JP2013212959A - Lithium manganese-based composite oxide and method for producing the same - Google Patents

Lithium manganese-based composite oxide and method for producing the same Download PDF

Info

Publication number
JP2013212959A
JP2013212959A JP2012084456A JP2012084456A JP2013212959A JP 2013212959 A JP2013212959 A JP 2013212959A JP 2012084456 A JP2012084456 A JP 2012084456A JP 2012084456 A JP2012084456 A JP 2012084456A JP 2013212959 A JP2013212959 A JP 2013212959A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
lithium manganese
precipitate
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012084456A
Other languages
Japanese (ja)
Other versions
JP6128303B2 (en
Inventor
Mitsuharu Tabuchi
光春 田渕
Tomonari Takeuchi
友成 竹内
Junji Akimoto
順二 秋本
Junichi Imaizumi
純一 今泉
Hideka Shibuya
英香 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Tanaka Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Tanaka Chemical Corp
Priority to JP2012084456A priority Critical patent/JP6128303B2/en
Publication of JP2013212959A publication Critical patent/JP2013212959A/en
Application granted granted Critical
Publication of JP6128303B2 publication Critical patent/JP6128303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new material capable of exhibiting more superior charging/discharging characteristics in a lithium manganese-based composite oxides expected as positive electrode material replacing a lithium cobalt-based positive-electrode material.SOLUTION: After a precipitate is formed through a coprecipitation method and subjected to wet oxidation, firing is carried out in two stages to obtain a new lithium manganese-based composite oxide having a monoclinic layered rock salt type structure represented by the composition formula: Li(MnFeNi)O(where x, m and n satisfy 0≤x≤1/3, 0≤m≤0.6, and 0≤n≤0.3), the composite oxide having superior charging/discharging characteristics such that (1) the mol ratio of three components of Mn, Fe and Ni is within a specific range and (2) the average oxidation number of Mn, Fe and Ni is 3.4 to 3.6.

Description

本発明は、次世代低コストリチウムイオン二次電池の正極材料として有用なリチウムマンガン系複合酸化物およびその製造方法に関する。   The present invention relates to a lithium manganese composite oxide useful as a positive electrode material for a next-generation low-cost lithium ion secondary battery and a method for producing the same.

現在、我が国において、携帯電話、ノートパソコンなどのポータブル機器に搭載されている二次電池のほとんどは、リチウムイオン二次電池である。また、リチウムイオン二次電池は、今後、電気自動車、電力負荷平準化システムなどの大型電池としても実用化されるものと予想されており、その重要性はますます高まっている。   Currently, in Japan, most of secondary batteries installed in portable devices such as mobile phones and notebook computers are lithium ion secondary batteries. In addition, lithium ion secondary batteries are expected to be put into practical use as large batteries for electric vehicles, power load leveling systems, and the like, and their importance is increasing.

現在、リチウムイオン二次電池においては、正極材料としては主にリチウムコバルト酸化物(LiCoO2)材料が使用され、負極材料としては黒鉛などの炭素材料が使用されている。これらの電極材料を用いる場合には、充電によりリチウムコバルト酸化物内のコバルトが3価から4価に酸化されつつLi脱離をして負極にLiが供給され、放電時には負極の炭素材料からLiが脱離し、4価のコバルトが3価に還元されて正極側にLi挿入されることにより、電池として作動する。 Currently, in lithium ion secondary batteries, a lithium cobalt oxide (LiCoO 2 ) material is mainly used as a positive electrode material, and a carbon material such as graphite is used as a negative electrode material. When these electrode materials are used, Li is desorbed while the cobalt in the lithium cobalt oxide is oxidized from trivalent to tetravalent by charging, and Li is supplied to the negative electrode. Desorbs, tetravalent cobalt is reduced to trivalent, and Li is inserted into the positive electrode to operate as a battery.

この様なリチウムイオン二次電池では、正極材料において可逆的に脱離(充電に相当)、挿入(放電に相当)するリチウムイオン量が電池の容量を決定づけ、脱離・挿入時の電圧が電池の作動電圧を決定づけるために、正極材料であるLiCoO2は、電池性能に関連する重要な電池構成材料である。このため、今後のリチウムイオン二次電池の用途拡大・大型化に伴い、リチウムコバルト酸化物は、一層の需要増加が予想されている。 In such a lithium ion secondary battery, the amount of lithium ions reversibly desorbed (equivalent to charging) and inserted (equivalent to discharging) in the positive electrode material determines the capacity of the battery, and the voltage at the time of desorption / insertion is the battery. LiCoO 2 as a positive electrode material is an important battery constituent material related to battery performance. For this reason, the demand for lithium cobalt oxide is expected to increase further with the future expansion and enlargement of lithium ion secondary batteries.

しかしながら、リチウムコバルト酸化物は、希少金属であるコバルトを多量に含むために、リチウムイオン二次電池の素材コストを上昇させる要因の一つとなっている。さらに、現在コバルト資源の約20%が電池産業に用いられていることを考慮すれば、LiCoO2からなる正極材料のみでは今後の需要拡大に対応することは困難と考えられる。 However, since lithium cobalt oxide contains a large amount of cobalt, which is a rare metal, it is one of the factors that increase the material cost of lithium ion secondary batteries. Furthermore, considering that about 20% of cobalt resources are currently used in the battery industry, it is considered difficult to meet future demand growth with only the cathode material made of LiCoO 2 .

現在、より安価で資源的に制約の少ない正極材料として、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn2O4)等が報告されており、一部代替材料として実用化されている。しかしながらリチウムニッケル酸化物には充電時に電池の安全性を低下させるという問題があり、リチウムマンガン酸化物には高温(約60℃)充放電時に3価のマンガンが電解液中に溶出し、それが電池性能を著しく劣化させるという問題があるため、これらの材料への代替はあまり進んでいない。またリチウムマンガン酸化物のなかでLiMnO2という正極材料も提案されているが、この材料は、充放電に伴ってもとの構造から徐々に上記LiMn2O4に代表されるスピネル型の結晶構造に変化し、充放電曲線の形状が充放電サイクルの進行に伴い大きく変化することから実用化には至っていない。 Currently, lithium nickel oxide (LiNiO 2 ) and lithium manganese oxide (LiMn 2 O 4 ) have been reported as cheaper and less resource-constrained positive electrode materials, and some have been put into practical use as alternative materials. Yes. However, lithium nickel oxide has the problem of reducing the safety of the battery during charging, and lithium manganese oxide elutes trivalent manganese into the electrolyte during charge and discharge at high temperatures (about 60 ° C). Due to the problem of significantly degrading battery performance, substitution for these materials has not progressed much. Among lithium manganese oxides, a positive electrode material called LiMnO 2 has also been proposed, but this material gradually has a spinel crystal structure typified by the above LiMn 2 O 4 due to its original structure. Since the shape of the charge / discharge curve changes greatly with the progress of the charge / discharge cycle, it has not been put into practical use.

また、マンガンおよびニッケルに比べて、資源的により一層豊富であり、毒性が低く、安価な鉄を含むリチウムフェライト(LiFeO2)について、電極材料としての可能性が検討されている。しかしながら、通常の製造法、すなわち鉄源とリチウム源とを混合し高温焼成することによって得られるリチウムフェライトは、ほとんど充放電しないので、リチウムイオン二次電池正極材料として用いることはできない。 Further, lithium ferrite (LiFeO 2 ) containing iron, which is more abundant in resources, less toxic, and cheaper than manganese and nickel, has been studied as a potential electrode material. However, since lithium ferrite obtained by a normal manufacturing method, that is, by mixing an iron source and a lithium source and firing at high temperature, hardly charges or discharges, it cannot be used as a positive electrode material for a lithium ion secondary battery.

一方、イオン交換法により得られるLiFeO2が充放電可能であることが報告されているが(下記特許文献1および2参照)、これらの材料の平均放電電圧は2.5V以下でありLiCoO2の値(約3.7V)に比べて著しく低いため、LiCoO2の代替とすることは困難である。 On the other hand, LiFeO 2 obtained by the ion exchange method has been reported to be chargeable / dischargeable (see Patent Documents 1 and 2 below), but the average discharge voltage of these materials is 2.5 V or less and the value of LiCoO 2 Since it is significantly lower than (approximately 3.7V), it is difficult to replace LiCoO 2 .

本発明者らは、すでに、鉄に次いで安価かつ資源的に豊富なリチウムマンガン酸化物(Li2MnO3)とリチウムフェライトとからなる層状岩塩型構造の固溶体(Li1+x(FeyMn1-y)1-xO2、(0<x<1/3, 0<y<1)、以下「鉄含有Li2MnO3」という)が、室温での充放電試験においてはリチウムコバルト酸化物並の4V近い平均放電電圧を有することを見出している(下記特許文献3および4参照)。 The present inventors have already described a layered rock salt type solid solution (Li 1 + x (Fe y Mn 1 ) composed of lithium manganese oxide (Li 2 MnO 3 ) and lithium ferrite, which are cheaper and resource-rich after iron. -y ) 1-x O 2 (0 <x <1/3, 0 <y <1), hereinafter referred to as “iron-containing Li 2 MnO 3 ”) is a lithium cobalt oxide in the charge / discharge test at room temperature. It has been found that it has an average discharge voltage close to 4V (see Patent Documents 3 and 4 below).

また、本発明者らは、特定の条件を満足するリチウム−鉄−マンガン複合酸化物が、高温サイクル試験時にLiMn2O4より高容量(150mAh/g)かつ安定した充放電サイクル特性を示すことを見出している(下記特許文献5参照)。 In addition, the present inventors show that a lithium-iron-manganese composite oxide satisfying specific conditions exhibits a higher capacity (150 mAh / g) and stable charge / discharge cycle characteristics than LiMn 2 O 4 during a high-temperature cycle test. (See Patent Document 5 below).

更に、本発明者らは、鉄を含有するLi2MnO3に更にNiを固溶させた正極材料がサイクル劣化の少ない材料であることも報告している(下記特許文献6及び7参照)。 Furthermore, the present inventors have also reported that a positive electrode material in which Ni is further dissolved in Li 2 MnO 3 containing iron is a material with little cycle deterioration (see Patent Documents 6 and 7 below).

