JP2013209678A - Method of manufacturing molten steel - Google Patents

Method of manufacturing molten steel Download PDF

Info

Publication number
JP2013209678A
JP2013209678A JP2012078667A JP2012078667A JP2013209678A JP 2013209678 A JP2013209678 A JP 2013209678A JP 2012078667 A JP2012078667 A JP 2012078667A JP 2012078667 A JP2012078667 A JP 2012078667A JP 2013209678 A JP2013209678 A JP 2013209678A
Authority
JP
Japan
Prior art keywords
refining
hot metal
oxidizing gas
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012078667A
Other languages
Japanese (ja)
Other versions
JP6051561B2 (en
Inventor
Yukio Takahashi
幸雄 高橋
Kenji Nakase
憲治 中瀬
Naoki Kikuchi
直樹 菊池
Goro Okuyama
悟郎 奥山
Shingo Sato
新吾 佐藤
Yuji Miki
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012078667A priority Critical patent/JP6051561B2/en
Publication of JP2013209678A publication Critical patent/JP2013209678A/en
Application granted granted Critical
Publication of JP6051561B2 publication Critical patent/JP6051561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing molten steel, excellent in flame catching efficiency and productivity, and capable of increasing a compounding ratio of a cold iron source such as an iron scrap when manufacturing molten steel from hot metal.SOLUTION: A first top-blowing lance 3 has an oxidizing gas-supplying path for supplying oxygen gas for refining and supplying a flux using the oxygen gas as gas for conveyance, and a fuel-supplying path. Fuel is supplied from the fuel-supplying path by using the first top-blowing lance, and simultaneously, the oxygen gas is supplied toward hot metal 14 in a converter from the oxidizing gas-supplying path. While forming flame below the top-blowing lance by combusting the fuel with a part of the oxygen gas, lime-based flux 13 is supplied to the hot metal from the oxidizing gas-supplying path to perform dephosphorizing treatment. The acquired hot metal is then charged into the other converter, and while forming flame below the leading end of a second top-blowing lance using the second top-blowing lance with the same configuration as that of the first top-blowing lance, flux is supplied from the oxidizing gas-supplying path together with the oxygen gas so that the hot metal is subjected to decarburization refining, thereby manufacturing molten steel from the hot metal.

Description

本発明は、高炉から出銑された溶銑を転炉に装入してこの溶銑に予備処理として脱燐処理を施し、次いで、この溶銑を転炉から出湯した後に別の転炉に装入し、この転炉で溶銑に脱炭精錬を施すことによって、溶銑から溶鋼を製造する方法に関し、詳しくは、転炉を用いて溶銑から溶鋼を製造する際に、脱燐処理及び脱炭精錬でそれぞれ精錬剤として使用する媒溶剤を加熱または溶融した状態で炉内に添加することで、鉄スクラップなどの冷鉄源の配合比率を高めることのできる溶鋼の製造方法に関する。   In the present invention, the hot metal discharged from the blast furnace is charged into the converter, the hot metal is subjected to dephosphorization treatment as a preliminary treatment, and then the hot metal is discharged from the converter and then charged into another converter. In addition, the present invention relates to a method for producing molten steel from hot metal by decarburizing and refining hot metal in this converter. Specifically, when producing molten steel from molten iron using a converter, respectively, dephosphorization treatment and decarburized refining are performed respectively. It is related with the manufacturing method of the molten steel which can raise the compounding ratio of cold iron sources, such as iron scrap, by adding in a furnace in the state which heated or fuse | melted the solvent used as a refining agent.

溶銑から溶鋼を製造する際に、転炉での溶銑の脱炭精錬の前に、溶銑に対して溶銑中の不純物(燐や硫黄)を除去する予備処理(脱燐処理、脱硫処理)を施し、転炉での脱炭精錬におけるスラグ発生量を削減する溶銑予備処理技術が開発され、不純物の少ない高品質の鉄鋼製品の製造、或いは、鉄鋼製品成分の安価なマンガン源としてマンガン鉱石の利用などが実現化されている。   When producing molten steel from hot metal, pretreatment (dephosphorization treatment, desulfurization treatment) that removes impurities (phosphorus and sulfur) in the hot metal before hot metal decarburization and refining in the converter is performed. Developed hot metal pretreatment technology to reduce slag generation in decarburization and refining in converters, manufacture high quality steel products with few impurities, or use manganese ore as an inexpensive source of manganese for steel product components, etc. Has been realized.

一方、近年、環境保護の観点から、製鉄プロセスにおいてはCO2排出量の削減が重要課題となっており、製鋼工程においては、使用する鉄源として鉄スクラップなどの冷鉄源の配合比率を高め、溶銑の配合比率を低減することが試みられている。これは、鉄鋼製品の製造にあたり、高炉での溶銑の製造では、鉄鉱石を還元し且つ溶融するための多大なエネルギーを要するのに対し、冷鉄源は溶解熱のみを必要としており、製鋼工程で冷鉄源を利用した場合には、鉄鉱石の還元熱分のエネルギー使用量を少なくすることができ、CO2発生量を大幅に削減することができるからである。 On the other hand, in recent years, reduction of CO 2 emissions has become an important issue in the steelmaking process from the viewpoint of environmental protection. In the steelmaking process, the ratio of cold iron sources such as iron scrap is increased as the iron source used. Attempts have been made to reduce the mixing ratio of hot metal. This is because in the manufacture of hot metal in a blast furnace, a large amount of energy is required to reduce and melt the iron ore, while the cold iron source only requires heat of melting. This is because when the cold iron source is used, the amount of energy used for reducing heat of the iron ore can be reduced, and the amount of CO 2 generated can be greatly reduced.

しかしながら、高炉−転炉の組み合わせによる溶鋼製造プロセスにおいては、冷鉄源の溶解熱源は、溶銑の有する顕熱、及び、溶銑中の炭素及び珪素の酸化による燃焼熱であり、冷鉄源の溶解量には自ずと限界がある。しかも、予備処理として行われる脱燐処理によって溶銑中の珪素濃度及び炭素濃度が低下し、更に、処理工程が増えることによって溶銑温度の低下も起こり、溶銑予備処理技術のなかで特に脱燐処理は、冷鉄源の配合比率の向上に大きな障害となっている。   However, in the molten steel production process using a combination of a blast furnace and a converter, the melting heat source of the cold iron source is the sensible heat of the molten iron and the combustion heat due to the oxidation of carbon and silicon in the molten iron. The amount is naturally limited. In addition, the dephosphorization treatment performed as a pretreatment reduces the silicon concentration and carbon concentration in the hot metal, and further, the number of treatment steps increases, resulting in a decrease in the hot metal temperature. This is a major obstacle to improving the mixing ratio of the cold iron source.

このため、冷鉄源の配合比率を高めるべく、予備処理としての脱燐処理を放棄して転炉で脱燐精錬と脱炭精錬とを同時に行うという、従来の転炉吹錬に戻したり、脱燐処理の施された溶銑を転炉で脱炭精錬する場合には、転炉内に加炭材やフェロシリコンなどの発熱材を添加して熱エネルギーを補ったりする方法が行われている。しかし、脱燐処理を施すことで、コスト低減及び鋼材の品質向上を達成できることのみならず、スラグ発生量を低減できることから、このような操業形態の変更を行わず、前述のように、溶銑の脱燐処理を行い、その上で、転炉では脱炭精錬のみを行うと同時に鉄スクラップなどの冷鉄源の配合比率を増加させることが望ましい。加炭材の使用は、加炭材に含まれる硫黄によって溶鋼の硫黄濃度が上昇するという問題があり、フェロシリコンなどの発熱材は高価であり、発熱材の使用は却って製造コストの上昇を招く。   For this reason, in order to increase the blending ratio of the cold iron source, the dephosphorization treatment as a preliminary treatment is abandoned and the dephosphorization refining and decarburization refining are performed at the same time in the converter. In the case of decarburizing and refining hot metal that has undergone dephosphorization treatment in a converter, a method of supplementing heat energy by adding a heating material such as a carburizing material or ferrosilicon into the converter has been performed. . However, by performing the dephosphorization process, not only can cost reduction and quality improvement of the steel material be achieved, but also the amount of slag generated can be reduced. It is desirable to perform a dephosphorization process, and then to perform only decarburization refining in the converter, and at the same time increase the blending ratio of cold iron sources such as iron scrap. The use of the carburized material has a problem that the sulfur concentration of the molten steel increases due to the sulfur contained in the carburized material, and the heat generating material such as ferrosilicon is expensive, and the use of the heat generating material causes an increase in manufacturing cost. .

また、脱炭精錬時に脱炭反応によって転炉内に発生したCOガスを転炉内で二次燃焼(2CO+O2→2CO2)させてCO2ガスとし、この二次燃焼による発熱を溶鋼に着熱させて溶銑を熱補償する方法もよく知られている。しかし、過度の二次燃焼率の向上は排ガス温度の上昇を招き、結果として転炉耐火物の寿命を低下させるという問題がある。 Furthermore, the CO gas generated in the converter in by secondary combustion in a converter furnace (2CO + O 2 → 2CO 2 ) and CO 2 gas by decarburization reaction during decarburization refining, wearing heat generated by the secondary combustion to the molten steel A method for heat-compensating the hot metal by heating is also well known. However, an excessive increase in the secondary combustion rate causes an increase in the exhaust gas temperature, resulting in a problem that the life of the converter refractory is reduced.

そこで、溶銑の脱燐処理や脱炭精錬において、溶銑の熱的余裕を高めて冷鉄源の配合比率を拡大するべく、多数の手段が提案されている。例えば、特許文献1には、溶銑の予備処理として脱燐処理を行うにあたり、脱燐処理中の生成スラグ中に炭素源を添加するとともに、スラグ中に酸素源を吹き込んで前記炭素源を燃焼させ、この燃焼熱を溶銑に着熱させる方法が提案されている。   Thus, in hot metal dephosphorization and decarburization refining, many means have been proposed to increase the thermal margin of the hot metal and expand the blending ratio of the cold iron source. For example, in Patent Document 1, in performing dephosphorization as a hot metal pretreatment, a carbon source is added to the generated slag during the dephosphorization process, and an oxygen source is blown into the slag to burn the carbon source. A method has been proposed in which the heat of combustion is applied to the hot metal.

特許文献2には、精錬容器内の溶銑に上吹きランスから酸素ガスとともに鉄スクラップ粉、合金鉄粉、生石灰粉などの伝熱媒体を供給して、溶銑の脱炭精錬や鉄またはクロムの溶融還元などを実施する際に、精錬容器内の二次燃焼率を10〜55%の範囲に制御し、二次燃焼熱を前記伝熱媒体に着熱させ、二次燃焼熱を着熱した伝熱媒体によって溶銑を加熱する方法が提案されている。   In Patent Document 2, a heat transfer medium such as iron scrap powder, alloy iron powder, and quick lime powder is supplied to the hot metal in the smelting vessel together with oxygen gas from the top blowing lance to decarburize and refine the hot metal and melt iron or chromium. When carrying out reduction or the like, the secondary combustion rate in the smelting vessel is controlled within the range of 10 to 55%, the secondary combustion heat is made to reach the heat transfer medium, and the heat transferred to the secondary combustion heat is made. A method of heating the hot metal with a heat medium has been proposed.

