10、11、12、13、14にて送気したときの摩擦低減効果を表す概念図である。同図において、横軸は距離を示し、縦軸は摩擦低減効果を0.0から1.0の間で数値化したもので、1.0が摩擦力の最大値、0.0が摩擦力の最小値(摩擦無し)を示す。また、同図内の(b)(以下、「(b)」ともいう。)は、本発明の一実施形態に係るブロワー10、11、12、13、14にて送気後の水中での気泡拡散状態を示す図である。同図において、水流は図面の左から右の方向とする。(a)と(b)は対応関係にあるため、以降は随時両図及び図13Aを用いながら説明する。   Next, FIG. 14 is a situation diagram related to the use of the gas-liquid separator 200 in the bubble holding device according to the second embodiment of the present invention. (A) in the figure (hereinafter also referred to as “(a)”) indicates the friction reduction effect when air is fed by the blowers 10, 11, 12, 13, and 14 according to one embodiment of the present invention. FIG. In the figure, the horizontal axis indicates the distance, the vertical axis indicates the friction reduction effect in a numerical value between 0.0 and 1.0, 1.0 is the maximum value of the friction force, and 0.0 is the friction force. The minimum value (no friction) is shown. Further, (b) (hereinafter, also referred to as “(b)”) in the figure is the water in the air after being fed by the blowers 10, 11, 12, 13, 14 according to the embodiment of the present invention. It is a figure which shows a bubble diffusion state. In this figure, the water flow is from left to right in the drawing. Since (a) and (b) are in a correspondence relationship, the following description will be made using both figures and FIG. 13A as needed.

まず(b)に示すとおり、空気噴出口20を介して噴出された空気は、船底3近傍を漂う。そのため(a)にて、摩擦低減効果により摩擦がほとんど無い状態であることが確認できる。しかし、(b)にて、気泡は一度噴出されると水流にのって移動するため、気泡は水中で拡散し、船底3近傍から離れる。そのため(a)にて、摩擦低減効果が急激に減少(摩擦力が急激に上昇)し、その後一定の割合で摩擦力が上昇する(数値が0.0から1.0に近づく状態)。これはまた、気泡と船底3の間に水分が浸入するために発生する現象であるとも考えられる。したがって、(b)にて、空気噴出口20を基準として船尾方向(水流の下流方向)の船底3に、気泡が拡散してしまう前(船底3から気泡が約5〜7mm離れるとき)に、侵入した水分を吸い込む水分吸込口Bを設け、水分吸込口Bを介し、図13Aに示す気液分離器200により水分を少し吸い込む。これにより、気泡を船底3近傍に再び引き付けるため、(a)にて、水分吸込み直後に摩擦力が急激に低下し、摩擦低減効果が回復する。吸込み後は、再び気泡は水中を拡散するために、摩擦力が緩やかに上昇する。   First, as shown in (b), the air ejected through the air ejection port 20 drifts in the vicinity of the ship bottom 3. Therefore, in (a), it can be confirmed that there is almost no friction due to the friction reducing effect. However, in (b), once the bubbles are ejected, they move along the water flow, so that the bubbles diffuse in the water and leave the vicinity of the ship bottom 3. Therefore, in (a), the friction reduction effect decreases rapidly (the friction force increases rapidly), and then the friction force increases at a constant rate (a state in which the numerical value approaches 0.0 to 1.0). This is also considered to be a phenomenon that occurs because moisture enters between the bubbles and the ship bottom 3. Therefore, in (b), before the bubbles are diffused to the ship bottom 3 in the stern direction (downstream direction of the water flow) with respect to the air outlet 20 (when the bubbles are separated from the ship bottom 3 by about 5 to 7 mm), A moisture suction port B that sucks intruded moisture is provided, and a little moisture is sucked through the moisture suction port B by the gas-liquid separator 200 shown in FIG. As a result, the air bubbles are attracted again to the vicinity of the ship bottom 3, and in (a), the frictional force is rapidly reduced immediately after moisture suction, and the friction reduction effect is restored. After the suction, the bubbles again diffuse in the water, so that the frictional force gradually increases.

以降、図13A、図13B及び図13Cを用いて、本発明の一実施形態に係る気泡保持装置に係る気液分離器200の動作及び使用方法について説明する。なお、図13Aに係る気液分離器200は、図13B及び図13Cに係る気液分離器を裏面から見た断面を示したものである。したがって、図13B及び図13Cと図13Aとでは左右が逆になっている。   Hereinafter, the operation and usage of the gas-liquid separator 200 according to the bubble holding device according to the embodiment of the present invention will be described with reference to FIGS. 13A, 13B, and 13C. Note that the gas-liquid separator 200 according to FIG. 13A is a cross-sectional view of the gas-liquid separator according to FIGS. 13B and 13C as viewed from the back side. Therefore, the left and right are reversed in FIGS. 13B and 13C and FIG. 13A.