以上の通り、リチウムコバルト系正極材料に代わり得るリチウムマンガン系正極材料について種々の報告がなされている。しかしながら、より一層の充放電特性に優れた正極材料が望まれており、その特性の改善のためには、正極材料の化学組成や製造条件についての最適化が望まれている。   As described above, various reports have been made on lithium manganese-based positive electrode materials that can be substituted for lithium cobalt-based positive electrode materials. However, a positive electrode material having further excellent charge / discharge characteristics is desired, and in order to improve the characteristics, optimization of the chemical composition and manufacturing conditions of the positive electrode material is desired.

特開平10-120421号公報Japanese Patent Laid-Open No. 10-120421 特開平8-295518号公報JP-A-8-295518 特開2002-068748号公報JP 2002-068748 A 特開2002-121026号公報Japanese Patent Laid-Open No. 2002-121026 特開2005-154256号公報JP 2005-154256 A 特開2003-48718号公報JP2003-48718 特開2006-36621号公報JP 2006-36621 A

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、リチウムコバルト系正極材料に代わり得る正極材料として期待されるリチウムマンガン系複合酸化物において、より優れた充放電特性を発揮できる新規な材料を提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is more excellent in lithium manganese-based composite oxides expected as a positive electrode material that can replace a lithium cobalt-based positive electrode material. It is to provide a novel material capable of exhibiting charge / discharge characteristics.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、鉄及びニッケルを固溶させたリチウムマンガン系複合酸化物において、特定の組成範囲の原料を用い、水溶液からの共沈法を採用した上で、特定の製造条件を採用する場合に、鉄、ニッケル及びマンガンの平均酸化数が特定の範囲内にある、従来知られていない新規な複合酸化物が得られることを見出した。そして、このようにして得られる新規な複合酸化物は、従来知られている同様の組成のリチウムマンガン系複合酸化物と比較して、高い充放電容量を有するものであり、これをリチウムイオン二次電池の正極材料として用いることによって、安価な原料を使用して、優れた性能を有するリチウムイオン二次電池を作製できることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, in the lithium manganese based composite oxide in which iron and nickel are dissolved, when using a raw material having a specific composition range and adopting a coprecipitation method from an aqueous solution, when using specific manufacturing conditions, It has been found that a novel composite oxide which has not been known so far can be obtained in which the average oxidation numbers of iron, nickel and manganese are within a specific range. The novel composite oxide thus obtained has a higher charge / discharge capacity than a conventionally known lithium manganese composite oxide having the same composition. It has been found that by using it as a positive electrode material for a secondary battery, a lithium ion secondary battery having excellent performance can be produced using an inexpensive raw material, and the present invention has been completed here.

即ち、本発明は、下記のリチウムマンガン系複合酸化物、その製造方法、リチウムマンガン系複合酸化物からなるリチウムイオン二次電池正極材料及びリチウムイオン二次電池を提供するものである。
項1.組成式:Li1+x(Mn1-m-n FeNi)1-xO2 (式中、x、m及びnの範囲は、0≦x≦1/3,
0≦m≦0.6, 0≦n≦0.3である)で表される単斜晶層状岩塩型構造を有する複合酸化物であって、
(1)Mn、Fe及びNiの三成分のモル比が、Mn、Fe及びNiを各頂点とするモル比三角組成図において、点A(Mn : Fe : Ni=60:40:0)、点B(Mn : Fe : Ni=40:60:0)、点C(Mn : Fe
: Ni=70:0:30)、及び点D(Mn : Fe : Ni=80:0:20)の4点を頂点とする四角形の範囲内にあり、
(2)Mn、Fe及びNiの平均酸化数が3.4〜3.6である
ことを特徴とするリチウムマンガン系複合酸化物。
項2.比表面積が10〜50m/gであり、自発磁化が0.005emu/g以下である、項1に記載のリチウムマンガン系複合酸化物。
項3.マンガン化合物、鉄化合物、及びニッケル化合物を含む混合水溶液をアルカリ性として沈殿を形成し、形成された沈殿物にリチウム化合物を添加して湿式酸化処理した後、酸化性雰囲気下で焼成し、次いで、不活性ガス雰囲気下で焼成することとを特徴とする項1又は2に記載のリチウムマンガン系複合酸化物の製造方法。
項4.沈殿形成時の混合水溶液の液温が30〜80℃である項3に記載のリチウムマンガン系複合酸化物の製造方法。
項5.沈殿物を湿式酸化する方法が、沈殿物を含む水溶液を撹拌しつつ、酸化性気体を吹き込む方法、又は沈殿物を含む水溶液を撹拌しつつ、酸化性化合物を添加する方法である項3又は4に記載のリチウムマンガン系複合酸化物の製造方法。
項6.酸化性雰囲気中での焼成を400〜600℃で行い、不活性ガス雰囲気中での焼成を600〜850℃で行うことを特徴とする項3〜5のいずれかに記載のリチウムマンガン系複合酸化物の製造方法。
項7.項1又は2に記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。
項8.項1又は2に記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。
That is, the present invention provides the following lithium manganese composite oxide, a production method thereof, a lithium ion secondary battery positive electrode material and a lithium ion secondary battery comprising the lithium manganese composite oxide.
Item 1. Compositional formula: Li 1 + x (Mn 1 -mn Fe m Ni n) 1-x O 2 ( wherein, x, a range of m and n, 0 ≦ x ≦ 1/3 ,
A composite oxide having a monoclinic layered rock salt structure represented by 0 ≦ m ≦ 0.6, 0 ≦ n ≦ 0.3,
(1) The molar ratio of the three components of Mn, Fe, and Ni is point A (Mn: Fe: Ni = 60: 40: 0), point in the molar ratio triangular composition diagram with Mn, Fe, and Ni as vertices. B (Mn: Fe: Ni = 40: 60: 0), point C (Mn: Fe
: Ni = 70: 0: 30) and the point D (Mn: Fe: Ni = 80: 0: 20) within the range of a quadrangle with the four points as vertices,
(2) A lithium manganese composite oxide characterized in that the average oxidation number of Mn, Fe, and Ni is 3.4 to 3.6.
Item 2. Item 2. The lithium manganese composite oxide according to Item 1, having a specific surface area of 10 to 50 m 2 / g and a spontaneous magnetization of 0.005 emu / g or less.
Item 3. A mixed aqueous solution containing a manganese compound, an iron compound, and a nickel compound is made alkaline to form a precipitate, a lithium compound is added to the formed precipitate and wet oxidation treatment is performed, followed by firing in an oxidizing atmosphere, Item 3. The method for producing a lithium manganese composite oxide according to Item 1 or 2, wherein the firing is performed in an active gas atmosphere.
Item 4. Item 4. The method for producing a lithium manganese composite oxide according to Item 3, wherein the temperature of the mixed aqueous solution during precipitation is 30 to 80 ° C.
Item 5. Item 3 or 4 wherein the method of wet-oxidizing the precipitate is a method of blowing an oxidizing gas while stirring the aqueous solution containing the precipitate, or a method of adding an oxidizing compound while stirring the aqueous solution containing the precipitate. A method for producing the lithium manganese composite oxide according to 1.
Item 6. Item 6. The lithium manganese based composite oxidation according to any one of Items 3 to 5, wherein firing in an oxidizing atmosphere is performed at 400 to 600 ° C, and firing in an inert gas atmosphere is performed at 600 to 850 ° C. Manufacturing method.
Item 7. Item 3. A positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to Item 1 or 2.
Item 8. A lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery comprising the lithium manganese composite oxide according to Item 1 or 2.

以下、本発明のリチウムマンガン系複合酸化物及びその製造方法について具体的に説明する。   Hereinafter, the lithium manganese composite oxide and the method for producing the same of the present invention will be specifically described.

リチウムマンガン系複合酸化物
本発明のリチウムマンガン系複合酸化物は、組成式:Li1+x(Mn1-m-n FeNi)1-x O2 (式中、x、m及びnの範囲は、0≦x≦1/3, 0≦m≦0.6, 0≦n≦0.3である)で表される単斜晶層状岩塩型構造を有する複合酸化物であって、
(1)Mn、Fe及びNiの三成分のモル比が、Mn、Fe及びNiを各頂点とするモル比三角組成図において、点A(Mn : Fe : Ni=60:40:0)、点B(Mn : Fe : Ni=40:60:0)、点C(Mn : Fe
: Ni=70:0:30)、及び点D(Mn : Fe : Ni=80:0:20)の4点を頂点とする四角形の範囲内にあり、
(2)Mn、Fe及びNiの平均酸化数が3.4〜3.6である
ことを特徴とするものである。
Lithium manganese composite oxide of lithium manganese-based composite oxide of the present invention, the composition formula: Li 1 + x (Mn 1 -mn Fe m Ni n) 1-x O 2 ( wherein, x, a range of m and n Is a composite oxide having a monoclinic layered rock salt structure represented by 0 ≦ x ≦ 1/3, 0 ≦ m ≦ 0.6, 0 ≦ n ≦ 0.3,
(1) The molar ratio of the three components of Mn, Fe, and Ni is point A (Mn: Fe: Ni = 60: 40: 0), point in the molar ratio triangular composition diagram with Mn, Fe, and Ni as vertices. B (Mn: Fe: Ni = 40: 60: 0), point C (Mn: Fe
: Ni = 70: 0: 30) and the point D (Mn: Fe: Ni = 80: 0: 20) within the range of a quadrangle with the four points as vertices,
(2) The average oxidation number of Mn, Fe and Ni is 3.4 to 3.6.

上記したリチウムマンガン系複合酸化物は、酸化物の一般的な結晶構造である岩塩型構造を基本とするものであり、公知物質であるLi2MnO3に類似する空間群 The above-described lithium manganese composite oxide is based on a rock salt structure, which is a general crystal structure of oxide, and has a space group similar to the known substance Li 2 MnO 3

Figure 2013212959
Figure 2013212959

を有する単斜晶層状岩塩型構造の結晶相を基本として、これに、Ni及びFeが所定量固溶したものであって、Mn、Ni及びFeからなる遷移金属元素の平均酸化数が3.4〜3.6の範囲に制御されたものである。この様な特徴を有する本発明の複合酸化物は、遷移金属元素の平均酸化物が上記した範囲外にある公知の複合酸化物と比較して、高い充放電容量を有
するものであり、リチウムイオン二次電池用正極活物質として優れた特性を有するものである。
Based on the crystal phase of a monoclinic layered rock-salt structure with a predetermined amount of Ni and Fe in solid solution, the average oxidation number of the transition metal element consisting of Mn, Ni and Fe is 3. It is controlled within the range of 4 to 3.6. The composite oxide of the present invention having such characteristics has a higher charge / discharge capacity than the known composite oxide in which the average oxide of the transition metal element is outside the above-described range. It has excellent characteristics as a positive electrode active material for secondary batteries.

