JP2013210345A - Gas meter - Google Patents

Gas meter Download PDF

Info

Publication number
JP2013210345A
JP2013210345A JP2012082087A JP2012082087A JP2013210345A JP 2013210345 A JP2013210345 A JP 2013210345A JP 2012082087 A JP2012082087 A JP 2012082087A JP 2012082087 A JP2012082087 A JP 2012082087A JP 2013210345 A JP2013210345 A JP 2013210345A
Authority
JP
Japan
Prior art keywords
gas
unit time
heat quantity
deriving
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012082087A
Other languages
Japanese (ja)
Other versions
JP5984458B2 (en
Inventor
Yasuhiro Fujii
泰宏 藤井
Takehiro Masuda
雄大 増田
Ryo Yamashita
諒 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012082087A priority Critical patent/JP5984458B2/en
Publication of JP2013210345A publication Critical patent/JP2013210345A/en
Application granted granted Critical
Publication of JP5984458B2 publication Critical patent/JP5984458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a gas meter superior in cost and suitable for a size reduction as a charging gas meter configured to measure heat quantity.SOLUTION: A gas meter includes: a flow path 3 into which gas 2 flows; an ultrasonic sensor 41 for detecting a pair of propagation times when an ultrasonic wave propagates in a flow of the gas 2; a temperature sensor 42 for measuring temperature of the gas 2; acoustic velocity deriving means 21 for determining acoustic velocity of the gas 2 from the pair of propagation times; and flow velocity deriving means 11 for determining flow velocity. The gas meter further includes: instantaneous heat quantity deriving means 22 for determining instantaneous heat quantity of the gas based on an acoustic velocity-heat quantity relationship index from the acoustic velocity of the gas 2 determined by the acoustic velocity deriving means 21; passing volume per unit time deriving means 13 for deriving a passing volume per unit time of the gas 2 based on the flow velocity; and passing heat quantity per unit time deriving means 23 for deriving the heat quantity of the gas 2 from the instantaneous heat quantity and the passing volume per unit time.

Description

本発明は、各住戸などに設置され、ガス料金の課金のために用いられるガスメーターに関する。   The present invention relates to a gas meter installed in each dwelling unit and used for charging a gas fee.

現在、各住戸に対するガス料金は、一定期間に各住戸で使用されたガス量(積算流量)に基づくものとされている。このようなシステムが採用されている理由は、国内においては、各住戸などに供給されるガスは、一定の熱量を備えるようにガスの供給側で厳密に調整されているため、使用されたガス量が分かれば使用されたガスの総熱量も明らかとなり、適切に課金を行うことができるためである。このような事情に基づき、現在普及している上述のガスメーターは、使用されるガス量のみを計測するように構成されている。   Currently, the gas charge for each unit is based on the amount of gas (integrated flow rate) used in each unit for a certain period. The reason why such a system is adopted is that, in Japan, the gas supplied to each dwelling unit is strictly adjusted on the gas supply side so as to have a certain amount of heat. This is because if the amount is known, the total amount of heat of the gas used is also clarified, and charging can be performed appropriately. Based on such circumstances, the above-described gas meter that is currently popular is configured to measure only the amount of gas used.

ところで、近年では、化石燃料に替わるエネルギー源として、バイオガスの活用が進められており、将来的には、各地に設立されたバイオガスプラントから各住戸などにガスの供給が行われることが予想される。一般的に、ガスの熱量の調整には多額のコストが必要となるため、従来行われてきたガスの熱量調整精度に対して、かなり弛めの熱量調整精度を採用し、各住戸に供給されるガスの熱量が、各地域で或は各日時で、変動する可能性がある。   By the way, in recent years, biogas has been used as an energy source to replace fossil fuels, and in the future, it is expected that gas will be supplied to each dwelling unit from biogas plants established in various places. Is done. In general, the adjustment of the calorific value of gas requires a large amount of cost. Therefore, the heat calorific value adjustment accuracy that is considerably relaxed compared to the conventional calorie calorie adjustment accuracy is adopted and supplied to each dwelling unit. There is a possibility that the calorific value of the gas will fluctuate in each region or each date.

すなわち、将来的には、熱量の異なるガスが各住戸などに供給される可能性がある。この場合、ガス量のみを計測する現在のガスメーターでは、使用されたガスの総熱量を正しく把握することができず、適切に課金を行うことができない。一方で、高圧ガスの熱量を計測する装置としては特許文献1に記載のものが知られている。   That is, in the future, there is a possibility that gases having different heat amounts will be supplied to each dwelling unit. In this case, the current gas meter that measures only the gas amount cannot correctly grasp the total heat amount of the used gas and cannot charge appropriately. On the other hand, the apparatus described in Patent Document 1 is known as an apparatus for measuring the amount of heat of high-pressure gas.

特願平8−343015号公報Japanese Patent Application No. 8-343015

しかしながら、特許文献1に記載の熱量測定装置は、ガスの製造設備に備えることを考慮しており、一般の各住戸に設置するには大掛かりであり、熱量を計測できる課金用途のガスメーターとしてどのような構成のものが適しているかは、明らかでない。   However, the calorific value measuring device described in Patent Document 1 is considered to be provided in a gas manufacturing facility, and is a large-scale installation in each general dwelling unit. It is not clear whether a suitable configuration is suitable.

本発明は上記問題点に鑑みてなされたものであり、その目的は、熱量を計測できるように構成された課金用途のガスメーターとして、コスト面で優れるとともに小型化に適したガスメーターを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas meter that is excellent in cost and suitable for downsizing as a gas meter for billing configured to be able to measure the amount of heat. is there.