また、特許文献3には、溶銑を転炉で酸化精錬するにあたり、酸素ガス噴出用主孔と、該主孔から噴出する酸素ガスの供給流路と独立し、且つ、燃料ガス、酸素ガス及び精錬用フラックスを同時に噴出できるフラックス供給用副孔と、を有する5重管構造の上吹きランスを用い、前記主孔から噴出した酸素ガスの噴流を互いに分離した状態に保つとともに、該酸素ガス噴流と独立して副孔先端で火炎を形成させ、該火炎中に精錬用フラックスを通過させて該精錬用フラックスの滓化を促進させる転炉精錬方法が提案されている。   Patent Document 3 discloses that when hot metal is oxidized and refined in a converter, it is independent of an oxygen gas ejection main hole and a supply flow path for oxygen gas ejected from the main hole, and includes fuel gas, oxygen gas, and Using an upper blowing lance having a five-pipe structure having a flux supply sub-hole capable of simultaneously ejecting a refining flux, the oxygen gas jets ejected from the main hole are kept separated from each other, and the oxygen gas jet A converter refining method has been proposed in which a flame is formed at the tip of a sub-hole independently, and a refining flux is allowed to pass through the flame to promote hatching of the refining flux.

特開平9−20913号公報JP-A-9-20913 特開2001−323312号公報JP 2001-323312 A 特開平11−80825号公報Japanese Patent Laid-Open No. 11-80825

しかしながら、上記従来技術には、以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1では、生成スラグ中に炭素源を添加することで、溶銑温度は上昇するが、炭素源に含有される硫黄の溶銑中への混入を招き、溶銑中の硫黄濃度が高くなる。また、炭素源の燃焼時間を確保する必要があることから精錬時間が長くなり、生産性が低下して製造コストが上昇するという問題がある。また更に、炭素源を燃焼させることから、CO2発生量が自ずと増加するという問題もある。 That is, in Patent Document 1, the hot metal temperature is increased by adding a carbon source to the generated slag, but the sulfur contained in the carbon source is mixed into the hot metal, and the sulfur concentration in the hot metal is increased. . Moreover, since it is necessary to ensure the combustion time of a carbon source, there exists a problem that refining time becomes long, productivity falls, and manufacturing cost rises. Furthermore, since the carbon source is burned, there is also a problem that the amount of CO 2 generated naturally increases.

特許文献2では、伝熱媒体の供給速度に応じて二次燃焼率を制御する必要があり、これを実現する手段として、排ガス組成の分析結果に基づいて二次燃焼率を求めつつ上吹きランスのランス高さを調整する方法が示されている。一般に、ランス高さを大きくすると、上吹きランスからの酸素ガスジェットに随伴される炉内雰囲気ガス(主にCOガス)の量が増加し、二次燃焼率は高くなり、逆に、ランス高さを小さくすると、二次燃焼率は低くなる。即ち、特許文献2のように二次燃焼率を高くすると、上吹きランスからの酸素ガスジェットが減衰して脱炭速度が低下し、脱炭精錬時間が長くなり、生産性が低下して製造コストが上昇するという問題がある。尚、ランス高さとは、上吹きランスの先端と静止状態の炉内溶銑浴面との距離である。   In Patent Document 2, it is necessary to control the secondary combustion rate in accordance with the supply speed of the heat transfer medium. As a means for realizing this, the upper blow lance is obtained while obtaining the secondary combustion rate based on the analysis result of the exhaust gas composition. It shows how to adjust the lance height. In general, when the lance height is increased, the amount of atmospheric gas (mainly CO gas) accompanying the oxygen gas jet from the top blowing lance increases, the secondary combustion rate increases, and conversely, the lance height increases. When the height is reduced, the secondary combustion rate is lowered. That is, when the secondary combustion rate is increased as in Patent Document 2, the oxygen gas jet from the top blowing lance is attenuated, the decarburization speed is reduced, the decarburization refining time is lengthened, and the productivity is reduced to produce. There is a problem that costs increase. The lance height is the distance between the tip of the top blowing lance and the hot metal bath surface in the stationary state.

特許文献3では、副孔酸素ガス及び精錬剤の流路、燃料ガスの流路、主孔酸素ガスの流路、冷却水の給水流路、冷却水の排水流路で構成される5重管構造の上吹きランスを用いており、前記副孔酸素ガス及び精錬剤の流路と、前記燃料ガスの流路とを、ランス先端部で合流させ、燃焼火炎を形成させている。また、副孔酸素ガスと精錬剤とをランスの上部で合流させるが、合流するまでは精錬剤の搬送用ガスとしてArガスなどの不活性ガスを使用している。   In Patent Document 3, a five-way pipe composed of a sub-hole oxygen gas and refining agent flow path, a fuel gas flow path, a main-hole oxygen gas flow path, a cooling water supply flow path, and a cooling water drain flow path. The top blow lance of the structure is used, and the flow path of the sub-hole oxygen gas and the refining agent and the flow path of the fuel gas are merged at the tip of the lance to form a combustion flame. Further, the sub-hole oxygen gas and the refining agent are merged at the upper portion of the lance, but an inert gas such as Ar gas is used as a refining agent transport gas until the refining agent is merged.

つまり、特許文献3では、副孔酸素ガス及び精錬剤の供給流路を通過する物質は、酸素ガス、不活性ガス及び精錬剤となる。ここでの問題は、1つの流路を、金属や炭素分を含有する精錬剤(酸化鉄、鉄鉱石、製鉄所発生ダストなど)と酸素ガスとが同時に通過することである。即ち、特許文献3は、溶銑温度を高める上で有効な手法であるが、ランス内の供給流路を通過する際に、精錬剤と流路壁(通常は鋼製)との摩擦によって火花が発生したり、酸素ガスと精錬剤の一部とが反応したりして、流路内で発熱・燃焼する虞があり、設備の安全管理上に問題がある。   That is, in Patent Document 3, substances that pass through the supply passages for the sub-hole oxygen gas and the refining agent are oxygen gas, inert gas, and refining agent. The problem here is that a refining agent (such as iron oxide, iron ore, and ironworks generated dust) containing a metal or carbon and oxygen gas simultaneously pass through one channel. That is, Patent Document 3 is an effective technique for raising the hot metal temperature, but when passing through the supply flow path in the lance, a spark is caused by friction between the refining agent and the flow path wall (usually made of steel). Oxygen gas and a part of the refining agent may react to generate heat and burn in the flow path, which poses a problem in facility safety management.

また、特許文献3は、転炉における溶銑の脱炭精錬について記載するだけで、予備処理として行う溶銑の脱燐処理をどのようにして行うかは、何ら記載していない。つまり、脱炭精錬で溶銑の熱容量を高めれば、冷鉄源の配合比率はそれなりに高くなるが、脱燐処理においても溶銑の熱容量を高める操業を行うことで、冷鉄源の配合比率は更に高くなる。引用文献3はこの点について記載していない。   Further, Patent Document 3 merely describes hot metal decarburization refining in a converter, and does not describe how to perform hot metal dephosphorization as a preliminary treatment. In other words, if the heat capacity of hot metal is increased by decarburization refining, the mixing ratio of the cold iron source will increase accordingly, but the operation of increasing the heat capacity of hot metal also in the dephosphorization process will further increase the mixing ratio of the cold iron source. Get higher. Reference 3 does not describe this point.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、高炉から出銑された溶銑を転炉に装入してこの溶銑に予備処理として脱燐処理を施し、次いで、この溶銑を転炉から出湯した後に別の転炉に装入し、この転炉で溶銑に脱炭精錬を施すことによって、溶銑から溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、脱燐処理及び脱炭精錬で精錬剤として使用する粉状の媒溶剤を加熱または溶融した状態で炉内に添加することで、着熱効率及び生産性に優れ、鉄スクラップなどの冷鉄源の配合比率を高めることのできる溶鋼の製造方法を提供することである。   The present invention has been made in view of the above circumstances. The object of the present invention is to charge the molten iron discharged from the blast furnace into the converter and subject the molten iron to dephosphorization as a preliminary treatment. After hot metal is discharged from the converter, it is charged into another converter, and decarburization and refining of the hot metal is performed in this converter, thereby producing heat and heat in the flow channel of the top blowing lance. By adding a powdered medium solvent used as a refining agent in dephosphorization and decarburization refining to the furnace in a heated or molten state without fear of combustion, it is excellent in heat receiving efficiency and productivity, and iron scrap It is providing the manufacturing method of the molten steel which can raise the compounding ratio of cold iron sources, such as.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]脱燐精錬用の酸化性ガスを供給し且つ該酸化性ガスを搬送用ガスとして粉状の石灰系媒溶剤を供給する精錬用酸化性ガス供給流路と、燃料を供給する燃料供給流路とを、それぞれ別々に有する第1の上吹きランスを用い、前記燃料供給流路から燃料を供給すると同時に、前記精錬用酸化性ガス供給流路から酸化性ガスを転炉内の溶銑浴面に向けて供給し、該酸化性ガスの一部で前記燃料を燃焼させて第1の上吹きランスの先端下方に火炎を形成させながら、前記酸化性ガスを搬送用ガスとして前記精錬用酸化性ガス供給流路から粉状の石灰系媒溶剤を転炉内の溶銑浴面に供給して、転炉内の溶銑を脱燐処理し、次いで、得られた脱燐処理後の溶銑を前記転炉から溶銑保持容器に出湯し、この溶銑を別の転炉に装入し、脱炭精錬用の酸化性ガスを供給し且つ該酸化性ガスを搬送用ガスとして粉状の媒溶剤を供給する精錬用酸化性ガス供給流路と、燃料を供給する燃料供給流路とを、それぞれ別々に有する第2の上吹きランスを用い、前記燃料供給流路から燃料を供給すると同時に、前記精錬用酸化性ガス供給流路から酸化性ガスを転炉内の溶銑浴面に向けて供給し、該酸化性ガスの一部で前記燃料を燃焼させて第2の上吹きランスの先端下方に火炎を形成させながら、前記酸化性ガスを搬送用ガスとして前記精錬用酸化性ガス供給流路から粉状の媒溶剤を転炉内の溶銑浴面に供給して、転炉内の溶銑を脱炭精錬し、かくして溶銑から溶鋼を製造することを特徴とする、溶鋼の製造方法。
[2]前記第1の上吹きランス及び前記第2の上吹きランスは、横断面構造において中心側から、精錬用酸化性ガス供給流路、冷却水排水流路、燃料供給流路、冷却水給水流路を有する4重管構造であることを特徴とする、上記[1]に記載の溶鋼の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] A refining oxidizing gas supply flow path for supplying an oxidizing gas for dephosphorization refining and supplying a powdered lime-based solvent using the oxidizing gas as a carrier gas, and a fuel supply for supplying fuel And a first hot-blow lance having separate flow paths, supplying fuel from the fuel supply flow path, and simultaneously sending oxidizing gas from the refining oxidizing gas supply flow path in the converter The refining oxidation is performed using the oxidizing gas as a carrier gas while supplying the gas toward the surface and burning the fuel with a part of the oxidizing gas to form a flame below the front end of the first upper blowing lance. The powdered lime-based solvent is supplied from the reactive gas supply channel to the hot metal bath surface in the converter, the hot metal in the converter is dephosphorized, and the obtained hot metal after the dephosphorization treatment is Hot water is discharged from the converter to the hot metal holding container, and this hot metal is charged into another converter for oxidation for decarburization and refining. A refining oxidizing gas supply flow path for supplying gas and supplying a powdered medium solvent using the oxidizing gas as a carrier gas and a fuel supply flow path for supplying fuel; Using an upper blowing lance, fuel is supplied from the fuel supply passage, and at the same time, an oxidizing gas is supplied from the refining oxidizing gas supply passage toward the hot metal bath surface in the converter, and the oxidizing gas is supplied. While partly combusting the fuel to form a flame below the tip of the second top blowing lance, the powdered solvent is removed from the refining oxidizing gas supply channel using the oxidizing gas as a carrier gas. A method for producing molten steel, comprising supplying to a hot metal bath surface in a converter, decarburizing and refining the molten iron in the converter, and thus producing molten steel from the molten iron.
[2] The first upper blowing lance and the second upper blowing lance are formed from the center side in the cross-sectional structure from the refining oxidizing gas supply flow path, the cooling water drain flow path, the fuel supply flow path, and the cooling water. The method for producing molten steel according to the above [1], which has a quadruple pipe structure having a water supply channel.