該複合酸化物に固溶させるFeの量は、Mn、Fe及びNiからなる遷移金属元素の合計量を基準として、0〜60モル%の範囲内、即ち、0≦Fe/(Mn+Ni+Fe)≦0.6の範囲内にあることが必要であり、10〜30%の範囲内にあることが好ましい。Niの量は、Mn、Fe及びNiからなる遷移金属元素の合計量を基準として、0〜30モル%の範囲内、即ち、0≦Ni/(Mn+Ni+Fe)≦0.3の範囲内にあることが必要であり、5〜25%の範囲内にあることが好ましい。   The amount of Fe to be dissolved in the composite oxide is in the range of 0 to 60 mol% based on the total amount of transition metal elements composed of Mn, Fe and Ni, that is, 0 ≦ Fe / (Mn + Ni + Fe) must be in the range of ≦ 0.6, preferably in the range of 10 to 30%. The amount of Ni is in the range of 0 to 30 mol%, that is, in the range of 0 ≦ Ni / (Mn + Ni + Fe) ≦ 0.3, based on the total amount of transition metal elements composed of Mn, Fe and Ni. It must be present and is preferably in the range of 5-25%.

更に、Mn、Ni及びFeからなる遷移金属元素のモル比は、図1に示すMn、Fe及びNiを各頂点とするモル比三角組成図において、点A(Mn : Fe : Ni=60:40:0)、点B(Mn : Fe : Ni=40:60:0)、点C(Mn : Fe : Ni=70:0:30)、及び点D(Mn : Fe : Ni=80:0:20)4点を頂点とする四角形の範囲内にあることが必要である。上記した組成式:Li1+x(Mn1-m-n FeNi)1-xO2 で表される組成を有し、且つ、Mn、Fe及びNiの三成分のモル比が図1に示す三角組成図において、点A、点B、点C、及び点Dを頂点とする四角形の範囲内にある場合には、後述する方法で複合酸化物を製造することによって、Mn、Ni及びFeからなる遷移元素の平均酸化数が3.4〜3.6の範囲内にある複合酸化物を得ることができる。 Further, the molar ratio of the transition metal element composed of Mn, Ni, and Fe is indicated by a point A (Mn: Fe: Ni = 60: 40 in the molar ratio triangular composition diagram having Mn, Fe, and Ni as vertices shown in FIG. : 0), Point B (Mn: Fe: Ni = 40: 60: 0), Point C (Mn: Fe: Ni = 70: 0: 30), and Point D (Mn: Fe: Ni = 80: 0: 20) It must be within the range of a quadrangle with 4 vertices. The composition represented by the above composition formula: Li 1 + x (Mn 1-mn Fe m Ni n ) 1-x O 2 and the molar ratio of the three components of Mn, Fe, and Ni are shown in FIG. In the triangular composition diagram shown, when it is within the range of a quadrangle having points A, B, C, and D as vertices, Mn, Ni, and Fe are produced by producing a composite oxide by the method described later. A composite oxide in which the average oxidation number of the transition element consisting of is in the range of 3.4 to 3.6 can be obtained.

リチウムマンガン系複合酸化物の製造方法
以下、本発明のリチウムマンガン系複合酸化物の製造方法について説明する。
Method for Producing Lithium Manganese Composite Oxide Hereinafter, a method for producing the lithium manganese composite oxide of the present invention will be described.

本発明のリチウムマンガン系複合酸化物は、Mnイオン、Feイオン及びNiイオンを含む水溶液から共沈法によってMn、Fe及びNiを含む沈殿を形成し、形成された沈殿にリチウム化合物を添加して湿式酸化した後、沈殿物の湿式酸化物を必要に応じてリチウム化合物と混合して、酸化性雰囲気下で焼成し、次いで、不活性ガス雰囲気下で焼成する方法によって得ることができる。以下、各工程について説明する。   The lithium manganese based composite oxide of the present invention forms a precipitate containing Mn, Fe and Ni from an aqueous solution containing Mn ions, Fe ions and Ni ions by a coprecipitation method, and a lithium compound is added to the formed precipitate. After wet oxidation, the wet oxide of the precipitate may be mixed with a lithium compound as necessary, fired in an oxidizing atmosphere, and then fired in an inert gas atmosphere. Hereinafter, each step will be described.

(i)沈殿の形成
共沈法によって沈殿を形成する工程では、Mn、FeおよびNiの原料となる金属化合物を水、水/アルコール混合物などに溶解させた混合水溶液をアルカリ性として、Mn、Fe及びNiを含む沈殿物を形成する。
(I) Formation of precipitate In the step of forming a precipitate by the coprecipitation method, a mixed aqueous solution in which a metal compound as a raw material of Mn, Fe and Ni is dissolved in water, a water / alcohol mixture or the like is made alkaline, and Mn, Fe and A precipitate containing Ni is formed.

構成金属源となるマンガン化合物、鉄化合物、及びニッケル化合物としては、これらの化合物を含む混合水溶液を形成できる成分であれば特に限定なく使用できる。通常、水溶性の化合物を用いればよい。この様な水溶性化合物の具体例としては、塩化物、硝酸塩、硫酸塩、シュウ酸塩、酢酸塩などの水溶性塩などを挙げることができる。マンガンの場合は、過マンガン酸塩も用いることができる。これらの水溶性化合物は、無水物および水和物のいずれであってもよい。また、金属そのもの、酸化物あるいは水酸化物などの非水溶性化合物であっても、例えば、塩酸や硝酸などの酸を用いて溶解させて水溶液として用いることが可能である。これらの各原料化合物は、各金属源について、それぞれ単独で使用してもよく、2種以上を併用してもよい。   The manganese compound, iron compound, and nickel compound that are constituent metal sources can be used without particular limitation as long as they can form a mixed aqueous solution containing these compounds. Usually, a water-soluble compound may be used. Specific examples of such water-soluble compounds include water-soluble salts such as chlorides, nitrates, sulfates, oxalates and acetates. In the case of manganese, permanganate can also be used. These water-soluble compounds may be either anhydrides or hydrates. In addition, even a water-insoluble compound such as a metal itself, an oxide, or a hydroxide can be used as an aqueous solution by being dissolved using an acid such as hydrochloric acid or nitric acid. Each of these raw material compounds may be used alone or in combination of two or more for each metal source.

該混合水溶液における上記各金属化合物の混合割合は、目的とする複合酸化物における各元素比と同様の元素比となるようにすればよい。即ち、組成式:Li1+x(Mn1-m-n FeNi)1-xO2 において、m及びnが 0≦m≦0.6, 0≦n≦0.3の範囲内であって、各遷移金属元素のモル比が図1に示す三角組成図において、点A、点B、点C及び点Dを頂点とする四角形で囲まれる範囲内となるように、各原料を混合すればよい。 What is necessary is just to make it the mixing ratio of each said metal compound in this mixed aqueous solution become an element ratio similar to each element ratio in the target complex oxide. That is, in the composition formula: Li 1 + x (Mn 1-mn Fe m Ni n ) 1-x O 2 , m and n are in the range of 0 ≦ m ≦ 0.6, 0 ≦ n ≦ 0.3, and each transition Each raw material may be mixed so that the molar ratio of the metal elements is within a range surrounded by a rectangle having points A, B, C and D as vertices in the triangular composition diagram shown in FIG.

混合水溶液中の各化合物の濃度については、特に限定的ではなく、均一な混合水溶液を
形成でき、且つ円滑に共沈物を形成できるように適宜決めればよい。通常、構成金属化合物の合計濃度を、0.01〜5mol/l程度、好ましくは0.1〜2mol/l程度とすればよい。
The concentration of each compound in the mixed aqueous solution is not particularly limited, and may be determined as appropriate so that a uniform mixed aqueous solution can be formed and a coprecipitate can be smoothly formed. Usually, the total concentration of the constituent metal compounds may be about 0.01 to 5 mol / l, preferably about 0.1 to 2 mol / l.

該混合水溶液の溶媒としては、水を単独で用いる他、メタノール、エタノールなどの水溶性アルコールを含む水−アルコール混合溶媒を用いても良い。   As a solvent for the mixed aqueous solution, water may be used alone, or a water-alcohol mixed solvent containing a water-soluble alcohol such as methanol or ethanol may be used.

該混合水溶液から沈殿物(共沈物)を生成させるには、該混合水溶液をアルカリ性とすればよい。良好な沈殿物を形成する条件は、混合水溶液に含まれる各化合物の種類、濃度などによって異なるので一概に規定出来ないが、通常、pH8程度以上とすることが好ましく、pH11程度以上とすることがより好ましい。   In order to generate a precipitate (coprecipitate) from the mixed aqueous solution, the mixed aqueous solution may be made alkaline. Conditions for forming a good precipitate vary depending on the type and concentration of each compound contained in the mixed aqueous solution, and thus cannot be defined unconditionally. However, it is usually preferable to set the pH to about 8 or more, and to about pH 11 or more. More preferred.

該混合水溶液をアルカリ性にする方法については、特に限定はなく、通常は、該混合水溶液をアルカリ又はアルカリを含む水溶液に添加すればよい。また、アルカリを含む水溶液を該混合水溶液に添加する方法によっても共沈物を形成することができる。 該混合水溶液をアルカリ性にするために用いるアルカリとしては、例えば、水酸化カリウム、水酸化ナトリウム、水酸化リチウムなどのアルカリ金属水酸化物、アンモニアなどを用いることができる。これらのアルカリを水溶液として用いる場合には、例えば、0.1〜20mol/l程度、好ましくは0.3〜10mol/l程度の濃度の水溶液として用いることができる。また、アルカリは、上記した金属化合物の混合水溶液と同様に、水溶性アルコールを含む水−アルコール混合溶媒に溶解しても良い。   There is no particular limitation on the method of making the mixed aqueous solution alkaline. Usually, the mixed aqueous solution may be added to an alkali or an aqueous solution containing an alkali. Moreover, a coprecipitate can be formed also by the method of adding the aqueous solution containing an alkali to this mixed aqueous solution. Examples of the alkali used to make the mixed aqueous solution alkaline include alkali metal hydroxides such as potassium hydroxide, sodium hydroxide, and lithium hydroxide, ammonia, and the like. When these alkalis are used as an aqueous solution, for example, they can be used as an aqueous solution having a concentration of about 0.1 to 20 mol / l, preferably about 0.3 to 10 mol / l. Further, the alkali may be dissolved in a water-alcohol mixed solvent containing a water-soluble alcohol, similarly to the mixed aqueous solution of the metal compound described above.

