JP2013213708A - High frequency magnetic field detecting device - Google Patents

High frequency magnetic field detecting device Download PDF

Info

Publication number
JP2013213708A
JP2013213708A JP2012083425A JP2012083425A JP2013213708A JP 2013213708 A JP2013213708 A JP 2013213708A JP 2012083425 A JP2012083425 A JP 2012083425A JP 2012083425 A JP2012083425 A JP 2012083425A JP 2013213708 A JP2013213708 A JP 2013213708A
Authority
JP
Japan
Prior art keywords
magnetic field
frequency
probe
measurement object
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012083425A
Other languages
Japanese (ja)
Other versions
JP5958895B2 (en
Inventor
Yasushi Endo
遠藤  恭
Masahiro Yamaguchi
正洋 山口
Hiroshi Shimada
島田  寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2012083425A priority Critical patent/JP5958895B2/en
Publication of JP2013213708A publication Critical patent/JP2013213708A/en
Application granted granted Critical
Publication of JP5958895B2 publication Critical patent/JP5958895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency magnetic field detecting device having submicron spatial resolution and capable of measurement to the high frequency region.SOLUTION: A high frequency magnetic field detecting device 1 includes: a magnetic force microscope 2; a first high frequency oscillator 3 which applies a first high frequency signal 3A to an object to be measured 4 of the magnetic force microscope 2; a coil for beat generation 5 which is installed close to the object to be measured 4; and a second high frequency oscillator 6 which applies a second high frequency signal 6A whose frequency is different from that of the first high frequency signal 3A to the coil 5. Detection of a high frequency magnetic field by the magnetic force microscope 2 can be carried out with high sensitivity by applying the first high frequency signal 3A, the second high frequency signal 6A and a beat signal which is a difference frequency between the first and the second high frequency signal to the object to be measured 4 and by making the value of the frequency of the beat signal the same as the value of the resonance frequency of a probe 24 of the magnetic force microscope 2.

Description

本発明は、空間分解能がサブミクロン以下の高周波磁界検出装置に関し、さらに詳しくは、高周波信号を印加した測定対象物が発生する高周波磁界の高周波磁界検出装置に関する。   The present invention relates to a high-frequency magnetic field detection apparatus having a spatial resolution of submicron or less, and more particularly to a high-frequency magnetic field detection apparatus for a high-frequency magnetic field generated by a measurement object to which a high-frequency signal is applied.

情報化社会の発展と共にコンピュータ及び情報通信に用いられる大規模集積回路は、絶え間ない微細化と高速化が進んでおり、IC内部での電磁干渉による誤動作など性能が劣化する問題が深刻となっている。また携帯電話器の高周波集積回路(Radio Frequency Integrated Circuit:RFIC)においてもチップの小型化・高周波化による電磁干渉による性能劣化の問題が顕在化している。これらの問題を解決するには、回路上における高周波電磁ノイズの発生源、混入先、伝搬経路を明確にする必要がある。そのためには測定対象の高周波電磁界の2次元分布を十分な空間分解能で取得する必要があるが、高周波集積回路の一層の微細化により、今やサブミクロン以下の空間分解能が求められている。   Large-scale integrated circuits used in computers and information communications are constantly being miniaturized and increased in speed with the development of the information society, and problems such as malfunction due to electromagnetic interference inside the IC become serious. Yes. In addition, in a radio frequency integrated circuit (RFIC) of a cellular phone, a problem of performance deterioration due to electromagnetic interference due to downsizing and high frequency of the chip has become apparent. In order to solve these problems, it is necessary to clarify the generation source, mixing destination, and propagation path of high-frequency electromagnetic noise on the circuit. For this purpose, it is necessary to obtain a two-dimensional distribution of the high-frequency electromagnetic field to be measured with sufficient spatial resolution. However, with further miniaturization of the high-frequency integrated circuit, a spatial resolution of sub-micron or less is now required.

既存の高周波磁界ノイズ測定法は、コイル型磁気プローブ(空間分解能10μm、周波数帯域:7GHz)(非特許文献1参照)や、磁気光学プローブ(空間分解能10μm、周波数帯域:2.5GHz)(非特許文献2参照)が知られているが、現在求められる集積回路の空間分解能に対してはいずれも不十分であり、新たな方法の開発が求められている。   Existing high-frequency magnetic field noise measurement methods include a coiled magnetic probe (spatial resolution 10 μm, frequency band: 7 GHz) (see Non-Patent Document 1) and a magneto-optical probe (spatial resolution 10 μm, frequency band: 2.5 GHz) (non-patent). However, none of the currently required spatial resolution of integrated circuits is sufficient, and the development of new methods is required.

また、磁気力顕微鏡を用いて、高分解能2次元磁場測定を行なう手法が開発されている(特許文献1参照)。しかしながら、この方法は高密度磁気記録媒体の記録情報を見ることに主眼が置かれており、高周波帯域で発生する電磁界の測定は行われていない。   In addition, a technique for performing high-resolution two-dimensional magnetic field measurement using a magnetic force microscope has been developed (see Patent Document 1). However, this method focuses on viewing recorded information on a high-density magnetic recording medium, and does not measure an electromagnetic field generated in a high frequency band.

これに対して、発明者らは磁気力顕微鏡(MFM)を用いて、高周波を印加したコプレーナウェーブガイド(CPW)から発生する近傍電磁界を測定することに成功し、様々な改良を加えてきた(非特許文献3〜5参照)。
しかしながら、これらの方法ではCPWから発生する近傍電磁界を十分な空間分解能で測定することは出来たが、望まれる高周波帯域までは測定できず、高周波電磁界測定法としては未だ十分とは言えない。
In contrast, the inventors have succeeded in measuring a near electromagnetic field generated from a coplanar waveguide (CPW) to which a high frequency is applied using a magnetic force microscope (MFM), and have made various improvements. (Refer nonpatent literature 3-5.).
However, although these methods can measure the near electromagnetic field generated from the CPW with sufficient spatial resolution, it cannot measure the desired high frequency band, and is still not sufficient as a high frequency electromagnetic field measurement method. .

特開2009−069133号公報JP 2009-069133 A

N. Ando 他、J. Magn., Soc. Jpn., 30,429, (2006)N. Ando et al., J. Magn., Soc. Jpn., 30,429, (2006) N. Adachi他、IEEE Trans. Mang. 46,6,1986(2010)N. Adachi et al., IEEE Trans. Mang. 46, 6, 1986 (2010) 遠藤恭 他、マグネティクス研究会、MAG-10-207 (2010)Jun Endo et al., Magnetics Study Group, MAG-10-207 (2010) 遠藤恭 他、J. Appl., Phy., 109, 07D326(2011)Endo, et al., J. Appl., Phy., 109, 07D326 (2011) 遠藤恭 他、Proceedings ECC 2011, 203-206 (2011)Yu Endo et al., Proceedings ECC 2011, 203-206 (2011)

電子機器の発展に伴うICチップなどの小型化や動作周波数の高速化に伴う、IC内部の電磁干渉問題を解決するため、ICチップ上の高周波近傍磁界を非接触で測定する方法の開発が望まれる。しかしながら、背景技術で記載したように、空間分解能と、高周波特性を同時に満たした先行技術はこれまで存在しない。磁気力顕微鏡に、適切な装置を追加することで、空間分解能と、高周波特性に対する要求を同時に満たす技術が望まれる。   In order to solve the problem of electromagnetic interference inside the IC due to the miniaturization of IC chips and the increase in operating frequency associated with the development of electronic devices, it is desirable to develop a method for non-contact measurement of high-frequency magnetic fields on IC chips. It is. However, as described in the background art, there is no prior art that satisfies both spatial resolution and high-frequency characteristics at the same time. A technique that simultaneously satisfies the requirements for spatial resolution and high-frequency characteristics is desired by adding an appropriate device to the magnetic force microscope.

本発明は、上記課題に鑑み、サブミクロンの空間分解能を持ち、ギガヘルツ帯域の高周波近傍磁界の測定装置を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide an apparatus for measuring a high frequency magnetic field in the gigahertz band having a submicron spatial resolution.