本発明に係るガスメーターの特徴構成は、測定対象ガスが流れる流路と、
一対の超音波送受信器と、
一方の超音波送受信機から他方の超音波送受信器へ前記測定対象ガスの流れ内を超音波が伝播する伝播時間を単位時間ごとに双方向で捉える超音波センサと、
前記測定対象ガスの温度を計測する温度センサとを備え、
前記超音波センサにより得られる前記一対の伝播時間から、前記測定対象ガスの音速を求める音速導出手段と、前記測定対象ガスの流速を求める流速導出手段とを備え、
前記測定対象ガスの標準状態における音速と熱量との関係として求まる音速−熱量関係指標、及び前記音速導出手段により求められた音速に基づいて前記測定対象ガスの瞬時熱量を導出する瞬時熱量導出手段を備え、
前記流速導出手段により求められる流速と前記流路の断面積および前記単位時間から、当該単位時間あたりに前記流路を通過する前記測定対象ガスの単位時間通過体積を導出する単位時間通過体積導出手段と、
前記瞬時熱量と前記単位時間通過体積とに基づいて、前記単位時間あたりに前記流路を通過する前記測定対象ガスの単位時間通過熱量を導出する単位時間通過熱量導出手段を備え、
少なくとも、前記単位時間通過熱量を外部出力する外部出力手段を備えた点にある。
The characteristic configuration of the gas meter according to the present invention includes a flow path through which a measurement target gas flows,
A pair of ultrasonic transceivers;
An ultrasonic sensor that captures in two directions the propagation time of the ultrasonic wave propagating in the flow of the measurement target gas from one ultrasonic transceiver to the other ultrasonic transceiver;
A temperature sensor for measuring the temperature of the measurement target gas,
From the pair of propagation times obtained by the ultrasonic sensor, sonic speed deriving means for obtaining the sound speed of the measurement target gas, and flow velocity deriving means for obtaining the flow speed of the measurement target gas,
Instantaneous heat quantity deriving means for deriving the instantaneous heat quantity of the measurement target gas based on the sound speed-heat quantity relationship index obtained as the relationship between the sound speed and the heat quantity in the standard state of the measurement target gas and the sound speed obtained by the sound speed deriving means. Prepared,
Unit time passage volume deriving means for deriving a unit time passage volume of the measurement target gas passing through the flow path per unit time from the flow velocity obtained by the flow velocity deriving means, the cross-sectional area of the flow path, and the unit time. When,
Based on the instantaneous heat amount and the unit time passage volume, comprising unit time passage heat amount deriving means for deriving a unit time passage heat amount of the measurement target gas passing through the flow path per unit time,
At least, an external output means for outputting the unit-time passing heat amount to the outside is provided.

上記特徴構成によれば、超音波センサにより得られる前記一対の伝播時間から測定対象ガスの音速と流速とを求めることができ、この音速と流速とに基づいて測定対象ガスの熱量を求めることができる。よって、超音波センサと温度センサのみによって流路を流れる測定対象ガスの瞬時熱量の測定を行うことができる。すなわち、熱量を計測できるように構成された課金用途のガスメーターとして、コスト面で優れるとともに小型化に適したガスメーターを提供することができる。   According to the above characteristic configuration, the sound velocity and flow velocity of the measurement target gas can be obtained from the pair of propagation times obtained by the ultrasonic sensor, and the calorific value of the measurement target gas can be obtained based on the sound velocity and the flow velocity. it can. Therefore, the instantaneous heat quantity of the measurement target gas flowing through the flow path can be measured only by the ultrasonic sensor and the temperature sensor. That is, it is possible to provide a gas meter that is excellent in cost and suitable for downsizing as a billing gas meter configured to measure the amount of heat.

ここで、本発明における『音速』とは、ガス中での音波の伝播速度を意味する。   Here, “sound speed” in the present invention means the propagation speed of sound waves in gas.

また、予め熱量が判明し組成の異なる複数の標準ガス各々の標準状態における音速に基づいて作成された前記音速−熱量関係指標を記憶する記憶手段を備えた構成とすると好適である。ここで、本願における標準状態とは、後述するように0℃、1気圧での状態を言う。   Further, it is preferable to have a storage means for storing the sonic velocity-caloric relationship index created based on the sonic velocity in the standard state of each of a plurality of standard gases whose calories are known and have different compositions. Here, the standard state in the present application refers to a state at 0 ° C. and 1 atm as described later.

上記特徴構成によれば、記憶手段に必要な容量を小さくできるとともに、音速−熱量関係指標を基づく瞬時熱量の導出を素早く行うことができる。すなわち、熱量を計測できるように構成された課金用途のガスメーターとして、コスト面で優れるとともに小型化に適したガスメーターを提供することができる。   According to the above characteristic configuration, the capacity required for the storage unit can be reduced, and the instantaneous calorific value can be quickly derived based on the sonic velocity-caloric relationship index. That is, it is possible to provide a gas meter that is excellent in cost and suitable for downsizing as a billing gas meter configured to measure the amount of heat.

ここで、複数の前記単位時間に渡って、前記単位時間通過熱量を積算した熱量積算値を求める熱量積算手段を備え、
前記熱量積算値が、前記外部出力手段により外部出力される構成とすると好適である。このような特徴構成によれば、ガスメーターの検針時に有用である。
Here, over a plurality of the unit time, comprising a calorific value integrating means for obtaining a calorific value integrated value obtained by integrating the unit time passing heat amount,
It is preferable that the integrated value of heat is output from the external output means. According to such a characteristic structure, it is useful at the time of meter reading of a gas meter.