本発明によれば、溶銑に予備処理として行う転炉での脱燐処理、及び、この脱燐処理の施された溶銑の転炉での脱炭精錬において、精錬剤として使用する粉状の媒溶剤を上吹きランスの先端下方に形成される火炎によって加熱し、火炎の熱を粉状媒溶剤を介して溶銑に着熱させるので、溶銑の温度が上昇し、溶銑の脱燐処理及び脱炭精錬における鉄スクラップなどの冷鉄源の配合比率を高めることが実現され、それにより、CO2排出量を従来に比較して大幅に低減することが可能となる。 According to the present invention, in the dephosphorization treatment in the converter performed as a pretreatment for the hot metal, and in the decarburization refining in the converter of the hot metal subjected to the dephosphorization treatment, a powdered medium used as a refining agent The solvent is heated by the flame formed below the tip of the top blowing lance, and the heat of the flame is applied to the hot metal via the powder medium solvent, so the temperature of the hot metal rises and the hot metal dephosphorization and decarburization An increase in the blending ratio of cold iron sources such as iron scrap in refining can be realized, thereby making it possible to significantly reduce CO 2 emissions compared to the prior art.

粉状媒溶剤の上吹きランスからの供給にあたり、搬送用ガスとして、脱燐精錬用の酸化性ガス或いは脱炭精錬用の酸化性ガスを使用するが、媒溶剤は、酸化物、炭酸化物、水酸化物、フッ化物などを主成分とし、金属分や炭素などの可燃性物質を含有しておらず、上吹きランスの流路における発熱や燃焼を未然に防止することができる。   In the supply from the top blowing lance of the powdered medium solvent, an oxidizing gas for dephosphorizing or decarburizing and refining is used as a carrier gas. It is mainly composed of hydroxide, fluoride, etc., does not contain any combustible substance such as metal or carbon, and can prevent heat generation and combustion in the flow path of the top blowing lance.

また、本発明では、粉状媒溶剤の搬送用ガスとして、脱燐処理及び脱炭精錬で必要不可欠な脱燐精錬用の酸化性ガス或いは脱炭精錬用の酸化性ガスを使用するので、従来は搬送用ガスとして使用していた窒素ガスやArガスなどの不活性ガスの使用は不用であり、その分、経済的に有利となる。   Further, in the present invention, as the carrier gas for the powder medium solvent, an oxidizing gas for dephosphorizing and refining that is indispensable for dephosphorization and decarburizing or refining is used. The use of an inert gas such as nitrogen gas or Ar gas, which has been used as a carrier gas, is unnecessary, which is economically advantageous.

本発明に係る溶銑の脱燐処理及び脱炭精錬を実施する際に用いる4重管構造の上吹きランスを備えた転炉設備の1例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the converter equipment provided with the top blow lance of the quadruple pipe structure used when implementing the dephosphorization process and decarburization refining of hot metal which concern on this invention. 図1に示す上吹きランスの概略拡大縦断面図である。It is a general | schematic expanded longitudinal cross-sectional view of the upper blowing lance shown in FIG. 比較例で使用した上吹きランスの概略拡大縦断面図である。It is a general | schematic expanded longitudinal cross-sectional view of the top blowing lance used by the comparative example.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明は、高炉で製造された溶銑に予備処理として脱燐処理を施し、脱燐処理された溶銑を転炉で脱炭精錬して溶鋼を製造する際に、CO2排出量を削減するべく、鉄スクラップなどの冷鉄源の配合比率を高めることを目的としている。転炉はフリーボードが大きく、溶銑を強攪拌することが可能であり、これにより、冷鉄源の溶解能力が高いのみならず、少ない石灰系媒溶剤の使用量で迅速に脱燐処理を行うことができることから、本発明においては、予備処理として行う脱燐処理も、脱炭精錬と同様に転炉を用いて実施する。 The present invention is intended to reduce CO 2 emissions when a hot metal produced in a blast furnace is subjected to dephosphorization treatment as a preliminary treatment, and the dephosphorized hot metal is decarburized and refined in a converter to produce molten steel. The purpose is to increase the blending ratio of cold iron sources such as iron scrap. The converter has a large free board, and it is possible to vigorously stir the hot metal, which not only has a high melting capacity of the cold iron source, but also quickly removes phosphorous with a small amount of lime-based solvent. Therefore, in the present invention, the dephosphorization treatment performed as a preliminary treatment is also performed using a converter similarly to the decarburization refining.

本発明において使用する溶銑は、高炉で製造された溶銑であり、この溶銑を、溶銑鍋、トピードカーなどの溶銑搬送容器で受銑して、脱燐処理及び脱炭精錬を実施する転炉に搬送する。脱燐処理を行う場合に、少ない石灰系媒溶剤の使用量で効率的に脱燐処理するために、脱燐処理前に溶銑中の珪素を予め除去(「溶銑の脱珪処理」という)し、溶銑の珪素含有量を0.20質量%以下、望ましくは0.10質量%以下まで低減させることが好ましい。脱珪処理を実施した場合には、脱珪処理時に生成したスラグを脱燐処理の前までに排出する。   The hot metal used in the present invention is a hot metal produced in a blast furnace, and this hot metal is received in a hot metal transfer container such as a hot metal ladle or a topped car and transferred to a converter for performing dephosphorization treatment and decarburization refining. To do. When dephosphorization is performed, in order to efficiently perform dephosphorization with a small amount of lime-based solvent, silicon in the hot metal is removed in advance before the dephosphorization (referred to as “hot metal desiliconization”). It is preferable to reduce the silicon content of the hot metal to 0.20 mass% or less, desirably 0.10 mass% or less. When the desiliconization process is performed, the slag generated during the desiliconization process is discharged before the dephosphorization process.

以下、図面を用いて本発明を説明する。図1は、本発明に係る溶銑の脱燐処理及び脱炭精錬を実施する際に用いる、4重管構造の上吹きランスを備えた転炉設備の1例を示す概略断面図、図2は、図1に示す上吹きランス3の概略拡大縦断面図である。尚、本発明においては、脱燐処理が施された溶銑の脱炭精錬も図1に示す構成と同一の転炉設備(但し同じ転炉設備ではない)を用いて実施する。従って、ここでは、脱燐処理を行う転炉設備を転炉設備1と表示し、脱燐処理が施された溶銑の脱炭精錬を行う転炉設備を転炉設備1Aと表示する。また、本発明では、構成が同一である4重管構造の上吹きランス3を用いて脱燐処理並びに脱炭精錬を実施するが、脱燐処理で使用する上吹きランス3を第1の上吹きランスと称し、一方、脱炭処理で使用する上吹きランス3を第2の上吹きランスと称する。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an example of a converter facility equipped with an upper blowing lance having a quadruple pipe structure used when carrying out hot metal dephosphorization treatment and decarburization refining according to the present invention, and FIG. FIG. 2 is a schematic enlarged longitudinal sectional view of the upper blowing lance 3 shown in FIG. 1. In the present invention, the decarburization and refining of the hot metal that has been subjected to the dephosphorization treatment is also performed using the same converter equipment (but not the same converter equipment) as shown in FIG. Therefore, here, the converter equipment that performs the dephosphorization process is indicated as the converter equipment 1, and the converter equipment that performs the decarburization refining of the hot metal that has been subjected to the dephosphorization process is indicated as the converter equipment 1A. In the present invention, the dephosphorization treatment and the decarburization refining are performed using the upper blow lance 3 having the same structure of the quadruple pipe. The upper blow lance 3 used in the dephosphorization treatment is used as the first upper blow lance 3. On the other hand, the upper blow lance 3 used in the decarburization process is called a second upper blow lance.

本発明において溶銑の脱燐処理に用いる転炉設備1及び脱炭精錬に用いる転炉設備1Aは、その外殻を鉄皮4で構成され、鉄皮4の内側に耐火物5が施行された炉本体2と、この炉本体2の内部に挿入され、上下方向に移動可能な上吹きランス3(第1の上吹きランス)とを備えている。炉本体2の上部には、脱燐処理終了後の溶銑14或いは脱炭精錬終了後の溶鋼(図示せず)を出湯するための出湯口6が設けられ、また、炉本体2の炉底部には、攪拌用ガス16を吹き込むための複数の底吹き羽口7が設けられている。この底吹き羽口7はガス導入管8と接続されている。   In the present invention, the converter equipment 1A used for hot metal dephosphorization and the converter equipment 1A used for decarburization refining are composed of an iron shell 4 and a refractory 5 is enforced inside the iron shell 4. A furnace body 2 and an upper blowing lance 3 (first upper blowing lance) which is inserted into the furnace body 2 and is movable in the vertical direction are provided. An upper portion of the furnace body 2 is provided with a hot water outlet 14 for pouring hot metal 14 after dephosphorization treatment or molten steel (not shown) after decarburization refining, and at the bottom of the furnace body 2. Are provided with a plurality of bottom blowing tuyere 7 for blowing the gas 16 for stirring. The bottom blowing tuyere 7 is connected to a gas introduction pipe 8.

上吹きランス3には、脱燐精錬用の酸化性ガスまたは脱炭精錬用の酸化性ガスを供給するための精錬用酸化性ガス供給管9と、プロパンガス、液化天然ガス、コークス炉ガス、石油、重油などの燃料を供給するための燃料供給管11と、上吹きランス3を冷却するための冷却水を供給・排出するための冷却水の給水管及び排水管(図示せず)とが、接続されている。脱燐精錬用の酸化性ガスとしては、酸素ガス、空気、酸素富化空気、酸素ガスと希ガス(Arガスなど)との混合ガスが使用され、一般的には酸素ガスが使用される。脱炭精錬用の酸化性ガスとしては、酸素ガス、酸素ガスと希ガスとの混合ガスが使用され、一般的には酸素ガスが使用される。尚、酸素ガスとは、工業用純酸素ガスである。図1では、脱燐精錬用及び脱炭精錬用の酸化性ガスとして、一般的に使用される酸素ガスの例を示している。   The top blowing lance 3 includes a refining oxidizing gas supply pipe 9 for supplying a dephosphorizing refining oxidizing gas or a decarburizing refining oxidizing gas, propane gas, liquefied natural gas, coke oven gas, A fuel supply pipe 11 for supplying fuel such as oil and heavy oil, and a cooling water supply pipe and a drain pipe (not shown) for supplying and discharging cooling water for cooling the top blowing lance 3 ,It is connected. As the oxidizing gas for dephosphorization, oxygen gas, air, oxygen-enriched air, mixed gas of oxygen gas and rare gas (Ar gas or the like) is used, and oxygen gas is generally used. As the oxidizing gas for decarburization refining, oxygen gas, a mixed gas of oxygen gas and rare gas is used, and oxygen gas is generally used. The oxygen gas is industrial pure oxygen gas. FIG. 1 shows an example of oxygen gas that is generally used as an oxidizing gas for dephosphorization and decarburization.

