JP2013210130A - Cooling dehumidification system - Google Patents

Cooling dehumidification system Download PDF

Info

Publication number
JP2013210130A
JP2013210130A JP2012080378A JP2012080378A JP2013210130A JP 2013210130 A JP2013210130 A JP 2013210130A JP 2012080378 A JP2012080378 A JP 2012080378A JP 2012080378 A JP2012080378 A JP 2012080378A JP 2013210130 A JP2013210130 A JP 2013210130A
Authority
JP
Japan
Prior art keywords
flow path
way switching
switching means
channel
entire length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012080378A
Other languages
Japanese (ja)
Other versions
JP5934009B2 (en
Inventor
Masakatsu Taguchi
雅旦 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2012080378A priority Critical patent/JP5934009B2/en
Publication of JP2013210130A publication Critical patent/JP2013210130A/en
Application granted granted Critical
Publication of JP5934009B2 publication Critical patent/JP5934009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling dehumidification system capable of performing optionally cooling, dehumidification, or cooling and dehumidification.SOLUTION: A cooling dehumidification system includes: an indirect evaporative cooling device 1 including a dry flow passage 11, a wet flow passage 12 and a liquid supply means 13; and a desiccant humidity control device 2 including a desiccant rotor 20, a first flow passage 21, a second flow passage 22 and regeneration means 23, 24. There are connected an outside air intake flow passage 31 including a three-way switching means 51, an outside air communication flow passage 32 including a three-way switching means 52, a connection flow passage 33 including a four-way switching means 53 and a three-way switching means 54, a connection flow passage 34 including three-way switching means 55, 56, an inside air communication flow passage 35 including three-way switching means 57, 58, an inside air intake flow passage 36 including three-way switching means 59, 60, a connection flow passage 37, a connection flow passage 38 including a three-way switching means 61, a connection flow passage 39, a connection flow passage 40 including a three-way switching means 62, a connection flow passage 41, and a connection flow passage 42 including a three-way switching means 63, and a connection flow passage 43.

Description

本発明は、間接気化冷却装置とデシカント調湿装置とを備えた冷房除湿システムに関するものである。   The present invention relates to a cooling and dehumidifying system including an indirect vaporization cooling device and a desiccant humidity control device.

互いに熱交換が可能な乾流路および湿流路の二つの気体の流路と、湿流路に設けられる液体供給手段と、を備え、湿流路を流れる気体が、該湿流路に供給された液体が気化される際に気化熱として周囲から熱を奪うことにより、乾流路を流れる気体が冷却されることで、乾流路を流れる気体を加湿することなく冷却する間接気化冷却装置が知られている(例えば特許文献1参照)。   Two gas channels, a dry channel and a wet channel, capable of exchanging heat with each other, and a liquid supply means provided in the wet channel, and the gas flowing through the wet channel is supplied to the wet channel Indirect evaporative cooling device that cools the gas flowing in the dry flow path without humidification by cooling the gas flowing in the dry flow path by removing heat from the surroundings as the heat of vaporization when the liquid is vaporized Is known (see, for example, Patent Document 1).

また、二つの気体の流路と、この流路間に跨って回転するデシカントロータと、を備え、一方の流路を流れる気体に対し吸湿(除湿)を行うとともに、他方の流路においてデシカントロータの再生を行うデシカント調湿装置が知られている(例えば特許文献2参照)。   In addition, the gas flow path includes two gas flow paths and a desiccant rotor that rotates between the flow paths, and performs moisture absorption (dehumidification) on the gas flowing in one flow path, and the desiccant rotor in the other flow path. There is known a desiccant humidity control apparatus that performs regeneration of the above (see, for example, Patent Document 2).

特開2008−101890号公報JP 2008-101890 A 特開2008−164203号公報JP 2008-164203 A

簡素な構成の間接気化冷却装置とデシカント調湿装置とを備え、冷房と、除湿と、冷房および除湿を任意に行うことが可能な冷房除湿システムが望まれている。   There is a demand for a cooling and dehumidifying system that includes an indirect vaporization cooling device and a desiccant humidity control device with a simple configuration and can arbitrarily perform cooling, dehumidification, cooling and dehumidification.

本発明は上記従来の問題点に鑑みて発明したものであって、その目的とするところは、間接気化冷却装置とデシカント調湿装置とを備え、冷房と、除湿と、冷房および除湿を任意に行うことが可能な冷房除湿システムを提供することを課題とするものである。   The present invention was invented in view of the above-described conventional problems, and the object thereof is to include an indirect vaporization cooling device and a desiccant humidity control device, and to arbitrarily perform cooling, dehumidification, cooling and dehumidification. An object of the present invention is to provide a cooling and dehumidifying system that can be performed.

上記課題を解決するために、請求項1に係る発明は、
互いに熱交換が可能な乾流路11および湿流路12と、湿流路12に設けられる液体供給手段13と、を備え、湿流路12を流れる気体により湿流路12に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより乾流路11を流れる気体を加湿することなく冷却する間接気化冷却装置1と、
第一の流路21および第二の流路22と、第一の流路21と第二の流路22との間に跨って回転するデシカントロータ20と、第一の流路21と第二の流路22とにそれぞれ設けられる再生手段23、24と、を備え、第一の流路21と第二の流路22のうち一方の流路を流れる気体に対し吸湿を行うとともに、他方の流路においてデシカントロータ20の再生を行うデシカント調湿装置2と、
を備えた冷房除湿システムであって、
乾流路11の入口に、先端が屋外の大気に連通する大気開放端となる外気吸入流路31が接続され、この外気吸入流路31の途中に三方切替手段51が設けられ、
湿流路12の出口に、先端が屋外の大気に連通する大気開放端となる外気連通流路32が接続され、この外気連通流路32の途中に三方切替手段52が設けられ、
乾流路11の出口と第一の流路21の入口との間に接続流路33が接続され、この接続流路33の途中に、乾流路11の出口側から順に四方切替手段53と三方切替手段54とが直列に設けられ、
第二の流路22の出口と湿流路12の入口との間に接続流路34が接続され、この接続流路34の途中に、第二の流路22の出口側から順に三方切替手段55と三方切替手段56とが設けられ、
第一の流路21の出口に、先端が屋内の空間に連通する内気開放端となる内気連通流路35が接続され、この内気連通流路35の途中に、第一の流路21の出口側から順に三方切替手段57と三方切替手段58とが設けられ、
第二の流路22の入口に、先端が屋内の空間に連通する内気開放端となる内気吸入流路36が接続され、この内気吸入流路36の途中に、内気開放端側から順に三方切替手段59と三方切替手段60とが設けられ、
四方切替手段53と内気吸入流路36の第二の流路22の入口側の三方切替手段60との間に接続流路37が接続され、
乾流路11の出口と第一の流路21の入口との間に接続された接続流路33の第一の流路21の入口側の三方切替手段54と、内気吸入流路36の内気開放端側の三方切替手段59との間に接続流路38が接続され、この接続流路38の途中に三方切替手段61が設けられ、この三方切替手段61と外気吸入流路31の途中に設けられた三方切替手段51との間に接続流路39が接続され、
第二の流路22の出口と湿流路12の入口との間に接続された接続流路34の湿流路12の入口側の三方切替手段56と、内気連通流路35の第一の流路21の出口側の三方切替手段57との間に接続流路40が接続され、この接続流路40の途中に三方切替手段62が設けられ、この三方切替手段62と外気連通流路32の途中に設けられた三方切替手段52との間に接続流路41が接続され、
第二の流路22の出口と湿流路12の入口との間に接続された接続流路34の第二の流路22の出口側の三方切替手段55と、内気連通流路35の内気開放端側の三方切替手段58との間に接続流路42が接続され、この接続流路42の途中に三方切替手段63が設けられ、この三方切替手段63と四方切替手段53との間に接続流路43が接続されることを特徴とする。
In order to solve the above problems, the invention according to claim 1
A liquid supplied to the wet flow path 12 by the gas flowing through the wet flow path 12, comprising a dry flow path 11 and a wet flow path 12 that can exchange heat with each other, and a liquid supply means 13 provided in the wet flow path 12. An indirect evaporative cooling device 1 that cools the gas flowing through the dry flow path 11 without humidification by removing heat from the surroundings as the heat of vaporization when evaporating,
The first flow path 21 and the second flow path 22, the desiccant rotor 20 rotating between the first flow path 21 and the second flow path 22, the first flow path 21 and the second flow path Regenerating means 23, 24 provided in each of the flow paths 22, and absorbs moisture in the gas flowing in one of the first flow path 21 and the second flow path 22, and A desiccant humidity control device 2 for regenerating the desiccant rotor 20 in the flow path;
A cooling and dehumidifying system comprising:
An outside air suction channel 31 whose tip is connected to the outdoor atmosphere is connected to the inlet of the dry channel 11, and a three-way switching means 51 is provided in the middle of the outside air suction channel 31.
An outside air communication channel 32 whose end is communicated with the outdoor atmosphere is connected to the outlet of the wet channel 12, and a three-way switching means 52 is provided in the middle of the outside air communication channel 32.
A connection flow path 33 is connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21, and the four-way switching means 53 is arranged in the middle of the connection flow path 33 from the outlet side of the dry flow path 11. Three-way switching means 54 is provided in series,
A connection flow path 34 is connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12, and the three-way switching means in this connection flow path 34 in order from the outlet side of the second flow path 22. 55 and three-way switching means 56 are provided,
Connected to the outlet of the first channel 21 is an inside air communication channel 35 whose tip is communicated with an indoor space and serves as an open end of the inside air, and the outlet of the first channel 21 is provided in the middle of the inside air communication channel 35. Three-way switching means 57 and three-way switching means 58 are provided in order from the side,
Connected to the inlet of the second flow path 22 is an internal air intake flow path 36, which is an open end of the internal air that communicates with the indoor space. Three-way switching is performed in the middle of the internal air intake flow path 36 from the open side of the internal air. Means 59 and three-way switching means 60 are provided,
A connection flow path 37 is connected between the four-way switching means 53 and the three-way switching means 60 on the inlet side of the second flow path 22 of the inside air suction flow path 36.
Three-way switching means 54 on the inlet side of the first flow path 21 of the connection flow path 33 connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21, and the internal air of the internal air suction flow path 36 A connection flow path 38 is connected between the open end side three-way switching means 59, a three-way switching means 61 is provided in the middle of the connection flow path 38, and in the middle of the three-way switching means 61 and the outside air intake flow path 31. A connection flow path 39 is connected between the three-way switching means 51 provided,
The three-way switching means 56 on the inlet side of the wet flow path 12 of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12, and the first of the inside air communication flow path 35 A connection flow path 40 is connected between the three-way switching means 57 on the outlet side of the flow path 21, and a three-way switching means 62 is provided in the middle of the connection flow path 40, and the three-way switching means 62 and the outside air communication flow path 32. The connection flow path 41 is connected between the three-way switching means 52 provided in the middle of
Three-way switching means 55 on the outlet side of the second flow path 22 of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12, and the internal air of the internal air communication flow path 35 A connection flow path 42 is connected to the open end side three-way switching means 58, and a three-way switching means 63 is provided in the middle of the connection flow path 42, and between the three-way switching means 63 and the four-way switching means 53. A connection channel 43 is connected.

