JP2013213810A - Method for evaluating freshness degree of seafood - Google Patents

Method for evaluating freshness degree of seafood Download PDF

Info

Publication number
JP2013213810A
JP2013213810A JP2013014945A JP2013014945A JP2013213810A JP 2013213810 A JP2013213810 A JP 2013213810A JP 2013014945 A JP2013014945 A JP 2013014945A JP 2013014945 A JP2013014945 A JP 2013014945A JP 2013213810 A JP2013213810 A JP 2013213810A
Authority
JP
Japan
Prior art keywords
freshness
fluorescence
seafood
shellfish
fresh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013014945A
Other languages
Japanese (ja)
Inventor
Tomoaki Sugawara
智明 菅原
Takeya Yoshioka
武也 吉岡
Yasutomo Nomura
保友 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakodate Regional Industry Promotion Organization
Original Assignee
Hakodate Regional Industry Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakodate Regional Industry Promotion Organization filed Critical Hakodate Regional Industry Promotion Organization
Priority to JP2013014945A priority Critical patent/JP2013213810A/en
Publication of JP2013213810A publication Critical patent/JP2013213810A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for quickly and non-destructively evaluating a freshness degree of seafood without any preprocessing.SOLUTION: A freshness degree of fresh seafood, as a freshness degree of a viable cell of the seafood, is non-destructively evaluated without any preprocessing, by an intensity measurement of fluorescent light of nicotinamide adenine dinucleotide acid that is one kind of coenzymes contained in the fresh seafood. Self-fluorescence beams of the coenzyme and amino-acid contained in the fresh seafood are simultaneously measured to evaluate the freshness degree of the fresh seafood from an intensity ratio of the fluorescent light beams thereof. For minimizing an error, self-fluorescence of a tryptophan that is one kind of amino acids contained in the biological tissue is measured as an evaluation index of an optical system.

Description

本発明は、生鮮魚介類を前処理なしに非破壊で迅速に鮮度評価する方法に関する。   The present invention relates to a method for quickly evaluating freshness of fresh fish and shellfish without any pretreatment.

従来、生鮮魚介類の鮮度は、K値を指標として評価されている。この従来法は、死後にATPから生成されるATP関連物質に含まれるイノシン及びヒポキサンチンの合計割合をK値として、その大きさによって鮮度を評価するものであり、サンプリング後、前処理したものを液体クロマトグラフで成分分析を行ない、サンプル中のATP関連物質の各成分量を加え合わせたものを分母とし、イノシン及びヒポキサンチンの合計量を分子として数値化を行なうものである。   Conventionally, the freshness of fresh seafood has been evaluated using the K value as an index. This conventional method evaluates freshness according to the magnitude of the total ratio of inosine and hypoxanthine contained in ATP-related substances generated from ATP after death as the K value. Component analysis is performed with a liquid chromatograph, and the sum of the amounts of each component of the ATP-related substance in the sample is used as the denominator, and the total amount of inosine and hypoxanthine is used as the numerator for quantification.

この技術は、前処理に専門知識と技能が必要であり、一定以上の技術と経験がないと測定できないという問題がある。また、評価に要する時間については、試料の前処理及び前処理後の成分分析に数時間かかるため、鮮度を迅速に知りたい分野、例えば流通現場などでK値測定により鮮度評価することは困難であるという欠点を有する。   This technique requires special knowledge and skill for preprocessing, and has a problem that it cannot be measured without a certain level of skill and experience. As for the time required for the evaluation, it takes several hours for the sample pretreatment and the component analysis after the pretreatment, so it is difficult to evaluate the freshness by measuring the K value in a field where the freshness is to be known quickly, for example, in a distribution site. It has the disadvantage of being.

一方、光学的特性から鮮度を評価する方法が注目されている。例えば、生鮮食品や穀物については、フェノール化合物やリグニン、タンパク質の蛍光強度を指標にした鮮度評価方法(蛍光分光分析法)がある。この具体的な手法を開示した例として、本発明者らによる下記非特許文献1、2が存在する。
一般に、蛍光分析法は非破壊で迅速に、高感度分析が可能な優れた方法であり、自家蛍光測定を使うと前処理なしに鮮度評価ができると考えられる。しかしながら流通現場で使用することは難しい。
On the other hand, attention has been focused on a method for evaluating freshness from optical characteristics. For example, for fresh foods and cereals, there is a freshness evaluation method (fluorescence spectroscopy) using the fluorescence intensity of phenolic compounds, lignin, and proteins as an index. The following nonpatent literatures 1 and 2 by the present inventors exist as an example which disclosed this specific technique.
In general, the fluorescence analysis method is an excellent method capable of non-destructive, rapid, and high-sensitivity analysis, and it is considered that freshness can be evaluated without pretreatment using autofluorescence measurement. However, it is difficult to use at distribution sites.

その理由は、高感度であるが故に、試料の形状など、測定光学系を乱す僅かの違いが蛍光に影響するためである。誤差を小さくするためには測定系を同一状態にする必要があるが、実現には励起光の照射角度、蛍光発生範囲、蛍光検出領域を常に一定に維持することを意味しており、例えば対象物が曲がっているもの、又は凹凸があるようなものを正確に固定するのは難しく、実用上問題が多い。   The reason is that because of high sensitivity, slight differences that disturb the measurement optical system, such as the shape of the sample, affect the fluorescence. In order to reduce the error, it is necessary to keep the measurement system in the same state, but in order to realize it, it means that the irradiation angle of the excitation light, the fluorescence generation range, and the fluorescence detection region are always kept constant. It is difficult to accurately fix a bent object or an object with unevenness, and there are many practical problems.