沈殿形成時の混合水溶液の液温は、30〜80℃程度とすることが好ましく、40〜75℃程度とすることがより好ましい。このような加熱下で沈殿を形成することによって、水酸化物としての沈殿形成時の反応速度を向上させ、微細な一次粒子が凝集した塊状の二次粒子とすることができる。この様な塊状の二次粒子は、比表面積が大きく酸化反応性に富み、また後述する塗布電極をとした際に極板密度を向上させやすい利点がある。   The liquid temperature of the mixed aqueous solution during the formation of the precipitate is preferably about 30 to 80 ° C, more preferably about 40 to 75 ° C. By forming a precipitate under such heating, the reaction rate at the time of forming a precipitate as a hydroxide can be improved, and a massive secondary particle in which fine primary particles are aggregated can be obtained. Such massive secondary particles have a large specific surface area and high oxidation reactivity, and have an advantage that the electrode plate density is easily improved when a coating electrode described later is used.

この様な条件で沈殿を形成した後、後述する方法で湿式酸化、焼成等を行うことによって、目的とする遷移金属元素の平均酸化数が3.4〜3.6の範囲内にある複合酸化物を得ることができる。   After forming a precipitate under such conditions, a composite oxidation in which the average oxidation number of the target transition metal element is within the range of 3.4 to 3.6 by performing wet oxidation, firing, or the like by a method described later. You can get things.

次いで、上記した方法で得られた沈殿物を水に分散させたスラリーにリチウム化合物を加えて、湿式酸化を行う。   Next, a lithium compound is added to the slurry obtained by dispersing the precipitate obtained by the above-described method in water, and wet oxidation is performed.

尚、湿式酸化に先だって、加熱下で形成された沈殿物から水洗等の方法で過剰のアルカリ成分、残留原料等を除去して精製することが好ましい。精製された沈殿は、デカンテーション法、濾過などの方法で分離した後、再度、水に分散させてスラリー状とし、リチウム化合物を加えて、湿式酸化を行えばよい。   Prior to wet oxidation, it is preferable to purify the precipitate formed under heating by removing excess alkali components, residual raw materials and the like by a method such as washing with water. The purified precipitate may be separated by a method such as decantation or filtration, and then dispersed again in water to form a slurry, followed by wet oxidation by adding a lithium compound.

湿式酸化を行う際に、スラリーに含まれる沈殿物の量は、50〜300g/L程度とすることが好ましく、100〜250g/L程度とすることがより好ましい。スラリーに添加するリチウム化合物としては、水酸化リチウム、塩化リチウム、硝酸リチウム、酢酸リチウム等を用いることができる。リチウム化合物の添加量は、沈殿物中に含まれる遷移金属1モルに対して、1〜3モル程度とすることが好ましく、1.5〜2モル程度とすることがより好ましい。   When performing wet oxidation, the amount of the precipitate contained in the slurry is preferably about 50 to 300 g / L, and more preferably about 100 to 250 g / L. As the lithium compound added to the slurry, lithium hydroxide, lithium chloride, lithium nitrate, lithium acetate, or the like can be used. The addition amount of the lithium compound is preferably about 1 to 3 mol, and more preferably about 1.5 to 2 mol, with respect to 1 mol of the transition metal contained in the precipitate.

湿式酸化の方法については、特に限定はないが、例えば、沈殿物を含むスラリーを反応容器内で均一に分散させながら、酸素、空気などの酸化性気体を吹き込めばよい。撹拌の程度については特に限定はなく、均一なスラリー状態となるように撹拌すればよい。例えば、200〜800rpm程度、好ましくは300〜500rpm程度の回転数で撹拌す
ればよい。
The wet oxidation method is not particularly limited. For example, an oxidizing gas such as oxygen or air may be blown while uniformly dispersing the slurry containing the precipitate in the reaction vessel. The degree of stirring is not particularly limited, and stirring may be performed so that a uniform slurry state is obtained. For example, the stirring may be performed at a rotational speed of about 200 to 800 rpm, preferably about 300 to 500 rpm.

酸化性気体の吹き込み量について、特に限定的ではないが、沈殿物を含むスラリー1リットルあたり、0.3〜5L/min程度とすることが好ましく、0.5〜2L/min程度とすることがより好ましい。この際に酸化反応を効率よく行うためにディフューザー等の泡を細かくする装置を使用し、微細な酸化性気体を吹き込むことが好ましい。   The amount of the oxidizing gas blown is not particularly limited, but is preferably about 0.3 to 5 L / min, and preferably about 0.5 to 2 L / min per liter of the slurry containing the precipitate. More preferred. At this time, in order to efficiently perform the oxidation reaction, it is preferable to use a device for making bubbles fine, such as a diffuser, and to blow in a fine oxidizing gas.

また、沈殿物を含むスラリーを均一な状態となるように撹拌しつつ、H2O2などの酸化性化合物を添加する方法によっても湿式酸化を行うことができる。酸化性化合物の添加方法や添加量については、特に限定的ではないが、例えば、5〜10重量%のH2O2水溶液を用い、1〜5ml/min程度の流速で100〜150mL程度滴下する方法によっても湿式酸化を行うことができる。 Further, wet oxidation can also be performed by a method of adding an oxidizing compound such as H 2 O 2 while stirring the slurry containing the precipitate in a uniform state. The method for adding the oxidizing compound and the amount of the oxidizing compound are not particularly limited. For example, about 5 to 10% by weight of a H 2 O 2 aqueous solution is used, and about 100 to 150 mL is dropped at a flow rate of about 1 to 5 ml / min. Wet oxidation can also be performed by the method.

湿式酸化時の液温については、特に限定的ではないが、例えば、10〜60℃程度、好ましくは、20〜50℃程度とすればよい。湿式酸化の時間は、通常、8時間〜3日程度、好ましくは12〜36時間程度とすればよい。   The liquid temperature during wet oxidation is not particularly limited, but may be, for example, about 10 to 60 ° C., preferably about 20 to 50 ° C. The wet oxidation time is usually about 8 hours to 3 days, preferably about 12 to 36 hours.

上記した方法で、特定の配合比率の原料を含む混合水溶液から沈殿を形成した後、形成された沈殿物にリチウム化合物を添加して湿式酸化することによって、共沈物中に含まれるマンガン、鉄などの酸化を進行させることができ、後述する二段階の焼成方法と組み合わせることによって、Mn、Ni及びFeからなる遷移金属元素の平均酸化数が3.4〜3.6の範囲にあるリチウムマンガン系複合酸化物を得ることができる。更に、湿式酸化を行うことによって、後述する焼成処理後に得られる複合酸化物の比表面積を大きくすることができる。   After forming a precipitate from a mixed aqueous solution containing a raw material having a specific blending ratio by the above-described method, by adding a lithium compound to the formed precipitate and performing wet oxidation, manganese, iron, and the like contained in the coprecipitate Lithium manganese composite in which the oxidation can proceed and the average oxidation number of the transition metal element composed of Mn, Ni and Fe is in the range of 3.4 to 3.6 by combining with the two-stage firing method described later An oxide can be obtained. Furthermore, by performing wet oxidation, the specific surface area of the composite oxide obtained after the baking treatment described later can be increased.

次いで、湿式酸化後の沈殿物を含むスラリーを乾燥させて、乾燥粉末とする。乾燥方法については特に限定はないが、棚式乾燥機による蒸発乾固やスラリードライヤー、スプレードライヤー等を使用することができる。乾燥時の粉末温度は、60〜200℃程度とすることが好ましく、70〜120℃程度とすることがより好ましい。   Next, the slurry containing the precipitate after wet oxidation is dried to obtain a dry powder. Although there is no limitation in particular about the drying method, Evaporation to dryness by a shelf type dryer, a slurry dryer, a spray dryer, etc. can be used. The powder temperature during drying is preferably about 60 to 200 ° C, and more preferably about 70 to 120 ° C.

(ii)焼成処理
次いで、水熱処理前に得られた沈殿物の湿式酸化物を、後述する条件で二段階の焼成処理に供することによって、遷移金属元素の平均酸化数を3.4〜3.6の範囲に制御することができる。
(Ii) Calcination Treatment Next, the wet oxide of the precipitate obtained before the hydrothermal treatment is subjected to a two-stage calcination treatment under the conditions described later, whereby the average oxidation number of the transition metal element is 3.4 to 3. It can be controlled within a range of 6.

焼成処理の際には、沈殿物の湿式酸化物に含まれるリチウム元素量は、遷移金属元素1モルに対して、1.3〜2.2モル程度であることが好ましい。このため、焼成処理を行う前に組成分析を行い、この結果に基づいて、必要に応じて、湿式酸化物中に含まれるリチウム元素量が、上記した好ましい範囲となるようにリチウム化合物を添加すればよい。ただし、この段階で添加するリチウム化合物の添加量は、湿式酸化物に含まれる遷移金属元素1モルに対して、0.01〜2モル程度の範囲内とすることが好ましい。   In the firing treatment, the amount of lithium element contained in the wet oxide of the precipitate is preferably about 1.3 to 2.2 mol with respect to 1 mol of the transition metal element. Therefore, a composition analysis is performed before the firing treatment, and based on this result, a lithium compound is added as necessary so that the amount of lithium element contained in the wet oxide is within the above-described preferred range. That's fine. However, the addition amount of the lithium compound added at this stage is preferably within a range of about 0.01 to 2 mol with respect to 1 mol of the transition metal element contained in the wet oxide.

焼成処理前に添加できるリチウム化合物としては、リチウム元素を含む化合物であれば特に限定なく使用でき、具体例として、炭酸リチウム、塩化リチウム、硝酸リチウム、酢酸リチウム等のリチウム塩、水酸化リチウム、これらの水和物等を挙げることができる。これらのリチウム化合物は、一種単独又は二種以上混合して用いることができる。リチウム化合物は、粉末形態、水溶液形態等として用いることができるが、反応の均一性を確保するために、水溶液の形態で使用することが好ましい。この場合、水溶液の濃度については、通常、0.1〜10mol/l程度とすればよい。   The lithium compound that can be added before the firing treatment can be used without particular limitation as long as it contains a lithium element. Specific examples include lithium salts such as lithium carbonate, lithium chloride, lithium nitrate, and lithium acetate, lithium hydroxide, and the like. Can be mentioned. These lithium compounds can be used singly or in combination of two or more. The lithium compound can be used in the form of a powder, an aqueous solution, or the like, but is preferably used in the form of an aqueous solution in order to ensure the uniformity of the reaction. In this case, the concentration of the aqueous solution is usually about 0.1 to 10 mol / l.