請求項2に係る発明は、請求項1に係る発明において、
外気吸入流路31が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段51を切り替え、
外気連通流路32が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段52を切り替え、
乾流路11の出口と第一の流路21の入口との間に接続される接続流路33が全長に亘って内部が連通するようにこの途中に設けられる四方切替手段53および三方切替手段54を切り替え、
第二の流路22の出口と湿流路12の入口との間に接続される接続流路34が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段55および三方切替手段56を切り替え、
第一の流路21の出口に接続される内気連通流路35が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段57および三方切替手段58を切り替え、
第二の流路22の入口に接続される内気吸入流路36が全長に亘って内部が連通するように三方切替手段59および三方切替手段60を切り替えて、流路を構成し、
間接気化冷却装置1の液体供給手段13を動作させ、
デシカント調湿装置2のデシカントロータ20と再生手段23、24を動作させないで運転することを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
Switching the three-way switching means 51 provided in the middle so that the inside of the outside air intake passage 31 is communicated over the entire length,
Switching the three-way switching means 52 provided in the middle so that the inside of the outside air communication channel 32 communicates over the entire length,
A four-way switching means 53 and a three-way switching means provided in the middle of the connection flow path 33 connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21 so as to communicate the entire length. 54,
A three-way switching means 55 and a three-way switching means provided in the middle of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12 so as to communicate with each other over the entire length. Switch 56,
Switching the three-way switching means 57 and the three-way switching means 58 provided in the middle so that the inside air communication flow path 35 connected to the outlet of the first flow path 21 communicates over the entire length,
The three-way switching means 59 and the three-way switching means 60 are switched so that the inside air suction flow path 36 connected to the inlet of the second flow path 22 communicates over the entire length to form a flow path,
Operate the liquid supply means 13 of the indirect evaporative cooling device 1,
The desiccant humidity control apparatus 2 is operated without operating the desiccant rotor 20 and the regeneration means 23 and 24.

請求項3に係る発明は、請求項1に係る発明において、
外気吸入流路31が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段51を切り替え、
外気連通流路32が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段52を切り替え、
乾流路11の出口と第一の流路21の入口との間に接続される接続流路33が全長に亘って内部が連通するようにこの途中に設けられる四方切替手段53および三方切替手段54を切り替え、
第二の流路22の出口と湿流路12の入口との間に接続される接続流路34が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段55および三方切替手段56を切り替え、
第一の流路21の出口に接続される内気連通流路35が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段57および三方切替手段58を切り替え、
第二の流路22の入口に接続される内気吸入流路36が全長に亘って内部が連通するように三方切替手段59および三方切替手段60を切り替えて、流路を構成し、
間接気化冷却装置1の液体供給手段13を動作させ、
デシカント調湿装置2のデシカントロータ20と第二の流路22の再生手段24を動作させて運転することを特徴とする。
The invention according to claim 3 is the invention according to claim 1,
Switching the three-way switching means 51 provided in the middle so that the inside of the outside air intake passage 31 is communicated over the entire length,
Switching the three-way switching means 52 provided in the middle so that the inside of the outside air communication channel 32 communicates over the entire length,
A four-way switching means 53 and a three-way switching means provided in the middle of the connection flow path 33 connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21 so as to communicate the entire length. 54,
A three-way switching means 55 and a three-way switching means provided in the middle of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12 so as to communicate with each other over the entire length. Switch 56,
Switching the three-way switching means 57 and the three-way switching means 58 provided in the middle so that the inside air communication flow path 35 connected to the outlet of the first flow path 21 communicates over the entire length,
The three-way switching means 59 and the three-way switching means 60 are switched so that the inside air suction flow path 36 connected to the inlet of the second flow path 22 communicates over the entire length to form a flow path,
Operate the liquid supply means 13 of the indirect evaporative cooling device 1,
The desiccant rotor 20 of the desiccant humidity control apparatus 2 and the regeneration means 24 of the second flow path 22 are operated to operate.

請求項4に係る発明は、請求項1に係る発明において、
外気吸入流路31が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段51を切り替え、
外気連通流路32が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段52を切り替え、
乾流路11の出口と第一の流路21の入口との間に接続される接続流路33が全長に亘って内部が連通するようにこの途中に設けられる四方切替手段53および三方切替手段54を切り替え、
第二の流路22の出口と湿流路12の入口との間に接続される接続流路34が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段55および三方切替手段56を切り替え、
第一の流路21の出口に接続される内気連通流路35が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段57および三方切替手段58を切り替え、
第二の流路22の入口に接続される内気吸入流路36が全長に亘って内部が連通するように三方切替手段59および三方切替手段60を切り替えて、流路を構成し、
間接気化冷却装置1の液体供給手段13を動作させず、
デシカント調湿装置2のデシカントロータ20と再生手段23、24を動作させないで運転することを特徴とする。
The invention according to claim 4 is the invention according to claim 1,
Switching the three-way switching means 51 provided in the middle so that the inside of the outside air intake passage 31 is communicated over the entire length,
Switching the three-way switching means 52 provided in the middle so that the inside of the outside air communication channel 32 communicates over the entire length,
A four-way switching means 53 and a three-way switching means provided in the middle of the connection flow path 33 connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21 so as to communicate the entire length. 54,
A three-way switching means 55 and a three-way switching means provided in the middle of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12 so as to communicate with each other over the entire length. Switch 56,
Switching the three-way switching means 57 and the three-way switching means 58 provided in the middle so that the inside air communication flow path 35 connected to the outlet of the first flow path 21 communicates over the entire length,
The three-way switching means 59 and the three-way switching means 60 are switched so that the inside air suction flow path 36 connected to the inlet of the second flow path 22 communicates over the entire length to form a flow path,
Without operating the liquid supply means 13 of the indirect evaporative cooling device 1,
The desiccant humidity control apparatus 2 is operated without operating the desiccant rotor 20 and the regeneration means 23 and 24.

請求項5に係る発明は、請求項1に係る発明において、
外気吸入流路31が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段51を切り替え、
外気連通流路32が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段52を切り替え、
乾流路11の出口と第一の流路21の入口との間に接続される接続流路33が全長に亘って内部が連通するようにこの途中に設けられる四方切替手段53および三方切替手段54を切り替え、
第二の流路22の出口と湿流路12の入口との間に接続される接続流路34が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段55および三方切替手段56を切り替え、
第一の流路21の出口に接続される内気連通流路35が全長に亘って内部が連通するようにこの途中に設けられる三方切替手段57および三方切替手段58を切り替え、
第二の流路22の入口に接続される内気吸入流路36が全長に亘って内部が連通するように三方切替手段59および三方切替手段60を切り替えて、流路を構成し、
デシカント調湿装置2のデシカントロータ20と第一の流路21の再生手段23を動作させて運転することを特徴とする。
The invention according to claim 5 is the invention according to claim 1,
Switching the three-way switching means 51 provided in the middle so that the inside of the outside air intake passage 31 is communicated over the entire length,
Switching the three-way switching means 52 provided in the middle so that the inside of the outside air communication channel 32 communicates over the entire length,
A four-way switching means 53 and a three-way switching means provided in the middle of the connection flow path 33 connected between the outlet of the dry flow path 11 and the inlet of the first flow path 21 so as to communicate the entire length. 54,
A three-way switching means 55 and a three-way switching means provided in the middle of the connection flow path 34 connected between the outlet of the second flow path 22 and the inlet of the wet flow path 12 so as to communicate with each other over the entire length. Switch 56,
Switching the three-way switching means 57 and the three-way switching means 58 provided in the middle so that the inside air communication flow path 35 connected to the outlet of the first flow path 21 communicates over the entire length,
The three-way switching means 59 and the three-way switching means 60 are switched so that the inside air suction flow path 36 connected to the inlet of the second flow path 22 communicates over the entire length to form a flow path,
The desiccant rotor 20 of the desiccant humidity control apparatus 2 and the regeneration means 23 of the first flow path 21 are operated to operate.

本発明の冷房除湿システムにあっては、冷房と、除湿と、冷房および除湿を任意に行うことが可能である。   In the cooling and dehumidifying system of the present invention, it is possible to arbitrarily perform cooling, dehumidification, cooling and dehumidification.

本発明の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of this invention. 第1運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 1st operation mode. 第2運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 2nd operation mode. 第3運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 3rd operation mode. 第4運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 4th operation mode. 第5運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 5th operation mode. 第6運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 6th operation mode. 第7運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 7th operation mode. 第8運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 8th operation mode. 第9運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the case of the 9th operation mode. 第10運転モードの場合の気体の流れを説明する図である。It is a figure explaining the flow of the gas in the 10th operation mode.

以下、本発明の一実施形態に基いて説明する。まず、間接気化冷却装置とデシカント調湿装置について説明する。   Hereinafter, a description will be given based on an embodiment of the present invention. First, an indirect vaporization cooling device and a desiccant humidity control device will be described.

間接気化冷却装置は、乾流路と湿流路の二つの流路を備え、この流路間で熱交換を行うものである。乾流路と湿流路の間には、熱伝導性部材が介在しており、この熱伝導性部材により、各流路を流れる気体間で熱交換が行われる。湿流路には、液体供給手段および液体保持手段が設けられ、液体供給手段により液体が供給され、供給された液体は液体保持手段により保持される。液体保持手段において、液体は、湿流路を流れる気体と直接接触可能に保持される。   The indirect evaporative cooling device includes two flow paths, a dry flow path and a wet flow path, and performs heat exchange between the flow paths. A heat conductive member is interposed between the dry flow channel and the wet flow channel, and heat exchange is performed between the gas flowing through each flow channel by the heat conductive member. The wet flow path is provided with a liquid supply means and a liquid holding means. The liquid is supplied by the liquid supply means, and the supplied liquid is held by the liquid holding means. In the liquid holding means, the liquid is held so as to be in direct contact with the gas flowing in the wet flow path.

この間接気化冷却装置は、乾流路に冷却対象となる気体を流通させ、湿流路には、相対湿度が100%未満の気体を流通させるのであるが、この気体の相対湿度は低い程好ましいものである。そして、液体保持手段に供給された液体が液体保持手段により保持された状態で、乾流路と湿流路とに気体が流れると、湿流路において、液体保持手段に保持されている液体が湿流路を流れる気体により気化されていく。この時、液体保持手段に保持されている液体が蒸発する際に気化熱として周囲から熱を奪うことにより、乾流路を流れる気体も冷却される。これにより、乾流路を流れる気体は、加湿されることなく冷却されるものである。   In this indirect evaporative cooling device, a gas to be cooled is circulated in the dry flow path, and a gas having a relative humidity of less than 100% is circulated in the wet flow path. The lower the relative humidity of this gas is, the better. Is. When the gas supplied to the liquid holding unit is held by the liquid holding unit and the gas flows through the dry channel and the wet channel, the liquid held in the liquid holding unit is It is vaporized by the gas flowing through the wet channel. At this time, when the liquid held in the liquid holding means evaporates, the heat flowing from the surroundings is removed as the heat of vaporization, whereby the gas flowing through the dry flow path is also cooled. Thereby, the gas flowing through the dry flow path is cooled without being humidified.

間接気化冷却装置としては、特許文献1に記載されたものが利用可能であるが、特にこれに限定されない。間接気化冷却装置の一具体例について概略説明する。本例では、乾流路と湿流路とを、セルロース系紙に、通気性を有さず熱伝導性を有する合成樹脂製フィルムを貼り合わせた仕切りにて、セルロース系紙が湿流路側に面するようにして仕切る。セルロース系紙が液体保持手段として機能し、合成樹脂製フィルムが熱伝導性部材として機能する。この場合、液体が蒸発する際に乾流路を流れる気体が奪われる熱は、主に、湿流路の乾流路側の壁面に保持されていた液体が、気化熱として、乾流路から直接的に奪う熱であるが、液体が蒸発する際に湿流路から熱を奪うことで湿流路の温度が低下し、これにより奪われる熱もある。   Although what was described in patent document 1 can be utilized as an indirect vaporization cooling device, it is not specifically limited to this. A specific example of the indirect evaporative cooling device will be schematically described. In this example, the cellulosic paper is placed on the wet flow channel side in a partition in which the dry flow channel and the wet flow channel are bonded to the cellulosic paper with a synthetic resin film having no air permeability and heat conductivity. Partition to face. Cellulosic paper functions as a liquid holding means, and a synthetic resin film functions as a heat conductive member. In this case, the heat deprived of the gas flowing through the dry flow path when the liquid evaporates is mainly caused by the liquid held on the dry flow path side of the wet flow path directly from the dry flow path as the heat of vaporization. However, when the liquid evaporates, heat is taken away from the wet flow path to lower the temperature of the wet flow path, and there is also heat taken away by this.