参考資料として、食品中(農産物)に含まれるフェノール化合物又はリグニンの自家蛍光の蛍光強度を測定する一方、該食品中に共存させた標準蛍光物質の強度も測定し、両者の蛍光強度との比を指標として、食品の状態を評価する方法が開示されている(特許文献1参照)。しかし、これらは、農産物を対象としているため、鮮度評価で検出する物質が異なり、生鮮魚介類の鮮度の評価の対象とすることができない。   As a reference material, while measuring the fluorescence intensity of the autofluorescence of a phenolic compound or lignin contained in food (agricultural products), the intensity of the standard fluorescent substance coexisted in the food is also measured, and the ratio of both fluorescence intensities. A method for evaluating the state of a food by using as an index is disclosed (see Patent Document 1). However, since these are intended for agricultural products, the substances to be detected in the freshness evaluation are different and cannot be used for the evaluation of the freshness of fresh seafood.

この他、電気泳動枠にセットし、泳動用緩衝液で湿潤した泳動用ろ紙の原点に、除蛋白剤水溶液を用いてホモナイズした食肉片を静置して得た上澄液の一定量をマイクロピペットでスポット滴下し、直ちに電気泳動を行い、紫外線を照射して浮かび上がる核酸関連化合物のスポットの大きさと濃さを比較観察して、原点と移動の相対比較により食肉の鮮度を判定する方法が開示されている(特許文献2参照)。   In addition, a certain amount of the supernatant obtained by leaving a piece of meat homogenized with an aqueous solution of deproteinizing agent at the origin of the electrophoresis filter paper set in the electrophoresis frame and moistened with the electrophoresis buffer is micro-quantized. A method to determine the freshness of meat by comparing the origin and movement relative to each other by spot-dropping with a pipette, performing electrophoresis immediately, comparing and observing the size and density of the spots of nucleic acid-related compounds that emerge when irradiated with ultraviolet rays. It is disclosed (see Patent Document 2).

また、魚肉類に含まれるATP関連化合物の濃度比から魚介類の鮮度を測定する方法、具体的にはFIA法(流れ分析法)によりK1値を迅速に算出して魚介類の鮮度判定を短時間で行う方法が開示されている(特許文献3参照)。
さらに、特許文献4には、魚産物から少量のサンプルを切断し、細胞浸透性の色素及び細胞不透性の色素のうち少なくとも一方を含有する有効量の着色試薬をサンプルに加え、このサンプルを一定時間インキュベートし、このサンプルから放出される蛍光に基づいて、鮮度を判別する方法が開示されている。しかし、これらは、いずれも本願発明の目的に沿うものではない。
In addition, the method of measuring the freshness of seafood from the concentration ratio of ATP-related compounds contained in fish meat, specifically, the K1 value can be quickly calculated by the FIA method (flow analysis method) to shorten the freshness determination of seafood. A method of performing with time is disclosed (see Patent Document 3).
Furthermore, in Patent Document 4, a small amount of sample is cut from a fish product, and an effective amount of a coloring reagent containing at least one of a cell-permeable pigment and a cell-impermeable pigment is added to the sample, and this sample is added. A method of discriminating the freshness based on the fluorescence emitted from the sample after incubating for a certain time is disclosed. However, these do not meet the purpose of the present invention.

特開2001−208745号公報JP 2001-208745 A 特許第4291381号公報Japanese Patent No. 42911381 特許第2857607号公報Japanese Patent No. 2857607 特表2008−500810号公報Special table 2008-500810

菅原智明、他5名著、「蛍光分光分析による生鮮ホタテガイ貝柱の評価」平成23年電気学会基礎・材料・共通部門大会予稿集(平成23年9月21日発行)、頁174Tomoaki Sugawara and 5 other authors, “Evaluation of Fresh Scallops by Fluorescence Spectroscopy” Proceedings of the 2011 IEEJ Fundamental / Materials / Common Section Conference (issued September 21, 2011), page 174 菅原智明、他5名著、「蛍光分光分析による生鮮イカ外套膜の評価」平成23年電気・情報関係学会北海道支部連合大会予稿集(平成23年10月22日発行)、頁139Tomoaki Hagiwara and five other authors, “Evaluation of Fresh Squid Mantle by Fluorescence Spectroscopy” Proceedings of the 2011 Hokkaido Electrical and Information Society Conference (October 22, 2011), page 139

本発明は、従来技術の問題点を解決するため、魚介類の鮮度や品質などを前処理なしに、非破壊で迅速に鮮度評価する方法を提供することを課題とする。   In order to solve the problems of the prior art, an object of the present invention is to provide a method for quickly and freshly evaluating the freshness and quality of fish and shellfish without pretreatment, without pretreatment.

上記課題を解決するために検討を行なった結果、以下の発明を提供する。
1)生鮮魚介類に含まれる補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸の蛍光測定により、魚介類の生細胞の鮮度を非破壊で、前処理なしに生鮮魚介類の鮮度を評価することを特徴とする魚介類の鮮度評価方法。
2)生鮮魚介類に含まれる補酵素とアミノ酸の自家蛍光を同時に測定し、それらの蛍光の強度比から、生鮮魚介類の鮮度を評価することを特徴とする魚介類の鮮度評価方法。
As a result of investigations to solve the above problems, the following inventions are provided.
1) To evaluate the freshness of fresh fish and shellfish without pre-treatment without losing the freshness of fresh fish and shellfish by fluorescence measurement of nicotinamide adenine dinucleotide acid, a coenzyme contained in fresh fish and shellfish A method for evaluating the freshness of seafood characterized by
2) A method for evaluating the freshness of fish and shellfish, characterized by simultaneously measuring autofluorescence of coenzymes and amino acids contained in fresh fish and shellfish and evaluating the freshness of fresh fish and shellfish from the intensity ratio of the fluorescence.

3)補酵素として、ニコチンアミドアデニンジヌクレオチド酸を用いて測定することを特徴とする請求項2記載の魚介類の鮮度評価方法。
4)誤差を小さくするため光学系の評価指標として、生物組織に含まれるアミノ酸の一種であるトリプトファンの自家蛍光を測定することを特徴とする請求項2又は3記載の魚介類の鮮度評価方法。
3) The method for evaluating freshness of fish and shellfish according to claim 2, wherein the measurement is performed using nicotinamide adenine dinucleotide acid as a coenzyme.
4) The method for evaluating the freshness of fish and shellfish according to claim 2 or 3, wherein autofluorescence of tryptophan, which is a kind of amino acid contained in a biological tissue, is measured as an optical system evaluation index in order to reduce errors.