通常、反応性を向上させるために、焼成用原料にリチウム化合物を加えて粉砕混合した後、焼成することが好ましい。粉砕の程度については、粗大粒子が含まれず、混合物が均一な色調となっていればよい。   Usually, in order to improve the reactivity, it is preferable to add a lithium compound to the raw material for baking, pulverize and mix, and then fire. As for the degree of pulverization, it is sufficient that coarse particles are not included and the mixture has a uniform color tone.

焼成処理としては、まず、第一段階として、酸化性雰囲気下において焼成を行う。酸化性雰囲気下で焼成を行う方法としては、例えば、空気、酸素等の酸素含有気体の雰囲気中において、好ましくは400〜600℃程度、より好ましくは450〜550℃程度に加熱すればよい。この工程では、酸化性雰囲気下で焼成することによって、主にマンガンの酸化が進行して、4価のマンガンが形成されるものと思われる。   As the firing treatment, first, firing is performed in an oxidizing atmosphere as a first step. As a method for firing in an oxidizing atmosphere, for example, heating in an atmosphere of an oxygen-containing gas such as air or oxygen is preferably performed at about 400 to 600 ° C., more preferably about 450 to 550 ° C. In this step, it is considered that, by firing in an oxidizing atmosphere, oxidation of manganese mainly proceeds to form tetravalent manganese.

酸化性雰囲気下での焼成時間は、焼成温度まで達する時間を含めて1〜10時間程度とすることが好ましく、2〜7時間程度とすることがより好ましい。 次いで、第二段階目の焼成として、不活性ガス雰囲気下で焼成を行う。不活性ガス雰囲気下で焼成する方法については、特に限定はないが、例えば、窒素、アルゴンガスなどの不活性ガス気流下等の不活性雰囲気中において、600〜850℃程度、好ましくは700〜800℃程度に加熱すればよい。   The firing time in an oxidizing atmosphere is preferably about 1 to 10 hours including the time to reach the firing temperature, and more preferably about 2 to 7 hours. Next, as a second stage baking, baking is performed in an inert gas atmosphere. The method for firing in an inert gas atmosphere is not particularly limited. For example, in an inert atmosphere such as an inert gas stream such as nitrogen or argon gas, the temperature is about 600 to 850 ° C., preferably 700 to 800. What is necessary is just to heat to about degreeC.

この場合、焼成温度は、上記した範囲内において、酸化性雰囲気下での焼成温度より、
200〜300℃程度高い温度とすることが好ましい。
In this case, the firing temperature is within the above-mentioned range from the firing temperature in an oxidizing atmosphere.
The temperature is preferably about 200 to 300 ° C. higher.

不活性ガス雰囲気下での焼成時間は、焼成温度まで達する時間を含めて 1〜48時間程度とすることが好ましく、10〜30時間程度とすることがより好ましい。   The firing time in an inert gas atmosphere is preferably about 1 to 48 hours including the time to reach the firing temperature, and more preferably about 10 to 30 hours.

この様な条件で不活性ガス雰囲気下で焼成を行うことによって、酸化性雰囲気下での焼成で形成された遷移金属元素の酸化数を変化させることなく、単斜晶層状岩塩型結晶構造を成長させて、目的とする複合酸化物を得ることができる。その結果、形成される複合酸化物に含まれるMn、Ni及びFeからなる遷移金属元素の平均酸化数を3.4〜3.6の範囲内に制御することができる。この場合、各元素の酸化数については必ずしも明確ではないが、上記した製造工程を経ることによって、Mnがほぼ4価、Feがほぼ3価、Niがほぼ2価となるものと思われる。   By firing in an inert gas atmosphere under such conditions, a monoclinic layered rock-salt crystal structure can be grown without changing the oxidation number of transition metal elements formed by firing in an oxidizing atmosphere. Thus, the target composite oxide can be obtained. As a result, the average oxidation number of the transition metal element composed of Mn, Ni, and Fe contained in the formed complex oxide can be controlled within the range of 3.4 to 3.6. In this case, although the oxidation number of each element is not necessarily clear, it is considered that Mn becomes almost tetravalent, Fe becomes almost trivalent, and Ni becomes almost divalent through the above-described manufacturing process.

また、上記した二段階の焼成方法によれば、形成される複合酸化物の比表面積を増大させることができる。これは、不活性雰囲気下で焼成を行うことによって、焼成時に二酸化炭素ガスが発生し、これにより焼成物に細孔が発達して、比表面積が増大することによるものと思われる。本発明方法によれば、比表面積が10m/g程度以上という高い比表面積の複合酸化物を得ることができる。比表面積の上限については、特に限定的ではないが、上記した方法では、通常、50m/g程度までの比表面積の複合酸化物を得ることができる。本発明の複合酸化物は、この様な高い比表面積を有することによって、Li挿入脱離断面積が大きくなり、これにより、充放電反応が円滑に進行するものと思われる。尚、本願明細書では、比表面積は、N2ガス吸着法によって求めたBET比表面積である。 Moreover, according to the above-described two-stage firing method, the specific surface area of the formed complex oxide can be increased. This is considered to be due to the fact that carbon dioxide gas is generated during firing by firing in an inert atmosphere, whereby pores develop in the fired product and the specific surface area increases. According to the method of the present invention, a complex oxide having a high specific surface area of about 10 m 2 / g or more can be obtained. The upper limit of the specific surface area is not particularly limited, but the above-described method can usually obtain a complex oxide having a specific surface area of up to about 50 m 2 / g. The composite oxide of the present invention has such a high specific surface area, so that the Li insertion / desorption cross-sectional area becomes large, and it is considered that the charge / discharge reaction proceeds smoothly. In the present specification, the specific surface area is a BET specific surface area determined by an N 2 gas adsorption method.

更に、上記した二段階の焼成方法によれば、該複合酸化物に含まれる鉄の酸化が進行し難く、充放電反応に寄与しないLiFe5O8, MnFe2O4等のスピネルフェライト成分の生成が抑制され、これにより高い充放電容量を有するものとなる。スピネルフェライト成分の含有量については、自発磁化を測定することによって間接的に評価することができる。本発明によれば、スピネルフェライト成分の生成が抑制されているために、0.005emu/g以下という非常に低い自発磁化を有する複合酸化物を得ることができる。 Furthermore, according to the two-step firing method described above, the oxidation of iron contained in the composite oxide is difficult to proceed and the formation of spinel ferrite components such as LiFe 5 O 8 and MnFe 2 O 4 that do not contribute to the charge / discharge reaction Is suppressed, thereby having a high charge / discharge capacity. The content of the spinel ferrite component can be indirectly evaluated by measuring spontaneous magnetization. According to the present invention, since the generation of the spinel ferrite component is suppressed, a composite oxide having a very low spontaneous magnetization of 0.005 emu / g or less can be obtained.

更に、上記した焼成工程では、形成されるリチウムマンガン系複合酸化物のLi含有量、粉体特性等も制御することができる。例えば、焼成の際に添加するリチウム化合物の量を
適宜設定することによって、リチウムマンガン系複合酸化物中のリチウム含有量を調整することができる。また、焼成温度を高くすることによって、リチウムマンガン系複合酸化物の粒径を大きくすることができる。
Furthermore, in the above-described firing step, the Li content, powder characteristics, and the like of the formed lithium manganese composite oxide can be controlled. For example, the lithium content in the lithium manganese composite oxide can be adjusted by appropriately setting the amount of the lithium compound added during firing. Moreover, the particle size of the lithium manganese composite oxide can be increased by increasing the firing temperature.

上記した焼成工程でリチウムマンガン系複合酸化物を得た後、通常、過剰のリチウム化合物や不純物等を除去するために、焼成物を水洗処理あるいは溶媒洗浄処理等に供する。その後、濾過を行い、例えば、80℃以上の温度、好ましくは100℃程度の温度で加熱乾燥してもよい。   After obtaining the lithium manganese composite oxide by the above-described firing step, the fired product is usually subjected to a water washing treatment or a solvent washing treatment in order to remove excess lithium compounds, impurities and the like. Thereafter, filtration may be performed and, for example, heat drying may be performed at a temperature of 80 ° C. or higher, preferably about 100 ° C.

リチウムイオン二次電池
本発明のリチウムマンガン系複合酸化物を正極材料とするリチウムイオン二次電池は、公知の手法により製造することができる。例えば、正極材料として、本発明による新規な複合酸化物を使用し、負極材料として、公知の金属リチウム、炭素系材料(活性炭、黒鉛)、珪素、酸化珪素などを使用し、電解液として、公知のエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどからなる混合溶媒に過塩素酸リチウム、LiPF6などのリチウム塩を溶解させた溶液(有機電解液)を使用し、さらにその他の公知の電池構成要素を使用して、常法に従って、リチウムイオン二次電池を組立てればよい。
Lithium Ion Secondary Battery A lithium ion secondary battery using the lithium manganese composite oxide of the present invention as a positive electrode material can be produced by a known method. For example, a novel composite oxide according to the present invention is used as a positive electrode material, a known metal lithium, a carbon-based material (activated carbon, graphite), silicon, silicon oxide, or the like is used as a negative electrode material, and a known electrolyte solution is used. Using a solution (organic electrolyte) in which a lithium salt such as lithium perchlorate or LiPF 6 is dissolved in a mixed solvent of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, etc., and other known battery configurations What is necessary is just to assemble a lithium ion secondary battery using an element according to a conventional method.

本発明によれば、鉄及びニッケルを含むリチウムマンガン系複合酸化物において、マンガン、鉄及びニッケルからなる遷移金属元素の平均酸化数が3.4〜3.6に制御された新規な複合酸化物を得ることができる。   According to the present invention, in the lithium manganese composite oxide containing iron and nickel, the novel composite oxide in which the average oxidation number of the transition metal element composed of manganese, iron and nickel is controlled to 3.4 to 3.6. Can be obtained.

得られた複合酸化物は、比表面積が大きく、充放電反応に寄与しないフェライト成分の生成が抑制されたものであり、高い充放電容量を有する正極材料として、有用性が高い酸化物である。   The obtained composite oxide has a large specific surface area, suppresses the generation of a ferrite component that does not contribute to the charge / discharge reaction, and is a highly useful oxide as a positive electrode material having a high charge / discharge capacity.