液体供給手段は、チューブと、ポンプと、ポンプを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、タンク等の液体貯留部と、を備える。チューブの一端は液体貯留部に接続され、チューブの他端は湿流路のセルロース系紙付近に配置される。   The liquid supply means includes a tube, a pump, drive means such as a motor that drives the pump, a control unit that includes a microcomputer that controls the drive means, and a liquid storage part such as a tank. One end of the tube is connected to the liquid storage part, and the other end of the tube is disposed near the cellulosic paper in the wet flow path.

この乾流路と湿流路は交互に積層され、各乾流路の入口および出口、各湿流路の入口および出口はそれぞれ一つの入口および出口に集約される。   The dry flow channel and the wet flow channel are alternately stacked, and the inlet and the outlet of each dry flow channel, and the inlet and the outlet of each wet flow channel are integrated into one inlet and an outlet, respectively.

乾流路と湿流路には、それぞれ送風手段が設けられる。送風手段は、ファンと、ファンを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備える。   Air blowing means is provided in each of the dry flow path and the wet flow path. The blowing unit includes a fan, a driving unit such as a motor that drives the fan, and a control unit that includes a microcomputer that controls the driving unit.

乾流路と湿流路とを流れる気体の流量と、湿流路に供給される液体の流量を制御部により制御することで、乾流路を流れて得られる冷却空気の量、温度がある程度調節可能となっている。   By controlling the flow rate of the gas flowing through the dry flow channel and the wet flow channel and the flow rate of the liquid supplied to the wet flow channel by the control unit, the amount and temperature of the cooling air obtained by flowing through the dry flow channel are to some extent It is adjustable.

また、湿流路を流れる気体中の蒸気が結露して液体となった場合に、この液体を排出する排出手段を備えている。この排出手段としては、湿流路と外部とを連通する流路となる管等を備え、途中に逆止弁やポンプを有するものが用いられるが、特に限定されない。   Moreover, when the vapor | steam in the gas which flows through a moisture flow path condenses and becomes a liquid, the discharge means which discharges this liquid is provided. As this discharging means, a means that includes a pipe or the like that becomes a flow path that communicates the wet flow path and the outside and has a check valve or a pump in the middle is used, but is not particularly limited.

なお、上記のような間接気化冷却装置は一例であってこれに限定されない。また、液体としては水が好適に用いられるが、他の液体が用いられてもよく、この場合には揮発性の高い液体が好ましい。また、乾流路と湿流路とを流れる気体は空気が好適に用いられるが、特に限定されず、また、乾流路と湿流路とに別々の気体が流れてもよい。   In addition, the above indirect vaporization cooling apparatus is an example, and is not limited to this. Further, water is preferably used as the liquid, but other liquids may be used. In this case, a highly volatile liquid is preferable. In addition, air is preferably used as the gas flowing through the dry flow path and the wet flow path, but is not particularly limited, and separate gases may flow through the dry flow path and the wet flow path.

デシカント調湿装置は、二つの流路と、この流路間に跨って回転するデシカントロータと、デシカントロータを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備え、一方の流路を流れる気体に対し吸湿を行うとともに、他方の流路を流れる気体に対し放湿を行うものである。デシカントロータは、通常は円盤状をしたもので、その中心軸(回転軸)方向に通気性を有する。なお、デシカントロータは円盤状に限定されない。そして、デシカントロータの表面に吸湿材(デシカント)が担持されている。また、他方の流路には、デシカントロータの上流側に、デシカントロータを再生するための加熱手段からなる再生手段を備えている。加熱手段(再生手段)としては、例えば気−液熱交換器と、熱媒と、循環路と、ポンプと、ポンプを駆動するモータ等の駆動手段と、熱媒を加熱するガスバーナ等の加熱部と、を備えた温水コイルが好適に用いられるが、特に限定されず、電熱ヒータ等であってもよい。   The desiccant humidity control apparatus includes two flow paths, a desiccant rotor that rotates between the flow paths, a drive unit such as a motor that drives the desiccant rotor, and a control unit that includes a microcomputer that controls the drive unit. , And performs moisture absorption on the gas flowing in one flow path and releases the moisture on the gas flowing in the other flow path. The desiccant rotor is usually disk-shaped and has air permeability in the direction of its central axis (rotating axis). The desiccant rotor is not limited to a disk shape. A moisture absorbent (desiccant) is carried on the surface of the desiccant rotor. Further, the other flow path is provided with a regenerating means comprising a heating means for regenerating the desiccant rotor on the upstream side of the desiccant rotor. Examples of the heating means (regeneration means) include a gas-liquid heat exchanger, a heat medium, a circulation path, a pump, a driving means such as a motor that drives the pump, and a heating unit such as a gas burner that heats the heat medium. Are preferably used, but are not particularly limited, and may be an electric heater or the like.

二つの流路には、それぞれ送風手段が設けられる。送風手段は、ファンと、ファンを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備えている。   The two flow paths are respectively provided with air blowing means. The blowing unit includes a fan, a driving unit such as a motor that drives the fan, and a control unit including a microcomputer that controls the driving unit.

なお、上記に加え、二つの流路間に跨って回転する顕熱交換ロータと、顕熱交換ロータを駆動するモータ等の駆動手段と、駆動手段を制御するマイクロコンピュータ等からなる制御部と、を備えていてもよい。顕熱交換ロータは、一方の流路のデシカントロータよりも上流側の部分と、他方の流路のデシカントロータよりも下流側の部分に跨るように回転する。また、顕熱交換ロータに代えて、間に熱伝導性部材を介在させて二つの流路を仕切る一般的な熱交換器を備えてもよい。   In addition to the above, a sensible heat exchange rotor that rotates across the two flow paths, a drive unit such as a motor that drives the sensible heat exchange rotor, and a control unit that includes a microcomputer that controls the drive unit, May be provided. The sensible heat exchanging rotor rotates so as to straddle a portion upstream of the desiccant rotor in one channel and a portion downstream of the desiccant rotor in the other channel. Further, instead of the sensible heat exchange rotor, a general heat exchanger that partitions the two flow paths with a heat conductive member interposed therebetween may be provided.

このデシカント調湿装置は、除湿対象とする気体を一方の流路に流通させ、除湿対象となる気体がデシカントロータを通過すると、吸湿材に液体の蒸気が吸収され、除湿された気体となって流出する。他方の流路においては、再生手段(加熱手段)によりデシカントロータが加熱され、気体がデシカントロータを通過する際、デシカントロータが吸湿材が吸収していた液体を気体中に蒸気として放出し、吸湿材が再生される。   This desiccant humidity control apparatus distributes the gas to be dehumidified through one flow path, and when the gas to be dehumidified passes through the desiccant rotor, the liquid vapor is absorbed by the moisture absorbent and becomes a dehumidified gas. leak. In the other channel, the desiccant rotor is heated by the regeneration means (heating means), and when the gas passes through the desiccant rotor, the desiccant rotor releases the liquid absorbed by the hygroscopic material as vapor into the gas and absorbs moisture. The material is regenerated.

また、顕熱交換ロータを備えている場合には、顕熱交換ロータを回転させることで、他方の流路から流出する気体から熱を奪うとともに一方の流路に流入する気体に放熱し、熱の回収が行われる。顕熱交換ロータでなく一般的な熱交換器の場合も同様である。   If a sensible heat exchange rotor is provided, rotating the sensible heat exchange rotor removes heat from the gas flowing out from the other flow path and dissipates heat to the gas flowing into one flow path, Is collected. The same applies to a general heat exchanger instead of a sensible heat exchange rotor.

一方の流路と他方の流路とを流れる気体の流量と、加熱手段による加熱量と、場合によってはデシカントロータの回転速度を制御部により制御することで、一方の流路から流出する除湿気体の量、湿度が調節可能である。   The dehumidified gas flowing out from one channel by controlling the flow rate of the gas flowing through one channel and the other channel, the amount of heating by the heating means, and, in some cases, the rotational speed of the desiccant rotor by the control unit The amount and humidity can be adjusted.

なお、上記のようなデシカント調湿装置は一例であって、これに限定されない。   In addition, the above desiccant humidity control apparatus is an example, and is not limited to this.

以下、本発明の冷房除湿システムについて図1に基づいて説明する。   Hereinafter, the cooling dehumidification system of this invention is demonstrated based on FIG.

間接気化冷却装置1の乾流路11および湿流路12、デシカント調湿装置2の第一の流路21および第二の流路22は、送風手段による送風方向が定まっており、入口および出口が固定されている。第一の流路21と第二の流路22とには、それぞれ再生手段23、24が設けられている。また、第一の流路21のデシカントロータ20の下流側の部分と、第二の流路22のデシカントロータ20の上流側の部分とで、熱伝導性部材により互いに熱交換を可能とする熱交換器25が設けられている。   The dry flow path 11 and the wet flow path 12 of the indirect evaporative cooling apparatus 1 and the first flow path 21 and the second flow path 22 of the desiccant humidity control apparatus 2 have a blowing direction determined by the blowing means, and an inlet and an outlet Is fixed. Regenerating means 23 and 24 are provided in the first channel 21 and the second channel 22, respectively. Further, heat that allows heat exchange between the downstream portion of the first passage 21 and the upstream portion of the desiccant rotor 20 of the second passage 22 by the heat conductive member. An exchanger 25 is provided.

乾流路11の入口には、先端が屋外の大気に連通する大気開放端となる外気吸入流路31が接続され、この外気吸入流路31の途中に三方切替手段51が設けられる。三方切替手段51は、特に図示しないが、三つの流路がそれぞれ接続される三個のポートを有し、前記三つの流路のうち所望の二つ(または三つ)の流路が連通するように切り替えるもので、ダンパーが好適に用いられるが、前記三つの流路にそれぞれ開閉弁(含ダンパー)を設けてこれらの開閉の組み合わせで切り替えを行ってもよく、特に限定されない。以下の全ての三方切替手段についても同様である。   The inlet of the dry channel 11 is connected to an outside air suction channel 31 whose tip is connected to the outdoor atmosphere, and an three-way switching means 51 is provided in the middle of the outside air suction channel 31. Although not particularly shown, the three-way switching means 51 has three ports to which the three flow paths are respectively connected, and desired two (or three) flow paths among the three flow paths communicate with each other. A damper is preferably used. However, there is no particular limitation, and an on-off valve (including a damper) may be provided in each of the three flow paths, and switching may be performed by a combination of these opening and closing. The same applies to all the following three-way switching means.

湿流路12の出口には、先端が屋外の大気に連通する大気開放端となる外気連通流路32が接続され、この外気連通流路32の途中に三方切替手段52が設けられる。   The outlet of the wet flow channel 12 is connected to an outdoor air communication channel 32 whose tip is communicated with the outdoor atmosphere, and an three-way switching means 52 is provided in the middle of the external air communication channel 32.

乾流路11の出口と第一の流路21の入口との間には接続流路33が接続され、第二の流路22の出口と湿流路12の入口との間には接続流路34が接続される。   A connection channel 33 is connected between the outlet of the dry channel 11 and the inlet of the first channel 21, and a connection flow is connected between the outlet of the second channel 22 and the inlet of the wet channel 12. A path 34 is connected.

接続流路33の途中には、乾流路11の出口側から順に、四方切替手段53と三方切替手段54とが直列に設けられる。四方切替手段は、特に図示しないが、四つの流路がそれぞれ接続される四個のポートを有し、所望の二つの流路が連通するように切り替えるものであるが、前記四つの流路にそれぞれ開閉弁(含ダンパー)を設けてこれらの開閉の組み合わせで切り替えを行ってもよく、特に限定されない。   In the middle of the connection channel 33, a four-way switching unit 53 and a three-way switching unit 54 are provided in series in order from the outlet side of the dry channel 11. Although not specifically illustrated, the four-way switching means has four ports to which the four flow paths are respectively connected, and switches so that two desired flow paths communicate with each other. Switching may be performed by providing a combination of opening and closing valves (including dampers), and there is no particular limitation.