また、前記単位時間通過体積が前記外部出力手段により外部出力される構成とすると好適である。このような特徴構成によれば、ガスメーターの点検時にガスメーター内の状況を把握することができる。   In addition, it is preferable that the unit time passing volume is externally output by the external output means. According to such a characteristic configuration, it is possible to grasp the situation in the gas meter when checking the gas meter.

また、複数の前記単位時間に渡って、前記単位時間通過体積を積算した流量積算値を求める流量積算手段を備え、
前記流量積算値が、前記外部出力手段により外部出力される構成とすると好適である。このような特徴構成によれば、ガスメーターの検針時に有用である。
Further, it comprises a flow integration means for obtaining a flow integration value obtained by integrating the unit time passage volume over a plurality of the unit times,
It is preferable that the integrated flow rate value is externally output by the external output means. According to such a characteristic structure, it is useful at the time of meter reading of a gas meter.

本発明の実施形態に係るガスメーターの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the gas meter which concerns on embodiment of this invention. 本発明の実施形態に係るガスメーターの詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of the gas meter which concerns on embodiment of this invention. 本発明の実施形態に係る基礎物理量検出手段の詳細構造を示す図である。It is a figure which shows the detailed structure of the basic physical quantity detection means which concerns on embodiment of this invention. 音速及び流速の測定原理を示す図である。It is a figure which shows the measurement principle of a sound speed and a flow velocity. 音速から熱量を導出する場合の音速−熱量関係指標を示す図である。It is a figure which shows the sound speed-heat quantity relationship parameter | index in the case of deriving heat quantity from a sound speed.

1.ガスメーターの概要
本発明の実施形態を、以下、図面に基づいて説明する。図1は、本願のガスメーター1の構成を模式的に描いたものである。このガスメーター1は、各住戸などに設置され、各住戸で使用されるガス2が流れる流路3を備えている。ここで、ガス2は、基礎物理量検出手段4の測定対象となるガスを意味し、ガス供給元(例えば都市ガス製造業者)から各住戸などに供給される。また、流路3はいわゆる低圧導管であり、その内部を流れるガス2の圧力は0.1MPa未満で、その太さはおおむね直径5cm〜30cmである。
1. Outline of Gas Meter An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 schematically illustrates the configuration of a gas meter 1 of the present application. The gas meter 1 is installed in each dwelling unit or the like and includes a flow path 3 through which a gas 2 used in each dwelling unit flows. Here, the gas 2 means a gas to be measured by the basic physical quantity detection means 4 and is supplied from a gas supply source (for example, a city gas manufacturer) to each dwelling unit. Moreover, the flow path 3 is what is called a low voltage | pressure conduit | pipe, the pressure of the gas 2 which flows through the inside is less than 0.1 Mpa, and the thickness is about 5-30 cm in diameter.

また、ガスメーター1は、流路3を流れるガス2の流量及び熱量を測定するために必要なガス2に関する物理量を検出するための基礎物理量検出手段4を備えている。さらに、基礎物理量検出手段4で検出された物理量に基づき、単位時間あたりに流路3を通過するガス2の体積である単位時間通過体積ΔVを導出する単位時間通過体積導出手段13と、単位時間あたりに流路3を通過するガス2の熱量である単位時間通過熱量ΔQを導出する単位時間通過熱量導出手段23とを備えている。ここで、『単位時間』とは、ガス2の流量及び熱量の計測間隔を意味しており、予め定められた値である。単位時間としては、例えば、1〜5秒の間で設定すると良い。本実施形態においては、2秒と設定している。以下では、単位時間をΔtと表す。また、ガスメーター1は、複数の単位時間Δtに渡って、単位時間通過体積導出手段13により導出されるガス2の単位時間通過体積ΔVを積算する流量積算手段14と、複数の単位時間Δtに渡って、単位時間通過熱量導出手段23により導出されるガス2の単位時間通過熱量ΔQを積算する熱量積算手段24とを備えている。これらの手段及び後述する各種手段は、マイクロプロセッサ及び半導体メモリを含むマイクロコンピュータ5を主要な機器として構築される。   Further, the gas meter 1 includes basic physical quantity detection means 4 for detecting a physical quantity related to the gas 2 necessary for measuring the flow rate and heat quantity of the gas 2 flowing through the flow path 3. Furthermore, unit time passage volume deriving means 13 for deriving a unit time passage volume ΔV, which is the volume of the gas 2 passing through the flow path 3 per unit time, based on the physical quantity detected by the basic physical quantity detection means 4, and unit time A unit time passage heat amount deriving means 23 for deriving a unit time passage heat amount ΔQ that is the amount of heat of the gas 2 passing through the flow path 3 is provided. Here, “unit time” means a measurement interval of the flow rate and heat quantity of the gas 2 and is a predetermined value. The unit time may be set, for example, between 1 and 5 seconds. In this embodiment, 2 seconds is set. Hereinafter, the unit time is represented by Δt. Further, the gas meter 1 includes a flow rate integrating means 14 for integrating the unit time passage volume ΔV of the gas 2 derived by the unit time passage volume deriving means 13 over a plurality of unit times Δt, and a plurality of unit times Δt. And a calorific value accumulating unit 24 for accumulating the unit 2 passing calorific value ΔQ of the gas 2 derived by the unit-time passing calorie deriving unit 23. These means and various means to be described later are constructed with a microcomputer 5 including a microprocessor and a semiconductor memory as a main device.