精錬用酸化性ガス供給管9は、途中で粉状媒溶剤供給管10に枝分かれしており、枝分かれした粉状媒溶剤供給管10は、粉状媒溶剤供給管10の途中に設けられたディスペンサー12を経由して精錬用酸化性ガス供給管9に再度合流し、精錬用酸化性ガス供給管9は、合流後の下流側で上吹きランス3に接続されている。ディスペンサー12には、精錬剤として使用する粉状の媒溶剤13が収容されており、粉状媒溶剤供給管10に導入された脱燐精錬用酸化性ガス或いは脱炭精錬用酸化性ガスが、ディスペンサー12に収容された媒溶剤13の搬送用ガスとして機能し、ディスペンサー12に収容された粉状の媒溶剤13は、粉状媒溶剤供給管10及び精錬用酸化性ガス供給管9を順に通って上吹きランス3に供給され、上吹きランス3の先端から溶銑14に向けて吹き付けられるようになっている。媒溶剤13としては、脱燐処理の場合は石灰系媒溶剤を使用し、脱炭精錬の場合は石灰系媒溶剤またはマンガン鉱石若しくはこれらの混合物を使用する。   The refining oxidizing gas supply pipe 9 is branched into a powder medium solvent supply pipe 10 in the middle, and the branched powder medium solvent supply pipe 10 is a dispenser provided in the middle of the powder medium solvent supply pipe 10. The refining oxidizing gas supply pipe 9 is joined again via the refining oxidizing gas supply pipe 9, and the refining oxidizing gas supply pipe 9 is connected to the upper blowing lance 3 on the downstream side after the joining. The dispenser 12 contains a powdered medium solvent 13 used as a refining agent, and the dephosphorizing refining oxidizing gas or decarburizing refining oxidizing gas introduced into the powdered medium solvent supply pipe 10 is It functions as a conveying gas for the medium solvent 13 accommodated in the dispenser 12, and the powdered medium solvent 13 accommodated in the dispenser 12 passes through the powder medium solvent supply pipe 10 and the refining oxidizing gas supply pipe 9 in order. Is supplied to the upper blowing lance 3 and is blown toward the hot metal 14 from the tip of the upper blowing lance 3. As the solvent 13, a lime-based solvent is used in the case of dephosphorization, and a lime-based solvent, manganese ore, or a mixture thereof is used in the case of decarburization refining.

精錬用酸化性ガス供給管9には流量調節弁25が設けられ、また、粉状媒溶剤供給管10には流量調節弁26が設けられており、精錬用酸化性ガス供給管9及び粉状媒溶剤供給管10を通過する脱燐精錬用酸化性ガス或いは脱炭精錬用酸化性ガスの流量は、流量調節弁25及び流量調節弁26によって任意に調整可能となっている。つまり、所定量の媒溶剤13を溶銑14に添加した後は、精錬用酸化性ガスのみを溶銑14に向けて供給できるように構成されている。   The refining oxidizing gas supply pipe 9 is provided with a flow rate adjusting valve 25, and the powder medium solvent supplying pipe 10 is provided with a flow rate adjusting valve 26, and the refining oxidizing gas supply pipe 9 and the powdery state are provided. The flow rate of the dephosphorizing refining oxidizing gas or the decarburizing refining oxidizing gas passing through the solvent supply pipe 10 can be arbitrarily adjusted by the flow rate adjusting valve 25 and the flow rate adjusting valve 26. That is, after a predetermined amount of the medium solvent 13 is added to the hot metal 14, only the refining oxidizing gas can be supplied toward the hot metal 14.

上吹きランス3は、図2に示すように、円筒状のランス本体17と、このランス本体17の下端に溶接などにより接続された銅鋳物製のランスチップ18とで構成されており、ランス本体17は、最内管21、内管22、中管23、外管24の同心円形状の4種の鋼管、即ち4重管で構成されている。精錬用酸化性ガス供給管9は最内管21に連通し、冷却水の排水管は内管22に連通し、燃料供給管11は中管23に連通し、冷却水の給水管は外管24に連通している。つまり、脱燐精錬用酸化性ガス、脱炭精錬用酸化性ガス、或いは、これらの酸化性ガスを搬送用ガスとする媒溶剤13が最内管21の内部を通り、プロパンガスなどの燃料が内管22と中管23との間隙を通り、最内管21と内管22との間隙は、冷却水の排水流路、中管23と外管24との間隙は、冷却水の給水流路となっている。冷却水は、ランスチップ18の位置で反転するように構成されている。   As shown in FIG. 2, the upper blow lance 3 is composed of a cylindrical lance body 17 and a copper cast lance tip 18 connected to the lower end of the lance body 17 by welding or the like. 17 is composed of four concentric steel pipes, that is, a quadruple pipe, that is, an innermost pipe 21, an inner pipe 22, an intermediate pipe 23, and an outer pipe 24. The refining oxidizing gas supply pipe 9 communicates with the innermost pipe 21, the cooling water drain pipe communicates with the inner pipe 22, the fuel supply pipe 11 communicates with the middle pipe 23, and the cooling water supply pipe serves as the outer pipe. 24. That is, the oxidizing gas for dephosphorization refining, the oxidizing gas for decarburizing refining, or the medium solvent 13 using these oxidizing gases as the carrier gas passes through the innermost pipe 21, and fuel such as propane gas is supplied. The gap between the inner pipe 22 and the inner pipe 23 passes through, the gap between the innermost pipe 21 and the inner pipe 22 is a cooling water drainage channel, and the gap between the inner pipe 23 and the outer pipe 24 is a cooling water supply flow. It is a road. The cooling water is configured to reverse at the position of the lance tip 18.

最内管21の内部は、ランスチップ18の先端に配置された主孔ノズル19と連通し、内管22と中管23との間隙は、燃料噴射孔20と連通している。この燃料噴射孔20は主孔ノズル19に開口している。主孔ノズル19は、脱燐精錬用酸化性ガス、脱炭精錬用酸化性ガス、或いは、これらの酸化性ガスを搬送用ガスとする媒溶剤13を吹き付けるためのノズル、燃料噴射孔20は、燃料を噴射するためのノズルである。つまり、最内管21の内部が、脱燐精錬用酸化性ガスまたは脱炭精錬用酸化性ガスを供給するための精錬用酸化性ガス供給流路となり、内管22と中管23との間隙が燃料供給流路となっている。最内管21と内管22との間隙は冷却水の排水流路、中管23と外管24との間隙は冷却水の給水流路となっている。主孔ノズル19は、上吹きランス3の軸心を中心とする同一円周線上にほぼ等間隔で複数個配置されている。尚、図2では冷却水の排水流路が燃料供給流路の内側に設置されているが、冷却水の排水流路を燃料供給流路の外側に配置してもよく、また、冷却水の排水流路と冷却水の給水流路とを入れ替えても構わない。   The inside of the innermost tube 21 communicates with the main hole nozzle 19 disposed at the tip of the lance tip 18, and the gap between the inner tube 22 and the middle tube 23 communicates with the fuel injection hole 20. The fuel injection hole 20 is open to the main hole nozzle 19. The main hole nozzle 19 is a nozzle for spraying an oxidizing gas for dephosphorization refining, an oxidizing gas for decarburizing refining, or a solvent 13 using these oxidizing gases as a carrier gas, and the fuel injection hole 20 is It is a nozzle for injecting fuel. That is, the inside of the innermost pipe 21 serves as a refining oxidizing gas supply flow path for supplying a dephosphorizing refining oxidizing gas or a decarburizing refining oxidizing gas, and a gap between the inner pipe 22 and the middle pipe 23. Is a fuel supply flow path. The gap between the innermost tube 21 and the inner tube 22 is a cooling water drainage channel, and the gap between the middle tube 23 and the outer tube 24 is a cooling water supply channel. A plurality of main hole nozzles 19 are arranged at substantially equal intervals on the same circumferential line centering on the axis of the upper blowing lance 3. In FIG. 2, the cooling water drainage channel is installed inside the fuel supply channel, but the cooling water drainage channel may be arranged outside the fuel supply channel, The drainage channel and the cooling water supply channel may be interchanged.

図2に示すように、主孔ノズル19は、その断面が縮小する部分(「絞り部」という)と拡大する部分(「スカート部」という)の2つの円錐体で構成されるラバールノズルの形状を採っており、精錬用酸化性ガスが超音速または亜音速で主孔ノズル19から噴射されるように構成されている。燃料噴射孔20は、主孔ノズル19のスカート部に開口するように配置されている。燃料噴射孔20は、図2では1つの主孔ノズル19に対して1個のみ開口しているが、1つの主孔ノズル19に対して複数個開口するようにしてもよい。尚、ラバールノズルにおいて、絞り部とスカート部の2つの円錐体の境界である最も断面積の小さい部位をスロートと称している。   As shown in FIG. 2, the main hole nozzle 19 has the shape of a Laval nozzle composed of two cones, a portion whose cross section is reduced (referred to as a “throttle portion”) and a portion where the cross section is enlarged (referred to as a “skirt portion”). The refining oxidizing gas is injected from the main hole nozzle 19 at supersonic speed or subsonic speed. The fuel injection hole 20 is disposed so as to open in the skirt portion of the main hole nozzle 19. In FIG. 2, only one fuel injection hole 20 is opened for one main hole nozzle 19, but a plurality of fuel injection holes 20 may be opened for one main hole nozzle 19. In the Laval nozzle, the portion having the smallest cross-sectional area that is the boundary between the two cones of the throttle portion and the skirt portion is called a throat.

この上吹きランス3においては、燃料噴射孔20から燃料を噴射させ、且つ、主孔ノズル19から、脱燐精錬用酸化性ガスまたは脱炭精錬用酸化性ガスを噴射させる、或いは、これらの酸化性ガスとともに媒溶剤13を噴射させることで、上吹きランス3の先端下方に火炎を形成させることができる。   In the upper blow lance 3, fuel is injected from the fuel injection hole 20, and an oxidizing gas for dephosphorization refining or an oxidizing gas for decarburization refining is injected from the main hole nozzle 19, or oxidation of these By injecting the medium solvent 13 together with the property gas, a flame can be formed below the tip of the upper blowing lance 3.

この構成の転炉設備1及び転炉設備1Aを用い、冷鉄源の配合比率を高めるべく、先ず、転炉設備1で溶銑14に対して脱燐処理を施し、次いで、この脱燐処理された溶銑14に転炉設備1Aで脱炭精錬を施し、溶銑14から溶鋼を製造する。以下、脱燐処理から順に説明する。   In order to increase the mixing ratio of the cold iron source using the converter equipment 1 and the converter equipment 1A having this structure, first, the hot metal 14 is dephosphorized in the converter equipment 1 and then the dephosphorization process is performed. The molten iron 14 is subjected to decarburization refining in the converter facility 1 </ b> A to produce molten steel from the molten iron 14. Hereinafter, the dephosphorization process will be described in order.

転炉設備1を用いて溶銑14に脱燐処理を施すにあたり、先ず、炉本体2の内部へ冷鉄源を装入する。使用する冷鉄源としては、製鉄所で発生する鋳片及び鋼板のクロップ屑や市中屑などの鉄スクラップ、磁力選別によってスラグから回収した地金、更には、冷銑、還元鉄などを使用することができる。冷鉄源の装入完了に前後して、底吹き羽口7から攪拌用ガス16の吹き込みを開始する。   In performing dephosphorization treatment on the hot metal 14 using the converter equipment 1, first, a cold iron source is charged into the furnace body 2. The cold iron source used is iron scrap such as slabs and steel plate crops and city scraps generated at steelworks, bullion recovered from slag by magnetic sorting, and cold iron, reduced iron, etc. can do. Before and after the completion of the charging of the cold iron source, the stirring gas 16 starts to be blown from the bottom blowing tuyere 7.