接続流路34の途中には、第二の流路22の出口側から順に、三方切替手段55と三方切替手段56とが設けられる。   A three-way switching means 55 and a three-way switching means 56 are provided in the middle of the connection flow path 34 in order from the outlet side of the second flow path 22.

第一の流路21の出口には、先端が屋内の空間に連通する内気開放端となる内気連通流路35が接続され、第二の流路22の入口には、先端が屋内の空間に連通する内気開放端となる内気吸入流路36が接続される。   The outlet of the first flow path 21 is connected to an inside air communication flow path 35 that is an open end of the open air whose front end communicates with the indoor space, and the front end of the second flow path 22 is connected to the indoor space. An inside air intake passage 36 serving as an open end for communicating inside air is connected.

内気連通流路35には、第一の流路21の出口側から順に、三方切替手段57と三方切替手段58とが設けられ、内気吸入流路36には、内気開放端側から順に、三方切替手段59と三方切替手段60とが設けられる。   The inside air communication passage 35 is provided with a three-way switching means 57 and a three-way switching means 58 in order from the outlet side of the first passage 21, and the inside air suction passage 36 is provided in three directions in order from the inside air open end side. Switching means 59 and three-way switching means 60 are provided.

四方切替手段53と、内気吸入流路36の第二の流路22の入口側の三方切替手段60との間に、接続流路37が接続される。   A connection flow path 37 is connected between the four-way switching means 53 and the three-way switching means 60 on the inlet side of the second flow path 22 of the inside air suction flow path 36.

接続流路33の第一の流路21の入口側の三方切替手段54と、内気吸入流路36の内気開放端側の三方切替手段59との間に、接続流路38が接続され、この接続流路38の途中に三方切替手段61が設けられる。この三方切替手段61と三方切替手段51との間に、接続流路39が接続される。   A connection flow path 38 is connected between the three-way switching means 54 on the inlet side of the first flow path 21 of the connection flow path 33 and the three-way switching means 59 on the open side of the inside air suction flow path 36. Three-way switching means 61 is provided in the middle of the connection flow path 38. A connection flow path 39 is connected between the three-way switching means 61 and the three-way switching means 51.

接続流路34の湿流路12の入口側の三方切替手段56と、内気連通流路35の第一の流路21の出口側の三方切替手段57との間に、接続流路40が接続され、この接続流路40の途中に三方切替手段62が設けられる。この三方切替手段62と三方切替手段52との間に、接続流路41が接続される。   The connection channel 40 is connected between the three-way switching unit 56 on the inlet side of the wet channel 12 of the connection channel 34 and the three-way switching unit 57 on the outlet side of the first channel 21 of the inside air communication channel 35. The three-way switching means 62 is provided in the middle of the connection flow path 40. The connection channel 41 is connected between the three-way switching means 62 and the three-way switching means 52.

接続流路34の第二の流路22の出口側の三方切替手段55と、内気連通流路35の内気開放端側の三方切替手段58との間に、接続流路42が接続され、この接続流路42の途中に三方切替手段63が設けられる。この三方切替手段63と、四方切替手段53との間に、接続流路43が接続される。   A connection flow path 42 is connected between the three-way switching means 55 on the outlet side of the second flow path 22 of the connection flow path 34 and the three-way switching means 58 on the inside air open end side of the inside air communication flow path 35. Three-way switching means 63 is provided in the middle of the connection flow path 42. A connection flow path 43 is connected between the three-way switching means 63 and the four-way switching means 53.

第1運転モードについて説明する。第1運転モードでは、図2に示すように、三方切替手段51を、外気吸入流路31が外気開放端から乾流路11の入口までの全長に亘って内部が連通するように切り替え、三方切替手段52を、外気連通流路32が湿流路12の出口から外気開放端までの全長に亘って内部が連通するように切り替える。四方切替手段53および三方切替手段54を、接続流路33が乾流路11の出口から第一の流路21の入口までの全長に亘って内部が連通するように切り替え、三方切替手段55および三方切替手段56を、接続流路34が第二の流路22の出口から湿流路12の入口までの全長に亘って内部が連通するように切り替える。三方切替手段57および三方切替手段58を、内気連通流路35が第一の流路21の出口から内気開放端までの全長に亘って内部が連通するように切り替え、三方切替手段59および三方切替手段60を、内気吸入流路36が内気開放端から第二の流路22の入口までの全長に亘って内部が連通するように切り替えて、流路を構成する。   The first operation mode will be described. In the first operation mode, as shown in FIG. 2, the three-way switching means 51 is switched so that the outside communicates over the entire length of the outside air intake passage 31 from the outside open end to the inlet of the dry passage 11. The switching means 52 is switched so that the outside air communication channel 32 communicates with the inside over the entire length from the outlet of the wet channel 12 to the outside air open end. The four-way switching means 53 and the three-way switching means 54 are switched so that the inside of the connection flow path 33 communicates over the entire length from the outlet of the dry flow path 11 to the inlet of the first flow path 21. The three-way switching means 56 is switched so that the inside of the connection channel 34 communicates over the entire length from the outlet of the second channel 22 to the inlet of the wet channel 12. The three-way switching means 57 and the three-way switching means 58 are switched so that the inside air communication flow path 35 communicates with the inside over the entire length from the outlet of the first flow path 21 to the inside air open end. The means 60 is switched so that the inside air intake channel 36 communicates with the entire length from the inside air open end to the inlet of the second channel 22 to configure the channel.

そして、間接気化冷却装置1をON(運転)にするとともに、デシカント調湿装置2をOFF(運転停止)にする。デシカント調湿装置2をOFFにすると、デシカントロータ20の回転は行われず、再生手段23、24も動作しないが、気体は、第一の流路21と第二の流路22を湿度変化なく通過するとともに、熱交換器25において熱交換が行われる。   Then, the indirect vaporization cooling device 1 is turned ON (operation), and the desiccant humidity control device 2 is turned OFF (operation stop). When the desiccant humidity control device 2 is turned off, the desiccant rotor 20 is not rotated and the regenerating means 23 and 24 do not operate, but the gas passes through the first channel 21 and the second channel 22 without change in humidity. In addition, heat exchange is performed in the heat exchanger 25.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路33を介してデシカント調湿装置2の第一の流路21に流入する。そして、デシカント調湿装置2の熱交換器25を通過する際に更に冷却され、内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the first flow of the desiccant humidity control device 2 via the connection flow path 33. It flows into the path 21. And when it passes the heat exchanger 25 of the desiccant humidity control apparatus 2, it cools further and is supplied indoors via the inside air communication flow path 35.

内気は、内気吸入流路36を介してデシカント調湿装置2の第二の流路22に流入し、熱交換器25を通過する際に加熱されて、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を含んで、外気連通流路32を介して屋外へ排出される。   The inside air flows into the second passage 22 of the desiccant humidity control device 2 through the inside air suction passage 36, is heated when passing through the heat exchanger 25, and is indirectly vaporized and cooled through the connection passage 34. It flows into the wet flow path 12 of the device 1. Then, when passing through the wet flow path 12, the water held by the water holding means is vaporized and discharged to the outside through the outside air communication flow path 32, including water vapor generated.

上記第1運転モードは、主に夏期に、外気を取り入れて内気を排出(すなわち換気)するとともに、取り入れる外気を加湿することなく冷却するものである。   In the first operation mode, mainly in summer, outside air is taken in and discharged (that is, ventilation), and the outside air taken in is cooled without being humidified.

次に、第2運転モードについて説明する。第2運転モードでは、図3に示すように、三方切替手段51を、外気吸入流路31が外気開放端から乾流路11の入口までの全長に亘って内部が連通するように切り替え、三方切替手段52を、外気連通流路32が湿流路12の出口から外気開放端までの全長に亘って内部が連通するように切り替える。四方切替手段53を、乾流路11と接続流路37とが連通するように切り替え、三方切替手段54を、接続流路38と第一の流路21とが連通するように切り替える。三方切替手段55を、第二の流路22と接続流路42とが連通するように切り替え、三方切替手段56を、接続流路40と湿流路12とが連通するように切り替える。三方切替手段57を、第一の流路21と接続流路40とが連通するように切り替え、三方切替手段58を、接続流路42と内気連通流路35の内気開放端とが連通するように切り替える。三方切替手段59を、内気吸入流路36の内気開放端と接続流路38とが連通するように切り替え、三方切替手段60を、接続流路37と第二の流路22とが連通するように切り替える。三方切替手段62を、接続流路40が三方切替手段57から三方切替手段56までの全長に亘って内部が連通するように切り替え、三方切替手段63を、接続流路42が三方切替手段55から三方切替手段58までの全長に亘って内部が連通するように切り替えて、流路を構成する。   Next, the second operation mode will be described. In the second operation mode, as shown in FIG. 3, the three-way switching means 51 is switched so that the inside of the outside air intake passage 31 is communicated over the entire length from the outside air open end to the inlet of the dry passage 11. The switching means 52 is switched so that the outside air communication channel 32 communicates with the inside over the entire length from the outlet of the wet channel 12 to the outside air open end. The four-way switching means 53 is switched so that the dry flow path 11 and the connection flow path 37 communicate with each other, and the three-way switching means 54 is switched so that the connection flow path 38 and the first flow path 21 communicate with each other. The three-way switching means 55 is switched so that the second flow path 22 and the connection flow path 42 communicate with each other, and the three-way switching means 56 is switched so that the connection flow path 40 and the wet flow path 12 communicate with each other. The three-way switching means 57 is switched so that the first flow path 21 and the connection flow path 40 communicate with each other, and the three-way switching means 58 is communicated with the connection air flow path 42 and the inside air open end of the inside air communication flow path 35. Switch to. The three-way switching means 59 is switched so that the inside air open end of the inside air suction flow path 36 communicates with the connection flow path 38, and the three-way switching means 60 is communicated with the connection flow path 37 and the second flow path 22. Switch to. The three-way switching means 62 is switched so that the inside of the connection flow path 40 communicates over the entire length from the three-way switching means 57 to the three-way switching means 56, and the three-way switching means 63 is switched from the three-way switching means 55. The flow path is configured by switching so that the inside communicates over the entire length up to the three-way switching means 58.

そして、間接気化冷却装置1をOFFにするとともに、デシカント調湿装置2をONにする。間接気化冷却装置1をOFFにすると、水供給手段13が動作せず湿流路12への水の供給が行われないが、乾流路11と湿流路12を流れる気体は、互いに顕熱を交換し、乾流路11を流れる気体は若干冷却される(これを予備冷却という)。また、デシカント調湿装置2は、デシカントロータ20の回転が行われるとともに、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   Then, the indirect vaporization cooling device 1 is turned off and the desiccant humidity control device 2 is turned on. When the indirect evaporative cooling device 1 is turned off, the water supply means 13 does not operate and water is not supplied to the wet flow path 12, but the gas flowing through the dry flow path 11 and the wet flow path 12 is sensible heat to each other. The gas flowing through the dry flow path 11 is slightly cooled (this is called pre-cooling). Further, in the desiccant humidity control device 2, the desiccant rotor 20 is rotated and the regeneration means 23 of the first flow path 21 is operated. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく予備冷却され、接続流路37を介してデシカント調湿装置2の第二の流路22に流入する。そして、熱交換器25を通過する際に更に冷却され、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路42および内気連通流路35を介して屋内へ供給される。   Outside air flows into the dry flow path 11 via the external air suction flow path 31, is precooled without being humidified by the indirect vaporization cooling device 1, and passes through the connection flow path 37 to the second of the desiccant humidity control apparatus 2. It flows into the flow path 22. Then, it is further cooled when it passes through the heat exchanger 25, is absorbed by the moisture when passing through the desiccant rotor 20, becomes low humidity, and is supplied indoors through the connection flow path 42 and the inside air communication flow path 35.