加えて、検針や保守点検などの作業の際に、作業者が目視にてガスメーター1の状態を確認できるように、ガスメーター1は外部に数値などを出力可能な外部出力手段6を備えている。本実施形態においては、外部出力手段6は、単位時間通過熱量導出手段23により導出される単位時間通過熱量ΔQ、熱量積算手段24により積算される熱量の積算値ΣΔQ、単位時間通過体積導出手段13により導出される単位時間通過体積ΔV、及び流量積算手段14により積算される単位時間通過体積の積算値である流量積算値ΣΔVを表示可能に構成されている。   In addition, the gas meter 1 is provided with external output means 6 that can output numerical values and the like to the outside so that the operator can visually confirm the state of the gas meter 1 during operations such as meter reading and maintenance inspection. In this embodiment, the external output means 6 includes a unit time passage heat quantity ΔQ derived by the unit time passage heat quantity derivation means 23, an integrated value ΣΔQ of the heat quantity accumulated by the heat quantity accumulation means 24, and a unit time passage volume derivation means 13. And the flow rate integrated value ΣΔV, which is the integrated value of the unit time pass volume integrated by the flow rate integration means 14, is displayed.

2.ガスメーターの詳細構成
2−1.基礎物理量検出手段
図2は、本願のガスメーター1の詳細構成を示す。本実施形態においては、ガスメーター1は、基礎物理量検出手段4として、超音波センサ41と、ガス2の温度Tを計測する温度センサ42と、を備えている。超音波センサ41は、一対の超音波送受信器51(図3)を備え、一方の超音波送受信器51から他方の超音波送受信器51へガス2の流れ内を超音波が伝播する伝播時間を単位時間Δtごとに双方向で捉えるように構成されている。
2. Detailed configuration of gas meter 2-1. Basic Physical Quantity Detection Means FIG. 2 shows a detailed configuration of the gas meter 1 of the present application. In the present embodiment, the gas meter 1 includes an ultrasonic sensor 41 and a temperature sensor 42 that measures the temperature T of the gas 2 as the basic physical quantity detection means 4. The ultrasonic sensor 41 includes a pair of ultrasonic transmitters / receivers 51 (FIG. 3), and determines the propagation time for ultrasonic waves to propagate through the flow of gas 2 from one ultrasonic transmitter / receiver 51 to the other ultrasonic transmitter / receiver 51. Each unit time Δt is configured to be captured in both directions.

超音波センサ41は、一対の伝播時間t1、t2が得られるように構成されている。超音波センサ41の詳細構成について、図3、図4に基づいて説明する。超音波センサ41は、一対の超音波送受信器51を、流路3の流れに沿って上流と下流との二箇所に配置した構成で備えている。ここで、一対の超音波送受信器51は、流路3の軸Z方向で異なった位置に配設されるため、両者間を渡る超音波はガス2の流速vの影響を受け、上流側から下流側に伝播される超音波の伝播時間は加速され、逆の場合は減速される。   The ultrasonic sensor 41 is configured to obtain a pair of propagation times t1 and t2. A detailed configuration of the ultrasonic sensor 41 will be described with reference to FIGS. 3 and 4. The ultrasonic sensor 41 includes a pair of ultrasonic transmitters / receivers 51 arranged in two locations, upstream and downstream, along the flow path 3. Here, since the pair of ultrasonic transceivers 51 are arranged at different positions in the axis Z direction of the flow path 3, the ultrasonic waves passing between them are affected by the flow velocity v of the gas 2, and from the upstream side. The propagation time of the ultrasonic wave propagated downstream is accelerated, and vice versa.

本実施形態における超音波センサ41においては、一方の超音波送受信器51から他方の超音波送受信器51へ超音波が前記製品ガスの流れ内を伝播する伝播時間を双方向で捕らえることができる。(ここでは、上流側にあるものから下流側にあるものへの超音波の伝播時間(順方向伝播時間)をt1と、逆方向で伝播する超音波の伝播時間(逆方向伝播時間)をt2とする。)   In the ultrasonic sensor 41 in the present embodiment, the propagation time in which the ultrasonic wave propagates from the one ultrasonic transmitter / receiver 51 to the other ultrasonic transmitter / receiver 51 in the flow of the product gas can be captured in both directions. (Here, the propagation time of ultrasonic waves from the upstream side to the downstream side (forward propagation time) is t1, and the propagation time of ultrasonic waves propagating in the reverse direction (reverse propagation time) is t2. And)

2−2.単位時間通過体積ΔVの導出
単位時間通過体積ΔVを導出するために、ガスメーター1は、超音波センサ41により得られる一対の伝播時間t1、t2から、ガス2の流速vを求める流速導出手段11を備えている。前述の単位時間通過体積導出手段13は、流速導出手段11により求められる流速vと流路3の断面積Sおよび単位時間Δtから単位時間通過体積ΔVを求めるように構成されている。
2-2. Derivation of the unit time passage volume ΔV In order to derive the unit time passage volume ΔV, the gas meter 1 includes a flow velocity deriving means 11 for obtaining the flow velocity v of the gas 2 from the pair of propagation times t1 and t2 obtained by the ultrasonic sensor 41. I have. The unit time passage volume deriving means 13 is configured to obtain the unit time passage volume ΔV from the flow velocity v obtained by the flow velocity deriving means 11, the cross-sectional area S of the flow path 3 and the unit time Δt.

より具体的には、ガスメーター1は、流速導出手段11により求められる流速vと流路3の断面積Sとの積である瞬時流量vS(超音波センサ41による計測タイミングにおける流量の瞬時値)を求める瞬時流量導出手段12を備えている。単位時間通過体積導出手段13は、単位時間通過体積ΔVとして、瞬時流量導出手段12により求められた瞬時流量vSと単位時間Δtとの積であるvSΔtを求めるように構成されている。   More specifically, the gas meter 1 calculates the instantaneous flow rate vS (the instantaneous value of the flow rate at the measurement timing by the ultrasonic sensor 41), which is the product of the flow velocity v obtained by the flow velocity deriving means 11 and the cross-sectional area S of the flow path 3. The required instantaneous flow rate deriving means 12 is provided. The unit time passage volume deriving unit 13 is configured to obtain, as the unit time passage volume ΔV, vSΔt that is the product of the instantaneous flow rate vS obtained by the instantaneous flow rate deriving unit 12 and the unit time Δt.