上記目的を達成するため、本発明の高周波磁界検出装置は、磁気力顕微鏡と、磁気力顕微鏡の測定対象物に第1の高周波信号を印加する手段と、測定対象物に近接して設置されたコイルと、コイルに第1の高周波数信号と周波数の異なる第2の高周波信号を印加する手段と、を有し、測定対象物に、第1の高周波信号と第2の高周波数信号と、第1及び第2の高周波信号の差周波数であるビート信号が印加されることを特徴とする。   In order to achieve the above object, a high-frequency magnetic field detection apparatus of the present invention is installed in the vicinity of a magnetic force microscope, means for applying a first high-frequency signal to the measurement object of the magnetic force microscope, and the measurement object. A coil, and means for applying a second high-frequency signal having a frequency different from that of the first high-frequency signal to the coil. The measurement object includes a first high-frequency signal, a second high-frequency signal, A beat signal that is a difference frequency between the first and second high-frequency signals is applied.

上記構成において、磁気力顕微鏡は、好ましくは、測定対象物を載せるステージと、該測定対象物が発生する電界または磁界もしくはその双方による力を受けて、位置が変化する磁気力顕微鏡の探針と、探針の位置変化を検出する検出部と、探針を測定対象物に所定の間隔を保って走査するための位置制御部と、探針と測定対象物との相対位置及び探針が電界または磁界もしくはその双方による力を受けて変位する変位量を関係付け、探針の位置変位量の一次元もしくは二次元の走査情報を得る手段と、を有する。   In the above configuration, the magnetic force microscope preferably includes a stage on which the measurement object is placed, and a probe of the magnetic force microscope whose position is changed by receiving an electric field and / or a magnetic field generated by the measurement object. A detection unit for detecting a change in the position of the probe, a position control unit for scanning the probe over the measurement object at a predetermined interval, a relative position between the probe and the measurement object, and an electric field between the probe and the measurement object. Or a means for obtaining a one-dimensional or two-dimensional scanning information of a positional displacement amount of the probe by associating a displacement amount displaced by receiving a force from a magnetic field or both.

本発明の高周波磁界検出装置によれば、通常の磁気力顕微鏡(MFM)の測定対象物である電子回路等に、所定の周波数を有する高周波電流を印加し、一定の強度及び周波数を持つ高周波磁界を発生させる。また電子回路などの測定対象物上の所定の高さにコイルを設置し、搬送波周波数とわずかに異なる周波数の高周波電流をコイルに印加し、一定の強度及び周波数を持つ高周波磁界を発生させる。測定対象物が発生する高周波磁界と、コイルが発生する高周波磁界とは、周波数が僅かにずれるため、両者を重畳すると二つの高周波磁界の成分を含んだ磁界のビート(うなり)信号が現れる。このビート信号の周波数とチップ表面に磁性コートを行った磁気力顕微鏡用探針の共振周波数を同じ値に近づけることで、磁気力顕微鏡による高周波磁界の検出をより高い感度で行うことが可能である。   According to the high frequency magnetic field detection apparatus of the present invention, a high frequency current having a predetermined frequency is applied to an electronic circuit or the like which is a measurement object of a normal magnetic force microscope (MFM), and a high frequency magnetic field having a certain intensity and frequency is applied. Is generated. A coil is installed at a predetermined height on an object to be measured such as an electronic circuit, and a high-frequency current having a frequency slightly different from the carrier frequency is applied to the coil to generate a high-frequency magnetic field having a certain intensity and frequency. Since the frequency of the high-frequency magnetic field generated by the measurement object and the high-frequency magnetic field generated by the coil are slightly different from each other, a beat signal of a magnetic field including two high-frequency magnetic field components appears when both are superimposed. By making the frequency of the beat signal and the resonance frequency of the magnetic force microscope probe with the magnetic coating on the chip surface close to the same value, it is possible to detect a high frequency magnetic field with a magnetic force microscope with higher sensitivity. .

上記構成において、好ましくは、測定対象物と前記探針の双方に、直流磁場を印加する手段を有している。
上記構成によれば、永久磁石または直流電流を流した電磁石により磁気力顕微鏡用探針に直流磁場を印加した場合と、直流磁場を印加しない場合の情報を演算処理することで、測定した電磁界分布から、電界分布と磁界分布とを分離できる。
In the above configuration, preferably, a means for applying a DC magnetic field is provided to both the measurement object and the probe.
According to the above configuration, the measured electromagnetic field is calculated by processing the information when the DC magnetic field is applied to the magnetic force microscope probe by the permanent magnet or the electromagnet that flows a DC current and when the DC magnetic field is not applied. From the distribution, the electric field distribution and the magnetic field distribution can be separated.

上記構成において、測定対象物は、好ましくは、トランジスタ、ダイオードなどの能動素子、コンデンサやインダクタ、配線などの受動素子、電源回路、電子回路、集積回路、LSIチップ、VLSIチップあるいはこれらの組み合わせからなり、高周波を印加することで高周波電磁界を誘起する測定物である。
探針の表面は、軟質磁性体薄膜、硬質磁性体薄膜及び軟質磁性体薄膜、硬質磁性体薄膜、の何れかで被覆されている。磁気力顕微鏡用探針にコートする磁性体薄膜は、好ましくは、Fe−Co、Ni−Fe、Ni−Co、Co−Zr−Nb、フェライト及びCo−Cr−Ptの何れかである。
さらに、探針と測定対象物との双方に磁界を印加する手段としては、電磁石により交番磁界を印加するものが好ましい。
ビート信号の周波数は、好ましくは、探針の機械的共振周波数である。
In the above configuration, the object to be measured is preferably an active element such as a transistor or a diode, a passive element such as a capacitor, an inductor, or a wiring, a power supply circuit, an electronic circuit, an integrated circuit, an LSI chip, a VLSI chip, or a combination thereof. It is a measurement object that induces a high frequency electromagnetic field by applying a high frequency.
The surface of the probe is covered with one of a soft magnetic thin film, a hard magnetic thin film, a soft magnetic thin film, and a hard magnetic thin film. The magnetic thin film coated on the magnetic force microscope probe is preferably one of Fe—Co, Ni—Fe, Ni—Co, Co—Zr—Nb, ferrite, and Co—Cr—Pt.
Further, as a means for applying a magnetic field to both the probe and the measurement object, one that applies an alternating magnetic field with an electromagnet is preferable.
The frequency of the beat signal is preferably the mechanical resonance frequency of the probe.

本発明の高周波磁界検出装置によれば、携帯電話器の高周波集積回路(RFIC)などの微小電子回路に、高周波を印加した場合に発生する高周波電磁界を、サブミクロン・レベルの空間分解能で、測定対象物に接触することなく測定することが可能となる。本発明の装置構成を既存の磁気力顕微鏡に追加することで、電子回路上で発生する電磁界の2次元マップを簡単に得ることができ、回路設計に有用な情報を与えることができる。さらに、磁界成分のみを分離して2次元マップとすることができる。これにより高周波集積回路において、電磁ノイズの発生源、混入先、伝搬経路などを明確化でき、電磁干渉問題の解決に繋げることができる。   According to the high-frequency magnetic field detection device of the present invention, a high-frequency electromagnetic field generated when a high frequency is applied to a microelectronic circuit such as a high-frequency integrated circuit (RFIC) of a cellular phone is obtained with a spatial resolution of submicron level. Measurement can be performed without contacting the measurement object. By adding the apparatus configuration of the present invention to an existing magnetic force microscope, it is possible to easily obtain a two-dimensional map of an electromagnetic field generated on an electronic circuit, and to provide information useful for circuit design. Furthermore, only a magnetic field component can be separated into a two-dimensional map. As a result, in the high-frequency integrated circuit, the generation source, mixing destination, propagation path, and the like of electromagnetic noise can be clarified, and the problem of electromagnetic interference can be solved.