このため本発明の複合酸化物を正極材料として用いることによって、比較的安価な原料を使用して、優れた性能を有するリチウムイオン二次電池を得ることができる。   Therefore, by using the composite oxide of the present invention as the positive electrode material, a lithium ion secondary battery having excellent performance can be obtained using a relatively inexpensive raw material.

本発明のリチウムマンガン系複合酸化物に含まれる遷移金属元素のモル比を示す三角組成図。The triangular composition figure which shows the molar ratio of the transition metal element contained in the lithium manganese complex oxide of this invention. 実施例及び比較例で用いた反応装置の概略構成図。The schematic block diagram of the reaction apparatus used by the Example and the comparative example. 実施例及び比較例において、充放電試験に用いた評価セルの概略図。The schematic diagram of the evaluation cell used for the charging / discharging test in an Example and a comparative example.

以下、実施例および比較例を示し、本発明の特徴とするところを一層明確にするが、本発明は以下の実施例、比較例のみに限定されるものではない。   EXAMPLES Hereinafter, examples and comparative examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the following examples and comparative examples.

実施例1
図2に示す反応装置を用いて、以下の方法でリチウムマンガン系複合酸化物を作製した。
Example 1
Using the reaction apparatus shown in FIG. 2, a lithium manganese composite oxide was produced by the following method.

まず、攪拌機1を備えた容積5LのSUS製円筒型反応槽2に、3Lの水を入れ、次いで、硫酸アンモニウムを150g投入し、更にpHが11.0になるまで37%水酸化ナトリウム水溶液を加え、電熱ヒーター(図示を省略)を用いて温度を45℃に保持した。   First, 3 L of water is placed in a 5 L SUS cylindrical reactor 2 equipped with a stirrer 1, then 150 g of ammonium sulfate is added, and a 37% sodium hydroxide aqueous solution is added until the pH reaches 11.0. The temperature was kept at 45 ° C. using an electric heater (not shown).

その後、硫酸鉄(II)7水和物、硫酸マンガン(II)5水和物および硫酸ニッケル(II)6水
和物(鉄:マンガン:ニッケルメタル(モル比)=2:6:2)を蒸留水に加え、完全に溶解させた。その際の各金属イオン濃度はマンガンが26.0g/L、ニッケルが9.25g/L、鉄が8.76g/Lであった。これを、金属イオン含有溶液調製槽4から管3を通じて4時間かけて一定速度で前記反応槽2に連続供給した。また、37%水酸化ナトリウム水溶液を、水酸化物イオン等含有溶液槽5から管6を通じて断続的に加えることで、前記反応槽2内の溶液のpHを11.0に保持した。なお、溶液のpHを制御するために、pHセンサー7を使用した。上記の反応操作により、Fe-Mn-Ni複合水酸化物からなる共沈物が得られた。
Then, iron (II) sulfate heptahydrate, manganese (II) sulfate pentahydrate and nickel (II) sulfate hexahydrate (iron: manganese: nickel metal (molar ratio) = 2: 6: 2) In addition to distilled water, it was completely dissolved. The metal ion concentrations at that time were 26.0 g / L for manganese, 9.25 g / L for nickel, and 8.76 g / L for iron. This was continuously supplied from the metal ion-containing solution preparation tank 4 through the pipe 3 to the reaction tank 2 at a constant rate over 4 hours. Moreover, the pH of the solution in the said reaction tank 2 was hold | maintained at 11.0 by adding 37% sodium hydroxide aqueous solution intermittently through the pipe | tube 6 from the solution tank 5 containing hydroxide ions. A pH sensor 7 was used to control the pH of the solution. By the above reaction operation, a coprecipitate composed of Fe—Mn—Ni composite hydroxide was obtained.

次いで、得られた複合水酸化物をデカンテーション法により水洗し、過剰に存在する硫酸塩などの塩類を除去し、ろ過した後、Fe-Mn-Ni複合水酸化物を得た。これを2Lの反応容器に投入し、水酸化リチウム1水和物141.9gと蒸留水を加え全量を1.5リットルのスラリーとした。400rpmの攪拌下でFe-Mn-Ni複合水酸化物を含むスラリーに対して室温で1日間空気を5リットル/minで吹き込んで酸化処理して、沈殿を熟成させた。それらを粉末温度が80℃となるようにスラリーごとスプレードライヤーで乾燥させた。   Subsequently, the obtained composite hydroxide was washed with water by a decantation method to remove excessive salts such as sulfate and filtered, and an Fe—Mn—Ni composite hydroxide was obtained. This was put into a 2 L reaction vessel, and 141.9 g of lithium hydroxide monohydrate and distilled water were added to make a total slurry of 1.5 liters. Under stirring at 400 rpm, the slurry containing Fe-Mn-Ni composite hydroxide was subjected to an oxidation treatment by blowing air at 5 liters / min at room temperature for 1 day to mature the precipitate. They were dried with a spray dryer together with the slurry so that the powder temperature was 80 ° C.

得られた粉末を空気流中500℃ で3時間焼成し、次いで、焼成物を窒素気流中750℃で20時間焼成した。次いで、過剰のリチウム塩を除去するために、焼成物を蒸留水で水洗し、濾過し、乾燥して、粉末状生成物を得た。   The obtained powder was fired at 500 ° C. for 3 hours in an air stream, and then the fired product was fired at 750 ° C. for 20 hours in a nitrogen stream. Subsequently, in order to remove excess lithium salt, the fired product was washed with distilled water, filtered and dried to obtain a powdery product.

得られた粉末状生成物について、X線回折(XRD)を実施した。その結果、以前に報告されている単斜晶層状岩塩型構造を有するLi2MnO3の単位胞:空間群 X-ray diffraction (XRD) was performed on the obtained powdery product. As a result, the previously reported unit cell of Li 2 MnO 3 with monoclinic layered rock-salt structure: space group

Figure 2013212959
Figure 2013212959

と同様の測定パターンを得た。この結果から、実施例1で得られた粉末状生成物は、単斜晶層状岩塩型結晶相のみであることが確認できた。 The same measurement pattern was obtained. From this result, it was confirmed that the powdery product obtained in Example 1 was only a monoclinic layered rock salt type crystal phase.

更に、実施例1で得られた粉末状生成物について、以下の方法で組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表1に示す。
(i)組成分析
各正極活物質粉末の金属原子含有量(質量%)は、塩酸で溶解しICP−AES(パーキンエルマー社製optima7300DV )により測定した。
(ii)比表面積測定
マウンテック社製マックソーブを使用し、N2ガス吸着量測定によるB.E.T.法により比表面積を求めた。
(iii)自発磁化測定
理研電子(株)製の振動型磁束計を用い、(NH4)2Mn(SO4)2.6H2Oを磁化標準試料として校正後、-1から+1Tの範囲で重量既知の試料の磁化の磁場依存性を測定し、+0.5〜+1Tの範囲と-0.5〜-1Tの範囲それぞれについて磁化の磁場依存性を直線回帰分析し、それぞれの零磁場における切片の絶対値を平均することにより自発磁化を求めた。
(iv)遷移金属元素の平均酸化数測定
遷移金属平均価数は、鉄、マンガン及びニッケルが塩酸溶液中で2価の陽イオンとなることを利用した酸化還元滴定法により求めた。
Furthermore, the powdery product obtained in Example 1 was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation by the following methods. The results are shown in Table 1 below.
(I) Composition analysis The metal atom content (mass%) of each positive electrode active material powder was melt | dissolved with hydrochloric acid, and measured by ICP-AES (Perkin Elmer optima7300DV).
(Ii) Specific surface area measurement B. Measured by measuring the amount of adsorbed N 2 gas using Maxsorb manufactured by Mountec. E. T. The specific surface area was determined by the method.
(Iii) using the spontaneous magnetization measurement Riken Denshi Co., Ltd. vibrating magnetometer, (NH 4) 2 Mn ( SO 4) 2 .6H after calibration the 2 O as the magnetization standard sample, ranging from -1 + 1T Measure the magnetic field dependence of the magnetization of a sample with a known weight, and perform linear regression analysis of the magnetic field dependence of the magnetization for each of the +0.5 to + 1T range and the -0.5 to -1T range. Spontaneous magnetization was determined by averaging the absolute values.
(Iv) Measurement of average oxidation number of transition metal elements The average valence of transition metals was determined by a redox titration method utilizing the fact that iron, manganese and nickel become divalent cations in hydrochloric acid solution.

まず、50ml三角フラスコにヨウ化カリウム1gを入れ、次いで正極活物質粉末0.2
gを投入し10mlの6M塩酸と蒸留水10mlを加え溶解した。これにより、2価以上の鉄、マンガン及びニッケルはヨウ素イオンから電子を奪う酸化還元反応によりヨウ素を生成し2価の陽イオンとなる。
First, 1 g of potassium iodide is put into a 50 ml Erlenmeyer flask, and then the positive electrode active material powder 0.2
10 g of 6M hydrochloric acid and 10 ml of distilled water were added and dissolved. As a result, iron, manganese, and nickel having a valence of 2 or more generate iodine by a redox reaction that takes electrons from iodine ions to become divalent cations.