ここで、流速導出手段11が、一対の伝播時間t1、t2からガス2の流速vを導出する過程は次のようになる。図4に示すように、前述の超音波センサ41に備えられる一対の超音波送受信器51は、位置関係が固定されているため、相互に超音波送受信器51間を伝播する伝播時間t1、t2は、図4中に示す式1、式2で表される。ここで、Lは図4に示す伝播経路の距離であり、Zは管状の流路3の軸方向であり、Cはガス2の流速を、vはガス2中での音速を示している。   Here, the process in which the flow velocity deriving means 11 derives the flow velocity v of the gas 2 from the pair of propagation times t1 and t2 is as follows. As shown in FIG. 4, the pair of ultrasonic transmitters / receivers 51 provided in the ultrasonic sensor 41 has a fixed positional relationship, so that the propagation times t1 and t2 for propagating between the ultrasonic transmitters / receivers 51 with each other are fixed. Is represented by Formula 1 and Formula 2 shown in FIG. Here, L is the distance of the propagation path shown in FIG. 4, Z is the axial direction of the tubular flow path 3, C is the flow velocity of the gas 2, and v is the speed of sound in the gas 2.

式1、式2は、2元連立方程式であるため、式3、式4に示すように、音速C及び流速vを、一対の伝播時間t1、t2から求めることができる。即ち、前述の流速導出手段11は、式3の処理を行うことにより、一対の伝播時間t1、t2から流速vを求める。   Since Equations 1 and 2 are binary simultaneous equations, as shown in Equations 3 and 4, the sound velocity C and the flow velocity v can be obtained from a pair of propagation times t1 and t2. That is, the above-described flow velocity deriving unit 11 obtains the flow velocity v from the pair of propagation times t1 and t2 by performing the processing of Equation 3.

2−3.単位時間通過熱量ΔQの導出
ガスメーター1は、単位時間通過熱量ΔQを導出するために、超音波センサ41により得られる一対の伝播時間t1、t2から、ガス2中での音速Cを求める音速導出手段21、及び流路3を通過するガス2の温度Tを計測する温度センサ42を備えている。さらに、ガスメーター1は、ガス2の標準状態における音速C0と熱量との関係として求まる音速−熱量関係指標f(C0)、及び音速導出手段21により求められた音速Cに基づいてガス2の瞬時熱量Qを導出する瞬時熱量導出手段22を備えている。
より詳しくは、音速導出手段21により求められた音速Cは、標準音速導出手段21xにより温度センサ42により取得されたガス2の温度Tを用いて標準状態における音速C0に換算され、瞬時熱量導出手段22は、音速C0に基づいて音速−熱量関係指標f(C0)から瞬時熱量Qを導出する。
2-3. Derivation of the unit time passage heat amount ΔQ The gas meter 1 obtains the sonic velocity derivation means for obtaining the sonic velocity C in the gas 2 from the pair of propagation times t1 and t2 obtained by the ultrasonic sensor 41 in order to derive the unit time passage heat amount ΔQ. 21 and a temperature sensor 42 for measuring the temperature T of the gas 2 passing through the flow path 3. Further, the gas meter 1 determines the gas 2 based on the sound speed-heat quantity relationship index f (C 0 ) obtained as a relation between the sound speed C 0 and the heat quantity in the standard state of the gas 2 and the sound speed C obtained by the sound speed deriving means 21. Instantaneous heat quantity deriving means 22 for deriving the instantaneous heat quantity Q is provided.
More specifically, the sound speed C obtained by the sound speed deriving means 21 is converted into the sound speed C 0 in the standard state using the temperature T of the gas 2 acquired by the temperature sensor 42 by the standard sound speed deriving means 21x, and the instantaneous heat quantity is derived. The means 22 derives the instantaneous heat quantity Q from the sound speed-heat quantity relation index f (C 0 ) based on the sound speed C 0 .

さらに、単位時間通過熱量導出手段23が、瞬時熱量導出手段22により導出された瞬時熱量Qと、単位時間通過体積導出手段13により導出された単位時間通過体積ΔVとに基づいて、単位時間通過熱量ΔQを求めるように構成されている。
より詳しくは、単位時間通過体積導出手段13により導出された単位時間通過体積ΔVは、単位時間通過標準体積導出手段13xにより温度センサ42により取得されたガス2の温度Tを用いて標準状態における単位時間通過体積ΔV0に換算され、単位時間通過熱量導出手段23は、単位時間通過体積ΔV0と瞬時熱量Qとから単位時間通過熱量ΔQを導出する。
Further, the unit time passage heat quantity deriving means 23 is based on the instantaneous heat quantity Q derived by the instantaneous heat quantity derivation means 22 and the unit time passage volume ΔV derived by the unit time passage volume derivation means 13. It is comprised so that (DELTA) Q may be calculated | required.
More specifically, the unit time passage volume ΔV derived by the unit time passage volume deriving unit 13 is the unit in the standard state using the temperature T of the gas 2 acquired by the temperature sensor 42 by the unit time passage standard volume deriving unit 13x. Converted into the time passage volume ΔV 0 , the unit time passage heat quantity deriving means 23 derives the unit time passage heat quantity ΔQ from the unit time passage volume ΔV 0 and the instantaneous heat quantity Q.