図13Aに示すとおり、水分吸込口Bは常時開口されている。したがって、水分は水分吸込口Bを介して気液分離器200に係る本体201内部に浸水する構造となる。このとき、ポンプ207の吸水により、本体201内の水を回収することができる。回収する際、気泡分離促進フィルター202は、水に含まれる気体と液体を分離させるため、液体のみを液体移送部205を経由させて回収することができる。回収した水分は、船舶のエンジンの冷却水として利用することができる。なお、バルブ206cの開閉により吸水の有無を操作することもでき、ポンプ207を常時駆動させていてもよい。一方、気泡分離促進フィルター202により分離された気体は、ブロワー208の吸気により、気体移送菅203を経由させて回収することができる。なお、バルブ206aの開閉により吸気の有無を操作することもでき、ブロワー208を常時駆動させていてもよい。   As shown in FIG. 13A, the moisture inlet B is always open. Therefore, the moisture is immersed in the main body 201 of the gas-liquid separator 200 through the moisture inlet B. At this time, the water in the main body 201 can be recovered by the water absorption of the pump 207. When collecting, the bubble separation promoting filter 202 separates the gas and the liquid contained in the water, so that only the liquid can be collected via the liquid transfer unit 205. The recovered water can be used as cooling water for the ship engine. In addition, the presence or absence of water absorption can also be operated by opening and closing the valve 206c, and the pump 207 may be always driven. On the other hand, the gas separated by the bubble separation promoting filter 202 can be recovered by the intake air of the blower 208 via the gas transfer rod 203. Note that the presence or absence of intake air can be controlled by opening and closing the valve 206a, and the blower 208 may be constantly driven.

したがって、図13Bに示すとおり、ブロワー208にて吸気した気体を大気に開放し、かつ、本体201内の気体をバルブ206bを介して大気に開放することで、気液分離器200は気体を船底3近傍に再び引き付けることができる。また、図13Cに示すとおり、ブロワー208にて吸気した気体を、回収空気噴出口Cを介して再噴出することで、摩擦低減効果を増幅させることもできる。   Therefore, as shown in FIG. 13B, the gas-liquid separator 200 releases the gas to the bottom of the ship by opening the gas sucked by the blower 208 to the atmosphere and opening the gas in the main body 201 to the atmosphere via the valve 206b. 3 can be attracted again. Further, as shown in FIG. 13C, the gas sucked by the blower 208 is re-injected through the recovery air outlet C, whereby the friction reduction effect can be amplified.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

また、上述した実施例は、本発明に係る技術思想を具現化するための実施形態の一例を示したにすぎないものであり、他の実施形態でも本発明に係る技術思想を適用することが可能である。   Further, the above-described examples are merely examples of embodiments for embodying the technical idea according to the present invention, and the technical ideas according to the present invention can be applied to other embodiments. Is possible.

本発明に係る船舶の摩擦抵抗低減装置は、一般的に海洋での使用に限らず、河川、湖水等あらゆる水系で利用される船舶で使用することが可能である。   The ship frictional resistance reducing device according to the present invention is not limited to use in the ocean, but can be used in ships used in all water systems such as rivers and lakes.

また、船舶の形を取らない、水系での航行体、浮体に広く適用でき、摩擦抵抗の低減による省エネルギー効果の貢献をはじめ、回収水の利用等の利便性の面でも広く社会全般、各種産業全般に対して大きな有益性をもたらすものである。   In addition, it can be widely applied to navigating bodies and floating bodies in water systems that do not take the shape of a ship, and contributes to energy saving effects by reducing frictional resistance, and is also widely used in general society and various industries in terms of convenience such as use of recovered water It brings great benefits to the whole.

1…船舶、3…船底、10、11、12、13、14…ブロワー(送気手段)、21、22、23、24、25…空気噴出口、60…電動機(駆動装置)、200、201…気液分離器、202…気泡分離促進フィルター、203…気体移送菅、204…気体開放口、205…液体移送部、206…バルブ(気体調節手段)、B…水分吸込口、C…回収空気噴出口 DESCRIPTION OF SYMBOLS 1 ... Ship, 3 ... Ship bottom 10, 11, 12, 13, 14 ... Blower (air supply means), 21, 22, 23, 24, 25 ... Air outlet, 60 ... Electric motor (drive device), 200, 201 DESCRIPTION OF SYMBOLS ... Gas-liquid separator, 202 ... Bubble separation promotion filter, 203 ... Gas transfer tank, 204 ... Gas release port, 205 ... Liquid transfer part, 206 ... Valve (gas control means), B ... Moisture intake port, C ... Collected air Spout

Claims (5)