この反応で生成したヨウ素量を、チオ硫酸塩を用いる酸化還元滴定法で測定することにより、鉄、マンガン及びニッケルがヨウ素イオンから奪った電子数を測定した。溶液状態では鉄、マンガン、及びニッケルは2価となることから、各正極活物質粉末に含まれる鉄、マンガン及びニッケル量から、モル数計算により、鉄、マンガン及びニッケルの平均酸化数を求めた。
(v)充放電特性評価
実施例1で得られた粉末状生成物を正極活物質として、リチウムイオン二次電池(TOMセル)を作製し、以下の電池構成及び充放電条件で充放電試験を行った。
<電池構成及び充放電試験条件>
正極:実施例1で得られた粉末状生成物を正極活物質とし、導電材(アセチレンブラック(AB)と結着材(ポリフッ化ビニリデン(PVDF))を、活物質:AB:PVDF(重量比)=85:10:5で混合したものをN−メチル-−2−ピロリドン(NMP)中に分散してスラリーとした。次に、このスラリーを厚さ20μmのアルミ板に塗布後、スラリーを乾燥させて、アルミ板表面に正極活物質層を形成させた。次に、正極活物質層を形成させたアルミ板を100MPaの圧力で加圧成形して、合計の厚さ80μmのシート状の成形物とした。このシート状成形物をφ18mmに打ち抜いて正極板を得た。
負極:金属リチウム
電解液:LiPF6を1.0mol/Lでエチレンカーボネートとジメチルカーボネートの混合溶媒中に溶解させたもの
試験温度:25 ℃
電流密度(極板あたり):0.21mA、
電位範囲:2.0-4.8 V (vs. Li)
評価セル:図3に示すTOMセル(日本トムセル製)。
The amount of iodine produced by this reaction was measured by an oxidation-reduction titration method using thiosulfate, thereby measuring the number of electrons taken from iodine ions by iron, manganese and nickel. Since iron, manganese, and nickel are divalent in the solution state, the average oxidation numbers of iron, manganese, and nickel were obtained by calculating the number of moles from the amounts of iron, manganese, and nickel contained in each positive electrode active material powder. .
(V) Evaluation of charge / discharge characteristics Using the powdered product obtained in Example 1 as a positive electrode active material, a lithium ion secondary battery (TOM cell) was produced, and a charge / discharge test was conducted under the following battery configuration and charge / discharge conditions. went.
<Battery configuration and charge / discharge test conditions>
Positive electrode: The powdered product obtained in Example 1 was used as a positive electrode active material, a conductive material (acetylene black (AB) and a binder (polyvinylidene fluoride (PVDF)), an active material: AB: PVDF (weight ratio). ) = 85: 10: 5 was mixed in N-methyl-2-pyrrolidone (NMP) to form a slurry, which was then applied to an aluminum plate having a thickness of 20 μm. After drying, a positive electrode active material layer was formed on the surface of the aluminum plate, and then the aluminum plate on which the positive electrode active material layer was formed was pressure-molded at a pressure of 100 MPa to form a sheet-like sheet having a total thickness of 80 μm. The sheet-like molded product was punched out to 18 mm to obtain a positive electrode plate.
Negative electrode: Lithium metal electrolyte: LiPF 6 dissolved at 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate Test temperature: 25 ° C
Current density (per electrode plate): 0.21 mA
Potential range: 2.0-4.8 V (vs. Li)
Evaluation cell: TOM cell (manufactured by Nippon Tomcell) shown in FIG.

実施例2〜6
硫酸鉄(II)7水和物、硫酸マンガン(II)5水和物および硫酸ニッケル(II)6水和物の割合を変更した以外は、実施例1と同様にして粉末状生成物を得た。
Examples 2-6
A powdery product was obtained in the same manner as in Example 1 except that the ratios of iron (II) sulfate heptahydrate, manganese (II) sulfate pentahydrate and nickel (II) sulfate hexahydrate were changed. It was.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、いずれも単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that all were monoclinic layered rock salt type crystal phases.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表1及び表2に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Tables 1 and 2 below.

実施例7
原料として、硝酸鉄(III)・九水和物、塩化マンガン(II)・四水和物、及び塩化ニッケル(II)・六水和物 (鉄:マンガン:ニッケル(金属成分モル比)=2:6:2)を用いる以外は、実施例1と同様にして粉末状生成物を得た。
Example 7
As raw materials, iron nitrate (III), nonahydrate, manganese chloride (II), tetrahydrate, and nickel chloride (II), hexahydrate (iron: manganese: nickel (molar ratio of metal components) = 2) A powdery product was obtained in the same manner as in Example 1 except that: 6: 2) was used.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that it was only a monoclinic layered rock salt type crystal phase.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表2に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 2 below.

実施例8
Fe-Mn-Ni複合水酸化物を含むスラリー溶液に空気を吹き込む操作に変えて、酸素を吹き込み、これ以外は、実施例1と同様にして粉末状生成物を得た。
Example 8
A powdery product was obtained in the same manner as in Example 1 except that oxygen was blown instead of blowing air into the slurry solution containing the Fe—Mn—Ni composite hydroxide.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that it was only a monoclinic layered rock salt type crystal phase.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表2に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 2 below.

実施例9
Fe-Mn-Ni複合水酸化物を含むスラリー溶液に空気を吹き込む操作に変えて、該スラリー溶液に9wt%H2O2溶液を2ml/minの流速で120ml滴下した。
添加し、これ以外は、実施例1と同様にして粉末状生成物を得た。
Example 9
Instead of the operation of blowing air into the slurry solution containing the Fe-Mn-Ni composite hydroxide, 120 ml of 9 wt% H 2 O 2 solution was dropped into the slurry solution at a flow rate of 2 ml / min.
A powdery product was obtained in the same manner as in Example 1 except for the addition.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that it was only a monoclinic layered rock salt type crystal phase.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表2に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 2 below.

比較例1〜3
硫酸鉄(II)7水和物、硫酸マンガン(II)5水和物および硫酸ニッケル(II)6水和物の割合を変更した以外は、実施例1と同様にして粉末状生成物を得た。
Comparative Examples 1-3
A powdery product was obtained in the same manner as in Example 1 except that the ratios of iron (II) sulfate heptahydrate, manganese (II) sulfate pentahydrate and nickel (II) sulfate hexahydrate were changed. It was.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、いずれも単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that all were monoclinic layered rock salt type crystal phases.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表3に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 3 below.

比較例4
Fe-Mn-Ni複合水酸化物を含むスラリー溶液に空気を吹き込むことなく、これ以外は実施例1と同様にして粉末状生成物を得た。
Comparative Example 4
A powdered product was obtained in the same manner as in Example 1 except that air was not blown into the slurry solution containing the Fe—Mn—Ni composite hydroxide.

得られた粉末状生成物の結晶構造について実施例1と同様にして確認した結果、単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that it was only a monoclinic layered rock salt type crystal phase.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表3に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 3 below.

比較例5
湿式酸化処理後の粉末を空気流中で焼成する工程を省略する以外は、実施例1と同様にして粉末状生成物を得た。
Comparative Example 5
A powdery product was obtained in the same manner as in Example 1 except that the step of baking the powder after the wet oxidation treatment in an air stream was omitted.

得られた粉末状生成物について、粉末X線回折測定を行った。その結果、Li2MO3以外に、LiFeO2ピークが確認され、相分離していると考えられた。 The obtained powdery product was subjected to powder X-ray diffraction measurement. As a result, in addition to Li 2 MO 3 , a LiFeO 2 peak was confirmed and it was considered that phase separation occurred.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表1に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 1 below.

比較例6
窒素気流中750℃で20時間焼成することに変えて、空気気流中で750℃で20時間焼し、これ以外は、実施例1と同様にして粉末状生成物を得た。
Comparative Example 6
Instead of firing at 750 ° C. for 20 hours in a nitrogen stream, a powdery product was obtained in the same manner as in Example 1 except that firing was performed at 750 ° C. for 20 hours in an air stream.

得られた粉末状生成物に結晶構造について実施例1と同様にして確認した結果、単斜晶層状岩塩型結晶相のみであることが確認できた。   As a result of confirming the crystal structure of the obtained powdery product in the same manner as in Example 1, it was confirmed that it was only a monoclinic layered rock salt type crystal phase.

更に、該生成物について、実施例1と同様にして、組成分析、比表面積測定、自発磁化測定、遷移金属元素の平均酸化数測定、及び充放電特性評価を行った。結果を下記表1に示す。   Further, in the same manner as in Example 1, the product was subjected to composition analysis, specific surface area measurement, spontaneous magnetization measurement, transition metal element average oxidation number measurement, and charge / discharge characteristic evaluation. The results are shown in Table 1 below.

Figure 2013212959
Figure 2013212959

Figure 2013212959
Figure 2013212959

Figure 2013212959
Figure 2013212959

以上の結果から明らかなように、実施例1〜9の方法で得られた粉末状生成物は、いずれも、遷移金属元素の平均価数が、3.4〜3.6の範囲内にあり、この範囲外にある比較例1〜6の粉末状生成物と比較して、初期放電容量が高い値であり、優れた充放電特性を有するものであった。   As is clear from the above results, the powder products obtained by the methods of Examples 1 to 9 all have an average valence of the transition metal element in the range of 3.4 to 3.6. Compared with the powdery products of Comparative Examples 1 to 6 outside this range, the initial discharge capacity was a high value and had excellent charge / discharge characteristics.

更に、実施例1〜9の方法によれば、比表面積が大きく、単斜晶層状岩塩型結晶相単相からなる自発磁化が低い複合酸化物が得られることが確認できた。   Furthermore, according to the methods of Examples 1 to 9, it was confirmed that a complex oxide having a large specific surface area and low spontaneous magnetization composed of a monoclinic layered rock salt type crystal phase single phase was obtained.

Claims (8)