以下では、本実施形態における単位時間通過熱量導出手段23による単位時間通過熱量ΔQの導出について、より詳しく説明する。まず、単位時間通過熱量ΔQの導出について説明する前に、瞬時熱量Qの導出について説明する。   Hereinafter, the derivation of the unit time passage heat quantity ΔQ by the unit time passage heat quantity derivation means 23 in the present embodiment will be described in more detail. First, the derivation of the instantaneous heat quantity Q will be described before describing the derivation of the unit time passage heat quantity ΔQ.

ガスメーター1は、複数の予め熱量が判明し組成の異なるガス各々の標準状態における音速と熱量との関係として求まる音速−熱量関係指標f(C0)を記憶する記憶手段25を備えている。ここで、「複数の予め熱量が判明し組成の異なるガス」としては、流路3を通過するガス2となり得るものを選択すると良い。本実施形態においては、熱量が40〜46MJ/Nm3のガスを選択している。これらのガスの標準状態における音速C0は以下の通りである。

Figure 2013210345
The gas meter 1 includes storage means 25 for storing a sonic velocity-caloric relationship index f (C 0 ) obtained as a relationship between the sonic velocity and the calorific value of each of a plurality of gases having different calorific values and having different compositions. Here, as “a plurality of gases whose amounts of heat are known in advance and having different compositions”, a gas that can be the gas 2 passing through the flow path 3 may be selected. In the present embodiment, a gas having a heat quantity of 40 to 46 MJ / Nm 3 is selected. The speed of sound C 0 in the standard state of these gases is as follows.
Figure 2013210345

図5に、縦軸に標準状態における熱量を、横軸に標準状態(0℃、1気圧)における音速をとったグラフに、表1の値をプロットしたときの各点と、記憶手段25が記憶する音速−熱量関係指標f(C0)の一例を示す。同図において、実線で示されている相関線が、関係指標f(C0)に相当する。本実施形態においては、図5に示す相関線は、1次相関式で表されている。ここでは、この1次相関式を、表1の値から最小二乗法によって求めている。 In FIG. 5, each point when the values in Table 1 are plotted on a graph in which the vertical axis indicates the amount of heat in the standard state and the horizontal axis indicates the speed of sound in the standard state (0 ° C., 1 atm), An example of the stored sound velocity-heat quantity relationship index f (C 0 ) is shown. In the figure, a correlation line indicated by a solid line corresponds to the relationship index f (C 0 ). In the present embodiment, the correlation line shown in FIG. 5 is represented by a primary correlation equation. Here, the primary correlation equation is obtained from the values in Table 1 by the least square method.

また、ガスメーター1が備える標準音速導出手段21xは、音速導出手段21が求めた音速Cを、数1を用いて標準状態(0℃、1気圧)での音速C0に換算する。

Figure 2013210345
Further, the standard sound speed deriving means 21x the gas meter 1 comprises the sound velocity C of acoustic velocity deriving means 21 is determined, the standard state (0 ° C., 1 atm) using equation 1 is converted into acoustic velocity C 0 at.
Figure 2013210345

ここで、Rは気体定数、Tは絶対温度[K]、Mは気体の分子量、γは比熱比である。ある瞬間におけるガス2は、R、M、γは一定の値をとるので、ある瞬間においては、ガス2の音速CはT1/2に比例すると考えられる。以上より、標準音速導出手段21xは、数1よりある瞬間における音速Cとそのときの温度Tから、標準状態(0℃)での音速C0を導出することができる。 Here, R is a gas constant, T is an absolute temperature [K], M is a molecular weight of the gas, and γ is a specific heat ratio. In gas 2 at a certain moment, R, M, and γ have constant values, and at a certain moment, the sound velocity C of gas 2 is considered to be proportional to T 1/2 . As described above, the standard sound speed deriving means 21x can derive the sound speed C 0 in the standard state (0 ° C.) from the sound speed C at a certain moment and the temperature T at that time from Equation 1.

以上の構成により、図2に示すように、瞬時熱量導出手段22が、記憶手段25が記憶する音速−熱量関係指標f(C0)と標準音速導出手段21xが導出した音速C0から、瞬時熱量Qを求めている。 With the above configuration, as shown in FIG. 2, the instantaneous calorific value deriving means 22 instantaneously uses the sonic velocity-heat quantity relationship index f (C 0 ) stored in the storage means 25 and the sonic velocity C 0 derived by the standard sonic velocity deriving means 21x. The amount of heat Q is obtained.

次に、単位時間通過熱量ΔQの導出について説明する。単位時間通過熱量ΔQの導出にあたり、単位時間通過標準体積導出手段13xが、単位時間通過体積導出手段13により導出された単位時間通過体積ΔVを、数2(理想気体の状態方程式)を用いて標準状態(0℃、1気圧)における単位時間通過体積ΔV0に換算する。

Figure 2013210345
Next, the derivation of the unit time passage heat amount ΔQ will be described. In deriving the unit time passage heat quantity ΔQ, the unit time passage standard volume deriving means 13x uses the equation 2 (ideal gas equation of state) as a standard to calculate the unit time passage volume ΔV derived by the unit time passage volume deriving means 13. Converted to a unit time passing volume ΔV 0 in the state (0 ° C., 1 atm).
Figure 2013210345

ここで、流路3内の圧力Pは通常1気圧とみなせ、Vが単位時間通過体積ΔVに相当し、Tは絶対温度である。また、nはガス2のモル数、Rは気体定数を表す。よって、温度センサ42が計測したガス2の温度Tを用いることで、単位時間通過標準体積導出手段13xは、標準状態における単位時間通過体積ΔV0を導出することができる。 Here, the pressure P in the flow path 3 can be normally regarded as 1 atm, V corresponds to a unit time passage volume ΔV, and T is an absolute temperature. N represents the number of moles of gas 2 and R represents a gas constant. Therefore, by using the temperature T of the gas 2 measured by the temperature sensor 42, the unit time passage standard volume deriving means 13x can derive the unit time passage volume ΔV 0 in the standard state.