本発明の高周波磁界検出装置を示すブロック図である。It is a block diagram which shows the high frequency magnetic field detection apparatus of this invention. 本発明の高周波磁界検出装置における測定対象物が発する磁界とビート発生用コイルが発する磁界と、それらを合成した磁界のZ軸成分を示す図である。It is a figure which shows the Z-axis component of the magnetic field which the magnetic field which the measuring object in the high frequency magnetic field detection apparatus of this invention emits, the magnetic field which the coil for beat generation emits, and synthesize | combined them. 測定対象物の発生する磁界と、ビート発生用コイルが発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例1を示す図であり、(A)はビート発生用コイルが磁気力顕微鏡の探針の真上にある場合(180°)、(B)は両者の位置がずれている場合(135°)を示す。It is the figure which shows the calculation example 1 of the time change of the magnetic field which assumed the intensity | strength of the magnetic field which a measurement object generate | occur | produces, and the magnetic field which a coil for beat generation generate | occur | produces each, and synthesize | combined both, (A) is a beat generation | occurrence | production. When the coil for use is directly above the probe of the magnetic force microscope (180 °), (B) shows the case where the positions of both are shifted (135 °). 測定対象物の発生する磁界と、ビート発生用コイルが発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例2を示す図であり、(A)はビート発生用コイルが探針の真上にある場合(180°)、(B)は両者の位置がずれている場合(135°)を示す。It is the figure which shows the calculation example 2 of the time change of the magnetic field which assumed the intensity | strength of the magnetic field which a measurement object generate | occur | produces, and the magnetic field which a coil for beat generation generate | occur | produces each, and synthesize | combined both, (A) is a beat generation | occurrence | production. When the coil for use is directly above the probe (180 °), (B) shows the case where the positions of both are shifted (135 °). 測定対象物の発生する磁界と、ビート発生用コイルが発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例3を示す図であり、(A)はビート発生用コイルが探針の真上にある場合(180°)、(B)は両者の位置がずれている場合(135°)を示す。It is a figure which shows the calculation example 3 of the time change of the magnetic field which assumed the intensity | strength of the magnetic field which a measurement target object and the magnetic field which a coil for beat generation generate | occur | produce respectively numerically, and synthesize | combined both, (A) is a beat generation | occurrence | production. When the coil for use is directly above the probe (180 °), (B) shows the case where the positions of both are shifted (135 °). 測定対象物の発生する磁界と、ビート発生用コイルが発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例4を示す図であり、(A)はビート発生用コイルが探針の真上にある場合(180°)、(B)は両者の位置がずれている場合(135°)を示す。It is a figure which shows the calculation example 4 of the time change of the magnetic field which assumed the intensity | strength of the magnetic field which a measurement object generate | occur | produces, and the magnetic field which a coil for beat generation generate | occur | produces each, and synthesize | combined both, (A) is a beat generation | occurrence | production. When the coil for use is directly above the probe (180 °), (B) shows the case where the positions of both are shifted (135 °). 本発明の高周波磁界検出装置において、測定対象物に高周波信号を印加した際に発生する磁界の代わりに、ダミーコイルに高周波信号を印加して高周波磁界を発生し、ビート発生用コイルが発生する磁界と合わせてビート信号を発生させ、本発明の動作確認を行うための高周波磁界検出装置の変形例のブロック図である。In the high-frequency magnetic field detection apparatus of the present invention, a magnetic field generated by a beat generating coil by generating a high-frequency magnetic field by applying a high-frequency signal to a dummy coil instead of a magnetic field generated when a high-frequency signal is applied to an object to be measured. It is a block diagram of the modification of the high frequency magnetic field detection apparatus for producing | generating a beat signal and confirming the operation | movement confirmation of this invention together. 実施例1の磁気力顕微鏡用の探針の変位量を示す図である。It is a figure which shows the displacement amount of the probe for magnetic force microscopes of Example 1. FIG. 実施例2の磁気力顕微鏡用の探針のビート信号の磁界による振動強度の周波数依存性である。It is the frequency dependence of the vibration intensity by the magnetic field of the beat signal of the probe for the magnetic force microscope of Example 2. 比較例の磁気力顕微鏡用の探針の変位量を示す図である。It is a figure which shows the displacement amount of the probe for magnetic force microscopes of a comparative example.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の高周波磁界検出装置1を示すブロック図である。図1に示すように、本発明の高周波磁界検出装置1は、磁気力顕微鏡2と、磁気力顕微鏡2の測定対象物4に第1の高周波信号3Aを印加する第1の高周波発振器3と、測定対象物4に近接して設置されたコイル5と、コイル5に上記第1の高周波数信号3Aとは周波数の異なる第2の高周波信号6Aを印加する第2の高周波発振器6と、から構成されている。第1の高周波信号3Aと第2の高周波数信号6Aとのビート信号による電界または磁界もしくは電界と磁界の両方が測定対象物4に印加される。コイル5は、ビート発生用コイルとも呼ぶ。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a high-frequency magnetic field detection apparatus 1 according to the present invention. As shown in FIG. 1, the high-frequency magnetic field detection device 1 of the present invention includes a magnetic force microscope 2, a first high-frequency oscillator 3 that applies a first high-frequency signal 3 </ b> A to a measurement object 4 of the magnetic force microscope 2, The coil 5 is disposed in the vicinity of the measurement object 4, and the second high-frequency oscillator 6 that applies a second high-frequency signal 6 A having a frequency different from that of the first high-frequency signal 3 A to the coil 5. Has been. An electric field or a magnetic field or both an electric field and a magnetic field based on a beat signal of the first high-frequency signal 3A and the second high-frequency signal 6A are applied to the measurement object 4. The coil 5 is also called a beat generating coil.

磁気力顕微鏡2は、測定対象物4を載せるステージ22と、測定対象物4が発生する電界または磁界もしくはその双方による力を受けて、位置が変化する磁気力顕微鏡2用の探針24と、探針24を保持するカンチレバー25と、探針24の位置変化を検出する検出部30と、探針24を、測定対象物4表面に所定の間隔を保って走査するための位置制御部26と、探針24と測定対象物4との相対位置と、探針24が電界または磁界もしくはその双方による力を受けて変位する変位量とを関係付け、探針24の位置変位量の一次元もしくは二次元の走査情報を得る手段35とから構成されている。検出部30は、光位置検出器29と、検出回路31と、ロックインアンプ33とから構成されている。一次元もしくは二次元の走査情報を得る手段は、後述する制御用コンピュータ35で構成される。   The magnetic force microscope 2 includes a stage 22 on which the measurement object 4 is mounted, a probe 24 for the magnetic force microscope 2 that changes its position under the force of an electric field and / or a magnetic field generated by the measurement object 4, A cantilever 25 that holds the probe 24, a detection unit 30 that detects a change in the position of the probe 24, and a position control unit 26 that scans the probe 24 on the surface of the measurement object 4 at a predetermined interval. The relationship between the relative position of the probe 24 and the measurement object 4 and the amount of displacement by which the probe 24 is displaced by receiving the force of the electric field and / or magnetic field, And means 35 for obtaining two-dimensional scanning information. The detection unit 30 includes an optical position detector 29, a detection circuit 31, and a lock-in amplifier 33. Means for obtaining one-dimensional or two-dimensional scanning information is constituted by a control computer 35 described later.

測定対象物4は、例えば高周波帯で用いられる電子回路からなる。磁性コートを施した探針24は測定対象物4の表面に近接して設置され、カンチレバー25の図示しない動作制御部によって、測定対象4の表面上を所定の間隔を取りながら2次元的に走査する。磁気力顕微鏡2では、探針24を支えるカンチレバー25に、レーザ装置27から発するレーザ光27Aを照射し、カンチレバー25からのレーザ反射光28を光位置検出器29で読み取り、光てこ信号29Aとして検出回路31で処理し、信号32としてロックインアンプ33に送る。この方法は、磁気力顕微鏡2では光てこ法として知られており、高感度にカンチレバー25の振動を読み取ることができる。
ここで、「光てこ法」とは、磁気力顕微鏡用の探針24の動きを検出する方法として一般に用いられる手法である。「光てこ法」では、探針24が磁気力で動く変位を、磁気力顕微鏡用の探針24に照射したレーザ光27の探針24による反射光のビーム位置変化として測定する。
The measuring object 4 is composed of an electronic circuit used in a high frequency band, for example. The probe 24 provided with a magnetic coat is placed close to the surface of the measurement object 4 and is scanned two-dimensionally over the surface of the measurement object 4 at a predetermined interval by an operation control unit (not shown) of the cantilever 25. To do. In the magnetic force microscope 2, the cantilever 25 supporting the probe 24 is irradiated with laser light 27A emitted from the laser device 27, and the laser reflected light 28 from the cantilever 25 is read by the optical position detector 29 and detected as an optical lever signal 29A. The signal is processed by the circuit 31 and sent to the lock-in amplifier 33 as a signal 32. This method is known as an optical lever method in the magnetic force microscope 2 and can read the vibration of the cantilever 25 with high sensitivity.
Here, the “optical lever method” is a method generally used as a method for detecting the movement of the probe 24 for a magnetic force microscope. In the “optical lever method”, the displacement by which the probe 24 is moved by a magnetic force is measured as a change in the beam position of reflected light by the probe 24 of the laser beam 27 irradiated to the probe 24 for a magnetic force microscope.