5)励起光源、試料ホルダー、蛍光検出器、生鮮魚介類に含まれる補酵素の蛍光とアミノ酸の自家蛍光を同時に測定する装置及びこれらの蛍光の強度比を測定する装置、光学系の評価に基づき誤差補正を行う装置を備えていることを特徴とする魚介類の鮮度測定装置。   5) Based on evaluation of excitation light source, sample holder, fluorescence detector, apparatus for simultaneously measuring fluorescence of coenzyme and autofluorescence of amino acids contained in fresh seafood, apparatus for measuring intensity ratio of these fluorescence, and optical system An apparatus for measuring freshness of fish and shellfish, characterized by comprising an apparatus for correcting errors.

本発明の鮮度評価方法は、光学系の評価指標によって蛍光測定精度を高めることができ、生鮮魚介類を前処理なしに非破壊で迅速に鮮度評価でき、魚介類の流通現場でも使用することが可能であるという優れた効果を有する。   The freshness evaluation method of the present invention can increase the fluorescence measurement accuracy by the evaluation index of the optical system, can perform freshness assessment of fresh fish and shellfish quickly and non-destructively without pretreatment, and can be used even in the distribution site of fish and shellfish. It has an excellent effect of being possible.

ホタテガイ貝柱に波長330〜390nmのUV−Aの紫外線を照射した場合の、青く光る生ホタテガイの貝柱の蛍光イメージを示す図である。It is a figure which shows the fluorescence image of the scallop shell of the raw scallop which shines in blue when the scallop shell is irradiated with UV-A ultraviolet rays having a wavelength of 330 to 390 nm. ホタテガイ貝柱に含まれるニコチンアミドアデニンジヌクレオチド酸の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of nicotinamide adenine dinucleotide acid contained in a scallop shell. 生ホタテガイ貝柱を10℃で冷蔵したときの保存時間とニコチンアミドアデニンジヌクレオチド酸の蛍光強度との関係を示す図である。It is a figure which shows the relationship between the storage time when a raw scallop shell is refrigerated at 10 degreeC, and the fluorescence intensity of nicotinamide adenine dinucleotide acid. トリプトファンの蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of tryptophan. 生ホタテガイ貝柱の3種の試料(試料A、試料B、試料C)について、トリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of the nicotinamide adenine dinucleotide acid normalized with the fluorescence intensity of tryptophan about three types of samples (sample A, sample B, sample C) of a raw scallop. 生鮮イカに波長330〜390nmのUV−Aの紫外線を照射した場合の、青く光るイカの蛍光イメージを示す図である。It is a figure which shows the fluorescence image of the squid which shines blue when a fresh squid is irradiated with UV-A ultraviolet-ray with a wavelength of 330-390 nm. 生鮮イカの冷蔵保存時間とニコチンアミドアデニンジヌクレオチド酸の蛍光強度との関係を示す図である。It is a figure which shows the relationship between the refrigerated storage time of fresh squid, and the fluorescence intensity of nicotinamide adenine dinucleotide acid. 生鮮イカの3種の試料(試料A、試料B、試料C)について、トリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of the nicotinamide adenine dinucleotide acid normalized with the fluorescence intensity of tryptophan about three types of samples (sample A, sample B, sample C) of fresh squid.

生ホタテガイ貝柱のニコチンアミドアデニンジヌクレオチド酸とトリプトファンの蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of nicotinamide adenine dinucleotide acid and tryptophan of a raw scallop. 生ホタテガイ貝柱のトリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of nicotinamide adenine dinucleotide acid normalized with the fluorescence intensity of the tryptophan of a raw scallop shell. 生鮮イカのニコチンアミドアデニンジヌクレオチド酸とトリプトファンの蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of fresh squid nicotinamide adenine dinucleotide acid and tryptophan. 生鮮イカのトリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す図である。It is a figure which shows the fluorescence intensity of the nicotinamide adenine dinucleotide acid normalized with the fluorescence intensity of the fresh squid tryptophan.

本発明の魚介類の鮮度評価方法は、生鮮魚介類に含まれる補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸の状態評価を指標として鮮度評価を非破壊で迅速に精度よく行なうことを特徴としている。   The method for assessing freshness of seafood according to the present invention is characterized in that freshness assessment is performed non-destructively and accurately with the state assessment of nicotinamide adenine dinucleotide acid, which is a type of coenzyme contained in fresh seafood, as an index. Yes.

一般に、ニコチンアミドアデニンジヌクレオチド酸はエネルギー代謝に関連する補酵素として知られている。生鮮魚介類については、これまでの検討によると、組織に含まれるニコチンアミドアデニンジヌクレオチド酸の蛍光が鮮度に強く依存し、ニコチンアミドアデニンジヌクレオチド酸からの蛍光が鮮度低下とともに徐々に弱くなる。
したがって、ニコチンアミドアデニンジヌクレオチド酸の蛍光の強度を測定することが、生鮮魚介類の鮮度を評価する上で、極めて有効な手段と言える。
In general, nicotinamide adenine dinucleotide acid is known as a coenzyme related to energy metabolism. Regarding fresh fish and shellfish, according to previous studies, the fluorescence of nicotinamide adenine dinucleotide acid contained in the tissue strongly depends on the freshness, and the fluorescence from nicotinamide adenine dinucleotide acid gradually weakens as the freshness decreases.
Therefore, measuring the fluorescence intensity of nicotinamide adenine dinucleotide acid can be said to be an extremely effective means for evaluating the freshness of fresh fish and shellfish.

蛍光分析は高感度であるため、僅かの鮮度の違いを検出することができるといった特徴がある。一方、蛍光測定結果の誤差を大きくする要因として光学系の誤差がある。流通現場で使用する評価機器には、誤差を小さくするために光学系の評価を行ない、その指標に基づいた鮮度評価が必要な場合がある。   Since fluorescence analysis is highly sensitive, it can detect a slight difference in freshness. On the other hand, there is an error in the optical system as a factor that increases the error in the fluorescence measurement result. An evaluation device used at a distribution site may require evaluation of an optical system in order to reduce an error, and freshness evaluation based on the index may be required.