冷鉄源の配合比率は、脱燐処理での配合比率と脱炭精錬での配合比率との合計値で、5質量%以上とすることが好ましい。冷鉄源の配合比率は下記の(1)式で定義される。
冷鉄源の配合比率(質量%)=冷鉄源配合量×100/(溶銑配合量+冷鉄源配合量)…(1)
脱燐処理から脱炭精錬まででの冷鉄源の合計配合比率が5質量%未満では、生産性向上の効果が少ないのみならず、CO2発生量の削減効果が少ないからである。冷鉄源の配合比率の上限は特に決める必要はなく、脱燐処理後の溶銑温度が目標範囲を維持できる上限まで添加することができる。
The blending ratio of the cold iron source is preferably a total value of the blending ratio in the dephosphorization treatment and the blending ratio in the decarburization refining, and is preferably 5% by mass or more. The blending ratio of the cold iron source is defined by the following formula (1).
Mixing ratio of cold iron source (% by mass) = Cold iron source blending amount × 100 / (molten iron blending amount + cold iron source blending amount) (1)
This is because if the total blending ratio of the cold iron source from the dephosphorization process to the decarburization refining is less than 5% by mass, not only the effect of improving the productivity but also the effect of reducing the CO 2 generation amount is small. The upper limit of the blending ratio of the cold iron source does not need to be particularly determined, and the hot metal temperature after the dephosphorization treatment can be added up to an upper limit that can maintain the target range.

冷鉄源の炉本体2への装入後、溶銑14を炉本体2へ装入する。用いる溶銑14としてはどのような組成であっても処理することができ、脱燐処理の前に脱硫処理や脱珪処理が施されていてもよい。因みに、脱燐処理前の溶銑14の主な化学成分は、炭素:3.8〜5.0質量%、珪素:0.3質量%以下、燐:0.08〜0.2質量%、硫黄:0.05質量%以下程度である。但し、脱燐処理時に炉本体内で生成されるスラグ15の量が多くなると脱燐効率が低下するので、前述したように、炉本体内でのスラグ発生量を少なくして脱燐効率を高めるために、脱珪処理により、溶銑中の珪素濃度を0.20質量%以下、望ましくは0.10質量%以下まで予め低減しておくことが好ましい。また、溶銑温度は1200〜1450℃の範囲であれば問題なく脱燐処理することができる。   After charging the cold iron source into the furnace body 2, the hot metal 14 is charged into the furnace body 2. The hot metal 14 used can be processed with any composition, and may be subjected to desulfurization or desiliconization before the dephosphorization. Incidentally, the main chemical components of the hot metal 14 before the dephosphorization treatment are: carbon: 3.8 to 5.0 mass%, silicon: 0.3 mass% or less, phosphorus: 0.08 to 0.2 mass%, sulfur : About 0.05% by mass or less. However, if the amount of slag 15 generated in the furnace body during the dephosphorization process increases, the dephosphorization efficiency decreases. As described above, the amount of slag generated in the furnace body is reduced to increase the dephosphorization efficiency. Therefore, it is preferable to previously reduce the silicon concentration in the hot metal to 0.20 mass% or less, desirably 0.10 mass% or less by desiliconization treatment. Moreover, if the hot metal temperature is in the range of 1200 to 1450 ° C., dephosphorization can be performed without any problem.

次いで、ディスペンサー12に脱燐精錬用酸化性ガスを供給し、媒溶剤13である粉状の石灰系媒溶剤を、上吹きランス3の主孔ノズル19から脱燐精錬用酸化性ガスとともに溶銑14の浴面に向けて吹き付ける。この媒溶剤13(以下、脱燐処理の場合は「石灰系媒溶剤13」と記す)の吹き付けに前後して、上吹きランス3の燃料噴射孔20から燃料を噴射させる。燃料噴射孔20から供給される燃料と、主孔ノズル19から噴射される、石灰系媒溶剤13の搬送用ガスであり且つ脱燐精錬用酸化性ガスでもある酸化性ガスとは、主孔ノズル19のスカート部以降で各々混合し合い、雰囲気温度が高いこともあって、点火装置がなくても燃焼限界範囲内に燃料の濃度が達した時点で、主孔ノズル19から噴射される酸化性ガスの一部によって燃焼し、上吹きランス3の下方に火炎が形成される。石灰媒溶剤13は、形成される火炎の中を通り火炎の熱を受けて加熱または加熱・溶融し、加熱または溶融した状態で溶銑14の浴面に吹き付けられる。これにより、溶銑14に火炎の熱が石灰系媒溶剤13を介して着熱し、溶銑14の温度が上昇して、添加した冷鉄源の溶解が促進される。   Next, an oxidizing gas for dephosphorization refining is supplied to the dispenser 12, and the powdered lime-based medium solvent as the medium solvent 13 is molten together with the oxidizing gas for dephosphorizing refining from the main hole nozzle 19 of the top blowing lance 3. Spray toward the bath surface. The fuel is injected from the fuel injection hole 20 of the top blowing lance 3 before and after the spraying of the medium solvent 13 (hereinafter referred to as “lime-based medium solvent 13” in the case of dephosphorization treatment). The fuel supplied from the fuel injection hole 20 and the oxidizing gas which is injected from the main hole nozzle 19 and which is a conveying gas for the lime-based solvent 13 and is also an oxidizing gas for dephosphorization refining are the main hole nozzle. After the 19 skirts are mixed, the atmospheric temperature may be high, and the oxidizability injected from the main hole nozzle 19 when the fuel concentration reaches the combustion limit range without an ignition device. Combustion is caused by part of the gas, and a flame is formed below the upper blowing lance 3. The lime medium solvent 13 passes through the formed flame, receives the heat of the flame, is heated or heated / melted, and is sprayed onto the bath surface of the hot metal 14 in the heated or molten state. As a result, the heat of the flame reaches the hot metal 14 via the lime-based medium solvent 13, the temperature of the hot metal 14 rises, and the dissolution of the added cold iron source is promoted.

また、同時に、主孔ノズル19から溶銑14の浴面に向けて、その一部は搬送用ガスとして機能した脱燐精錬用の酸化性ガスが吹き付けられる。   At the same time, an oxidizing gas for dephosphorization and refining that partially functions as a transfer gas is sprayed from the main hole nozzle 19 toward the bath surface of the hot metal 14.

溶銑14の脱燐反応は、溶銑中の燐が、酸化性ガス中の酸素または酸素によって生成した酸化鉄と反応して燐酸化物(P25)を形成し、この燐酸化物が石灰系媒溶剤13の滓化によって形成されるスラグ15に吸収されることで進行する。しかも、石灰系媒溶剤13の滓化が促進されるほど脱燐速度が速くなる。 In the dephosphorization reaction of the hot metal 14, phosphorus in the hot metal reacts with oxygen in the oxidizing gas or iron oxide generated by oxygen to form a phosphor oxide (P 2 O 5 ), and this phosphor oxide becomes a lime-based medium. It progresses by being absorbed by the slag 15 formed by the hatching of the solvent 13. Moreover, the dephosphorization rate increases as the hatching of the lime-based medium 13 is promoted.

つまり、本発明においては、加熱または溶融した状態で、溶銑浴面に吹き付けられた石灰系媒溶剤13は直ちに滓化してスラグ15を形成し、また、供給された脱燐精錬用酸化性ガスと溶銑中の燐とが反応して燐酸化物が形成される。攪拌用ガス16によって溶銑14とスラグ15とが強攪拌されることも相まって、形成した燐酸化物が滓化したスラグ15に迅速に吸収されて、溶銑14の脱燐反応が速やかに進行する。   That is, in the present invention, in the heated or molten state, the lime-based solvent 13 sprayed on the hot metal bath surface immediately hatches to form slag 15, and the supplied dephosphorizing oxidizing gas and Phosphorus oxide is formed by reaction with phosphorus in the hot metal. Combined with the strong stirring of the hot metal 14 and the slag 15 by the stirring gas 16, the formed phosphorous oxide is quickly absorbed into the hatched slag 15, and the dephosphorization reaction of the hot metal 14 proceeds promptly.

石灰系媒溶剤13としては、生石灰(CaO)、石灰石(CaCO3)、消石灰(Ca(OH)2)、ドロマイト(CaO−MgO)などの石灰系媒溶剤を使用する。生石灰に蛍石(CaF2)またはアルミナ(Al23)を滓化促進剤として混合したものを石灰系媒溶剤13として使用することもできる。また、溶銑14の脱炭精錬工程で生成する転炉スラグ(CaO−SiO2系スラグ)を石灰系媒溶剤13の全部または一部として使用することもできる。尚、添加すべき石灰系媒溶剤13の全量を上吹きランス3から供給する必要はなく、冷鉄源或いは溶銑14の炉本体2への装入後、上吹きランス3から酸化性ガスを供給する前に、石灰系媒溶剤13の一部を予め炉上ホッパーから炉本体2へ別途上置き投入してもよい。 As the lime-based medium solvent 13, a lime-based medium solvent such as quick lime (CaO), limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), dolomite (CaO—MgO) is used. A mixture of quicklime with fluorite (CaF 2 ) or alumina (Al 2 O 3 ) as a hatching accelerator can also be used as the lime-based solvent 13. Further, converter slag (CaO—SiO 2 -based slag) generated in the decarburizing and refining process of the hot metal 14 can be used as all or part of the lime-based solvent 13. Note that it is not necessary to supply the entire amount of the lime-based solvent 13 to be added from the top blowing lance 3, and supply the oxidizing gas from the top blowing lance 3 after charging the cold iron source or hot metal 14 into the furnace body 2. Before performing, a part of the lime-based medium solvent 13 may be put in advance separately from the furnace hopper to the furnace body 2.

石灰系媒溶剤13によって溶銑14に火炎の熱が伝わるのみならず、溶銑14の上方に存在する火炎の燃焼熱が溶銑14に伝達することから、溶銑14が激しく攪拌されることも相まって、溶銑中の冷鉄源の溶解が促進される。即ち、装入した冷鉄源の溶解が脱燐処理の期間中に終了する。   Not only the heat of flame is transmitted to the hot metal 14 by the lime-based solvent 13, but also the combustion heat of the flame existing above the hot metal 14 is transmitted to the hot metal 14, so that the hot metal 14 is vigorously stirred. The dissolution of the cold iron source inside is promoted. That is, the melting of the charged cold iron source is completed during the dephosphorization process.

その後、溶銑14の燐濃度が目的とする値かそれ以下になったなら、上吹きランス3から溶銑14への全ての供給を停止して脱燐処理を終了する。この場合、脱燐処理が終了するまで上吹きランス3から石灰系媒溶剤13を供給し続ける必要はなく、所定量の石灰系媒溶剤13を添加完了したならば、上吹きランス3から脱燐精錬用酸化性ガスのみを供給してもよい。また、この脱燐処理中に、鉄鉱石などの酸化鉄を固体酸素源として炉上ホッパーから炉本体2へ上置き投入してもよい。脱燐処理後、炉本体2を傾動させて、脱燐処理の施された溶銑14を、出湯口6を介して、取鍋、転炉装入鍋などの溶銑保持容器に出湯する。溶銑14の出湯後、炉本体2を傾動させて、炉本体内のスラグ15をスラグ収容容器に排出する。   Thereafter, when the phosphorus concentration in the hot metal 14 becomes the target value or less, all the supply from the top blowing lance 3 to the hot metal 14 is stopped and the dephosphorization process is completed. In this case, it is not necessary to continue supplying the lime-based medium solvent 13 from the top blowing lance 3 until the dephosphorization process is completed. Only the oxidizing gas for refining may be supplied. Further, during this dephosphorization treatment, iron oxide such as iron ore may be placed on the furnace body 2 from the furnace hopper as a solid oxygen source. After the dephosphorization process, the furnace body 2 is tilted, and the hot metal 14 subjected to the dephosphorization process is discharged into a hot metal holding container such as a ladle or a converter charging pot through the hot water outlet 6. After the hot metal 14 is discharged, the furnace body 2 is tilted to discharge the slag 15 in the furnace body to the slag container.