内気は、内気吸入流路36の内気開放端より流入し、接続流路38を介してデシカント調湿装置2の第一の流路21に流入し、デシカントロータ20を通過する際に放湿されて高湿度となり、接続流路40を介して間接気化冷却装置1の湿流路12に流入する。そして、湿流路12を通過する際に、乾流路11を流れる気体との熱(顕熱)交換により若干温度が上昇し、外気連通流路32を介して屋外へ排出される。湿流路12を流れる気体は高湿度となっているが、排出手段14を備えているため、結露により支障をきたすことはない。   The inside air flows in from the inside air open end of the inside air suction flow path 36, flows into the first flow path 21 of the desiccant humidity control device 2 through the connection flow path 38, and is dehumidified when passing through the desiccant rotor 20. The humidity becomes high and flows into the wet flow path 12 of the indirect vaporization cooling device 1 through the connection flow path 40. Then, when passing through the wet flow path 12, the temperature slightly rises due to heat (sensible heat) exchange with the gas flowing through the dry flow path 11, and is discharged to the outside via the outside air communication flow path 32. Although the gas flowing through the wet flow path 12 has a high humidity, the exhaust means 14 is provided, so that no trouble is caused by condensation.

上記第2運転モードでは、主に夏期に、換気するとともに、取り入れる外気を予備冷却し且つ除湿(吸湿)して供給するものである。   In the second operation mode, ventilation is performed mainly in summer, and outside air taken in is precooled and dehumidified (absorbed) and supplied.

次に、第3運転モードについて説明する。第3運転モードは、図4に示すように、第1運転モードと同様の流路構成となっている。   Next, the third operation mode will be described. As shown in FIG. 4, the third operation mode has a flow path configuration similar to that of the first operation mode.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第二の流路22の再生手段24が動作する。すなわち、第一の流路21が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第二の流路22が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 24 of the 2nd flow path 22 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the first flow path 21 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the second flow path 22 becomes a moisture release flow path, and the humidity is discharged by the flowing gas. Rises.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路33を介してデシカント調湿装置2の第一の流路21に流入する。そして、デシカントロータ20を通過する際に吸湿されて低湿度となり、熱交換器25を通過する際に更に冷却され、内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the first flow of the desiccant humidity control device 2 via the connection flow path 33. It flows into the path 21. Then, when passing through the desiccant rotor 20, the moisture is absorbed to become low humidity, and when passing through the heat exchanger 25, it is further cooled and supplied indoors through the inside air communication channel 35.

内気は、内気吸入流路36を介してデシカント調湿装置2の第二の流路22に流入し、デシカントロータ20を通過する際に放湿されて高湿度となり、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を更に含んで、外気連通流路32を介して屋外へ排出される。湿流路12に流入する気体は高湿度となっている上に湿流路12で更に水蒸気を含むが、排出手段14を備えているため、結露により支障をきたすことはない。   The inside air flows into the second flow path 22 of the desiccant humidity control device 2 through the inside air suction flow path 36, and is dehumidified when passing through the desiccant rotor 20, and becomes high humidity. It flows into the wet flow path 12 of the indirect evaporative cooling device 1. Then, when passing through the wet flow path 12, it further includes water vapor generated by vaporization of the water held by the water holding means and is discharged to the outside through the outside air communication flow path 32. The gas flowing into the wet flow path 12 has high humidity and further contains water vapor in the wet flow path 12, but since it has the discharge means 14, it does not cause trouble due to condensation.

上記第3運転モードでは、主に夏期に、換気するとともに、取り入れる外気を冷却し且つ除湿して供給するものである。   In the third operation mode, ventilation is performed mainly in summer, and outside air taken in is cooled and dehumidified.

次に、第4運転モードについて説明する。第4運転モードは、第3運転モードの変形例で、図5に示すように、第3運転モードの流路構成と大部分において同様であり、異なる部分について説明する。   Next, the fourth operation mode will be described. The fourth operation mode is a modification of the third operation mode, and as shown in FIG. 5, is substantially the same as the flow path configuration of the third operation mode, and different parts will be described.

第4運転モードでは、三方切替手段55を、第二の流路22を流れてきた気体と接続流路42を流れてきた気体とが合流して三方切替手段56へ流れていくように切り替える。三方切替手段58を、内気連通流路35を第一の流路21から流れてきた気体が、一部が分岐して接続流路42を流れていき残りが内気連通流路35の内気開放端へ流れていくよう切り替える。すなわち、第3運転モードにおいて、第一の流路21を流れてきた低湿度の気体を湿流路12の入口に戻す還流路を形成するものである。   In the fourth operation mode, the three-way switching means 55 is switched so that the gas flowing through the second flow path 22 and the gas flowing through the connection flow path 42 merge and flow to the three-way switching means 56. In the three-way switching means 58, the gas that has flowed from the first flow path 21 through the internal air communication flow path 35 partially diverges and flows through the connection flow path 42, and the remainder flows through the internal air communication flow path 35. Switch to flow to. That is, in the third operation mode, a reflux path for returning the low-humidity gas flowing through the first flow path 21 to the inlet of the wet flow path 12 is formed.

そして、第3運転モードと同様に、間接気化冷却装置1とデシカント調湿装置2を両方ONにし、第二の流路22の再生手段24が動作し、第一の流路21が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第二の流路22が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   Then, similarly to the third operation mode, both the indirect vaporization cooling device 1 and the desiccant humidity control device 2 are turned on, the regeneration means 24 of the second flow channel 22 is operated, and the first flow channel 21 is the moisture absorption flow channel. Thus, the flowing gas is absorbed and the humidity is lowered, and the second channel 22 becomes the moisture releasing channel, and the moisture is released by the flowing gas and the humidity is increased.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路33を介してデシカント調湿装置2の第一の流路21に流入する。そして、デシカントロータ20を通過する際に吸湿されて低湿度となり、熱交換器25を通過する際に更に冷却され、内気連通流路35へと流れる。そして、三方切替手段58にて分岐し、一部が分岐して接続流路42を流れていき、残りが内気連通流路35の内気開放端へ流れて屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the first flow of the desiccant humidity control device 2 via the connection flow path 33. It flows into the path 21. Then, when passing through the desiccant rotor 20, the moisture is absorbed to become low humidity, and when passing through the heat exchanger 25, it is further cooled and flows to the inside air communication flow path 35. And it branches in the three-way switching means 58, a part branches and flows through the connection flow path 42, and the remainder flows to the inside air open end of the inside air communication flow path 35 and is supplied indoors.

内気は、内気吸入流路36を介してデシカント調湿装置2の第二の流路22に流入し、デシカントロータ20を通過する際に放湿されて高湿度となり、接続流路34へと流れる。そして、三方切替手段55にて、第二の流路22を流れてきた気体と接続流路42を流れてきた気体とが合流して、間接気化冷却装置1の湿流路12に流入する。この時、第二の流路22を流れてきた高湿度の気体が、接続流路42を流れてきた低湿度の気体との混合により湿度が低下する。そして、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を更に含んで、外気連通流路32を介して屋外へ排出される。湿流路12に流入する気体は高湿度となっている上に湿流路12で更に水蒸気を含むが、排出手段14を備えているため、結露により支障をきたすことはない。   The inside air flows into the second flow path 22 of the desiccant humidity control device 2 through the inside air suction flow path 36, and is released into high humidity when passing through the desiccant rotor 20, and flows to the connection flow path 34. . Then, the gas flowing through the second flow path 22 and the gas flowing through the connection flow path 42 are merged by the three-way switching means 55 and flow into the wet flow path 12 of the indirect evaporative cooling device 1. At this time, the humidity is lowered by mixing the high-humidity gas flowing through the second flow path 22 with the low-humidity gas flowing through the connection flow path 42. Then, when passing through the wet flow path 12, it further includes water vapor generated by vaporization of the water held by the water holding means and is discharged to the outside through the outside air communication flow path 32. The gas flowing into the wet flow path 12 has high humidity and further contains water vapor in the wet flow path 12, but since it has the discharge means 14, it does not cause trouble due to condensation.

上記第4運転モードは第3運転モードと同様に、主に夏期に、換気するとともに、取り入れる外気を冷却し且つ除湿して供給するものであるが、第3運転モードと比べ、湿流路12に流入する気体の湿度が低くなって湿流路12での気化が促進されるため、乾流路11を流れる気体の冷却能力が向上する。さらにこれにより、第一の流路21に流入する気体の温度が低下するため、相対湿度が上昇し、デシカントロータ20を通過する際の吸湿量が上昇する。   The fourth operation mode is similar to the third operation mode in that it is ventilated mainly in the summer and supplies outside air to be cooled and dehumidified. Since the humidity of the gas flowing into the channel is lowered and vaporization in the wet channel 12 is promoted, the cooling capacity of the gas flowing through the dry channel 11 is improved. Furthermore, since this reduces the temperature of the gas flowing into the first flow path 21, the relative humidity increases and the amount of moisture absorption when passing through the desiccant rotor 20 increases.

次に、第5運転モードについて説明する。第5運転モードは、図6に示すように、第2運転モードと同様の流路構成となっている。   Next, the fifth operation mode will be described. As shown in FIG. 6, the fifth operation mode has a flow path configuration similar to that of the second operation mode.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 23 of the 1st flow path 21 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路37を介してデシカント調湿装置2の第二の流路22に流入する。そして、熱交換器25を通過する際に更に冷却され、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路42および内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the second flow of the desiccant humidity control device 2 via the connection flow path 37. It flows into the path 22. Then, it is further cooled when it passes through the heat exchanger 25, is absorbed by the moisture when passing through the desiccant rotor 20, becomes low humidity, and is supplied indoors through the connection flow path 42 and the inside air communication flow path 35.

内気は、内気吸入流路36の内気開放端より流入し、接続流路38を介してデシカント調湿装置2の第一の流路21に流入し、デシカントロータ20を通過する際に放湿されて高湿度となり、接続流路40を介して間接気化冷却装置1の湿流路12に流入する。そして、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を更に含んで、外気連通流路32を介して屋外へ排出される。湿流路12に流入する気体は高湿度となっている上に湿流路12で更に水蒸気を含むが、排出手段14を備えているため、結露により支障をきたすことはない。   The inside air flows in from the inside air open end of the inside air suction flow path 36, flows into the first flow path 21 of the desiccant humidity control device 2 through the connection flow path 38, and is dehumidified when passing through the desiccant rotor 20. The humidity becomes high and flows into the wet flow path 12 of the indirect vaporization cooling device 1 through the connection flow path 40. Then, when passing through the wet flow path 12, it further includes water vapor generated by vaporization of the water held by the water holding means and is discharged to the outside through the outside air communication flow path 32. The gas flowing into the wet flow path 12 has high humidity and further contains water vapor in the wet flow path 12, but since it has the discharge means 14, it does not cause trouble due to condensation.

この第5運転モードは、第2運転モードにおいて、間接気化冷却装置1をONにするもので、主に夏期に、換気するとともに、取り入れる外気を(予備冷却ではなく)冷却し且つ除湿して供給するものである。   This fifth operation mode is to turn on the indirect evaporative cooling device 1 in the second operation mode, ventilating mainly in summer, and cooling and dehumidifying the supplied outside air (not preliminary cooling) and supplying it To do.

また、第3運転モードと比べると、デシカント調湿装置2では、屋内へ供給される気体は、第3運転モードでは、第一の流路21においてデシカントロータ20を通過した後、熱交換器25を通過して冷却されるのに対し、第5運転モードでは、第二の流路22において熱交換器25を通過して冷却された後、デシカントロータ20を通過して吸湿される。このため、第5運転モードでは、屋内へ供給される気体がデシカントロータ20を通過する際の相対湿度が上昇し、デシカントロータ20による吸湿量が上昇するもので、高い除湿能力が得られる。   Compared with the third operation mode, in the desiccant humidity control apparatus 2, the gas supplied indoors passes through the desiccant rotor 20 in the first flow path 21 in the third operation mode, and then the heat exchanger 25. On the other hand, in the fifth operation mode, after passing through the heat exchanger 25 and cooled in the second flow path 22, the moisture is absorbed through the desiccant rotor 20. For this reason, in the fifth operation mode, the relative humidity when the gas supplied indoors passes through the desiccant rotor 20 is increased, and the amount of moisture absorbed by the desiccant rotor 20 is increased, so that a high dehumidifying ability is obtained.