魚介類に含まれるアミノ酸の一種であるトリプトファンの蛍光は、加熱や鮮度低下といった生物組織の劣化に対して変化が少ない。
このことから、本発明は、誤差を小さくするため光学系の評価指標として、生物組織に含まれるアミノ酸の一種であるトリプトファンの自家蛍光を同時測定することが有効である。
The fluorescence of tryptophan, which is a kind of amino acid contained in seafood, has little change with respect to deterioration of biological tissues such as heating and a decrease in freshness.
Therefore, in the present invention, it is effective to simultaneously measure autofluorescence of tryptophan, which is a kind of amino acid contained in a biological tissue, as an optical system evaluation index in order to reduce errors.

本発明の鮮度評価方法では、初めに光学系の評価を行なうため、生鮮魚介類に波長280〜320nmのUV−Bの紫外線を照射し、波長330〜390nmの蛍光を測定し、強度値を光学系の指標とする。
次に、鮮度の基準となる波長330〜390nmのUV−Aの紫外線を照射し、波長430〜490nmの蛍光を測定する。この波長430〜490nmの蛍光強度を光学系評価で測定された強度値で補正することで、精度よく鮮度評価することができる。
In the freshness evaluation method of the present invention, first, fresh fish and shellfish are irradiated with UV-B ultraviolet rays having a wavelength of 280 to 320 nm, fluorescence of a wavelength of 330 to 390 nm is measured, and the intensity value is optically evaluated. It is an index of the system.
Next, UV-A ultraviolet light having a wavelength of 330 to 390 nm, which serves as a reference for freshness, is irradiated, and fluorescence having a wavelength of 430 to 490 nm is measured. By correcting the fluorescence intensity at a wavelength of 430 to 490 nm with the intensity value measured by the optical system evaluation, the freshness can be evaluated with high accuracy.

また、光学系の測定強度をある値に一定にするように、光照射強度の増減又は蛍光検出器の感度を調整することにより、蛍光強度の値を、そのまま鮮度評価とすることもできる。
励起光源から特定波長の光を選択する方法としては、分光器やバンドパスフィルターなどを使用し、UV−BやUV−Aを試料に照射するものがある。また分光器やバンドパスフィルターなしで紫外線LEDデバイスを使用することもできる。
Further, the value of the fluorescence intensity can be used as it is as the freshness evaluation by adjusting the increase or decrease of the light irradiation intensity or the sensitivity of the fluorescence detector so that the measured intensity of the optical system is constant.
As a method for selecting light of a specific wavelength from an excitation light source, there is a method of irradiating a sample with UV-B or UV-A using a spectroscope or a bandpass filter. Moreover, an ultraviolet LED device can also be used without a spectroscope or a bandpass filter.

蛍光測定では、特定波長の光を検出するため、分光器やカットオフフィルタなどを使用することができる。検出器については、光電子増倍管やCCDデバイス、CMOS、フォトダイオードなど光検出器を利用することができる。
測定時間については、鮮度が時間変化することから、光学系の評価と鮮度基準値の測定は、同時に行なうことが望ましい。キセノンランプや紫外線LEDなどの紫外線強度の大きい光源を使用することで、同時に、光学系の評価用測定及び鮮度評価用測定の両方を数秒〜数十秒で終えることが可能である。
In fluorescence measurement, a spectroscope, a cutoff filter, or the like can be used to detect light of a specific wavelength. As the detector, a photodetector such as a photomultiplier tube, a CCD device, a CMOS, or a photodiode can be used.
Regarding the measurement time, since the freshness changes with time, it is desirable to perform the evaluation of the optical system and the measurement of the freshness reference value simultaneously. By using a light source having a high ultraviolet intensity such as a xenon lamp or an ultraviolet LED, both the optical system evaluation measurement and the freshness evaluation measurement can be completed in several seconds to several tens of seconds.

光学系については、照射用光源と蛍光測定用検出器を90度に配置したもの以外にも、直線上や同軸上に配置したものを使用することも可能である。光学系の評価により補正するため、光学系の配置は自由にデザインできる。   As for the optical system, in addition to the illumination light source and the fluorescence measurement detector arranged at 90 degrees, it is also possible to use a linear or coaxial arrangement. Since the correction is made by evaluating the optical system, the arrangement of the optical system can be freely designed.

本発明は、生鮮魚介類に含まれる補酵素とアミノ酸の自家蛍光を同時に測定し、それらの蛍光の強度比から、生鮮魚介類の鮮度を評価することができるが、トリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を用いるのが望ましい。   The present invention can simultaneously measure the autofluorescence of coenzymes and amino acids contained in fresh fish and shellfish, and evaluate the freshness of fresh fish and shellfish from the intensity ratio of the fluorescence, but it is normalized by the fluorescence intensity of tryptophan. It is desirable to use the fluorescence intensity of nicotinamide adenine dinucleotide acid.

規格化の方法としては、ニコチンアミドアデニンジヌクレオチド酸の蛍光強度をトリプトファンの蛍光強度で割って得られる値とすることができる。
より正確な規格化の方法としては、トリプトファンの蛍光強度から光学系の補正係数(例えばトリプトファン蛍光強度の逆数)を求め、その補正係数を使って、ニコチンアミドアデニンジヌクレオチド酸の蛍光強度を評価する手法を採ることもできる。
As a standardization method, a value obtained by dividing the fluorescence intensity of nicotinamide adenine dinucleotide acid by the fluorescence intensity of tryptophan can be used.
As a more accurate standardization method, the correction coefficient of the optical system (for example, the reciprocal of tryptophan fluorescence intensity) is obtained from the fluorescence intensity of tryptophan, and the fluorescence intensity of nicotinamide adenine dinucleotide acid is evaluated using the correction coefficient. A technique can also be taken.