その後、溶銑保持容器に出湯された溶銑14を、図2に示す4重管構造の上吹きランス3(第2の上吹きランス)を備えた別の転炉設備1Aの炉本体2に装入し、溶銑14に対して脱炭精錬を実施する。脱炭精錬の場合も、上吹きランス3の先端に火炎を形成させ、この火炎で精錬剤として使用する媒溶剤13を加熱・溶融し、火炎の熱を媒溶剤13を介して炉本体内の溶銑14に着熱させる。前述したように、脱炭精錬の場合には、媒溶剤13として、石灰系媒溶剤、マンガン鉱石のうちの1種または2種以上を使用する。   Thereafter, the hot metal 14 discharged from the hot metal holding container is charged into the furnace body 2 of another converter 1A equipped with the upper blow lance 3 (second upper blow lance) having a quadruple pipe structure shown in FIG. Then, decarburization refining is performed on the hot metal 14. Also in the case of decarburization refining, a flame is formed at the tip of the top blowing lance 3, the medium solvent 13 used as a refining agent is heated and melted in this flame, and the heat of the flame is passed through the medium solvent 13 in the furnace body. The hot metal 14 is heated. As described above, in the case of decarburization refining, one or more of lime-based medium solvent and manganese ore are used as the medium solvent 13.

脱炭精錬の場合も、炉本体2には、上記の脱燐処理で使用した冷鉄源と同類の冷鉄源を溶銑14の装入の前に予め装入する。この脱炭精錬工程における冷鉄源の溶解用熱源は、溶銑14の顕熱、溶銑中の炭素濃度及び火炎からの着熱量に依存しており、従って、前工程の脱燐処理工程における冷鉄源の配合比率を高く設定すると、この溶銑14を使用した脱炭精錬工程では冷鉄源の配合比率を低く設定せざるを得ない。従って、脱炭精錬工程における冷鉄源の配合比率は、脱燐処理工程での配合比率と脱炭精錬工程での配合比率との合計値が5質量%以上となるように、脱燐処理工程での配合比率に応じて設定することが好ましい。   Also in the case of decarburization refining, a cold iron source similar to the cold iron source used in the above dephosphorization treatment is charged in the furnace body 2 in advance before the molten iron 14 is charged. The heat source for melting the cold iron source in this decarburization refining process depends on the sensible heat of the hot metal 14, the carbon concentration in the hot metal and the amount of heat received from the flame. If the source blending ratio is set high, the cold iron source blending ratio must be set low in the decarburization refining process using the hot metal 14. Accordingly, the mixing ratio of the cold iron source in the decarburizing and refining process is such that the total value of the mixing ratio in the dephosphorizing process and the mixing ratio in the decarburizing and refining process is 5% by mass or more. It is preferable to set according to the blending ratio.

炉本体2に溶銑14を装入したなら、上吹きランス3を炉本体2に挿入し、底吹き羽口7からArガスなどを攪拌用ガス16として溶銑14に吹き込みながら、上吹きランス3の主孔ノズル19から、脱炭精錬用酸化性ガスを溶銑浴面に吹き付けると同時に、脱炭精錬用酸化性ガスを搬送用ガスとして粉状の媒溶剤13を噴射し、且つ、燃料噴射孔20から、プロパンガス、天然ガス、コークス炉ガスなどのガス燃料、或いは、重油、灯油などの炭化水素系の液体燃料を供給する。   When the hot metal 14 is charged into the furnace body 2, the top blowing lance 3 is inserted into the furnace body 2, and Ar gas or the like is blown into the hot metal 14 as the stirring gas 16 from the bottom blowing tuyere 7. From the main hole nozzle 19, an oxidizing gas for decarburizing and refining is sprayed onto the hot metal bath surface, and at the same time, a powdered medium solvent 13 is injected using the oxidizing gas for decarburizing and refining as a carrier gas, and a fuel injection hole 20. Then, gas fuel such as propane gas, natural gas and coke oven gas, or hydrocarbon liquid fuel such as heavy oil and kerosene is supplied.

上吹きランス3の先端部には火炎が形成され、媒溶剤13は、形成される火炎の中を通り火炎の熱を受けて加熱または加熱・溶融し、加熱または溶融した状態で溶銑14の浴面に吹き付けられる。これにより、溶銑14に火炎の熱が媒溶剤13を介して着熱し、溶銑14の温度が上昇して、添加した冷鉄源の溶解が促進される。また、主孔ノズル19から供給される脱炭精錬用酸化性ガスによって脱炭反応(2C+O2→2CO)が進行する。 A flame is formed at the tip of the upper blowing lance 3, and the solvent 13 is heated or heated / melted by receiving the heat of the flame through the formed flame, and the bath of the molten iron 14 is heated or melted. Sprayed on the surface. Thereby, the heat of the flame reaches the hot metal 14 via the medium solvent 13, the temperature of the hot metal 14 rises, and the dissolution of the added cold iron source is promoted. Further, the decarburization reaction (2C + O 2 → 2CO) proceeds by the oxidizing gas for decarburization refining supplied from the main hole nozzle 19.

上吹きランス3の主孔ノズル19から供給する媒溶剤13としては、前述したように石灰系媒溶剤(生石灰やドロマイトなど)やマンガン鉱石を使用する。また、これらの副原料の全てを上吹きランス3から供給することは必要ではなく、これらのうちの一部は、炉上ホッパーから上置き添加しても構わない。また更に、上吹きランス3からの供給と上置き添加とを併用しても構わない。   As the solvent 13 supplied from the main hole nozzle 19 of the top blowing lance 3, a lime-based solvent (such as quick lime or dolomite) or manganese ore is used as described above. Moreover, it is not necessary to supply all of these auxiliary materials from the top blowing lance 3, and some of these may be added from the furnace hopper. Furthermore, the supply from the top blowing lance 3 and the addition of the upper part may be used in combination.

媒溶剤13として石灰系媒溶剤を使用した場合には、火炎の熱を溶銑14に着熱させるだけでなく、溶銑浴面に吹き付けられた石灰系媒溶剤は直ちに滓化して浴面を覆うスラグ15を形成し、スピッティング(地金の飛散)を防止したり、脱燐反応を促進させたりする。媒溶剤13としてマンガン鉱石を使用した場合には、火炎の熱を溶銑14に着熱させるだけでなく、マンガン鉱石が溶銑中の炭素によって還元され、溶鋼成分調整用のマンガン源として機能する。   When a lime-based solvent is used as the solvent 13, the slag that not only heats the flame to the molten iron 14 but also the lime-based solvent sprayed on the molten metal bath immediately hatches to cover the bath surface. 15 is formed to prevent spitting (scattering of metal) or to promote dephosphorization reaction. When manganese ore is used as the solvent 13, not only does the heat of the flame reach the molten iron 14, but the manganese ore is reduced by the carbon in the molten iron and functions as a manganese source for adjusting the molten steel components.

上吹きランス3の主孔ノズル19から供給される酸化性ガスと溶銑中の炭素とが反応して脱炭反応が進行し、溶銑14の炭素濃度が低下する。炭素濃度が目的とする値まで低下したなら、上吹きランス3からの鉄浴への全ての供給を停止して脱炭精錬を終了する。この場合、脱炭精錬が終了するまで上吹きランス3から媒溶剤13を供給し続ける必要はなく、所定量の媒溶剤13を添加完了したならば、上吹きランス3から脱炭精錬用酸化性ガスのみを供給してもよい。添加した冷鉄源は脱炭精錬の期間中に溶解する。   The oxidizing gas supplied from the main hole nozzle 19 of the top blowing lance 3 reacts with the carbon in the hot metal, the decarburization reaction proceeds, and the carbon concentration of the hot metal 14 decreases. When the carbon concentration has decreased to the target value, all the supply from the top blowing lance 3 to the iron bath is stopped and the decarburization refining is finished. In this case, it is not necessary to continue supplying the solvent 13 from the top blowing lance 3 until the decarburization refining is completed. Only gas may be supplied. The added cold iron source dissolves during the decarburization process.

このようにして高炉から出銑された溶銑14に脱燐処理及び脱炭精錬が施され、溶銑14から溶鋼が製造される。製造した溶鋼は、取鍋に出湯し、必要に応じてRH真空脱ガス装置などで二次精錬を施した後、連続鋳造機で鋳片に鋳造する。   In this way, the molten iron 14 discharged from the blast furnace is subjected to dephosphorization and decarburization and molten steel is produced from the molten iron 14. The produced molten steel is poured out into a ladle and, if necessary, subjected to secondary refining with an RH vacuum degasser or the like, and then cast into a slab with a continuous casting machine.

以上説明したように、本発明によれば、溶銑14に予備処理として行う転炉設備1での脱燐処理、及び、この脱燐処理の施された溶銑の転炉設備1Aでの脱炭精錬において、精錬剤として使用する粉状の媒溶剤13を上吹きランス3の先端下方に形成される火炎によって加熱し、火炎の熱を媒溶剤13を介して溶銑14に着熱させるので、溶銑14の温度が上昇し、脱燐処理及び脱炭精錬における鉄スクラップなどの冷鉄源の配合比率を高めることが実現され、それにより、CO2排出量を従来に比較して大幅に低減することが可能となる。 As described above, according to the present invention, the dephosphorization treatment in the converter equipment 1 performed as a preliminary treatment for the hot metal 14 and the decarburization refining of the hot metal subjected to the dephosphorization treatment in the converter equipment 1A. , The powdered medium solvent 13 used as a refining agent is heated by a flame formed below the tip of the upper lance 3, and the heat of the flame is made to reach the molten iron 14 via the medium solvent 13. As a result, it is possible to increase the blending ratio of cold iron sources such as iron scrap in dephosphorization and decarburization refining, thereby significantly reducing CO 2 emissions compared to the past. It becomes possible.

媒溶剤13の上吹きランス3からの供給にあたり、搬送用ガスとして、脱燐精錬用の酸化性ガス或いは脱炭精錬用の酸化性ガスを使用するが、媒溶剤13は、酸化物、炭酸化物、水酸化物、フッ化物などを主成分とし、金属分や炭素などの可燃性物質を含有しておらず、上吹きランス3の流路における発熱や燃焼を未然に防止することができる。また、媒溶剤13の搬送用ガスとして、脱燐処理及び脱炭精錬で必要不可欠な脱燐精錬用の酸化性ガス或いは脱炭精錬用の酸化性ガスを使用するので、従来は搬送用ガスとして使用していた窒素ガスやArガスなどの不活性ガスの使用は不用であり、その分、経済的に有利となる。   When supplying from the top blowing lance 3 of the medium solvent 13, an oxidizing gas for dephosphorization refining or an oxidizing gas for decarburizing refining is used as a carrier gas. In addition, the main component is hydroxide, fluoride, etc., and it does not contain a combustible substance such as metal or carbon, so that heat generation and combustion in the flow path of the top lance 3 can be prevented. Further, as the transporting gas for the solvent 13, the oxidizing gas for dephosphorizing or indispensable for the dephosphorizing process and decarburizing refining is used. The use of an inert gas such as nitrogen gas or Ar gas which has been used is unnecessary, which is economically advantageous.