次に、第6運転モードについて説明する。第6運転モードは、第5運転モードの変形例で、図7に示すように、第5運転モードの流路構成と大部分において同様であり、異なる部分について説明する。   Next, the sixth operation mode will be described. The sixth operation mode is a modification of the fifth operation mode, and as shown in FIG. 7, is substantially the same as the flow path configuration of the fifth operation mode, and different parts will be described.

第6運転モードでは、三方切替手段55を、第二の流路22を流れてきた気体が、一部が分岐して一部が接続流路34を流れていき残りが接続流路42を流れていくように切り換える。三方切替手段56を、接続流路34を流れてきた気体と接続流路40を流れてきた気体とが合流して湿流路12へ流れていくように切り替える。すなわち、第5運転モードにおいて、第二の流路22を流れてきた低湿度の気体を湿流路12の入口に戻す還流路を形成するものである。   In the sixth operation mode, the gas flowing through the second flow path 22 passes through the three-way switching means 55, partly branches, partly flows through the connection flow path 34, and the rest flows through the connection flow path 42. Switch as you go. The three-way switching means 56 is switched so that the gas flowing through the connection flow path 34 and the gas flowing through the connection flow path 40 merge and flow to the wet flow path 12. That is, in the fifth operation mode, a reflux path for returning the low-humidity gas flowing through the second flow path 22 to the inlet of the wet flow path 12 is formed.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 23 of the 1st flow path 21 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路37を介してデシカント調湿装置2の第二の流路22に流入する。そして、熱交換器25を通過する際に更に冷却され、デシカントロータ20を通過する際に吸湿されて低湿度となる。そして、三方切替手段55にて、一部が分岐して接続流路34を流れていき、残りが接続流路42および内気連通流路35の内気開放端へ流れて屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the second flow of the desiccant humidity control device 2 via the connection flow path 37. It flows into the path 22. And when it passes through the heat exchanger 25, it is further cooled, and when passing through the desiccant rotor 20, it absorbs moisture and becomes low humidity. Then, in the three-way switching means 55, a part is branched and flows through the connection flow path 34, and the rest flows to the inside air open ends of the connection flow path 42 and the inside air communication flow path 35 and is supplied indoors.

内気は、内気吸入流路36の内気開放端より流入し、接続流路38を介してデシカント調湿装置2の第一の流路21に流入し、デシカントロータ20を通過する際に放湿されて高湿度となり、接続流路40へと流れる。そして、三方切替手段56にて、接続流路40を流れてきた気体と接続流路34を流れてきた気体とが合流して、間接気化冷却装置1の湿流路12に流入する。この時、接続流路40を流れてきた高湿度の気体が、接続流路34を流れてきた低湿度の気体との混合により湿度が低下する。そして、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を更に含んで、外気連通流路32を介して屋外へ排出される。湿流路12に流入する気体は高湿度となっている上に湿流路12で更に水蒸気を含むが、排出手段14を備えているため、結露により支障をきたすことはない。   The inside air flows in from the inside air open end of the inside air suction flow path 36, flows into the first flow path 21 of the desiccant humidity control device 2 through the connection flow path 38, and is dehumidified when passing through the desiccant rotor 20. The humidity becomes high and flows to the connection flow path 40. Then, the gas flowing through the connection channel 40 and the gas flowing through the connection channel 34 are merged by the three-way switching unit 56 and flow into the wet channel 12 of the indirect evaporative cooling device 1. At this time, the humidity is lowered by mixing the high-humidity gas flowing through the connection flow path 40 with the low-humidity gas flowing through the connection flow path 34. Then, when passing through the wet flow path 12, it further includes water vapor generated by vaporization of the water held by the water holding means and is discharged to the outside through the outside air communication flow path 32. The gas flowing into the wet flow path 12 has high humidity and further contains water vapor in the wet flow path 12, but since it has the discharge means 14, it does not cause trouble due to condensation.

上記第6運転モードは第5運転モードと同様に、主に夏期に、換気するとともに、取り入れる外気を(予備冷却ではなく)冷却し且つ除湿して供給するものであるが、第5運転モードと比べ、湿流路12に流入する気体の湿度が低くなって湿流路12での気化が促進されるため、乾流路11を流れる気体の冷却能力が向上する。さらにこれにより、第二の流路22に流入する気体の温度が低下するため、相対湿度が上昇し、デシカントロータ20を通過する際の吸湿量が上昇する。   The sixth operation mode is similar to the fifth operation mode in that it is ventilated mainly in summer, and the outside air to be taken in is cooled (not pre-cooled) and supplied after being dehumidified. In comparison, since the humidity of the gas flowing into the wet flow path 12 is lowered and vaporization in the wet flow path 12 is promoted, the cooling capacity of the gas flowing through the dry flow path 11 is improved. Furthermore, since this reduces the temperature of the gas flowing into the second flow path 22, the relative humidity increases and the amount of moisture absorption when passing through the desiccant rotor 20 increases.

また、第4運転モードと比べると、デシカント調湿装置2では、屋内へ供給される気体は、第4運転モードでは、第一の流路21においてデシカントロータ20を通過した後、熱交換器25を通過して冷却されるのに対し、第6運転モードでは、第二の流路22において熱交換器25を通過して冷却された後、デシカントロータ20を通過して吸湿される。このため、第6運転モードでは、屋内へ供給される気体がデシカントロータ20を通過する際の相対湿度が上昇し、デシカントロータ20による吸湿量が上昇するもので、高い除湿能力が得られる。   Further, compared to the fourth operation mode, in the desiccant humidity control apparatus 2, the gas supplied indoors passes through the desiccant rotor 20 in the first flow path 21 in the fourth operation mode, and then the heat exchanger 25. On the other hand, in the sixth operation mode, after passing through the heat exchanger 25 and cooled in the second flow path 22, the moisture is absorbed through the desiccant rotor 20. For this reason, in the sixth operation mode, the relative humidity when the gas supplied indoors passes through the desiccant rotor 20 is increased, and the amount of moisture absorbed by the desiccant rotor 20 is increased, so that a high dehumidifying ability is obtained.

次に、第7運転モードについて説明する。第7運転モードは、図8に示すように、第1運転モードと同様の流路構成となっている。そして、間接気化冷却装置1とデシカント調湿装置2を両方OFFにする。   Next, the seventh operation mode will be described. As shown in FIG. 8, the seventh operation mode has a flow path configuration similar to that of the first operation mode. Then, both the indirect vaporization cooling device 1 and the desiccant humidity control device 2 are turned off.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく予備冷却され、接続流路33を介してデシカント調湿装置2の第一の流路21に流入する。そして、デシカント調湿装置2の熱交換器25を通過する際に更に冷却され、内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31, is precooled without being humidified by the indirect vaporization cooling apparatus 1, and passes through the connection flow path 33 to the first desiccant humidity control apparatus 2. It flows into the flow path 21. And when it passes the heat exchanger 25 of the desiccant humidity control apparatus 2, it cools further and is supplied indoors via the inside air communication flow path 35.

内気は、内気吸入流路36を介してデシカント調湿装置2の第二の流路22に流入し、熱交換器25を通過する際に加熱されて、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、湿流路12を通過する際に、乾流路11を流れる気体との熱(顕熱)交換により若干温度が上昇し、外気連通流路32を介して屋外へ排出される。   The inside air flows into the second passage 22 of the desiccant humidity control device 2 through the inside air suction passage 36, is heated when passing through the heat exchanger 25, and is indirectly vaporized and cooled through the connection passage 34. It flows into the wet flow path 12 of the device 1. Then, when passing through the wet flow path 12, the temperature slightly rises due to heat (sensible heat) exchange with the gas flowing through the dry flow path 11, and is discharged to the outside via the outside air communication flow path 32.

上記第7運転モードは、主に夏期に、換気するとともに、取り入れる外気を加湿することなく冷却するもので、間接気化冷却装置1とデシカント調湿装置2の両方を動作させることなく、間接気化冷却装置1での予備冷却とデシカント調湿装置2の熱交換器25での冷却を行うことができる。   In the seventh operation mode, ventilation is performed mainly in summer and the outside air to be taken in is cooled without being humidified. Indirect evaporative cooling is performed without operating both the indirect evaporative cooling device 1 and the desiccant humidity control device 2. Preliminary cooling in the apparatus 1 and cooling in the heat exchanger 25 of the desiccant humidity control apparatus 2 can be performed.

次に、第8運転モードについて説明する。第8運転モードは、図9に示すように、第1運転モードと同様の流路構成となっている。   Next, the eighth operation mode will be described. As shown in FIG. 9, the eighth operation mode has the same flow path configuration as the first operation mode.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 23 of the 1st flow path 21 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

外気は、外気吸入流路31を介して乾流路11に流入し、間接気化冷却装置1により加湿されることなく冷却され、接続流路33を介してデシカント調湿装置2の第一の流路21に流入する。そして、デシカントロータ20を通過する際に放湿され、熱交換器25を通過する際に冷却され、内気連通流路35を介して屋内へ供給される。   The outside air flows into the dry flow path 11 via the external air intake flow path 31 and is cooled without being humidified by the indirect vaporization cooling device 1, and the first flow of the desiccant humidity control device 2 via the connection flow path 33. It flows into the path 21. Then, it is dehumidified when passing through the desiccant rotor 20, cooled when passing through the heat exchanger 25, and supplied indoors through the inside air communication channel 35.

内気は、内気吸入流路36を介してデシカント調湿装置2の第二の流路22に流入し、デシカントロータ20を通過する際に吸湿されて低湿度となり、接続流路34を介して間接気化冷却装置1の湿流路12に流入する。そして、低湿度となった気体は、湿流路12を通過する際に、水保持手段により保持されていた水が気化して生成される水蒸気を含んで、外気連通流路32を介して屋外へ排出される。   The inside air flows into the second flow path 22 of the desiccant humidity control device 2 via the inside air suction flow path 36 and is absorbed by the low-humidity when passing through the desiccant rotor 20, and indirectly through the connection flow path 34. It flows into the wet flow path 12 of the evaporative cooling device 1. The gas having low humidity contains water vapor generated by vaporization of the water held by the water holding means when passing through the wet flow channel 12, and the outdoor gas passes through the outdoor air communication flow channel 32. Is discharged.

上記第8運転モードでは、主に夏期に、換気するとともに、取り入れる外気を冷却し且つ除湿して供給するものである。また、第4運転モードおよび第6運転モードと比べても、湿流路12に流入する気体の湿度が低くなって、湿流路12での気化がより促進され、乾流路11を流れる気体の冷却能力がより一層向上する。これにより、高い冷房能力が得られるものである。   In the eighth operation mode, ventilation is performed mainly in summer, and outside air to be taken in is cooled and dehumidified and supplied. In addition, even when compared with the fourth operation mode and the sixth operation mode, the humidity of the gas flowing into the wet flow channel 12 becomes lower, the vaporization in the wet flow channel 12 is further promoted, and the gas flowing through the dry flow channel 11 The cooling capacity is further improved. Thereby, a high cooling capacity is obtained.

次に、第9運転モードについて説明する。第9運転モードは、第8運転モードの変形例である。   Next, the ninth operation mode will be described. The ninth operation mode is a modification of the eighth operation mode.