単位時間通過熱量導出手段23は、単位時間通過標準体積導出手段13xが求めた標準状態における単位時間通過体積ΔV0に、瞬時熱量導出手段22が導出した瞬時熱量Qを乗じることにより、単位時間通過熱量ΔQを導出する。 The unit time passage heat quantity derivation means 23 multiplies the unit time passage volume ΔV 0 in the standard state obtained by the unit time passage standard volume derivation means 13x by the instantaneous heat quantity Q derived by the instantaneous heat quantity derivation means 22 to thereby pass the unit time passage. The amount of heat ΔQ is derived.

以上の構成により、本願発明に係るガスメーター1は、流路3内を通過するガス2の熱量を計測することができる。   With the above configuration, the gas meter 1 according to the present invention can measure the amount of heat of the gas 2 passing through the flow path 3.

〔その他の実施形態〕
上記実施形態においては、単位時間通過体積導出手段13が、流路3の流れに沿って上流と下流との二箇所に超音波送受信器51を配置した構成の超音波センサ41により流速vを求めるように構成されている場合の例を説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、超音波センサ41の配置構成としては、一対の超音波送受信器51を流路を斜めに横断するように配置した構成などその他公知の配置構成も使用できる。
[Other Embodiments]
In the above embodiment, the unit time passage volume deriving means 13 obtains the flow velocity v by the ultrasonic sensor 41 having a configuration in which the ultrasonic transmitter / receiver 51 is arranged at two locations upstream and downstream along the flow of the flow path 3. The example in the case of being configured as described above has been described. However, the embodiment of the present invention is not limited to this. That is, as the arrangement configuration of the ultrasonic sensor 41, other known arrangement configurations such as a configuration in which the pair of ultrasonic transmitters and receivers 51 are arranged so as to obliquely cross the flow path can be used.

本発明は、各住戸などに設置され、ガス料金の課金のために用いられるガスメーターとして利用可能である。   The present invention can be used as a gas meter that is installed in each dwelling unit and used for charging a gas fee.

1 :ガスメーター
2 :ガス
3 :流路
6 :外部出力手段
7 :切替手段
11 :流速導出手段
13 :単位時間通過体積導出手段
14 :流量積算手段
21 :音速導出手段
22 :瞬時熱量導出手段
23 :単位時間通過熱量導出手段
24 :熱量積算手段
25 :記憶手段
41 :超音波センサ
42 :温度センサ
51 :超音波送受信器
1: Gas meter 2: Gas 3: Flow path 6: External output means 7: Switching means 11: Flow velocity deriving means 13: Unit time passage volume deriving means 14: Flow rate accumulating means 21: Sonic velocity deriving means 22: Instantaneous heat quantity deriving means 23: Unit time passing heat quantity deriving means 24: heat quantity integrating means 25: storage means 41: ultrasonic sensor 42: temperature sensor 51: ultrasonic transceiver

Claims (5)

測定対象ガスが流れる流路と、
一対の超音波送受信器と、
一方の超音波送受信機から他方の超音波送受信器へ前記測定対象ガスの流れ内を超音波が伝播する伝播時間を単位時間ごとに双方向で捉える超音波センサと、
前記測定対象ガスの温度を計測する温度センサとを備え、
前記超音波センサにより得られる一対の前記伝播時間から、前記測定対象ガスの音速を求める音速導出手段と、前記測定対象ガスの流速を求める流速導出手段とを備え、
前記測定対象ガスの標準状態における音速と熱量との関係として求まる音速−熱量関係指標、及び前記音速導出手段により求められた音速に基づいて前記測定対象ガスの瞬時熱量を導出する瞬時熱量導出手段を備え、
前記流速導出手段により求められる流速と前記流路の断面積および前記単位時間から、当該単位時間あたりに前記流路を通過する前記測定対象ガスの単位時間通過体積を導出する単位時間通過体積導出手段と、
前記瞬時熱量と前記単位時間通過体積とに基づいて、前記単位時間あたりに前記流路を通過する前記測定対象ガスの単位時間通過熱量を導出する単位時間通過熱量導出手段を備え、
少なくとも、前記単位時間通過熱量を外部出力する外部出力手段を備えたガスメーター。
A flow path through which the gas to be measured flows,
A pair of ultrasonic transceivers;
An ultrasonic sensor that captures in two directions the propagation time of the ultrasonic wave propagating in the flow of the measurement target gas from one ultrasonic transceiver to the other ultrasonic transceiver;
A temperature sensor for measuring the temperature of the measurement target gas,
From the pair of propagation times obtained by the ultrasonic sensor, sonic speed deriving means for obtaining the sound speed of the measurement target gas, and flow velocity deriving means for obtaining the flow speed of the measurement target gas,
Instantaneous heat quantity deriving means for deriving the instantaneous heat quantity of the measurement target gas based on the sound speed-heat quantity relationship index obtained as the relationship between the sound speed and the heat quantity in the standard state of the measurement target gas and the sound speed obtained by the sound speed deriving means. Prepared,
Unit time passage volume deriving means for deriving a unit time passage volume of the measurement target gas passing through the flow path per unit time from the flow velocity obtained by the flow velocity deriving means, the cross-sectional area of the flow path, and the unit time. When,
Based on the instantaneous heat amount and the unit time passage volume, comprising unit time passage heat amount deriving means for deriving a unit time passage heat amount of the measurement target gas passing through the flow path per unit time,
A gas meter provided with an external output means for outputting at least the unit-time passing heat quantity to the outside.
予め熱量が判明し組成の異なる複数の標準ガス各々の標準状態における音速に基づいて作成された前記音速−熱量関係指標を記憶する記憶手段を備えた請求項1記載のガスメーター。   The gas meter according to claim 1, further comprising a storage unit that stores the sonic velocity-caloric relationship index created based on the sonic velocity in the standard state of each of a plurality of standard gases whose calories are known and have different compositions. 複数の前記単位時間に渡って、前記単位時間通過熱量を積算した熱量積算値を求める熱量積算手段を備え、
前記熱量積算値が、前記外部出力手段により外部出力される請求項1又は2記載のガスメーター。
A calorific value integrating means for obtaining a calorific value integrated value obtained by accumulating the calorific value passing through the unit time over a plurality of the unit times,
The gas meter according to claim 1 or 2, wherein the heat integrated value is output externally by the external output means.
前記単位時間通過体積が前記外部出力手段により外部出力される請求項1〜3の何れか一項記載のガスメーター。   The gas meter according to any one of claims 1 to 3, wherein the unit time passing volume is externally output by the external output means. 複数の前記単位時間に渡って、前記単位時間通過体積を積算した流量積算値を求める流量積算手段を備え、
前記流量積算値が、前記外部出力手段により外部出力される請求項1〜4の何れか一項記載のガスメーター。
A flow integration means for obtaining a flow integrated value obtained by integrating the unit time passage volume over a plurality of the unit times;
The gas meter according to any one of claims 1 to 4, wherein the integrated flow rate value is externally output by the external output means.
JP2012082087A 2012-03-30 2012-03-30 Gas meter Active JP5984458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082087A JP5984458B2 (en) 2012-03-30 2012-03-30 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082087A JP5984458B2 (en) 2012-03-30 2012-03-30 Gas meter