カンチレバー25の振動を検出する方法は光てこ法に限らない。カンチレバー25の振動を検出する他の方法を以下に示す。
(1)カンチレバー25にピエゾ抵抗素子を並列に接続し、カンチレバー25の振動に伴うピエゾ素子の抵抗値の変化で検出する方法。
(2)カンチレバー25に近接して電極を設け、この電極とカンチレバー25との間に生じる静電容量を利用する方法。これは、カンチレバー25の振動を静電容量の変化で測定することができる。
(3)ファブリーペロー干渉計を利用する方法。
The method for detecting the vibration of the cantilever 25 is not limited to the optical lever method. Another method for detecting the vibration of the cantilever 25 will be described below.
(1) A method in which a piezoresistive element is connected in parallel to the cantilever 25 and detection is performed by a change in the resistance value of the piezo element accompanying the vibration of the cantilever 25.
(2) A method in which an electrode is provided in the vicinity of the cantilever 25 and electrostatic capacity generated between the electrode and the cantilever 25 is used. This can measure the vibration of the cantilever 25 by a change in capacitance.
(3) A method using a Fabry-Perot interferometer.

測定対象物4は、ピエゾ素子駆動型ステージ22に載せられており、位置制御部26としてのステージコントローラで精密に位置制御がなされる。磁気力顕微鏡用の探針24と測定対象物4との位置関係は位置情報26Aとして制御用コンピュータ35で対応づけられ、電磁界場による磁気力顕微鏡用の探針24の振動変化の2次元マップが得られる。   The measurement object 4 is placed on the piezo element driving stage 22 and is precisely controlled by a stage controller as the position controller 26. The positional relationship between the magnetic force microscope probe 24 and the measurement object 4 is correlated as position information 26A by the control computer 35, and a two-dimensional map of the vibration change of the magnetic force microscope probe 24 due to the electromagnetic field. Is obtained.

(ビート信号の検出)
次に、ビート信号の検出について説明する。
測定対象物4には、第1の高周波発振器3から出力した高周波信号3Aを印加し、ビート発生用コイル5には、第2の高周波発振器6から出力した高周波信号6Aを印加する。ここで、第1の高周波発振器3から出力する第1の高周波信号3Aの周波数と、第2の高周波発振器6から出力する第2の高周波信号6Aの周波数とを、僅かにずらせることで、二つの高周波信号3A、6Aの重畳によるビート信号を発生するように選択する。
(Beat signal detection)
Next, detection of the beat signal will be described.
A high frequency signal 3A output from the first high frequency oscillator 3 is applied to the measurement object 4, and a high frequency signal 6A output from the second high frequency oscillator 6 is applied to the beat generating coil 5. Here, by slightly shifting the frequency of the first high-frequency signal 3A output from the first high-frequency oscillator 3 and the frequency of the second high-frequency signal 6A output from the second high-frequency oscillator 6, Selection is made so as to generate a beat signal by superimposing the two high-frequency signals 3A and 6A.

第1の高周波発振器3の高周波信号3Aと、第2の高周波発振器6の高周波信号6Aとを、周波数ミキサー41で混合することで、ビート信号、つまり差周波の参照信号23を発生させる。これをロックインアンプ33に導き、光てこ信号29Aと同期させ高感度の検出を行うことができる。   The high frequency signal 3A of the first high frequency oscillator 3 and the high frequency signal 6A of the second high frequency oscillator 6 are mixed by a frequency mixer 41, thereby generating a beat signal, that is, a reference signal 23 of a difference frequency. This can be guided to the lock-in amplifier 33 and synchronized with the optical lever signal 29A for highly sensitive detection.

測定対象物4は、高周波で動作するトランジスタ、ダイオードなどの電気素子や半導体レーザなど能動素子、コンデンサ、インダクタ、配線などの受動素子、電源回路、集積回路や、これらの組み合わせなど、高周波で動作させるときに、高周波電磁界を発生するものすべてが対象となるが、ここでは一例として、コプレーナウェーブガイド(Coplanar Waveguide、以下CPWと呼ぶ。)を用いた。ストリップ回路、マイクロストリップ回路などマイクロ波で動作させるものであれば、CPWに限らないことは言うまでも無い。   The measurement object 4 is operated at a high frequency such as an electric element such as a transistor or a diode that operates at a high frequency, an active element such as a semiconductor laser, a passive element such as a capacitor, an inductor, or a wiring, a power supply circuit, an integrated circuit, or a combination thereof. In some cases, all of those that generate a high-frequency electromagnetic field are targeted, but here, as an example, a coplanar waveguide (hereinafter referred to as CPW) was used. Needless to say, the circuit is not limited to CPW as long as it is operated by a microwave, such as a strip circuit or a microstrip circuit.

着磁用コイル46は、直流磁界発生用電源47から直流の供給を受け、直流磁界を発生し、磁気力顕微鏡の探針24の表面にコートしてある磁性材料を着磁するために使用する。着磁用コイル46は、直流磁界発生用電源47から直流の供給を受け直流磁界を印加した状態もしくは直流磁界を発生しない状態とで、測定対象物4が高周波入力により発生する高周波電磁界を光てこ法等で検出して、高周波電界と高周波磁界を分離することができる。直流磁界が無い状態で測定した場合、磁気力顕微鏡の探針24は高周波電界と高周波磁界の両方の力を受けるが、直流磁界を印加した場合は、高周波電界のみの寄与分を測定できる。
従って、前者の直流磁界が無い状態の信号から、後者の直流磁界を印加した状態の信号を減算処理することで、高周波磁界のみの寄与分を測定できる。
The magnetizing coil 46 is supplied with a direct current from a direct-current magnetic field generating power supply 47, generates a direct-current magnetic field, and is used to magnetize a magnetic material coated on the surface of the probe 24 of the magnetic force microscope. . The magnetizing coil 46 emits a high-frequency electromagnetic field generated by a high-frequency input by the measurement object 4 in a state where a DC magnetic field is applied from a DC magnetic field generating power supply 47 or a DC magnetic field is not generated. The high frequency electric field and the high frequency magnetic field can be separated by detecting with a lever method or the like. When the measurement is performed without a DC magnetic field, the probe 24 of the magnetic force microscope receives both the high-frequency electric field and the high-frequency magnetic field, but when a DC magnetic field is applied, the contribution of only the high-frequency electric field can be measured.
Therefore, the contribution of only the high-frequency magnetic field can be measured by subtracting the signal with the latter DC magnetic field applied from the former signal without the DC magnetic field.

図1において、ビート発生用コイル5は、第2の高周波発振器6と電気的に接続される場合と、交番磁界を印加する手段と、に切り換えられるように構成されている。例えば、交番磁界を印加する手段は、交流磁界発生用電源48である。ビート発生用コイル5が交流磁界発生用電源48と接続した場合は、磁気力顕微鏡の探針24の表面にコーティングしてある磁性材料の磁化を交流消磁することができる。   In FIG. 1, the beat generating coil 5 is configured to be switched between a case where it is electrically connected to the second high frequency oscillator 6 and a means for applying an alternating magnetic field. For example, the means for applying the alternating magnetic field is the AC magnetic field generating power supply 48. When the beat generating coil 5 is connected to the AC magnetic field generating power supply 48, the magnetization of the magnetic material coated on the surface of the probe 24 of the magnetic force microscope can be AC demagnetized.

さらに、ビート発生用コイル5に、切り換え方式で直流電流を供給できるようにすれば、着磁用コイル46が無い場合でも直流磁界で磁気力顕微鏡の探針24の表面にコーティングしてある磁性材料の再着磁が可能である。   Further, if a DC current can be supplied to the beat generating coil 5 by a switching method, a magnetic material coated on the surface of the probe 24 of the magnetic force microscope with a DC magnetic field even when the magnetizing coil 46 is not provided. Can be re-magnetized.