図1に示す転炉設備と同一構造である、炉容量が2.5トンの小型転炉設備の炉本体に溶銑及び鉄スクラップを装入し、この小型転炉設備を用いて溶銑の脱燐処理を行った。脱燐処理後、溶銑を溶銑保持容器に出湯し、この脱燐処理後の溶銑及び鉄スクラップを、図1に示す転炉設備と同一構造である、炉容量が2.5トンの別の小型転炉設備の炉本体に装入して脱炭精錬を行った(本発明例)。   Hot metal and iron scrap are charged into the furnace body of a small converter facility having the same structure as the converter facility shown in FIG. 1 and having a furnace capacity of 2.5 tons, and the hot metal dephosphorization is performed using this small converter device. Processed. After the dephosphorization process, the hot metal is poured into a hot metal holding container, and the hot metal and iron scrap after the dephosphorization process have the same structure as the converter equipment shown in FIG. The decarburization refining was performed by charging the furnace body of the converter facility (example of the present invention).

この脱燐処理及び脱炭精錬で使用した上吹きランスは、図2に示す上吹きランスと同様に4重管構造のものであり、その横断面において中心側から、脱燐精錬用または脱炭精錬用の酸化性ガスの流路である精錬用酸化性ガス供給流路、冷却水排水流路、燃料供給流路、冷却水給水流路で構成されている。   The top blow lance used in this dephosphorization treatment and decarburization refining is of a quadruple pipe structure, similar to the top blow lance shown in FIG. 2, and is used for dephosphorization refining or decarburization from the center side in the cross section. A refining oxidizing gas supply channel, a refining oxidizing gas supply flow channel, a cooling water drainage flow channel, a fuel supply flow channel, and a cooling water supply water flow channel are provided.

主孔ノズルは、スロート径が7mmの3孔ラバールノズルであり、ランス中心軸に対して15°の角度を有しているものである。燃料噴射孔は、主孔ノズルの出口から20mmの位置に開口し、ノズル径は2mmである。脱燐精錬用酸化性ガス及び脱炭精錬用酸化性ガスとして酸素ガスを使用した。   The main hole nozzle is a three-hole Laval nozzle with a throat diameter of 7 mm, and has an angle of 15 ° with respect to the lance center axis. The fuel injection hole opens at a position 20 mm from the outlet of the main hole nozzle, and the nozzle diameter is 2 mm. Oxygen gas was used as an oxidizing gas for dephosphorization and oxidizing gas for decarburizing and refining.

脱燐処理工程では、炉本体に鉄スクラップを装入した後、温度が1350℃の溶銑を装入し、次いで、底吹き羽口からArガスを攪拌用ガスとして溶銑中に吹き込みながら、上吹きランスの主孔ノズルから、脱燐精錬用の酸素ガスを溶銑浴面に吹き付けると同時に、この酸素ガスを搬送用ガスとして生石灰(=石灰系媒溶剤)を溶銑浴面に向けて吹き付け、且つ、上吹きランスの燃料噴射孔からプロパンガスを噴出させて、脱燐処理を行った。また、この脱燐処理において、鉄鉱石を炉上のホッパーから上置き添加した。鉄スクラップの装入量は、脱燐処理終了時の溶銑温度が1400℃となるように調整し、また、生石灰は、脱燐処理終了時の炉内スラグの塩基度(質量%CaO/質量%SiO2)が2.5となるようにその添加量を調整した。 In the dephosphorization process, after iron scrap is charged into the furnace body, hot metal having a temperature of 1350 ° C. is charged, and then the top blow is performed while Ar gas is blown into the hot metal as a stirring gas from the bottom blowing tuyere. From the main hole nozzle of the lance, oxygen gas for dephosphorization refining is sprayed on the hot metal bath surface, and at the same time, quick lime (= lime-based medium solvent) is sprayed on the hot metal bath surface using this oxygen gas as a carrier gas, and Propane gas was ejected from the fuel injection hole of the top blowing lance to perform dephosphorization treatment. In this dephosphorization treatment, iron ore was added on top from a hopper on the furnace. The amount of iron scrap charged is adjusted so that the hot metal temperature at the end of the dephosphorization process is 1400 ° C., and quick lime is the basicity of slag in the furnace at the end of the dephosphorization process (mass% CaO / mass%). The amount of addition was adjusted so that (SiO 2 ) was 2.5.

脱炭精錬工程では、炉本体に鉄スクラップを装入した後、脱燐処理を施した、温度が1350℃の溶銑を装入し、次いで、底吹き羽口からArガスを攪拌用ガスとして溶銑中に吹き込みながら、上吹きランスの主孔ノズルから、脱炭精錬用の酸素ガスを溶銑浴面に吹き付けると同時に、この酸素ガスを搬送用ガスとして生石灰(=媒溶剤)を溶銑浴面に向けて吹き付け、且つ、上吹きランスの燃料噴射孔からプロパンガスを噴出させて、脱炭精錬を行った。この場合、鉄スクラップの装入量は、脱炭精錬終了時の溶鋼温度が1680℃且つ溶鋼中炭素濃度が0.05質量%となるように調整した。生石灰は、脱炭精錬終了時の炉内スラグの塩基度が3.5となるようにその添加量を調整した。   In the decarburization refining process, iron scrap was charged into the furnace body, dephosphorization treatment was performed, and hot metal with a temperature of 1350 ° C. was charged, and then molten iron with Ar gas as a stirring gas from the bottom blowing tuyere While blowing in, oxygen gas for decarburization and refining is blown onto the hot metal bath surface from the main hole nozzle of the top blowing lance, and at the same time, quick lime (= solvent) is directed to the hot metal bath surface using this oxygen gas as a carrier gas. Then, propane gas was ejected from the fuel injection hole of the top lance and decarburization refining was performed. In this case, the amount of iron scrap charged was adjusted so that the molten steel temperature at the end of decarburization refining was 1680 ° C. and the carbon concentration in the molten steel was 0.05 mass%. The amount of quicklime was adjusted so that the basicity of the slag in the furnace at the end of decarburization refining was 3.5.

比較例として、炉容量が2.5トンの小型転炉設備において、特許文献3に開示される5重管構造の上吹きランスに類似した5重管構造の上吹きランスを使用し、特許文献3に開示される精錬方法を用いて脱燐処理及び脱炭精錬を上記本発明例に沿って行った。比較例で使用した上吹きランスの概略拡大縦断面図を図3に示す。図3において、符号3Aは、上吹きランス、17Aはランス本体、18Aはランスチップ、27は燃料燃焼用酸化性ガス及び精錬用粉体の噴射ノズル、28は燃料噴射孔、29は主孔ノズル、30は最内管、31は内管、32は中管、33は外管、34は最外管であり、この上吹きランス3Aは、その横断面において中心側から、燃料燃焼用酸化性ガス及び精錬用粉体の供給流路(最内管30の内部)、燃料供給流路(最内管30と内管31との間隙)、精錬用酸化性ガス供給流路(内管31と中管32との間隙)、冷却水排水流路(中管32と外管33との間隙)、冷却水給水流路(外管33と最外管34との間隙)で構成されている。   As a comparative example, in a small converter having a furnace capacity of 2.5 tons, an upper blowing lance similar to the upper blowing lance disclosed in Patent Document 3 is used. Dephosphorization treatment and decarburization refining were performed according to the above-described example of the present invention using the refining method disclosed in No. 3. FIG. 3 shows a schematic enlarged vertical sectional view of the top blowing lance used in the comparative example. In FIG. 3, reference numeral 3A is an upper blow lance, 17A is a lance body, 18A is a lance tip, 27 is a fuel combustion oxidizing gas and refining powder injection nozzle, 28 is a fuel injection hole, and 29 is a main hole nozzle. , 30 is the innermost tube, 31 is the inner tube, 32 is the inner tube, 33 is the outer tube, and 34 is the outermost tube, and the upper blow lance 3A is oxidizable for fuel combustion from the center side in the cross section. Gas and refining powder supply flow path (inside the innermost pipe 30), fuel supply flow path (gap between the innermost pipe 30 and the inner pipe 31), refining oxidizing gas supply flow path (with the inner pipe 31) A gap between the middle pipe 32), a cooling water drainage channel (gap between the middle pipe 32 and the outer pipe 33), and a cooling water supply channel (gap between the outer pipe 33 and the outermost pipe 34).

つまり、この上吹きランス3Aにおいては、精錬用粉体はArガスなどの不活性ガスを搬送用ガスとして最内管30の内部に供給されるが、最内管30には燃料燃焼用の酸化性ガスも供給されており、最内管30が連通する噴射ノズル27からは、精錬用粉体、Arガスなどの不活性ガス(搬送用ガス)、及び、燃料燃焼用の酸化性ガスが噴射されるように構成されている。噴射ノズル27は、内径が11.5mmのストレート型ノズル、燃料噴射孔28は、その間隙が1.0mmの円環状に開口するスリット状のノズル、精錬用酸素ガスを噴射する主孔ノズル29は、スロート径が7mmの3孔ラバールノズルであり、ランス中心軸に対して15°の角度を有しているものである。   In other words, in the upper blow lance 3A, the refining powder is supplied into the innermost pipe 30 using an inert gas such as Ar gas as a carrier gas, but the innermost pipe 30 is oxidized for fuel combustion. A gas for refining, an inert gas such as Ar gas (carrier gas), and an oxidizing gas for fuel combustion are injected from the injection nozzle 27 through which the innermost tube 30 communicates. It is configured to be. The injection nozzle 27 is a straight type nozzle having an inner diameter of 11.5 mm, the fuel injection hole 28 is a slit-like nozzle that opens in an annular shape with a gap of 1.0 mm, and the main hole nozzle 29 that injects refining oxygen gas is The throat diameter is a three-hole Laval nozzle having a diameter of 7 mm, and has an angle of 15 ° with respect to the lance center axis.

この上吹きランス3Aから、精錬用粉体として粉状の生石灰及び粉状の鉄鉱石を供給し、これら精錬用粉体の搬送用ガスとしてはArガスを使用し、燃料燃焼用酸化性ガス及び精錬用酸化性ガスとしては酸素ガスを使用した。つまり、本発明例と比較例とで異なる点は、比較例では精錬用粉体の搬送用ガスとしてArガスを使用している点、及び、本発明例の脱燐処理では上置き添加した鉄鉱石を比較例では上吹きランス3Aから供給している点である。   From this top blowing lance 3A, powdery quick lime and powdered iron ore are supplied as refining powder, Ar gas is used as a conveying gas for these refining powders, an oxidizing gas for fuel combustion, and Oxygen gas was used as the oxidizing gas for refining. That is, the difference between the present invention example and the comparative example is that the comparative example uses Ar gas as the carrier gas for the refining powder, and the iron ore added in the dephosphorization treatment of the present invention example. In the comparative example, the stone is supplied from the top blowing lance 3A.

本発明例及び比較例において、脱燐処理及び脱炭精錬に供した溶銑の温度及び組成を表1に示す。   Table 1 shows the temperature and composition of the hot metal used in the dephosphorization treatment and decarburization refining in the inventive examples and the comparative examples.

Figure 2013209678
Figure 2013209678

また、本発明例及び比較例での脱燐処理及び脱炭精錬における粉状媒溶剤などの粉体の吹き込み速度、プロパンガス吹き込み流量、精錬用酸素ガス吹き込み流量、粉体搬送用Arガス流量、底吹き攪拌ガス吹き込み流量、ランス高さなどの操業条件を表2に示す。   In addition, the blowing speed of powder such as a powder medium solvent in the dephosphorization treatment and decarburization refining in the present invention example and the comparative example, the propane gas blowing flow rate, the oxygen gas blowing flow rate for refining, the Ar gas flow rate for powder transfer, Table 2 shows the operating conditions such as the bottom blowing stirring gas blowing flow rate and the lance height.