Publications (2)

Publication Number Publication Date
JP2013210345A true JP2013210345A (en) 2013-10-10
JP5984458B2 JP5984458B2 (en) 2016-09-06

Family

ID=49528292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082087A Active JP5984458B2 (en) 2012-03-30 2012-03-30 Gas meter

Country Status (1)

Country Link
JP (1) JP5984458B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185887A (en) * 1996-12-24 1998-07-14 Osaka Gas Co Ltd Method and device for measuring supplied calorific value, and gas manufacturing equipment
JPH11248503A (en) * 1998-02-27 1999-09-17 Tokyo Gas Co Ltd Flow meter and gas meter
JPH11511260A (en) * 1996-04-22 1999-09-28 ビージー ピーエルシー Equipment for measuring gas values
JP2000314644A (en) * 1999-04-30 2000-11-14 Yazaki Corp Flow-rate measuring apparatus and electronic gas meter
JP2002062178A (en) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd Gas meter
JP2003240619A (en) * 2002-02-14 2003-08-27 Yazaki Corp Flow measuring method and flow measuring device
JP2009162436A (en) * 2008-01-08 2009-07-23 Yamatake Corp Flow control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511260A (en) * 1996-04-22 1999-09-28 ビージー ピーエルシー Equipment for measuring gas values
JPH10185887A (en) * 1996-12-24 1998-07-14 Osaka Gas Co Ltd Method and device for measuring supplied calorific value, and gas manufacturing equipment
JPH11248503A (en) * 1998-02-27 1999-09-17 Tokyo Gas Co Ltd Flow meter and gas meter
JP2000314644A (en) * 1999-04-30 2000-11-14 Yazaki Corp Flow-rate measuring apparatus and electronic gas meter
JP2002062178A (en) * 2000-08-22 2002-02-28 Tokyo Gas Co Ltd Gas meter
JP2003240619A (en) * 2002-02-14 2003-08-27 Yazaki Corp Flow measuring method and flow measuring device
JP2009162436A (en) * 2008-01-08 2009-07-23 Yamatake Corp Flow control apparatus

Also Published As

Publication number Publication date
JP5984458B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP4935334B2 (en) Flow rate measuring device and gas supply system using this device
JP5984457B2 (en) Gas meter
JP2011158470A (en) Ultrasonic flowmeter
JP2014092467A (en) Flow rate measurement device
RU2013115911A (en) METHOD FOR DETECTING DETERMINATION IN THE CORIOLIS FLOW METER AND CORIOLIS FLOW METER
JP2010181401A (en) Flow rate measurement device
RU2013135656A (en) DEVICE FOR DETERMINING THE POSITION OF THE EXPLOSER IN THE CALIBRATION DEVICE FOR A FLOW METER AND METHOD FOR ITS USE
US8671775B2 (en) Flow rate measuring device
CN104729582A (en) Temperature detection method for ultrasonic flow detection and ultrasonic flow metering device
CN103989488B (en) Wide-range ultrasound wave lung function instrument and computational methods thereof
JP5984458B2 (en) Gas meter
CN206291930U (en) A kind of ultrasonic wave mass flowmenter
CN102288265B (en) Time difference detecting device of dual-channel ultrasonic flow meter
JP2013210343A (en) Gas meter
JP2010256075A (en) Flowmeter and method of measuring flow rate
US8122754B2 (en) Meter proving method and system
CN114295166A (en) Method, equipment and system for measuring flow of pipeline
JP2018136276A (en) Ultrasonic flowmeter
CN104977053A (en) Flue gas flow meter and flue gas flow detection method
JP2016206147A (en) Ultrasonic type thermal energy meter
JP2008185441A (en) Ultrasonic flowmeter
JP6530635B2 (en) Center device and water supply position identification method
JP2010181356A (en) Flow measuring device
JP5990770B2 (en) Ultrasonic measuring device
JP5649476B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150