組成式:Li1+x(Mn1-m-n FeNi)1-xO2 (式中、x、m及びnの範囲は、0≦x≦1/3, 0≦m≦0.6, 0≦n≦0.3である)で表される単斜晶層状岩塩型構造を有する複合酸化物であって、
(1)Mn、Fe及びNiの三成分のモル比が、Mn、Fe及びNiを各頂点とするモル比三角組成図において、点A(Mn : Fe : Ni=60:40:0)、点B(Mn : Fe : Ni=40:60:0)、点C(Mn : Fe
: Ni=70:0:30)、及び点D(Mn : Fe : Ni=80:0:20)の4点を頂点とする四角形の範囲内にあり、
(2)Mn、Fe及びNiの平均酸化数が3.4〜3.6である
ことを特徴とするリチウムマンガン系複合酸化物。
Composition formula: Li 1 + x (Mn 1-mn Fe m Ni n ) 1-x O 2 (where x, m and n are in the range of 0 ≦ x ≦ 1/3, 0 ≦ m ≦ 0.6, 0 A composite oxide having a monoclinic layered rock salt structure represented by ≦ n ≦ 0.3,
(1) The molar ratio of the three components of Mn, Fe, and Ni is point A (Mn: Fe: Ni = 60: 40: 0), point in the molar ratio triangular composition diagram with Mn, Fe, and Ni as vertices. B (Mn: Fe: Ni = 40: 60: 0), point C (Mn: Fe
: Ni = 70: 0: 30) and the point D (Mn: Fe: Ni = 80: 0: 20) within the range of a quadrangle with the four points as vertices,
(2) A lithium manganese composite oxide characterized in that the average oxidation number of Mn, Fe, and Ni is 3.4 to 3.6.
比表面積が10〜50m/gであり、自発磁化が0.005emu/g以下である、請求項1に記載のリチウムマンガン系複合酸化物。 2. The lithium manganese based composite oxide according to claim 1, wherein the specific surface area is 10 to 50 m 2 / g and the spontaneous magnetization is 0.005 emu / g or less. マンガン化合物、鉄化合物、及びニッケル化合物を含む混合水溶液をアルカリ性として沈殿を形成し、形成された沈殿物にリチウム化合物を添加して湿式酸化処理した後、酸化性雰囲気下で焼成し、次いで、不活性ガス雰囲気下で焼成することとを特徴とする請求項1又は2に記載のリチウムマンガン系複合酸化物の製造方法。 A mixed aqueous solution containing a manganese compound, an iron compound, and a nickel compound is made alkaline to form a precipitate, a lithium compound is added to the formed precipitate and wet oxidation treatment is performed, followed by firing in an oxidizing atmosphere, The method for producing a lithium manganese composite oxide according to claim 1, wherein the firing is performed in an active gas atmosphere. 沈殿形成時の混合水溶液の液温が30〜80℃である請求項3に記載のリチウムマンガン系複合酸化物の製造方法。 The method for producing a lithium manganese composite oxide according to claim 3, wherein the temperature of the mixed aqueous solution at the time of precipitation formation is 30 to 80 ° C. 沈殿物を湿式酸化する方法が、沈殿物を含む水溶液を撹拌しつつ、酸化性気体を吹き込む方法、又は沈殿物を含む水溶液を撹拌しつつ、酸化性化合物を添加する方法である請求項3又は4に記載のリチウムマンガン系複合酸化物の製造方法。 The method of wet-oxidizing the precipitate is a method of blowing an oxidizing gas while stirring the aqueous solution containing the precipitate, or a method of adding the oxidizing compound while stirring the aqueous solution containing the precipitate. 4. The method for producing a lithium manganese composite oxide according to 4. 酸化性雰囲気中での焼成を400〜600℃で行い、不活性ガス雰囲気中での焼成を600〜850℃で行うことを特徴とする請求項3〜5のいずれかに記載のリチウムマンガン系複合酸化物の製造方法。 6. The lithium manganese composite according to claim 3, wherein firing in an oxidizing atmosphere is performed at 400 to 600 ° C., and firing in an inert gas atmosphere is performed at 600 to 850 ° C. 6. Production method of oxide. 請求項1又は2に記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料。 The positive electrode material for lithium ion secondary batteries which consists of a lithium manganese type complex oxide of Claim 1 or 2. 請求項1又は2に記載のリチウムマンガン系複合酸化物からなるリチウムイオン二次電池用正極材料を構成要素とするリチウムイオン二次電池。
The lithium ion secondary battery which uses the positive electrode material for lithium ion secondary batteries which consists of a lithium manganese type complex oxide of Claim 1 or 2 as a component.
JP2012084456A 2012-04-03 2012-04-03 Lithium manganese composite oxide and method for producing the same Active JP6128303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084456A JP6128303B2 (en) 2012-04-03 2012-04-03 Lithium manganese composite oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084456A JP6128303B2 (en) 2012-04-03 2012-04-03 Lithium manganese composite oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013212959A true JP2013212959A (en) 2013-10-17
JP6128303B2 JP6128303B2 (en) 2017-05-17

Family

ID=49586619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084456A Active JP6128303B2 (en) 2012-04-03 2012-04-03 Lithium manganese composite oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP6128303B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104275A (en) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particle and production method of the same, and positive electrode active substance for non-aqueous electrolyte secondary cell and production method of the same
JP2018104274A (en) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particle and production method of the same, and positive electrode active substance for non-aqueous electrolyte secondary cell and production method of the same
WO2018181967A1 (en) * 2017-03-31 2018-10-04 東ソー株式会社 Manganese oxide, production method therefor, and lithium secondary battery
WO2022242714A1 (en) * 2021-05-19 2022-11-24 蜂巢能源科技股份有限公司 Iron-manganese-based positive electrode material, and preparation method therefor and use thereof
US11552295B2 (en) 2017-01-31 2023-01-10 Nec Corporation Lithium-manganese composite oxide, and method for producing same, and positive electrode material, positive electrode and lithium ion secondary battery using same
CN115893526A (en) * 2022-12-21 2023-04-04 广东佳纳能源科技有限公司 Nickel-iron-manganese layered hydroxide precursor for sodium ion battery, and preparation method and application thereof
CN116230842A (en) * 2022-12-12 2023-06-06 湖北万润新能源科技股份有限公司 Preparation method of lithium supplementing agent

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048718A (en) * 2001-08-01 2003-02-21 National Institute Of Advanced Industrial & Technology Lithium ferritic multiple oxide and production method therefor
JP2003297359A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2009179501A (en) * 2008-01-30 2009-08-13 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese complex oxide having regular structure and method for producing the same
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
JP2010135187A (en) * 2008-12-04 2010-06-17 National Institute Of Advanced Industrial Science & Technology Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
CN101908615A (en) * 2010-07-27 2010-12-08 中信国安盟固利电源技术有限公司 Ferro-manganese nickel anode material and preparation method thereof
JP2012041257A (en) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology Lithium manganese-based compound oxide and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048718A (en) * 2001-08-01 2003-02-21 National Institute Of Advanced Industrial & Technology Lithium ferritic multiple oxide and production method therefor
JP2003297359A (en) * 2002-04-05 2003-10-17 Hitachi Ltd Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2009179501A (en) * 2008-01-30 2009-08-13 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese complex oxide having regular structure and method for producing the same
JP2009274940A (en) * 2008-05-19 2009-11-26 National Institute Of Advanced Industrial & Technology Monoclinic lithium manganese-based compound oxide having cation ordered structure and method for producing the same
JP2010135187A (en) * 2008-12-04 2010-06-17 National Institute Of Advanced Industrial Science & Technology Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JP2012041257A (en) * 2010-07-20 2012-03-01 National Institute Of Advanced Industrial Science & Technology Lithium manganese-based compound oxide and method for manufacturing the same
CN101908615A (en) * 2010-07-27 2010-12-08 中信国安盟固利电源技术有限公司 Ferro-manganese nickel anode material and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, J. ET AL: "Recent Advances in the LiFeO2-based Materials for Li-ion Batteries", INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 6, no. 5, JPN6015052174, 1 May 2011 (2011-05-01), pages 1550 - 1561, ISSN: 0003225051 *
ZHENG, X. ET AL: "Synthesis and Performance Characterization of Li(Li0.15Ni0.21Fe0.21Mn0.45)O2 Cathode Material with G", ACTA CHIMICA SINICA, vol. 65, no. 7, JPN6015052177, 21 May 2007 (2007-05-21), pages 571 - 574, ISSN: 0003225052 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018104275A (en) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particle and production method of the same, and positive electrode active substance for non-aqueous electrolyte secondary cell and production method of the same
JP2018104274A (en) * 2016-12-27 2018-07-05 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particle and production method of the same, and positive electrode active substance for non-aqueous electrolyte secondary cell and production method of the same
JP7087379B2 (en) 2016-12-27 2022-06-21 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particles and their production methods, as well as positive electrode active materials for non-aqueous electrolyte secondary batteries and their production methods.
JP7087380B2 (en) 2016-12-27 2022-06-21 住友金属鉱山株式会社 Transition metal-containing composite hydroxide particles and their production methods, as well as positive electrode active materials for non-aqueous electrolyte secondary batteries and their production methods.
US11552295B2 (en) 2017-01-31 2023-01-10 Nec Corporation Lithium-manganese composite oxide, and method for producing same, and positive electrode material, positive electrode and lithium ion secondary battery using same
WO2018181967A1 (en) * 2017-03-31 2018-10-04 東ソー株式会社 Manganese oxide, production method therefor, and lithium secondary battery
JPWO2018181967A1 (en) * 2017-03-31 2020-03-05 東ソー株式会社 Manganese oxide, method for producing the same, and lithium secondary battery
WO2022242714A1 (en) * 2021-05-19 2022-11-24 蜂巢能源科技股份有限公司 Iron-manganese-based positive electrode material, and preparation method therefor and use thereof
CN116230842A (en) * 2022-12-12 2023-06-06 湖北万润新能源科技股份有限公司 Preparation method of lithium supplementing agent
CN116230842B (en) * 2022-12-12 2024-04-02 湖北万润新能源科技股份有限公司 Preparation method of lithium supplementing agent
CN115893526A (en) * 2022-12-21 2023-04-04 广东佳纳能源科技有限公司 Nickel-iron-manganese layered hydroxide precursor for sodium ion battery, and preparation method and application thereof

Also Published As

Publication number Publication date
JP6128303B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP4963059B2 (en) Lithium manganese composite oxide containing titanium and nickel
JP5263761B2 (en) Monoclinic lithium manganese composite oxide having cation ordered structure and method for producing the same
JP5712544B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP4877660B2 (en) Active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP5440614B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP6128303B2 (en) Lithium manganese composite oxide and method for producing the same
JP5516926B2 (en) Monoclinic Lithium Manganese Composite Oxide with Regular Structure and Method for Producing the Same
WO2015039490A1 (en) Lithium-rich anode material and preparation method thereof
JP5958926B2 (en) Lithium manganese composite oxide and method for producing the same
KR100578447B1 (en) Process for manufacturing nano-crystalline cathode material for high rate lithum rechargeable battery by self-mixing method
JP2012041257A (en) Lithium manganese-based compound oxide and method for manufacturing the same
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP4706991B2 (en) Method for manufacturing lithium secondary battery
JP4457213B2 (en) Method for producing lithium ferrite composite oxide
JP5207152B2 (en) Active material for lithium secondary battery, lithium secondary battery and method for producing the same
JP2004059417A (en) Layered rock salt-type lithium nickelate powder and its manufacturing method
JP7128475B2 (en) Lithium-manganese composite oxide and method for producing the same
JP2013037879A (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery including the positive electrode active material, and method for producing lithium manganese silver complex oxide
WO2018066633A1 (en) Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
JP2005154256A (en) Lithium-iron-manganese compound oxide having laminar rock salt structure
JP4734672B2 (en) Method for producing lithium-iron-manganese composite oxide
JP2006036620A (en) Lithium ferrite-based multiple oxide and method for producing the same
JP2006265032A (en) Lithium ferritic compound oxide and method for producing the same
JP4774661B2 (en) Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170328

R150 Certificate of patent or registration of utility model

Ref document number: 6128303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250