Figure 2013209678
Figure 2013209678

本発明例及び比較例における操業結果(精錬時間、鉄スクラップ配合量、不活性ガス原単位、排ガス中のCOガス濃度)を表3に示す。尚、不活性ガス原単位は、底吹き羽口から吹き込む攪拌用Arガスと精錬用粉体の搬送用ガスとして使用するArガスとの合計値である。   Table 3 shows the operation results (the refining time, the amount of iron scrap, the inert gas basic unit, the CO gas concentration in the exhaust gas) in the inventive examples and the comparative examples. The inert gas basic unit is the total value of the stirring Ar gas blown from the bottom blowing tuyere and the Ar gas used as the carrier gas for the refining powder.

Figure 2013209678
Figure 2013209678

表3からも明らかなように、本発明例と比較例とで不活性ガス原単位を比較すると、搬送用ガスとして不活性ガスを使用しない本発明例の方が低位であり、高価なArガスの使用量を1/4程度に低減できることから、本発明を適用することで精錬コストの大幅な削減が実現されることが確認できた。   As is apparent from Table 3, when the inert gas intensity is compared between the present invention example and the comparative example, the present invention example that does not use an inert gas as the carrier gas is lower and more expensive Ar gas. As a result, it was confirmed that a significant reduction in refining costs can be realized by applying the present invention.

また、搬送用ガスとして不活性ガスを使用しないことから、本発明においては排ガスのCOガス濃度を比較例に比べて高くすることができ、つまり、排ガスの発熱量を高めることができ、排ガスを燃料ガスとしてより有効に活用できることがわかった。   In addition, since an inert gas is not used as the carrier gas, in the present invention, the CO gas concentration of the exhaust gas can be increased compared to the comparative example, that is, the calorific value of the exhaust gas can be increased, It was found that it can be used more effectively as fuel gas.

1 転炉設備
2 炉本体
3 上吹きランス
4 鉄皮
5 耐火物
6 出湯口
7 底吹き羽口
8 ガス導入管
9 精錬用酸化性ガス供給管
10 粉状媒溶剤供給管
11 燃料供給管
12 ディスペンサー
13 媒溶剤
14 溶銑
15 スラグ
16 攪拌用ガス
17 ランス本体
18 ランスチップ
19 主孔ノズル
20 燃料噴射孔
21 最内管
22 内管
23 中管
24 外管
25 流量調節弁
26 流量調節弁
DESCRIPTION OF SYMBOLS 1 Converter equipment 2 Furnace main body 3 Top blowing lance 4 Iron skin 5 Refractory 6 Outlet 7 Bottom blowing tuyere 8 Gas introduction pipe 9 Refining oxidizing gas supply pipe 10 Powdered medium solvent supply pipe 11 Fuel supply pipe 12 Dispenser 13 Medium Solvent 14 Hot Metal 15 Slag 16 Gas for Stirring 17 Lance Body 18 Lance Tip 19 Main Hole Nozzle 20 Fuel Injection Hole 21 Innermost Pipe 22 Inner Pipe 23 Middle Pipe 24 Outer Pipe 25 Flow Control Valve 26 Flow Control Valve

Claims (2)

脱燐精錬用の酸化性ガスを供給し且つ該酸化性ガスを搬送用ガスとして粉状の石灰系媒溶剤を供給する精錬用酸化性ガス供給流路と、燃料を供給する燃料供給流路とを、それぞれ別々に有する第1の上吹きランスを用い、
前記燃料供給流路から燃料を供給すると同時に、前記精錬用酸化性ガス供給流路から酸化性ガスを転炉内の溶銑浴面に向けて供給し、該酸化性ガスの一部で前記燃料を燃焼させて第1の上吹きランスの先端下方に火炎を形成させながら、前記酸化性ガスを搬送用ガスとして前記精錬用酸化性ガス供給流路から粉状の石灰系媒溶剤を転炉内の溶銑浴面に供給して、転炉内の溶銑を脱燐処理し、
次いで、得られた脱燐処理後の溶銑を前記転炉から溶銑保持容器に出湯し、この溶銑を別の転炉に装入し、
脱炭精錬用の酸化性ガスを供給し且つ該酸化性ガスを搬送用ガスとして粉状の媒溶剤を供給する精錬用酸化性ガス供給流路と、燃料を供給する燃料供給流路とを、それぞれ別々に有する第2の上吹きランスを用い、
前記燃料供給流路から燃料を供給すると同時に、前記精錬用酸化性ガス供給流路から酸化性ガスを転炉内の溶銑浴面に向けて供給し、該酸化性ガスの一部で前記燃料を燃焼させて第2の上吹きランスの先端下方に火炎を形成させながら、前記酸化性ガスを搬送用ガスとして前記精錬用酸化性ガス供給流路から粉状の媒溶剤を転炉内の溶銑浴面に供給して、転炉内の溶銑を脱炭精錬し、
かくして溶銑から溶鋼を製造することを特徴とする、溶鋼の製造方法。
A refining oxidizing gas supply flow path for supplying a oxidizing gas for dephosphorization refining and supplying a powdery lime-based solvent using the oxidizing gas as a carrier gas; and a fuel supply flow path for supplying fuel Using a first top blowing lance, each having
At the same time as supplying the fuel from the fuel supply channel, the oxidizing gas is supplied from the refining oxidizing gas supply channel toward the hot metal bath surface in the converter, and the fuel is supplied by a part of the oxidizing gas. While combusting to form a flame below the tip of the first top blowing lance, the powdery lime-based medium solvent is transferred from the refining oxidizing gas supply flow path into the converter using the oxidizing gas as a carrier gas. Supply to the hot metal bath surface, dephosphorizing the hot metal in the converter,
Next, the molten iron obtained after the dephosphorization treatment is discharged from the converter into a hot metal holding container, and this hot metal is charged into another converter,
A refining oxidizing gas supply flow path for supplying a oxidizing medium gas for decarburization refining and supplying a powdered medium solvent using the oxidizing gas as a carrier gas; and a fuel supply flow path for supplying fuel. Use a second top blowing lance that each has separately,
At the same time as supplying the fuel from the fuel supply channel, the oxidizing gas is supplied from the refining oxidizing gas supply channel toward the hot metal bath surface in the converter, and the fuel is supplied by a part of the oxidizing gas. While burning and forming a flame below the tip of the second upper blowing lance, the powdery solvent is fed from the refining oxidizing gas supply flow path into the hot metal bath in the converter using the oxidizing gas as a carrier gas. To the surface, decarburizing and refining the hot metal in the converter,
Thus, a method for producing molten steel, comprising producing molten steel from molten iron.
前記第1の上吹きランス及び前記第2の上吹きランスは、横断面構造において中心側から、精錬用酸化性ガス供給流路、冷却水排水流路、燃料供給流路、冷却水給水流路を有する4重管構造であることを特徴とする、請求項1に記載の溶鋼の製造方法。   The first upper blow lance and the second upper blow lance are formed from the center side in the cross-sectional structure from the refining oxidizing gas supply passage, the cooling water drain passage, the fuel supply passage, and the cooling water supply passage. The method for producing molten steel according to claim 1, wherein the steel has a quadruple tube structure.
JP2012078667A 2012-03-30 2012-03-30 Manufacturing method of molten steel Active JP6051561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078667A JP6051561B2 (en) 2012-03-30 2012-03-30 Manufacturing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078667A JP6051561B2 (en) 2012-03-30 2012-03-30 Manufacturing method of molten steel

Publications (2)

Publication Number Publication Date
JP2013209678A true JP2013209678A (en) 2013-10-10
JP6051561B2 JP6051561B2 (en) 2016-12-27

Family

ID=49527775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078667A Active JP6051561B2 (en) 2012-03-30 2012-03-30 Manufacturing method of molten steel

Country Status (1)

Country Link
JP (1) JP6051561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075380A (en) * 2015-10-15 2017-04-20 Jfeスチール株式会社 Method of treating carbon fiber and method for producing molten steel
CN115232911A (en) * 2022-06-17 2022-10-25 中钢集团鞍山热能研究院有限公司 Hot air spray gun for steelmaking and blowing process thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912243A (en) * 1973-04-04 1975-10-14 Berry Metal Co Apparatus and process for refining hot metal to steel
JPS63145709A (en) * 1986-12-10 1988-06-17 Daido Steel Co Ltd Method and apparatus for refining of steel
JPH0987733A (en) * 1995-09-29 1997-03-31 Nippon Steel Corp Method for vacuum-degassing molten steel
JPH1180825A (en) * 1997-09-09 1999-03-26 Nippon Steel Corp Top-blown lance for converter refining and converter refining method by using this
JP2003172584A (en) * 2001-09-28 2003-06-20 Nippon Sanso Corp Fine particle blowing device and refining method
JP2004093110A (en) * 2002-07-08 2004-03-25 Nippon Sanso Corp Burner lance and refine method
JP2005336586A (en) * 2004-05-31 2005-12-08 Jfe Steel Kk Dephosphorizing treatment method for molten iron
JP2007092158A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Dephosphorize-treatment method for molten iron

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912243A (en) * 1973-04-04 1975-10-14 Berry Metal Co Apparatus and process for refining hot metal to steel
JPS63145709A (en) * 1986-12-10 1988-06-17 Daido Steel Co Ltd Method and apparatus for refining of steel
JPH0987733A (en) * 1995-09-29 1997-03-31 Nippon Steel Corp Method for vacuum-degassing molten steel
JPH1180825A (en) * 1997-09-09 1999-03-26 Nippon Steel Corp Top-blown lance for converter refining and converter refining method by using this
JP2003172584A (en) * 2001-09-28 2003-06-20 Nippon Sanso Corp Fine particle blowing device and refining method
JP2004093110A (en) * 2002-07-08 2004-03-25 Nippon Sanso Corp Burner lance and refine method
JP2005336586A (en) * 2004-05-31 2005-12-08 Jfe Steel Kk Dephosphorizing treatment method for molten iron
JP2007092158A (en) * 2005-09-30 2007-04-12 Jfe Steel Kk Dephosphorize-treatment method for molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017075380A (en) * 2015-10-15 2017-04-20 Jfeスチール株式会社 Method of treating carbon fiber and method for producing molten steel
CN115232911A (en) * 2022-06-17 2022-10-25 中钢集团鞍山热能研究院有限公司 Hot air spray gun for steelmaking and blowing process thereof
CN115232911B (en) * 2022-06-17 2023-11-07 中钢集团鞍山热能研究院有限公司 Hot air spray gun for steelmaking and converting process thereof

Also Published As

Publication number Publication date
JP6051561B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP6036172B2 (en) Method of refining hot metal in converter
WO2013057927A1 (en) Powder injection lance and method of refining molten iron using said powder injection lance
JP5644355B2 (en) Hot metal refining method
TW201404889A (en) Vacuum refining method of molten steel
JP5834980B2 (en) Manufacturing method of molten steel
JP5867520B2 (en) Hot metal pretreatment method
JP5928094B2 (en) Method for refining molten iron
JP2013209738A (en) Method of manufacturing molten steel
JP6051561B2 (en) Manufacturing method of molten steel
JP5962156B2 (en) Method for refining molten iron
JP2005187901A (en) Refining method for molten steel
JP5585633B2 (en) Method of refining hot metal in converter
JP6115019B2 (en) Manufacturing method of molten steel
JP5870771B2 (en) Manufacturing method of molten steel
JP6327298B2 (en) Hot metal refining method
JP5870868B2 (en) Method of refining hot metal in converter
JP6544531B2 (en) How to smelt molten metal
JP5928095B2 (en) Method for refining molten iron
JP5949627B2 (en) Method of refining hot metal in converter
JP2013028832A (en) Molten iron refining method
JP2013209737A (en) Method for producing molten steel
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250