以下、本発明の特徴を具体的に説明する。以下の説明は本願発明の理解を容易にするためのものであり、これに制限されるものではない。すなわち、本願発明の技術思想に基づく変形、他の実施態様、他の例等は、いずれも本願発明に含まれるものである。   The features of the present invention will be specifically described below. The following description is intended to facilitate understanding of the present invention, and is not limited thereto. That is, all modifications, other embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
ホタテガイ貝柱の鮮度評価の具体例を示す。活ホタテガイから貝柱を取り出し、貝柱に波長330〜390nmのUV−Aの紫外線を照射した。
図1に、青く光る貝柱の蛍光イメージを示す。青色の蛍光は、補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸に由来するものである。
図2に、ホタテガイ貝柱に含まれるニコチンアミドアデニンジヌクレオチド酸の蛍光スペクトルを示す。
図3に、生ホタテガイ貝柱を10℃で冷蔵したときの保存時間とニコチンアミドアデニンジヌクレオチド酸の蛍光強度との関係を示す。
Example 1
The example of the freshness evaluation of a scallop shell is shown. The scallops were taken out from the live scallops and irradiated with UV-A ultraviolet rays having a wavelength of 330 to 390 nm.
FIG. 1 shows a fluorescent image of a scallop that glows blue. Blue fluorescence is derived from nicotinamide adenine dinucleotide acid, which is a type of coenzyme.
FIG. 2 shows the fluorescence spectrum of nicotinamide adenine dinucleotide acid contained in scallop shells.
FIG. 3 shows the relationship between the storage time and the fluorescence intensity of nicotinamide adenine dinucleotide acid when raw scallops are refrigerated at 10 ° C.

冷蔵保存時間が長くなるほど、ニコチンアミドアデニンジヌクレオチド酸に由来する蛍光は弱くなる。しかしながら、試料ごとの蛍光強度の違いは大きく、評価の精度は低い。
改善策として光学系を評価し、蛍光強度を補正するため、生鮮魚介類に含まれるアミノ酸の一種であるトリプトファンについて検討した。
The longer the refrigerated storage time, the weaker the fluorescence derived from nicotinamide adenine dinucleotide acid. However, the difference in fluorescence intensity between samples is large, and the accuracy of evaluation is low.
As an improvement measure, we evaluated the optical system and examined tryptophan, a kind of amino acid contained in fresh fish and shellfish, to correct the fluorescence intensity.

貝柱に波長280〜320nmのUV−Bの紫外線を照射すると、波長330〜390nmの蛍光が観測された。
図4に、生ホタテガイ貝柱に含まれるトリプトファンからの蛍光スペクトル及び蛍光強度の保存時間との関係(依存性)を示す。トリプトファンはニコチンアミドアデニンジヌクレオチド酸に比べて安定な物質であるため、図4の右上図に示すように、冷蔵保存時間が長くなってもトリプトファンに由来する蛍光はあまり変化しない。
すなわち、トリプトファンの濃度は不変であるが、一方、光学系が異なると、トリプトファンの蛍光に違いが生じる。
When the shell pillar was irradiated with UV-B ultraviolet light having a wavelength of 280 to 320 nm, fluorescence having a wavelength of 330 to 390 nm was observed.
FIG. 4 shows the relationship (dependence) between the fluorescence spectrum from tryptophan contained in the raw scallop and the storage time of the fluorescence intensity. Since tryptophan is a more stable substance than nicotinamide adenine dinucleotide acid, as shown in the upper right diagram of FIG. 4, the fluorescence derived from tryptophan does not change much as the refrigerated storage time increases.
That is, the concentration of tryptophan does not change, but if the optical system is different, there is a difference in the fluorescence of tryptophan.

例えば、サンプルの正面に光源と光検出器が配置されていると考えてみる。平らなサンプルだとすると、垂直に入射したときが最も明るい蛍光が観測される。つまり、蛍光強度はサンプルと光源、光検出器の位置関係に依存することになる。理想的にはサンプルの平らな部分を見つけ、その部分を蛍光測定する必要がある。しかし、この方法は簡便とは言ないし、現場では実行不可能と考えられる。したがって、トリプトファンの蛍光強度が異なるとき、光学的配置が理想状態からずれを生じているとみなして補正する必要がある。   For example, consider that a light source and a photodetector are arranged in front of the sample. If it is a flat sample, the brightest fluorescence is observed when incident vertically. That is, the fluorescence intensity depends on the positional relationship between the sample, the light source, and the photodetector. Ideally, it would be necessary to find a flat part of the sample and measure that part with fluorescence. However, this method is not convenient and is considered infeasible in the field. Therefore, when the fluorescence intensity of tryptophan is different, it is necessary to correct the optical arrangement by assuming that the optical arrangement is deviated from the ideal state.

図5に、光学系の違いを補正した鮮度指標の一例として、3種の試料(試料A、試料B、試料C)を用意し、トリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す。
トリプトファンの蛍光強度(例えば200)で、ニコチンアミドアデニンジヌクレオチド酸の蛍光強度(例えば150)を割って得られる値(150/200=0.75)を得ることができる。
FIG. 5 shows three samples (sample A, sample B, and sample C) prepared as an example of a freshness index corrected for the difference in optical system, and nicotinamide adenine dinucleotide acid normalized by tryptophan fluorescence intensity. The fluorescence intensity is shown.
A value (150/200 = 0.75) obtained by dividing the fluorescence intensity (eg, 150) of nicotinamide adenine dinucleotide acid by the fluorescence intensity (eg, 200) of tryptophan can be obtained.

より正確さを求める場合には、トリプトファンの蛍光強度から光学系の補正係数(例えばトリプトファン蛍光強度の逆数)を求め、その補正係数を使って、ニコチンアミドアデニンジヌクレオチド酸の蛍光強度を評価することもできる。
従来法は、ばらつきが±30%と大きいが、本実施例では±11%にまで小さくなっており、本実施例によると評価精度を向上させることが可能である。
To obtain more accuracy, calculate the correction coefficient of the optical system (for example, the inverse of tryptophan fluorescence intensity) from the fluorescence intensity of tryptophan, and evaluate the fluorescence intensity of nicotinamide adenine dinucleotide acid using the correction coefficient. You can also.
In the conventional method, the variation is as large as ± 30%, but in this example, it is as small as ± 11%, and according to this example, the evaluation accuracy can be improved.

(実施例2)
次に、イカ外套膜の鮮度評価の具体例を示す。生鮮イカに波長330〜390nmのUV−Aの紫外線を照射した。図6に、青く光るイカの蛍光イメージを示す。青色の蛍光は、補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸に由来するものである。
(Example 2)
Next, a specific example of the freshness evaluation of the squid mantle is shown. Fresh squid was irradiated with UV-A ultraviolet rays having a wavelength of 330 to 390 nm. FIG. 6 shows a fluorescent image of a squid that glows blue. Blue fluorescence is derived from nicotinamide adenine dinucleotide acid, which is a type of coenzyme.

図7に、生鮮イカの冷蔵保存時間とニコチンアミドアデニンジヌクレオチド酸の蛍光強度との関係を示す。ホタテガイ貝柱のときと同様に、冷蔵保存時間とともにニコチンアミドアデニンジヌクレオチド酸の蛍光強度は減少する。しかしながら、試料ごとの蛍光強度の違いは大きく、評価の精度は低い。   FIG. 7 shows the relationship between the refrigerated storage time of fresh squid and the fluorescence intensity of nicotinamide adenine dinucleotide acid. As with scallops, the fluorescence intensity of nicotinamide adenine dinucleotide acid decreases with refrigerated storage time. However, the difference in fluorescence intensity between samples is large, and the accuracy of evaluation is low.

図8に、光学系の違いを補正した鮮度指標の一例として、3種の生鮮イカ試料(試料A、試料B、試料C)を用意し、実施例1と同様に、トリプトファンの蛍光強度で規格化したニコチンアミドアデニンジヌクレオチド酸の蛍光強度を示す。
従来法では、ばらつきが11%と大きいが、本実施例では5%にまで小さくなっており、本実施例によると評価精度を向上させることが可能であった。
In FIG. 8, three types of fresh squid samples (sample A, sample B, sample C) are prepared as an example of a freshness index corrected for the difference in the optical system, and the fluorescence intensity of tryptophan is standardized as in the first embodiment. The fluorescence intensity of converted nicotinamide adenine dinucleotide acid is shown.
In the conventional method, the variation is as large as 11%, but in this example, it is as small as 5%. According to this example, it was possible to improve the evaluation accuracy.

(実施例3)
次に、生ホタテガイ貝柱の事例について説明する。図9に、生ホタテガイ貝柱のニコチンアミドアデニンジヌクレオチド酸(NADH)とトリプトファンの蛍光強度を示す。高鮮度(保存0日)のサンプルについて、トリプトファンとNADHの蛍光強度には比例関係が成立する。また、低鮮度(保存3日後)のサンプルは、ばらつきが若干大きいものの、トリプトファンの蛍光強度とNADHの蛍光強度は比例している。
このことから、NADHの蛍光強度のみを比較する従来法よりも、トリプトファンの蛍光強度で規格化したNADHの蛍光強度を比較する本方法は、評価精度がより高くなる。
(Example 3)
Next, an example of raw scallop shell will be described. FIG. 9 shows the fluorescence intensity of nicotinamide adenine dinucleotide acid (NADH) and tryptophan in raw scallops. For samples with high freshness (0 days of storage), there is a proportional relationship between the fluorescence intensity of tryptophan and NADH. Moreover, although the sample of low freshness (after 3 days of storage) has a slightly large variation, the fluorescence intensity of tryptophan and the fluorescence intensity of NADH are proportional.
From this, the evaluation accuracy of the present method for comparing the fluorescence intensity of NADH normalized by the fluorescence intensity of tryptophan is higher than the conventional method of comparing only the fluorescence intensity of NADH.

図10に、ホタテガイ貝柱の測定結果を示す。棒グラフは平均値±標準偏差(バー)を表している。高鮮度(0day)の結果では、従来法による測定データの標準偏差(9.7%)よりも本方法の標準偏差(9.2%)の方が若干小さくなる。また、低鮮度(3day後)においても、従来法の標準偏差(16.4%)と比べて本方法の標準偏差(15.5%)の方が小さいことから、本実施例の方法によると高精度の評価が可能である。   In FIG. 10, the measurement result of a scallop shell is shown. The bar graph represents the mean value ± standard deviation (bar). In the result of high freshness (0 day), the standard deviation (9.2%) of this method is slightly smaller than the standard deviation (9.7%) of measurement data obtained by the conventional method. Also, even at low freshness (after 3 days), the standard deviation (15.5%) of the present method is smaller than the standard deviation (16.4%) of the conventional method. Highly accurate evaluation is possible.

(実施例4)
次に、生スルメイカの事例について説明する。図11に、生スルメイカのニコチンアミドアデニンジヌクレオチド酸(NADH)とトリプトファンの蛍光強度を示す。高鮮度(保存0日)のサンプルについて、トリプトファンとNADHの蛍光強度には比例関係が成立する。また低鮮度(保存3日後)のサンプルにおいてもトリプトファンの蛍光強度とNADHの蛍光強度は比例する。したがってNADHの蛍光強度のみを比較する従来法よりも、トリプトファンの蛍光強度で規格化したNADHの蛍光強度を比較する本方法は、評価精度がより高くなる。
Example 4
Next, a case of raw squid will be described. FIG. 11 shows the fluorescence intensity of nicotinamide adenine dinucleotide acid (NADH) and tryptophan of raw squid. For samples with high freshness (0 days of storage), there is a proportional relationship between the fluorescence intensity of tryptophan and NADH. In addition, the fluorescence intensity of tryptophan is proportional to the fluorescence intensity of NADH even in samples with low freshness (after 3 days of storage). Therefore, this method of comparing the fluorescence intensity of NADH normalized with the fluorescence intensity of tryptophan has higher evaluation accuracy than the conventional method of comparing only the fluorescence intensity of NADH.

図12に、スルメイカの測定結果を示す。棒グラフは平均値±標準偏差(バー)を表している。高鮮度(0day)では、従来法による測定データの標準偏差(18.6%)よりも本方法の標準偏差(15.4%)方が小さくなる。また、低鮮度(3day後)においても、従来法の標準偏差(18.6%)よりも本方法の標準偏差(16.8%)方が小さくなることから、本実施例の方法によると高精度の評価が可能となる。   FIG. 12 shows the measurement results of Japanese squid. The bar graph represents the mean value ± standard deviation (bar). At high freshness (0 day), the standard deviation (15.4%) of this method is smaller than the standard deviation (18.6%) of measurement data obtained by the conventional method. Even at low freshness (after 3 days), the standard deviation (16.8%) of this method is smaller than the standard deviation (18.6%) of the conventional method. Accuracy can be evaluated.

以上の実施例に示すように、生鮮魚介類に含まれる補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸の蛍光測定により、魚介類の生細胞の鮮度を非破壊で、前処理なしに生鮮魚介類の鮮度を評価することは、鮮度指標として有効である。   As shown in the above examples, by measuring fluorescence of nicotinamide adenine dinucleotide acid, which is a type of coenzyme contained in fresh seafood, the freshness of live cells in seafood is non-destructive, and the fresh fish It is effective to evaluate the freshness of a kind as a freshness index.

上記実施例については、軟体動物について説明してあるが、ニコチンアミドアデニンジヌクレオチド酸及びトリプトファンを含有する魚介類全般に適用できることは言うまでもない。
さらに、ニコチンアミドアデニンジヌクレオチド酸の蛍光測定のみの場合は、試料によってばらつきが大きくなる傾向があるが、トリプトファンの蛍光強度で規格化することにより、ばらつきを小さくでき、評価精度を向上させることができる。本願発明は、これらを包含するものである。
Although the above examples have been described for molluscs, it goes without saying that it can be applied to all seafood containing nicotinamide adenine dinucleotide acid and tryptophan.
Furthermore, in the case of only the fluorescence measurement of nicotinamide adenine dinucleotide acid, the variation tends to increase depending on the sample. By normalizing with the fluorescence intensity of tryptophan, the variation can be reduced and the evaluation accuracy can be improved. it can. The present invention includes these.

本発明の鮮度評価方法は、光学系の評価指標によって蛍光測定精度を高めることができ、生鮮魚介類を前処理なしに非破壊で迅速に鮮度評価でき、魚介類の流通現場でも使用することが可能であるという優れた効果を有するので、生鮮魚介類鮮度評価法として有用である   The freshness evaluation method of the present invention can increase the fluorescence measurement accuracy by the evaluation index of the optical system, can perform freshness assessment of fresh fish and shellfish quickly and non-destructively without pretreatment, and can be used even in the distribution site of fish and shellfish. Because it has an excellent effect that it is possible, it is useful as a freshness assessment method for fresh seafood

Claims (5)

生鮮魚介類に含まれる補酵素の一種であるニコチンアミドアデニンジヌクレオチド酸の蛍光の強度測定により、魚介類の生細胞の鮮度を非破壊で、前処理なしに生鮮魚介類の鮮度を評価することを特徴とする魚介類の鮮度評価方法。   To evaluate the freshness of fresh fish and shellfish without pre-treatment by measuring the fluorescence intensity of nicotinamide adenine dinucleotide acid, a kind of coenzyme contained in fresh fish and shellfish, without destroying the freshness of live cells of fish and shellfish A method for evaluating the freshness of seafood characterized by 生鮮魚介類に含まれる補酵素とアミノ酸の自家蛍光を同時に測定し、それらの蛍光の強度比から、生鮮魚介類の鮮度を評価することを特徴とする魚介類の鮮度評価方法。   A method for assessing freshness of seafood, characterized by simultaneously measuring autofluorescence of coenzymes and amino acids contained in fresh seafood and evaluating the freshness of fresh seafood from the intensity ratio of the fluorescence. 補酵素として、ニコチンアミドアデニンジヌクレオチド酸を用いて測定することを特徴とする請求項2記載の魚介類の鮮度評価方法。   The method for evaluating freshness of fish and shellfish according to claim 2, wherein measurement is performed using nicotinamide adenine dinucleotide acid as a coenzyme. 誤差を小さくするため光学系の評価指標として、生物組織に含まれるアミノ酸の一種であるトリプトファンの自家蛍光を測定することを特徴とする請求項2又は3記載の魚介類の鮮度評価方法。   4. The method for evaluating freshness of fish and shellfish according to claim 2, wherein autofluorescence of tryptophan, which is a kind of amino acid contained in a biological tissue, is measured as an optical system evaluation index in order to reduce errors. 励起光源、試料ホルダー、蛍光検出器、生鮮魚介類に含まれる補酵素の蛍光とアミノ酸の自家蛍光を同時に測定する装置及びこれらの蛍光の強度比を測定する装置、光学系の評価に基づき誤差補正を行う装置を備えていることを特徴とする魚介類の鮮度測定装置。   Error correction based on evaluation of excitation light source, sample holder, fluorescence detector, coenzyme fluorescence and amino acid autofluorescence contained in fresh fish and shellfish, an intensity ratio of these fluorescences, and optical system A device for measuring the freshness of fish and shellfish, characterized in that it comprises a device for performing the processing.
JP2013014945A 2012-03-08 2013-01-30 Method for evaluating freshness degree of seafood Pending JP2013213810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013014945A JP2013213810A (en) 2012-03-08 2013-01-30 Method for evaluating freshness degree of seafood

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012051164 2012-03-08
JP2012051164 2012-03-08
JP2013014945A JP2013213810A (en) 2012-03-08 2013-01-30 Method for evaluating freshness degree of seafood

Publications (1)

Publication Number Publication Date
JP2013213810A true JP2013213810A (en) 2013-10-17

Family

ID=49587216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013014945A Pending JP2013213810A (en) 2012-03-08 2013-01-30 Method for evaluating freshness degree of seafood

Country Status (1)

Country Link
JP (1) JP2013213810A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734415B1 (en) 2015-06-30 2017-05-24 동국대학교 산학협력단 Composition for measuring freshness
JP2017090156A (en) * 2015-11-06 2017-05-25 浜松ホトニクス株式会社 Method and device for determining life and death of mold
CN110440969A (en) * 2019-08-08 2019-11-12 大连海洋大学 A kind of Patinopecten yessoensis vigor fast appraisement method
CN112285237A (en) * 2020-10-23 2021-01-29 上海海洋大学 Squid freshness evaluation method based on biogenic amine content
WO2021177433A1 (en) 2020-03-05 2021-09-10 国立大学法人北海道大学 Food animal freshness/degree of maturation evaluating device, and freshness/degree of maturation evaluating method
CN115876740A (en) * 2023-03-03 2023-03-31 中国农业科学院农产品加工研究所 Fluorescence hyperspectral detection method for freshness of fresh meat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265408A (en) * 1993-03-12 1994-09-22 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Method for making spectral diffraction of image and its device
JP2007525261A (en) * 2004-01-16 2007-09-06 ザ シティ カレッジ オブ ザ シティ ユニバーシティ オブ ニューヨーク A microscale compact device for in vivo medical diagnostics combining optical imaging and point fluorescence spectroscopy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265408A (en) * 1993-03-12 1994-09-22 Kajitsu Hihakai Hinshitsu Kenkyusho:Kk Method for making spectral diffraction of image and its device
JP2007525261A (en) * 2004-01-16 2007-09-06 ザ シティ カレッジ オブ ザ シティ ユニバーシティ オブ ニューヨーク A microscale compact device for in vivo medical diagnostics combining optical imaging and point fluorescence spectroscopy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
菅原智明 他: "蛍光分光分析による生鮮ホタテ貝貝柱の評価", 平成23年電気学会基礎・材料・共通部門大会, JPN6017000243, 21 September 2011 (2011-09-21), JP, pages 1 - 4 *
菅原智明 他: "蛍光分析による生鮮イカ外套膜の評価", 平成23年電機・情報関係学会北海道支部連合大会予稿集, vol. pp.139, JPN6017000245, 22 October 2011 (2011-10-22), JP *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734415B1 (en) 2015-06-30 2017-05-24 동국대학교 산학협력단 Composition for measuring freshness
JP2017090156A (en) * 2015-11-06 2017-05-25 浜松ホトニクス株式会社 Method and device for determining life and death of mold
CN110440969A (en) * 2019-08-08 2019-11-12 大连海洋大学 A kind of Patinopecten yessoensis vigor fast appraisement method
CN110440969B (en) * 2019-08-08 2023-05-23 大连海洋大学 Quick patinopecten yessoensis vitality evaluation method
WO2021177433A1 (en) 2020-03-05 2021-09-10 国立大学法人北海道大学 Food animal freshness/degree of maturation evaluating device, and freshness/degree of maturation evaluating method
KR20220150934A (en) 2020-03-05 2022-11-11 국립대학법인 홋가이도 다이가쿠 Apparatus for evaluating freshness and ripeness of food animals and method for evaluating freshness and ripeness
CN112285237A (en) * 2020-10-23 2021-01-29 上海海洋大学 Squid freshness evaluation method based on biogenic amine content
CN112285237B (en) * 2020-10-23 2023-02-17 上海海洋大学 Squid freshness evaluation method based on biogenic amine content
CN115876740A (en) * 2023-03-03 2023-03-31 中国农业科学院农产品加工研究所 Fluorescence hyperspectral detection method for freshness of fresh meat

Similar Documents

Publication Publication Date Title
JP2013213810A (en) Method for evaluating freshness degree of seafood
JP5433517B2 (en) Analysis apparatus and analysis method
US20120092663A1 (en) Transmission raman spectroscopy analysis of seed composition
US8097862B2 (en) Fluorescence detecting method and fluorescence detecting apparatus
BR112015023894B1 (en) system and method for determining sample properties
Okotrub et al. Raman spectroscopy for DNA quantification in cell nucleus
Chen et al. Spectral discrimination between normal and leukemic human sera using delayed luminescence
Day et al. A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy
Shirai et al. Detection of fluorescence signals from ATP in the second derivative excitation–emission matrix of a pork meat surface for cleanliness evaluation
JP5885168B2 (en) Method and apparatus for analyzing soil geological traits
Aschner et al. Imaging metals in Caenorhabditis elegans
Yin et al. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids
Guo et al. Bloodstain age analysis: toward solid state fluorescent lifetime measurements
McLamore et al. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities
Boateng et al. Development of a rapid polarized total synchronous fluorescence spectroscopy (pTSFS) method for protein quantification in a model bioreactor broth
Beattie et al. Raman spectroscopy for the detection of AGEs/ALEs
Pleitez et al. Mid-infrared optoacoustic microscopy with label-free chemical contrast in living cells and tissues
JP4891363B2 (en) Fluorescence detection method and fluorescence detection apparatus
Ortiz Ortega et al. Characterization Techniques for Chemical and Structural Analyses
Mantena et al. Diffuse Reflectance Illumination Module Improvements in Near-Infrared Spectrometer for Heterogeneous Sample Analysis
Sowoidnich et al. Shifted Excitation Raman Difference Spectroscopy Combined with Wide Area Illumination and Sample Rotation for Wood Species Classification
Liu et al. Equipment-free determination of ascorbic acid based on the UV-induced oxidation of 3, 3′, 5, 5′-tetramethylbenzidine in a paper-based analysis device
Keil et al. MultiSense: a multimodal sensor tool enabling the high-throughput analysis of respiration
Schalike et al. A review of spectroscopic methods applied to bloodstain pattern analysis
JP7314456B2 (en) milk inspection equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170725