船舶の船底に設けた前記船底に沿って気泡を噴出する気体噴出口と、この気体噴出口に気体を送気する送気手段と、この送気手段を駆動する駆動装置と、前記船底の少なくとも前記気体噴出口の後方に噴出した前記気泡を水とともに吸引する気泡吸引手段とを具備することを特徴とする船舶の気泡保持装置。 A gas outlet for ejecting bubbles along the bottom of the ship provided at the bottom of the ship; an air supply means for supplying gas to the gas outlet; a drive device for driving the air supply means; and at least one of the ship bottoms A bubble holding device for a ship, comprising bubble suction means for sucking the bubbles ejected to the rear of the gas ejection port together with water. 前記船底へ噴出した前記気泡が拡散してしまう前に前記気泡吸引手段で吸引したことを特徴とする請求項1に記載の船舶の気泡保持装置。 2. The air bubble holding device for a ship according to claim 1, wherein the air bubble sucking means sucks the air bubbles before they diffuse to the ship bottom. 前記気泡が前記船底から離れる距離として7mmを超えない範囲で前記気泡吸引手段にて吸引をしたことを特徴とする請求項2に記載の船舶の気泡保持装置。 The ship bubble holding device according to claim 2, wherein the bubble sucking means sucks the bubble in a range not exceeding 7 mm as a distance from the ship bottom. 前記気泡吸引手段で吸引した前記気泡を再び前記船底から噴出するように構成したことを特徴とする請求項1から請求項3のうちの1項に記載の船舶の気泡保持装置。   4. The ship bubble holding device according to claim 1, wherein the bubble sucked by the bubble sucking unit is again ejected from the ship bottom. 5. 前記気泡吸引手段で吸引した前記水と前記気泡とを分離する気液分離器を備えたことを特徴とする請求項1から請求項4のうちの1項に記載の船舶の気泡保持装置。 5. The ship bubble holding device according to claim 1, further comprising a gas-liquid separator that separates the water sucked by the bubble sucking means and the bubbles. 6.
JP2013137343A 2013-06-28 2013-06-28 Ship bubble holding device Active JP5799982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013137343A JP5799982B2 (en) 2013-06-28 2013-06-28 Ship bubble holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013137343A JP5799982B2 (en) 2013-06-28 2013-06-28 Ship bubble holding device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008100894A Division JP5311541B2 (en) 2008-04-01 2008-04-08 Ship bubble holding device

Publications (2)

Publication Number Publication Date
JP2013216325A true JP2013216325A (en) 2013-10-24
JP5799982B2 JP5799982B2 (en) 2015-10-28

Family

ID=49588969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013137343A Active JP5799982B2 (en) 2013-06-28 2013-06-28 Ship bubble holding device

Country Status (1)

Country Link
JP (1) JP5799982B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918614A (en) * 2021-01-22 2021-06-08 中国人民解放军国防科技大学 Supercavitation navigation body and cavitation bubble flow control method adopting wake flow injection
CN114813035A (en) * 2022-04-12 2022-07-29 厦门大学 Thermal surface cavitation synergistic resistance reduction test device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524421A (en) * 1997-12-02 2001-12-04 ダニエル・ジェイ・ウイッパー Energy efficiency device for reducing water friction generated on the hull of a ship

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524421A (en) * 1997-12-02 2001-12-04 ダニエル・ジェイ・ウイッパー Energy efficiency device for reducing water friction generated on the hull of a ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918614A (en) * 2021-01-22 2021-06-08 中国人民解放军国防科技大学 Supercavitation navigation body and cavitation bubble flow control method adopting wake flow injection
CN112918614B (en) * 2021-01-22 2022-03-29 中国人民解放军国防科技大学 Supercavitation navigation body and cavitation bubble flow control method adopting wake flow injection
CN114813035A (en) * 2022-04-12 2022-07-29 厦门大学 Thermal surface cavitation synergistic resistance reduction test device and method

Also Published As

Publication number Publication date
JP5799982B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
US9855996B2 (en) Air lubrication system and vessel comprising such a system
JP5311541B2 (en) Ship bubble holding device
JP5311540B2 (en) Air bubble entrainment prevention device for ships
JP5604736B2 (en) Ship frictional resistance reduction device
WO2009122736A1 (en) Frictional resistance reduction device for ship
US8763547B2 (en) Apparatus for lowering drag on a moving nautical vessel
US20180141626A1 (en) Air lubrication system for reducing marine growth on a vessel
CN104080694A (en) Air cavity and air lubrication system ship having stern shape of stepped form around the propeller
US11319026B2 (en) Hull surface air lubrication structure for marine vehicles
KR20140138535A (en) Ship with foil type hill under flat bottom
JP2007210537A (en) Water jet propulsion ship
JP5799982B2 (en) Ship bubble holding device
JP5975363B2 (en) Hull fluid resistance reduction device
US7685958B2 (en) Ship bow
JP2022520136A (en) Inflatable motorboat
JP5787263B2 (en) Ship bubble holding device
JP2013216323A (en) Air bubble holding device of ship
US20020029731A1 (en) Method of reducing frictional resistance of a hull, and frictional resistance reducing vessel
JP2001278178A (en) Method of reducing frictional resistance of hull, and frictional resistance reduced ship
WO2016042746A1 (en) Hull fluid resistance reduction device
JP5850507B2 (en) Air bubble entrainment prevention device for ships
US3664289A (en) Hydraulic jump captured air bubble vessel
JP2023132401A (en) Friction resistance reduction system, navigating body, and friction resistance reduction method for navigating body
WO2024189160A2 (en) Air lubrication system for a ship hull
WO2017094073A1 (en) Ship propulsion device and ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R150 Certificate of patent or registration of utility model

Ref document number: 5799982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250