第9運転モードでは、図10に示すように、三方切替手段51を、外気吸入流路31が外気開放端から乾流路11の入口までの全長に亘って内部が連通するように切り替え、三方切替手段52を、湿流路12を流れてきた気体と接続流路41を流れてきた気体とが合流して外気連通流路32の外気開放端へ流れていくように切り替える。四方切替手段53を、乾流路11と接続流路43が連通するように切り替え、三方切替手段63を、接続流路43と接続流路42の三方切替手段58側とが連通するように切り替え、三方切替手段58を、接続流路42と内気連通流路35の内気開放端とが連通するように切り替える。三方切替手段59を、内気吸入流路36を内気開放端から流れてきた気体が、一部が分岐して接続流路38を流れていき残りが内気吸入流路36を第二の流路22へと流れていくよう切り替え、三方切替手段60を、内気吸入流路36が内気開放端から第二の流路22の入口までの全長に亘って内部が連通するように切り替え、三方切替手段54を、接続流路38と第一の流路21とが連通するように切り替える。三方切替手段55および三方切替手段56を、接続流路34が第二の流路22の出口から湿流路12の入口までの全長に亘って内部が連通するように切り替え、三方切替手段57を、第一の流路21と接続流路40とが連通するように切り替える。三方切替手段62を、接続流路40の三方切替手段57側と接続流路41とが連通するように切り替えて、流路を構成する。   In the ninth operation mode, as shown in FIG. 10, the three-way switching means 51 is switched so that the outside communicates over the entire length of the outside air intake passage 31 from the outside open end to the inlet of the dry passage 11. The switching means 52 is switched so that the gas flowing through the wet flow channel 12 and the gas flowing through the connection flow channel 41 merge and flow to the outside open end of the outside air communication channel 32. The four-way switching means 53 is switched so that the dry flow path 11 and the connection flow path 43 are in communication, and the three-way switching means 63 is switched so that the connection flow path 43 and the connection flow path 42 are in communication with the three-way switching means 58 side. The three-way switching means 58 is switched so that the connection channel 42 and the inside air open end of the inside air communication channel 35 communicate with each other. In the three-way switching means 59, the gas that has flowed through the inside air suction channel 36 from the inside air open end partly branches and flows through the connection channel 38, and the remainder passes through the inside air suction channel 36 through the second channel 22. The three-way switching means 60 is switched so that the inside air communication channel 36 communicates over the entire length from the inside air open end to the inlet of the second channel 22, and the three-way switching means 54 is switched. Are switched so that the connection flow path 38 and the first flow path 21 communicate with each other. The three-way switching means 55 and the three-way switching means 56 are switched so that the inside of the connection flow path 34 extends from the outlet of the second flow path 22 to the inlet of the wet flow path 12, and the three-way switching means 57 is switched. The first channel 21 and the connection channel 40 are switched so as to communicate with each other. The three-way switching means 62 is switched so that the three-way switching means 57 side of the connection flow path 40 and the connection flow path 41 communicate with each other, thereby forming a flow path.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 23 of the 1st flow path 21 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

第9運転モードにおいても、上記第8運転モードと同様に、主に夏期に、換気するとともに、取り入れる外気を冷却し且つ除湿して供給するものである。さらに、乾流路11を流れてきた低温の気体を、第8運転モードのようにデシカントロータ20を通過して放湿されて高湿度となることなく、屋内へ供給することができる。また、内気によりデシカントロータ20の再生を行い、高湿度となった気体を排出している。   In the ninth operation mode, as in the eighth operation mode, ventilation is performed mainly in summer, and outside air to be taken in is cooled and dehumidified and supplied. Further, the low-temperature gas flowing through the dry flow path 11 can be supplied indoors without passing through the desiccant rotor 20 and being dehumidified as in the eighth operation mode. Further, the desiccant rotor 20 is regenerated by the inside air, and the gas having become high humidity is discharged.

次に、第10運転モードについて説明する。第10運転モードは、第9運転モードの変形例で、図11に示すように、第9運転モードの流路構成と大部分において同様であり、異なる部分について説明する。   Next, the tenth operation mode will be described. The tenth operation mode is a modification of the ninth operation mode, and as shown in FIG. 11, is substantially the same as the flow path configuration in the ninth operation mode, and different parts will be described.

第10運転モードでは、三方切替手段59を、内気吸入流路36が内気開放端から第二の流路22の入口までの全長に亘って内部が連通するように切り替え、三方切替手段61を、接続流路38の三方切替手段54側と接続流路39とが連通するように切り替え、三方切替手段51を、外気吸入流路31を外気開放端から流れてきた気体が、一部が分岐して接続流路39を流れていき残りが外気吸入流路31を乾流路11へと流れていくよう切り替えて、流路を構成する。   In the tenth operation mode, the three-way switching means 59 is switched so that the inside air suction flow path 36 communicates with the entire length from the inside air open end to the inlet of the second flow path 22, The connection flow path 38 is switched so that the three-way switching means 54 side and the connection flow path 39 communicate with each other, and the gas flowing in the three-way switching means 51 through the outside air intake flow path 31 from the outside open end is partially branched. The flow path is configured by switching so that the remainder flowing through the connection flow path 39 flows through the outside air intake flow path 31 to the dry flow path 11.

そして、間接気化冷却装置1とデシカント調湿装置2を両方ONにするもので、デシカント調湿装置2は、第一の流路21の再生手段23が動作する。すなわち、第二の流路22が吸湿流路となって、流れる気体が吸湿されて湿度が低下し、第一の流路21が放湿流路となって、流れる気体に放湿されて湿度が上昇する。   And both the indirect vaporization cooling apparatus 1 and the desiccant humidity control apparatus 2 are turned ON, and the regeneration means 23 of the 1st flow path 21 operate | moves the desiccant humidity control apparatus 2. FIG. That is, the second flow path 22 becomes a moisture absorption flow path, the flowing gas is absorbed and the humidity is lowered, and the first flow path 21 becomes a moisture release flow path, and the moisture is discharged by the flowing gas and the humidity. Rises.

第10運転モードにおいても、上記第8運転モードおよび第9運転モードと同様に、主に夏期に、換気するとともに、取り入れる外気を冷却し且つ除湿して供給するものである。さらに、乾流路11を流れてきた低温の気体を、第8運転モードのようにデシカントロータ20を通過して放湿されて高湿度となることなく、屋内へ供給することができる。また、外気によりデシカントロータ20の再生を行い、高湿度となった気体を排出している。   In the tenth operation mode, as in the eighth operation mode and the ninth operation mode, ventilation is performed mainly in the summer, and the outside air to be taken in is cooled and dehumidified and supplied. Further, the low-temperature gas flowing through the dry flow path 11 can be supplied indoors without passing through the desiccant rotor 20 and being dehumidified as in the eighth operation mode. Further, the desiccant rotor 20 is regenerated by the outside air, and the gas having become high humidity is discharged.

1 間接気化冷却装置
11 乾流路
12 湿流路
13 液体供給手段
14 排出手段
2 デシカント調湿装置
20 デシカントロータ
21 第一の流路
22 第二の流路
23〜24 再生手段
25 熱交換器
31 外気吸入流路
32 外気連通流路
33〜34、37〜43 接続流路
35 内気連通流路
36 内気吸入流路
51〜52、54〜63 三方切替手段
53 四方切替手段
DESCRIPTION OF SYMBOLS 1 Indirect vaporization cooling device 11 Dry flow path 12 Wet flow path 13 Liquid supply means 14 Discharge means 2 Desiccant humidity control apparatus 20 Desiccant rotor 21 First flow path 22 Second flow path 23-24 Regeneration means 25 Heat exchanger 31 Outside air suction channel 32 Outside air communication channel 33 to 34, 37 to 43 Connection channel 35 Inside air communication channel 36 Inside air suction channel 51 to 52, 54 to 63 Three-way switching means 53 Four-way switching means

Claims (5)