ここで、本発明の高周波磁界検出装置1で高感度に測定対象物4の高周波磁界が測定できる原理を説明する。
図2は、本発明の高周波磁界検出装置1における測定対象物4が発する磁界とビート信号発生用コイル5が発する磁界と、それらを合成した磁界のZ軸成分を示す図である。測定対象物4は、例えば微小電子回路である。
最初に主な記号の定義を述べる。
:カンチレバー25直上に装着したビート発生用コイル5から発生する高周波磁界信号
:測定対象物4から発生する高周波磁界信号
:カンチレバー25の直上に装着したビート発生用コイル5から発生する磁界ベクトル
:測定対象物4から発生する磁界のz軸成分
:カンチレバー25直上に装着したビート発生用コイル5から発生する磁界信号の周波数
:測定対象物4から発生する磁界信号の周波数
δ:ビート発生用コイル55の磁界信号と測定対象物4から発生する磁界信号の位相差
θ:Sがz軸となす角度
θ:Sがz軸となす角度
Here, the principle by which the high-frequency magnetic field of the measuring object 4 can be measured with high sensitivity by the high-frequency magnetic field detection apparatus 1 of the present invention will be described.
FIG. 2 is a diagram showing the magnetic field generated by the measurement object 4 and the magnetic field generated by the beat signal generating coil 5 and the Z-axis component of the combined magnetic field in the high-frequency magnetic field detection apparatus 1 of the present invention. The measurement object 4 is, for example, a microelectronic circuit.
First, the main symbols are defined.
S 1 : High-frequency magnetic field signal generated from the beat generating coil 5 mounted immediately above the cantilever 25 S 2 : High-frequency magnetic field signal generated from the measurement object 4 H 1 : Generated from the beat generating coil 5 mounted immediately above the cantilever 25 Magnetic field vector H 2 : z-axis component of the magnetic field generated from the measuring object 4 f 1 : frequency of the magnetic field signal generated from the beat generating coil 5 mounted immediately above the cantilever 25 f 2 : magnetic field generated from the measuring object 4 Signal frequency δ: Phase difference between magnetic field signal of beat generating coil 55 and magnetic field signal generated from measurement object 4 θ 1 : angle formed by S 1 with z axis θ 2 : angle formed by S 2 with z axis

周波数が互いに近い二つの高周波信号3A、6Aを測定対象物4に重畳したときに発生するビート信号について、以下に示す式を用いて説明する。
ビート発生用コイル5と測定対象物4から発生する高周波磁界をそれぞれSとSとして、以下の(1)式のように定義する。
A beat signal generated when two high-frequency signals 3A and 6A having frequencies close to each other are superimposed on the measurement object 4 will be described using the following formula.
The beat generating coil 5 a high-frequency magnetic field generated from the measured object 4 as S 1 and S 2, respectively, defined by the following equation (1).

式1Formula 1

それぞれのz軸成分を考えると、S1zは下記(2)で与えられる。 Considering each z-axis component, S 1z is given by (2) below.

式2Formula 2

z軸方向の合成磁界Hz は、下記(3)式で与えられる。
The composite magnetic field H z in the z-axis direction is given by the following equation (3).

式3Formula 3

式(3)に代入して、下記(4)式が得られる。ここで、角周波数ωと角周波数ωとの差であるΔωを周波数で表したf−fが、ビート信号の周波数である。 Substituting into equation (3), the following equation (4) is obtained. Here, f 1 −f 2 , which expresses Δω, which is the difference between the angular frequency ω 1 and the angular frequency ω 2 , is the frequency of the beat signal.

式4Formula 4

式5Formula 5

以下で、式(5)を用いて、種々のHとHの組み合わせについて数値計算を行い、ビート信号がどのように現れるかを検討する。条件として測定対象物4側の磁界の向きをz軸に平行とする。これはθ=0°とした場合に相当し、磁気力顕微鏡用の探針24がz軸方向に持つ自由度に対応する。Sがz軸となす角度θについては、θ=180°及び135°の場合を検討した。これはビート発生用コイル5と磁気力顕微鏡の探針24との位置関係で決まる値であり、180°はコイル5が磁気力顕微鏡の探針24の真上にある場合、135°は両者の位置がずれている場合の一例である。 In the following, numerical calculation is performed for various combinations of H 1 and H 2 using Equation (5) to examine how the beat signal appears. As a condition, the direction of the magnetic field on the measurement object 4 side is parallel to the z axis. This corresponds to the case where θ 2 = 0 °, and corresponds to the degree of freedom that the probe 24 for the magnetic force microscope has in the z-axis direction. Regarding the angle θ 1 formed by S 1 and the z axis, the cases of θ 1 = 180 ° and 135 ° were examined. This is a value determined by the positional relationship between the beat generating coil 5 and the probe 24 of the magnetic force microscope. 180 ° is when the coil 5 is directly above the probe 24 of the magnetic force microscope, and 135 ° is both of them. It is an example when the position has shifted | deviated.

図3は、測定対象物4の発生する磁界と、ビート発生用コイル5が発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例1を示す図で、(A)はビート発生用コイル5が磁気力顕微鏡の探針24の真上にある場合(180°)、(B)は両者の位置がずれている場合(135°)を示す。
図3(A)ではカンチレバー25の直上に装着したビート発生用コイル5から発生する磁界ベクトルH=0.10Oe(エルステッド)、測定対象物4から発生する磁界の周波数成分(z成分)H=0.0037Oeとして高周波波形の時間変化を計算したものである。ビート信号はθ=180°及び135°(図3(B))のどちらの場合も、それほど顕著ではない。
FIG. 3 is a diagram showing a calculation example 1 of the time change of the magnetic field obtained by numerically assuming the intensity of the magnetic field generated by the measurement object 4 and the intensity of the magnetic field generated by the beat generating coil 5, (A) shows the case where the beat generating coil 5 is directly above the probe 24 of the magnetic force microscope (180 °), and (B) shows the case where the positions of both are shifted (135 °).
In FIG. 3A, the magnetic field vector H 1 = 0.10 Oe (Oersted) generated from the beat generating coil 5 mounted immediately above the cantilever 25, and the frequency component (z component) H 2 of the magnetic field generated from the measurement object 4. = Time change of high-frequency waveform is calculated as 0.0037 Oe. The beat signal is not so prominent in both cases of θ 1 = 180 ° and 135 ° (FIG. 3B).

図4は、測定対象物4の発生する磁界と、ビート発生用コイル5が発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例2を示す。図4(A)ではカンチレバー25の直上に装着したビート発生用コイル5から発生する磁界ベクトルH=0.10Oe、測定対象物4から発生する磁界の周波数成分(z成分)H=0.037Oeとして高周波波形の時間変化を計算したものである。θ=180°(図4(A))及び135°(図4(B))のどちらの場合も、ビート信号が顕著に現れている。 FIG. 4 shows a calculation example 2 of the time change of the magnetic field obtained by numerically assuming the intensity of the magnetic field generated by the measurement object 4 and the intensity of the magnetic field generated by the beat generating coil 5 and combining them. In FIG. 4A, the magnetic field vector H 1 = 0.10 Oe generated from the beat generating coil 5 mounted immediately above the cantilever 25, and the frequency component (z component) H 2 = 0. The time change of the high-frequency waveform is calculated as 037 Oe. In both cases of θ 1 = 180 ° (FIG. 4A) and 135 ° (FIG. 4B), the beat signal appears prominently.

図5は、測定対象物4の発生する磁界と、ビート発生用コイル5が発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例3を示す図である。図5(A)では、カンチレバー25の直上に装着したビート発生用コイル5から発生する磁界ベクトルH=0.10Oe、測定対象物4から発生する磁界の周波数成分(z成分)H=0.37Oeとして高周波波形の時間変化を計算したものである。この条件でもθ=180°(図5(A))及び135°(図5(B))のどちらの場合も、ビート信号が顕著に現れている。 FIG. 5 is a diagram showing a calculation example 3 of the time change of the magnetic field obtained by numerically assuming the intensity of the magnetic field generated by the measurement object 4 and the intensity of the magnetic field generated by the beat generating coil 5 and combining them. In FIG. 5A, the magnetic field vector H 1 = 0.10 Oe generated from the beat generating coil 5 mounted immediately above the cantilever 25, and the frequency component (z component) H 2 = 0 of the magnetic field generated from the measurement object 4. The time change of the high frequency waveform is calculated as .37Oe. Even under this condition, a beat signal appears remarkably in both cases of θ 1 = 180 ° (FIG. 5A) and 135 ° (FIG. 5B).

図6は、測定対象物4の発生する磁界と、ビート発生用コイル5が発する磁界の強度をそれぞれ数値的に仮定し、両者を合成した磁界の時間変化の計算例4を示す図である。図6(A)ではカンチレバー25の直上に装着したビート発生用コイル5から発生する磁界ベクトルH=0.10Oe、測定対象物4から発生する磁界の周波数成分(z成分)H=3.71Oeとして高周波波形の時間変化を計算したものである。ビート信号はθ=180°(図6(A))及び135°(図6(B))のどちらの場合も、それほど顕著ではない。 FIG. 6 is a diagram illustrating a calculation example 4 of temporal change of the magnetic field obtained by numerically assuming the magnetic field generated by the measurement target 4 and the strength of the magnetic field generated by the beat generating coil 5 and combining them. In FIG. 6A, the magnetic field vector H 1 = 0.10 Oe generated from the beat generating coil 5 mounted immediately above the cantilever 25, and the frequency component (z component) H 2 = 3 of the magnetic field generated from the measurement object 4. The time change of the high-frequency waveform is calculated as 71 Oe. The beat signal is not so noticeable in both cases of θ 1 = 180 ° (FIG. 6A) and 135 ° (FIG. 6B).

これらの計算例から明らかなように、測定対象物4から発生する高周波磁界と、カンチレバー25の直上に装着したビート発生用コイル5から発生する高周波磁界とをある条件を満たす強度比で混合すると、二つの高周波の周波数差に相当するビート信号を発生することが明らかとなった。ビート信号の周波数を、磁気力顕微鏡用探針24の機械的共振周波数に近い値を選ぶことで、探針24が追随できないような高周波磁界を高精度で測定することが可能となる。   As is clear from these calculation examples, when the high-frequency magnetic field generated from the measurement object 4 and the high-frequency magnetic field generated from the beat generating coil 5 mounted immediately above the cantilever 25 are mixed at an intensity ratio that satisfies a certain condition, It became clear that a beat signal corresponding to the frequency difference between two high frequencies was generated. By selecting a value close to the mechanical resonance frequency of the magnetic force microscope probe 24 as the frequency of the beat signal, a high-frequency magnetic field that cannot be followed by the probe 24 can be measured with high accuracy.

以上、説明を行った本発明の高周波磁界検出装置1の特徴は、確立され市販もされている磁気力顕微鏡装置に、本発明の構成を付加することにより、従来の磁気力顕微鏡装置ではなし得なかった高周波磁界検出が可能となり、高周波集積回路において、電磁ノイズの発生源、混入先、伝搬経路などを明確化でき、電磁干渉問題の解決に繋げることができる。
以下、本発明を実施例によりさらに詳細に説明する。
The above-described features of the high-frequency magnetic field detection device 1 of the present invention can be achieved by adding the configuration of the present invention to a magnetic force microscope device that has been established and is commercially available, and thus cannot be achieved by a conventional magnetic force microscope device. It is possible to detect a high-frequency magnetic field that has not been present, and in a high-frequency integrated circuit, it is possible to clarify the generation source, mixing destination, propagation path, and the like of electromagnetic noise, and to solve the electromagnetic interference problem.
Hereinafter, the present invention will be described in more detail with reference to examples.

(探針)
実施例で用いた探針24は、25nm程度の厚みを持つCo−Pt−Cr磁性膜、もしくは、50nm厚のNi−Fe磁性膜を表面にコーティングしたSi探針24(探針24の先端半径R:50〜60nm)を作製した。
得られた磁気力顕微鏡用の探針24の共振周波数fResは20.0〜30.0kHz、ばね定数kは1.3N/m、大気圧下で測定した共振尖鋭度Q値は80.8程度であり、磁化の向きは探針24に垂直方向である。
(Probe)
The probe 24 used in the example is a Co-Pt-Cr magnetic film having a thickness of about 25 nm or a Si probe 24 having a Ni-Fe magnetic film having a thickness of 50 nm coated on the surface (the tip radius of the probe 24). R: 50-60 nm).
The resonance frequency f Res of the obtained magnetic force microscope probe 24 is 20.0 to 30.0 kHz, the spring constant k is 1.3 N / m, and the resonance sharpness Q value measured at atmospheric pressure is 80.8. The direction of magnetization is perpendicular to the probe 24.

(計測に使用した機器)
高周波発振器3:(Agilent社製、33250A)
高周波発振器6:(Agilent社製、E-8267D)
ロックインアンプ33:(NF回路設計ブロック社製、LI-575)
レーザ装置27:(エーエルティー製赤色レーザダイオード、ALT-9A90、波長=632nm)
光位置検出装置29:(浜松ホトニクス製、s3932)
(Equipment used for measurement)
High-frequency oscillator 3: (Agilent 33250A)
High-frequency oscillator 6: (Agilent E-8267D)
Lock-in amplifier 33: (NF-circuit design block company make, LI-575)
Laser device 27: (ALT red laser diode, ALT-9A90, wavelength = 632 nm)
Optical position detection device 29: (manufactured by Hamamatsu Photonics, s3932)

図7は、本発明の高周波磁界検出装置1において、測定対象物4に高周波信号を印加した際に発生する磁界の代わりに、ダミーコイル52に高周波信号を印加して高周波磁界を発生し、ビート発生用コイル5が発生する磁界と合わせてビート信号を発生させ、本発明の動作確認を行うための高周波磁界検出装置1の変形例のブロック図である。
測定対象物4であるCPWの代わりに、ダミーコイル52を測定対象物4の位置に設置し、第1の高周波発振器3から高周波信号3Aをダミーコイル52に印加した。ダミーコイル52から生じる高周波磁界を磁気力顕微鏡用の探針24を用いて高感度で測定できることを以下で示す。図7の高周波磁界検出装置1Aは、CPW4がないので、CPW4を載置するステージ22や位置制御部26は図示していない。
FIG. 7 shows a high-frequency magnetic field detection apparatus 1 according to the present invention, in which a high-frequency magnetic field is generated by applying a high-frequency signal to the dummy coil 52 instead of a magnetic field generated when a high-frequency signal is applied to the measurement object 4. It is a block diagram of the modification of the high frequency magnetic field detection apparatus 1 for producing | generating a beat signal with the magnetic field which the coil 5 for generation | occurrence | production generates, and confirming the operation | movement of this invention.
Instead of the CPW that is the measurement object 4, the dummy coil 52 is installed at the position of the measurement object 4, and the high-frequency signal 3 </ b> A is applied from the first high-frequency oscillator 3 to the dummy coil 52. It will be shown below that the high-frequency magnetic field generated from the dummy coil 52 can be measured with high sensitivity using the probe 24 for a magnetic force microscope. Since the high-frequency magnetic field detection apparatus 1A of FIG. 7 does not have the CPW 4, the stage 22 and the position control unit 26 on which the CPW 4 is placed are not shown.

ビート発生用コイル5には、10MHzの周波数で、信号強度18dBmの信号を入力し、測定対象物4の代わりのダミーコイル52には、10MHz+20〜25kHzの周波数範囲で、信号強度20.9ddBmの信号を入力した。   A signal having a signal intensity of 18 dBm is input to the beat generating coil 5 at a frequency of 10 MHz, and a signal having a signal intensity of 20.9 dBm is input to the dummy coil 52 instead of the measurement object 4 in a frequency range of 10 MHz + 20 to 25 kHz. Was entered.

図8は、実施例1の磁気力顕微鏡用の探針24の変位量を示す図である。この図は、ビート発生用コイルとダミーコイル52が発生した高周波磁界のビート信号を、本実施例で作製した磁気力顕微鏡の探針24の磁界による動きとして光てこ信号29Aに置き換えて測定したデータである。縦軸は磁気力顕微鏡用探針24の磁界による動きとして光てこ法で得られる信号強度で、横軸はダミーコイル52を、10MHz+20〜28kHzの周波数範囲でスキャンした場合のビート信号の周波数変化である。探針24の共振周波数に相当するところで、高い出力電圧が得られている。   FIG. 8 is a diagram illustrating the amount of displacement of the probe 24 for the magnetic force microscope according to the first embodiment. This figure shows data measured by replacing the beat signal of the high-frequency magnetic field generated by the beat generating coil and the dummy coil 52 with the optical lever signal 29A as the movement of the probe 24 of the magnetic force microscope manufactured in this embodiment by the magnetic field. It is. The vertical axis is the signal intensity obtained by the optical lever method as the movement of the magnetic force microscope probe 24 by the magnetic field, and the horizontal axis is the frequency change of the beat signal when the dummy coil 52 is scanned in the frequency range of 10 MHz + 20 to 28 kHz. is there. A high output voltage is obtained at a position corresponding to the resonance frequency of the probe 24.

次に、ダミーコイル52で高周波磁界を発生させる代わりに、CPW4に高周波を印加し、発生した高周波磁界の測定を行った。
先ず、CPW4は、以下の方法で作製した。比誘電率が7.0であるガラス基板4C上に、電子線レジストを塗布し、電子線描画でパターンを形成後に直流マグネトロンスパッタ法で、クロム、銅、クロムをそれぞれ5nm、300nm、5nmの厚さに積層し、リフトオフ法でCPW4のパターンを形成した。
Next, instead of generating a high frequency magnetic field by the dummy coil 52, a high frequency was applied to the CPW 4, and the generated high frequency magnetic field was measured.
First, CPW4 was produced by the following method. An electron beam resist is applied to a glass substrate 4C having a relative dielectric constant of 7.0, a pattern is formed by electron beam drawing, and then a direct current magnetron sputtering method is used to deposit chromium, copper, and chromium at a thickness of 5 nm, 300 nm, and 5 nm, respectively. Then, a CPW4 pattern was formed by a lift-off method.

探針24と測定対象物4であるCPW4との間隔(リフトハイト)は、500nmとした。第1の高周波発信器3から、100MHzの信号を出力し、CPW4に印加した。ビート発生用コイル5には99.975MHz付近で周波数を掃引し、CPW4上で磁界のビート信号を発生させた。   The distance (lift height) between the probe 24 and the CPW 4 that is the measurement object 4 was 500 nm. A 100 MHz signal was output from the first high-frequency transmitter 3 and applied to the CPW 4. The beat generating coil 5 was swept in the vicinity of 99.975 MHz to generate a magnetic field beat signal on the CPW 4.

次に、図1の構成において、ビート発生用コイルと測定対象物4の双方に、ビート信号を発生するように互いに周波数をずらせた二つの高周波信号を印加して高周波磁界を発生させた場合の、探針24による変位量を調べた。
図9は、実施例2の磁気力顕微鏡用の探針24のビート信号の磁界による振動強度の周波数依存性である。図9から明らかなように、ビート信号の周波数を変化させて探針24の共振周波数に合わせることで、探針24の振動強度信号が高くなっており、高感度で高周波磁界を検出できることが明らかである。ビート信号の周波数を、探針24の共振周波数に選び、高周波磁界を測定したい回路上を走査することで、高周波磁界の2次元マップが得られる。
Next, in the configuration of FIG. 1, when a high-frequency magnetic field is generated by applying two high-frequency signals shifted in frequency so as to generate beat signals to both the beat generating coil and the measurement object 4. The amount of displacement by the probe 24 was examined.
FIG. 9 shows the frequency dependence of the vibration intensity due to the magnetic field of the beat signal of the probe 24 for the magnetic force microscope of the second embodiment. As is apparent from FIG. 9, it is clear that the vibration intensity signal of the probe 24 is increased by changing the frequency of the beat signal to match the resonance frequency of the probe 24, and a high-frequency magnetic field can be detected with high sensitivity. It is. By selecting the frequency of the beat signal as the resonance frequency of the probe 24 and scanning the circuit on which the high-frequency magnetic field is to be measured, a two-dimensional map of the high-frequency magnetic field can be obtained.

測定における装置構成を図1と同じとし、測定対象物4として実施例2と同様のCPW4を用いた。実施例2との違いは、直流磁界発生用コイル46に直流磁界発生用電源47を用いて電流を流し、直流磁界を測定対象物4及び磁気力顕微鏡用探針24に印加した場合の測定(1)と、電流を流さないで、直流磁界を印加しない場合の測定(2)の二通りの振動強度信号を測定したことである。
CPW4に高周波信号を印加すると、高周波電磁界が発生し、高周波電界と高周波磁界を分離するために測定(2)の信号強度から、測定(1)の信号強度を減算処理することで、高周波磁界のみ分離し、CPW4で発生する高周波磁界をμmのオーダーで検出することができた。
The apparatus configuration in the measurement was the same as in FIG. 1, and the CPW 4 similar to that in Example 2 was used as the measurement object 4. The difference from the second embodiment is that measurement is performed when a current is passed through the DC magnetic field generating coil 46 using the DC magnetic field generating power supply 47 and a DC magnetic field is applied to the measurement object 4 and the probe 24 for the magnetic force microscope ( 1) and the measurement of the two vibration intensity signals in the measurement (2) when no DC current is applied without passing an electric current.
When a high frequency signal is applied to the CPW 4, a high frequency electromagnetic field is generated, and the signal strength of the measurement (1) is subtracted from the signal strength of the measurement (2) in order to separate the high frequency electric field and the high frequency magnetic field. Only a high frequency magnetic field generated by CPW4 could be detected on the order of μm.

(比較例)
次に、実施例に対する比較例について説明する。
比較例は、実施例1と比べてビート発生用コイルに第2の高周波信号6Aを入れない点以外は全て前の実施例1と同一条件である。つまり、第2の高周波発振器6を使用しないので、ビート信号が生じない条件とした。この比較例では同一測定条件で、ビート信号が生じない場合の測定装置の感度を評価していることになる。
図10は、比較例の磁気力顕微鏡用探針24の変位量を示す図である。図10から明らかなように、磁気力顕微鏡用の探針24の共振周波数に相当する周波数にもピークは見られず、高感度の高周波磁界測定が出来ていないことが明らかである。
(Comparative example)
Next, a comparative example for the embodiment will be described.
The comparative example is the same as the previous example 1 except that the second high frequency signal 6A is not input to the beat generating coil as compared with the example 1. That is, since the second high-frequency oscillator 6 is not used, the condition is set so that no beat signal is generated. In this comparative example, the sensitivity of the measurement apparatus when no beat signal is generated under the same measurement conditions is evaluated.
FIG. 10 is a diagram showing the amount of displacement of the magnetic force microscope probe 24 of the comparative example. As is apparent from FIG. 10, no peak is observed in the frequency corresponding to the resonance frequency of the probe 24 for the magnetic force microscope, and it is clear that high-sensitivity high-frequency magnetic field measurement cannot be performed.

本発明は、上記実施の形態に限定されるものではなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。   The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that these are also included in the scope of the present invention. Nor.

1:高周波磁界検出装置
2:磁気力顕微鏡
3:第1の高周波発振器
3A:第1の高周波信号
4:測定対象物
5:コイル
6:第2の高周波発振器
6A:第2の高周波信号
22:ステージ
23:参照信号
24:探針
25:カンチレバー
26:位置制御部
26A:位置情報
27:レーザ装置
27A:レーザ光
28:レーザ反射光
29:光位置検出器
29A:光てこ信号
30:検出部
31:検出回路
32:信号
33:ロックインアンプ
35:コンピュータ
41:周波数ミキサー
46:着磁用コイル
47:直流磁界発生用電源
48:交流磁界発生用電源
52:ダミーコイル
1: High-frequency magnetic field detection device 2: Magnetic force microscope 3: First high-frequency oscillator 3A: First high-frequency signal 4: Measurement object 5: Coil 6: Second high-frequency oscillator 6A: Second high-frequency signal 22: Stage 23: Reference signal 24: Probe 25: Cantilever 26: Position controller 26A: Position information 27: Laser device 27A: Laser light 28: Laser reflected light 29: Optical position detector 29A: Optical lever signal 30: Detector 31: Detection circuit 32: signal 33: lock-in amplifier 35: computer 41: frequency mixer 46: magnetizing coil 47: DC magnetic field generating power supply 48: AC magnetic field generating power supply 52: dummy coil

Claims (8)

磁気力顕微鏡と、
上記磁気力顕微鏡の測定対象物に第1の高周波信号を印加する手段と、
上記測定対象物に近接して設置されたコイルと、
上記コイルに上記第1の高周波数信号と周波数の異なる第2の高周波信号を印加する手段と、
を有し、
上記測定対象物に、上記第1の高周波信号と、上記第2の高周波数信号と、該第1及び第2の高周波信号の差周波数であるビート信号が印加されることを特徴とする、高周波磁界検出装置。
A magnetic force microscope,
Means for applying a first high-frequency signal to the measurement object of the magnetic force microscope;
A coil installed close to the measurement object;
Means for applying a second high frequency signal having a frequency different from that of the first high frequency signal to the coil;
Have
The first high frequency signal, the second high frequency signal, and a beat signal that is a difference frequency between the first and second high frequency signals are applied to the measurement object. Magnetic field detection device.
前記磁気力顕微鏡は、前記測定対象物を載せるステージと、該測定対象物が発生する電界または磁界もしくはその双方による力を受けて位置が変化する磁気力顕微鏡の探針と、上記探針の位置変化を検出する検出部と、上記探針を前記測定対象物に所定の間隔を保って走査するための位置制御部と、上記探針と測定対象物との相対位置及び探針が電界または磁界もしくはその双方による力を受けて変位する変位量を関係付け、上記探針の位置変位量の一次元もしくは二次元の走査情報を得る手段と、を有することを特徴とする、請求項1に記載の高周波磁界検出装置。   The magnetic force microscope includes a stage on which the measurement object is placed, a magnetic force microscope probe that changes its position under the force of the electric field and / or magnetic field generated by the measurement object, and the position of the probe A detection unit for detecting a change, a position control unit for scanning the measurement object at a predetermined interval, a relative position between the probe and the measurement object, and an electric field or magnetic field. Or a means for obtaining a one-dimensional or two-dimensional scanning information of a positional displacement amount of the probe by relating displacement amounts that are displaced by receiving a force from both of them. High frequency magnetic field detection device. 前記測定対象物と前記探針の双方に、直流磁場を印加する手段を有していることを特徴とする、請求項1又は2に記載の高周波磁界検出装置。   The high-frequency magnetic field detection device according to claim 1, further comprising means for applying a DC magnetic field to both the measurement object and the probe. 前記測定対象物は、トランジスタ、ダイオードなどの能動素子、コンデンサ、インダクタ、配線などの受動素子、電源回路、電子回路、集積回路、LSIチップ、VLSIチップあるいはこれらの組み合わせからなり、高周波を印加することで高周波電磁界を誘起する測定対象物であることを特徴とする、請求項1〜3の何れかに記載の高周波磁界検出装置。   The measurement object is an active element such as a transistor or a diode, a passive element such as a capacitor, an inductor, or a wiring, a power supply circuit, an electronic circuit, an integrated circuit, an LSI chip, a VLSI chip, or a combination thereof, and applies a high frequency. The high-frequency magnetic field detection device according to claim 1, wherein the high-frequency magnetic field detection device is a measurement object that induces a high-frequency electromagnetic field. 前記探針の表面が、軟質磁性体薄膜、硬質磁性体薄膜及び軟質磁性体薄膜、硬質磁性体薄膜の何れかで被覆されていることを特徴とする、請求項1〜3の何れかに記載の高周波磁界検出装置。   The surface of the probe is coated with any one of a soft magnetic thin film, a hard magnetic thin film, a soft magnetic thin film, and a hard magnetic thin film. High frequency magnetic field detection device. さらに、前記探針と前期測定対象物との双方に交番磁界を印加する手段を有していることを特徴とする、請求項1〜5の何れかに記載の高周波磁界検出装置。   6. The high-frequency magnetic field detection apparatus according to claim 1, further comprising means for applying an alternating magnetic field to both the probe and the object to be measured in the previous period. 前記ビート信号の周波数は、前記探針の機械的共振周波数であることを特徴とする、請求項1に記載の高周波磁界検出装置。   The high-frequency magnetic field detection apparatus according to claim 1, wherein the frequency of the beat signal is a mechanical resonance frequency of the probe. 前記探針に被覆する磁性体薄膜は、Fe−Co、Ni−Fe、Ni−Co、Co−Zr−Nb、フェライト及びCo−Cr−Ptの何れかであることを特徴とする、請求項5に記載の高周波磁界検出装置。   6. The magnetic thin film coated on the probe is any one of Fe—Co, Ni—Fe, Ni—Co, Co—Zr—Nb, ferrite, and Co—Cr—Pt. The high frequency magnetic field detection apparatus according to 1.
JP2012083425A 2012-03-31 2012-03-31 High frequency magnetic field detector Active JP5958895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083425A JP5958895B2 (en) 2012-03-31 2012-03-31 High frequency magnetic field detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083425A JP5958895B2 (en) 2012-03-31 2012-03-31 High frequency magnetic field detector

Publications (2)

Publication Number Publication Date
JP2013213708A true JP2013213708A (en) 2013-10-17
JP5958895B2 JP5958895B2 (en) 2016-08-02

Family

ID=49587135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083425A Active JP5958895B2 (en) 2012-03-31 2012-03-31 High frequency magnetic field detector

Country Status (1)

Country Link
JP (1) JP5958895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049165A (en) * 2013-09-02 2015-03-16 国立大学法人秋田大学 Ac magnetic field measurement instrument and ac magnetic field measurement method
WO2015115622A1 (en) * 2014-01-30 2015-08-06 国立大学法人秋田大学 Electric force and magnetic force microscope and simultaneous electric field and magnetic field measurement method
CN111415687A (en) * 2020-03-16 2020-07-14 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619139A (en) * 1995-02-10 1997-04-08 Bruker Analytische Messtechnik Gmbh Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
JP2001266317A (en) * 2000-03-23 2001-09-28 Toshiba Corp Magnetic recording head measuring device and measuring method applied for this device
JP2005274495A (en) * 2004-03-26 2005-10-06 Kansai Tlo Kk High frequency minute vibration measuring apparatus
JP2011163999A (en) * 2010-02-12 2011-08-25 Jeol Ltd Device for generation of high frequency magnetic field for scanning probe microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5619139A (en) * 1995-02-10 1997-04-08 Bruker Analytische Messtechnik Gmbh Magnetic resonance method and apparatus for detecting an atomic structure of a sample along a surface thereof
JP2001266317A (en) * 2000-03-23 2001-09-28 Toshiba Corp Magnetic recording head measuring device and measuring method applied for this device
JP2005274495A (en) * 2004-03-26 2005-10-06 Kansai Tlo Kk High frequency minute vibration measuring apparatus
JP2011163999A (en) * 2010-02-12 2011-08-25 Jeol Ltd Device for generation of high frequency magnetic field for scanning probe microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049165A (en) * 2013-09-02 2015-03-16 国立大学法人秋田大学 Ac magnetic field measurement instrument and ac magnetic field measurement method
WO2015115622A1 (en) * 2014-01-30 2015-08-06 国立大学法人秋田大学 Electric force and magnetic force microscope and simultaneous electric field and magnetic field measurement method
JPWO2015115622A1 (en) * 2014-01-30 2017-03-23 国立大学法人秋田大学 Electric force / magnetic force microscope and electric / magnetic field simultaneous measurement method
CN111415687A (en) * 2020-03-16 2020-07-14 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head
CN111415687B (en) * 2020-03-16 2021-12-17 大连海事大学 Device and method for measuring high-frequency alternating-current magnetic field of hard disk perpendicular magnetic write head

Also Published As

Publication number Publication date
JP5958895B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
Dong et al. Characterization of magnetomechanical properties in FeGaB thin films
JP5424404B2 (en) Surface state measuring apparatus and surface state measuring method using the apparatus
CN108181594A (en) Non- exchange Mesoscopic physics magnetometer
JP5958895B2 (en) High frequency magnetic field detector
US9606198B2 (en) Magnetic field probe, magnetic field measurement system and magnetic field measurement method
US10539633B2 (en) Ultrahigh resolution magnetic resonance imaging method and apparatus
de Graaf et al. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements
Ando et al. Miniaturized thin-film magnetic field probe with high spatial resolution for LSI chip measurement
US20080238419A1 (en) Magnetic field measuring apparatus capable of measuring at high spatial resolution
Kim et al. Resonance-suppressed magnetic field probe for EM field-mapping system
JP2019053025A (en) High-frequency magnetic field generator
US6891380B2 (en) System and method for measuring characteristics of materials with the use of a composite sensor
CN115315710A (en) Method for manipulating charged particles
US10216150B2 (en) Apparatus for atomic clock, its operating method and its manufacturing method
EP2544016B1 (en) Device and method for obtaining a potential
JP6327614B2 (en) High frequency electromagnetic field measuring device
JP2013213707A (en) High frequency magnetic field detection apparatus
JP2011163999A (en) Device for generation of high frequency magnetic field for scanning probe microscope
Endo et al. Radio frequency magnetic near field measurements of coplanar waveguide simulated power and ground lines in radio frequency integrated circuits using a MFM tip
Ando et al. Development of miniaturized thin-film magnetic field probes for on-chip measurement
JP2003240808A (en) Magnetic field detector
Song et al. Measurement and comparative analysis of shielding effectiveness of different sputtered materials
JP2001242231A (en) Magnetic field generating device and magnetic resonance force microscope using the same
Lekavicius et al. Magnetometry Based on Silicon-Vacancy Centers in Isotopically Purified 4 H-SiC
Thormählen et al. Low Noise Inverse Magnetoelectric Magnetic Field Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5958895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250