互いに熱交換が可能な乾流路および湿流路と、前記湿流路に設けられる液体供給手段と、を備え、前記湿流路を流れる気体により前記湿流路に供給された液体が蒸発する際に気化熱として周囲から熱を奪うことにより前記乾流路を流れる気体を加湿することなく冷却する間接気化冷却装置と、
第一の流路および第二の流路と、前記第一の流路と前記第二の流路との間に跨って回転するデシカントロータと、前記第一の流路と前記第二の流路とにそれぞれ設けられる再生手段と、を備え、前記第一の流路と前記第二の流路のうち一方の流路を流れる気体に対し吸湿を行うとともに、他方の流路においてデシカントロータの再生を行うデシカント調湿装置と、
を備えた冷房除湿システムであって、
前記乾流路の入口に、先端が屋外の大気に連通する大気開放端となる外気吸入流路が接続され、この外気吸入流路の途中に三方切替手段が設けられ、
前記湿流路の出口に、先端が屋外の大気に連通する大気開放端となる外気連通流路が接続され、この外気連通流路の途中に三方切替手段が設けられ、
前記乾流路の出口と前記第一の流路の入口との間に接続流路が接続され、この接続流路の途中に、前記乾流路の出口側から順に四方切替手段と三方切替手段とが直列に設けられ、
前記第二の流路の出口と前記湿流路の入口との間に接続流路が接続され、この接続流路の途中に二つの三方切替手段が直列に設けられ、
前記第一の流路の出口に、先端が屋内の空間に連通する内気開放端となる内気連通流路が接続され、この内気連通流路の途中に二つの三方切替手段が直列に設けられ、
前記第二の流路の入口に、先端が屋内の空間に連通する内気開放端となる内気吸入流路が接続され、この内気吸入流路の途中に二つの三方切替手段が直列に設けられ、
前記四方切替手段と前記内気吸入流路の前記第二の流路の入口側の前記三方切替手段との間に接続流路が接続され、
前記乾流路の出口と前記第一の流路の入口との間に接続された前記接続流路の前記第一の流路の入口側の前記三方切替手段と、前記内気吸入流路の内気開放端側の前記三方切替手段との間に接続流路が接続され、この接続流路の途中に三方切替手段が設けられ、この三方切替手段と前記外気吸入流路の途中に設けられた前記三方切替手段との間に接続流路が接続され、
前記第二の流路の出口と前記湿流路の入口との間に接続された前記接続流路の前記湿流路の入口側の前記三方切替手段と、前記内気連通流路の前記第一の流路の出口側の前記三方切替手段との間に接続流路が接続され、この接続流路の途中に三方切替手段が設けられ、この三方切替手段と前記外気連通流路の途中に設けられた前記三方切替手段との間に接続流路が接続され、
前記第二の流路の出口と前記湿流路の入口との間に接続された前記接続流路の前記第二の流路の出口側の前記三方切替手段と、前記内気連通流路の内気開放端側の前記三方切替手段との間に接続流路が接続され、この接続流路の途中に三方切替手段が設けられ、この三方切替手段と前記四方切替手段との間に接続流路が接続されることを特徴とする冷房除湿システム。
A dry flow channel and a wet flow channel capable of exchanging heat with each other; and a liquid supply means provided in the wet flow channel, and the liquid supplied to the wet flow channel evaporates by the gas flowing through the wet flow channel. Indirect evaporative cooling device that cools without humidifying the gas flowing through the dry flow path by taking heat from the surroundings as heat of vaporization,
A first flow path and a second flow path; a desiccant rotor that rotates between the first flow path and the second flow path; the first flow path and the second flow path; Regenerating means provided in each of the channels, and absorbs moisture in the gas flowing in one of the first channel and the second channel, and the desiccant rotor in the other channel. A desiccant humidity control device for regeneration,
A cooling and dehumidifying system comprising:
Connected to the inlet of the dry flow path is an outdoor air intake flow path whose tip is an open air end communicating with the outdoor atmosphere, and a three-way switching means is provided in the middle of the external air intake flow path,
Connected to the outlet of the wet flow channel is an outdoor air communication channel whose tip is connected to the open air to the outdoor atmosphere, and a three-way switching means is provided in the middle of the outdoor air communication channel,
A connection flow path is connected between the outlet of the dry flow path and the inlet of the first flow path, and the four-way switching means and the three-way switching means are sequentially provided in the middle of the connection flow path from the outlet side of the dry flow path. Are provided in series,
A connection channel is connected between the outlet of the second channel and the inlet of the wet channel, and two three-way switching means are provided in series in the middle of the connection channel,
Connected to the outlet of the first flow path is an internal air communication flow path that is an open end of the internal air communicating with the indoor space, and two three-way switching means are provided in series in the middle of the internal air communication flow path,
Connected to the inlet of the second flow path is an internal air intake flow path whose front end is an open air open end communicating with an indoor space, and two three-way switching means are provided in series in the middle of the internal air intake flow path,
A connection flow path is connected between the four-way switching means and the three-way switching means on the inlet side of the second flow path of the inside air suction flow path,
The three-way switching means on the inlet side of the first flow path of the connection flow path connected between the outlet of the dry flow path and the inlet of the first flow path; A connection flow path is connected between the open-end-side three-way switching means, a three-way switching means is provided in the middle of the connection flow path, and the three-way switching means and the outside air suction flow path are provided in the middle. A connection flow path is connected between the three-way switching means,
The three-way switching means on the inlet side of the wet flow path of the connection flow path connected between the outlet of the second flow path and the inlet of the wet flow path; and the first of the inside air communication flow path A connection flow path is connected between the three-way switching means on the outlet side of the flow path, a three-way switching means is provided in the middle of the connection flow path, and provided in the middle of the three-way switching means and the outside air communication flow path. A connection flow path is connected between the three-way switching means,
The three-way switching means on the outlet side of the second channel of the connection channel connected between the outlet of the second channel and the inlet of the wet channel, and the inside air of the inside air communication channel A connection flow path is connected between the open end side and the three-way switching means, a three-way switching means is provided in the middle of the connection flow path, and a connection flow path is provided between the three-way switching means and the four-way switching means. Cooling dehumidification system characterized by being connected.
前記外気吸入流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記外気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記乾流路の出口と第一の流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記四方切替手段および前記三方切替手段を切り替え、
前記第二の流路の出口と前記湿流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第一の流路の出口に接続される前記内気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第二の流路の入口に接続される前記内気吸入流路が全長に亘って内部が連通するように前記三方切替手段および前記三方切替手段を切り替えて、流路を構成し、
前記間接気化冷却装置の前記液体供給手段を動作させ、
前記デシカント調湿装置の前記デシカントロータと前記再生手段を動作させないで運転することを特徴とする請求項1記載の冷房除湿システム。
Switching the three-way switching means provided in the middle of the outside air intake channel so that the inside communicates over the entire length,
Switching the three-way switching means provided in the middle of the outside air communication flow path so that the inside communicates over the entire length,
The four-way switching means and the three-way switching means provided in the middle of the connection flow path, which is connected between the outlet of the dry flow path and the inlet of the first flow path, over the entire length. Switch
The three-way switching means and the three-way switching provided in the middle of the connection flow channel connected between the outlet of the second flow channel and the inlet of the wet flow channel over the entire length. Switch means,
Switching the three-way switching means and the three-way switching means provided in the middle so that the inside air communication flow path connected to the outlet of the first flow path is communicated over the entire length,
The three-way switching means and the three-way switching means are switched so that the inside air suction flow path connected to the inlet of the second flow path communicates with the entire length, and a flow path is configured.
Operating the liquid supply means of the indirect evaporative cooling device;
The cooling and dehumidifying system according to claim 1, wherein the desiccant rotor and the regeneration unit of the desiccant humidity control apparatus are operated without being operated.
前記外気吸入流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記外気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記乾流路の出口と第一の流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記四方切替手段および前記三方切替手段を切り替え、
前記第二の流路の出口と前記湿流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第一の流路の出口に接続される前記内気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第二の流路の入口に接続される前記内気吸入流路が全長に亘って内部が連通するように前記三方切替手段および前記三方切替手段を切り替えて、流路を構成し、
前記間接気化冷却装置の前記液体供給手段を動作させ、
前記デシカント調湿装置の前記デシカントロータと前記第二の流路の前記再生手段を動作させて運転することを特徴とする請求項1記載の冷房除湿システム。
Switching the three-way switching means provided in the middle of the outside air intake channel so that the inside communicates over the entire length,
Switching the three-way switching means provided in the middle of the outside air communication flow path so that the inside communicates over the entire length,
The four-way switching means and the three-way switching means provided in the middle of the connection flow path, which is connected between the outlet of the dry flow path and the inlet of the first flow path, over the entire length. Switch
The three-way switching means and the three-way switching provided in the middle of the connection flow channel connected between the outlet of the second flow channel and the inlet of the wet flow channel over the entire length. Switch means,
Switching the three-way switching means and the three-way switching means provided in the middle so that the inside air communication flow path connected to the outlet of the first flow path is communicated over the entire length,
The three-way switching means and the three-way switching means are switched so that the inside air suction flow path connected to the inlet of the second flow path communicates with the entire length, and a flow path is configured.
Operating the liquid supply means of the indirect evaporative cooling device;
The cooling and dehumidifying system according to claim 1, wherein the desiccant rotor of the desiccant humidity control device and the regeneration means of the second flow path are operated to operate.
前記外気吸入流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記外気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記乾流路の出口と第一の流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記四方切替手段および前記三方切替手段を切り替え、
前記第二の流路の出口と前記湿流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第一の流路の出口に接続される前記内気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第二の流路の入口に接続される前記内気吸入流路が全長に亘って内部が連通するように前記三方切替手段および前記三方切替手段を切り替えて、流路を構成し、
前記間接気化冷却装置の前記液体供給手段を動作させず、
前記デシカント調湿装置の前記デシカントロータと前記再生手段を動作させないで運転することを特徴とする請求項1記載の冷房除湿システム。
Switching the three-way switching means provided in the middle of the outside air intake channel so that the inside communicates over the entire length,
Switching the three-way switching means provided in the middle of the outside air communication flow path so that the inside communicates over the entire length,
The four-way switching means and the three-way switching means provided in the middle of the connection flow path, which is connected between the outlet of the dry flow path and the inlet of the first flow path, over the entire length. Switch
The three-way switching means and the three-way switching provided in the middle of the connection flow channel connected between the outlet of the second flow channel and the inlet of the wet flow channel over the entire length. Switch means,
Switching the three-way switching means and the three-way switching means provided in the middle so that the inside air communication flow path connected to the outlet of the first flow path is communicated over the entire length,
The three-way switching means and the three-way switching means are switched so that the inside air suction flow path connected to the inlet of the second flow path communicates with the entire length, and a flow path is configured.
Without operating the liquid supply means of the indirect evaporative cooling device,
The cooling and dehumidifying system according to claim 1, wherein the desiccant rotor and the regeneration unit of the desiccant humidity control apparatus are operated without being operated.
前記外気吸入流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記外気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段を切り替え、
前記乾流路の出口と第一の流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記四方切替手段および前記三方切替手段を切り替え、
前記第二の流路の出口と前記湿流路の入口との間に接続される前記接続流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第一の流路の出口に接続される前記内気連通流路が全長に亘って内部が連通するようにこの途中に設けられる前記三方切替手段および前記三方切替手段を切り替え、
前記第二の流路の入口に接続される前記内気吸入流路が全長に亘って内部が連通するように前記三方切替手段および前記三方切替手段を切り替えて、流路を構成し、
前記間接気化冷却装置の前記液体供給手段を動作させ、
前記デシカント調湿装置の前記デシカントロータと前記第一の流路の前記再生手段を動作させて運転することを特徴とする請求項1記載の冷房除湿システム。
Switching the three-way switching means provided in the middle of the outside air intake channel so that the inside communicates over the entire length,
Switching the three-way switching means provided in the middle of the outside air communication flow path so that the inside communicates over the entire length,
The four-way switching means and the three-way switching means provided in the middle of the connection flow path, which is connected between the outlet of the dry flow path and the inlet of the first flow path, over the entire length. Switch
The three-way switching means and the three-way switching provided in the middle of the connection flow channel connected between the outlet of the second flow channel and the inlet of the wet flow channel over the entire length. Switch means,
Switching the three-way switching means and the three-way switching means provided in the middle so that the inside air communication flow path connected to the outlet of the first flow path is communicated over the entire length,
The three-way switching means and the three-way switching means are switched so that the inside air suction flow path connected to the inlet of the second flow path communicates with the entire length, and a flow path is configured.
Operating the liquid supply means of the indirect evaporative cooling device;
2. The cooling and dehumidifying system according to claim 1, wherein the desiccant rotor of the desiccant humidity control apparatus is operated by operating the regeneration unit of the first flow path.
JP2012080378A 2012-03-30 2012-03-30 Cooling dehumidification system Expired - Fee Related JP5934009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012080378A JP5934009B2 (en) 2012-03-30 2012-03-30 Cooling dehumidification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012080378A JP5934009B2 (en) 2012-03-30 2012-03-30 Cooling dehumidification system

Publications (2)

Publication Number Publication Date
JP2013210130A true JP2013210130A (en) 2013-10-10
JP5934009B2 JP5934009B2 (en) 2016-06-15

Family

ID=49528116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012080378A Expired - Fee Related JP5934009B2 (en) 2012-03-30 2012-03-30 Cooling dehumidification system

Country Status (1)

Country Link
JP (1) JP5934009B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190633A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air-cooling and dehumidification system
JP2015190634A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air conditioning apparatus
JP2016014513A (en) * 2014-07-03 2016-01-28 鹿島建設株式会社 Humidification system and humidification method
RU2694379C1 (en) * 2015-06-22 2019-07-12 Дач Инновейшн Ин Эр Тритмент Бв Building equipped with air treatment system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263764A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Humidity regulating system
JP2006145092A (en) * 2004-11-17 2006-06-08 Max Co Ltd Air conditioning system and building
JP2007139333A (en) * 2005-11-18 2007-06-07 Max Co Ltd Ventilating device and building
JP2009002641A (en) * 2007-05-23 2009-01-08 Seibu Gas Co Ltd Desiccant air conditioning system
JP2012037216A (en) * 2010-08-05 2012-02-23 Sanyo Electric Co Ltd Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001263764A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Humidity regulating system
JP2006145092A (en) * 2004-11-17 2006-06-08 Max Co Ltd Air conditioning system and building
JP2007139333A (en) * 2005-11-18 2007-06-07 Max Co Ltd Ventilating device and building
JP2009002641A (en) * 2007-05-23 2009-01-08 Seibu Gas Co Ltd Desiccant air conditioning system
JP2012037216A (en) * 2010-08-05 2012-02-23 Sanyo Electric Co Ltd Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190633A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air-cooling and dehumidification system
JP2015190634A (en) * 2014-03-27 2015-11-02 大阪瓦斯株式会社 Air conditioning apparatus
JP2016014513A (en) * 2014-07-03 2016-01-28 鹿島建設株式会社 Humidification system and humidification method
RU2694379C1 (en) * 2015-06-22 2019-07-12 Дач Инновейшн Ин Эр Тритмент Бв Building equipped with air treatment system

Also Published As

Publication number Publication date
JP5934009B2 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP4816267B2 (en) Humidity control device
KR101749194B1 (en) Air-conditioner capable of heating and humidity control and the method thereof
CN100476308C (en) Humidity controller
KR101782839B1 (en) Air-conditioner capable of cooling and humidity control and the method thereof
KR101664791B1 (en) Air-conditioner capable of ventilation and humidity control and the method thereof
JP3992051B2 (en) Air conditioning system
US20160146479A1 (en) Dehumidification device and dehumidification system
JP5862266B2 (en) Ventilation system
JP5542701B2 (en) Low temperature regeneration desiccant air conditioner
KR102538252B1 (en) Air conditioner and the method thereof
JP5934009B2 (en) Cooling dehumidification system
KR102180663B1 (en) Air conditioner and the method thereof
JP5608050B2 (en) Air conditioning system
JP2011191036A (en) Desiccant air conditioner
JP2005164148A (en) Humidity conditioning device
JP6231418B2 (en) Cooling dehumidification system
JP6443964B2 (en) Humidity control unit
JP2005140372A (en) Air conditioner
KR102421244B1 (en) Air conditioner and the method thereof
JP2005164220A (en) Air conditioner
JP2002147803A (en) Humidity controlling ventilator
JP5932439B2 (en) Dehumidification system
JP2019190691A (en) air conditioner
JP6235392B2 (en) Air conditioner
JP6073163B2 (en) Air conditioning system and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160506

R150 Certificate of patent or registration of utility model

Ref document number: 5934009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees