JP2013206839A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2013206839A
JP2013206839A JP2012077323A JP2012077323A JP2013206839A JP 2013206839 A JP2013206839 A JP 2013206839A JP 2012077323 A JP2012077323 A JP 2012077323A JP 2012077323 A JP2012077323 A JP 2012077323A JP 2013206839 A JP2013206839 A JP 2013206839A
Authority
JP
Japan
Prior art keywords
lattice
substrate
bone
electrode plate
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012077323A
Other languages
Japanese (ja)
Inventor
Keisuke Fukuhara
啓介 福原
Katsura Mitani
桂 三谷
Shinichi Sano
伸一 佐野
Hiroyuki Wakatabe
浩之 若田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2012077323A priority Critical patent/JP2013206839A/en
Publication of JP2013206839A publication Critical patent/JP2013206839A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery which, by properly designing the lattice skeleton of a lattice substrate of a cathode plate, does not reduce the amount of an active material to be held on the lattice substrate and which also can maintain a long life.SOLUTION: A lead acid battery comprises a cathode plate holding an active material on a lattice substrate and an anode plate holding an active material on the lattice substrate, which are each housed in an outer case. The lattice substrate has the relationships of the expression (1) and the expression (2) below. Expression (1): 0.55≥S1/S≥0.45 and expression (2): 0.50≥R/L≥0.30, where S=area enclosed by contour lines when the lattice substrate is seen in a plan view, S1=area other than a cavity portion area when a lattice skelton region is seen from the area S in a plan view, R=radius of a maximum circle which can be drawn within a lattice skeleton section at a portion where an area appearing in the lattice skeleton section when the lattice substrate is cut in thickness direction becomes minimum, and L=height in the thickness direction of the lattice substrate of the lattice skeleton at a portion where the area becomes minimum.

Description

本発明は、格子基板に活物質を保持した正極板と格子基板に活物質を保持した負極板を外装ケースに収容した鉛蓄電池に関する。   The present invention relates to a lead storage battery in which a positive electrode plate holding an active material on a lattice substrate and a negative electrode plate holding an active material on the lattice substrate are housed in an outer case.

鉛蓄電池に広く用いられている極板は、鉛又は鉛合金により形成された格子基板に、ペースト状の活物質を保持させ、熟成・乾燥の工程を経て作製される。
格子基板は、ペースト状の活物質を保持させる都合上、図1に示すような構造を有する。すなわち、格子基板1は、枠骨部2の内側に、縦骨4と横骨5からなり枠骨部2に連結された格子骨部3を備え、この格子骨部3が、縦骨4及び横骨5により格子形状を呈している。枠骨部2には、集電を行う耳部6が外周部から突出して設けられる。
An electrode plate widely used for lead-acid batteries is manufactured through a maturing / drying process by holding a paste-like active material on a lattice substrate formed of lead or a lead alloy.
The lattice substrate has a structure as shown in FIG. 1 for the purpose of holding the paste-like active material. That is, the lattice substrate 1 is provided with a lattice bone portion 3 composed of longitudinal bones 4 and transverse bones 5 and connected to the frame bone portion 2 inside the frame bone portion 2. The horizontal bone 5 has a lattice shape. The frame 2 is provided with ears 6 for current collection protruding from the outer periphery.

鉛蓄電池には、使用寿命を長くすることが強く求められ、少しでも寿命を延ばすために、様々な工夫がなされてきており、鉛蓄電池の放電容量維持と劣化速度の抑制及びコスト上昇の抑制を検討して、格子基板の設計がなされている。
具体的には、特許文献1(特開2001−332268号公報)に、格子基板の長辺方向の全縦骨の横断面積を合計しその合計値を、前記格子基板の長辺方向の寸法で除した値を0.15以上に調整することにより、長寿命化を図ることが開示されている。
Lead storage batteries are strongly required to have a longer service life, and various measures have been taken to extend the service life as much as possible, maintaining the discharge capacity of lead storage batteries, suppressing the deterioration rate, and suppressing cost increases. A lattice substrate has been designed after examination.
Specifically, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-332268), the total cross-sectional area of all longitudinal bones in the long side direction of the lattice substrate is summed, and the total value is the dimension in the long side direction of the lattice substrate. It has been disclosed to extend the life by adjusting the divided value to 0.15 or more.

特開2001−332268号公報JP 2001-332268 A

しかしながら、格子基板の設計自由度は、その鉛蓄電池の容量及び外観寸法により制限される。大きな格子基板を作製する場合、格子骨部(縦骨及び横骨)の骨を太くしすぎると、骨の全体本数を減らさざるを得ないために骨同士の間隔が広くなり、活物質を十分に保持させることができず、活物質の脱落等を引き起こす心配がある。
反対に、格子骨部の骨を細くしすぎると、主として正極板において、骨の腐食により極板の崩壊が早まる心配がある。
特許文献1の発明は、格子基板の長辺方向の寸法を長くすることに連動して格子基板の長辺方向と同じ方向の格子骨部の断面積を大きくすることを趣旨としている。しかし、単に断面積を大きくするというだけでは、格子骨部の幅を大きくして厚みを変化させない場合や、格子骨部の厚みを大きくして幅を変化させない場合もあり得、格子骨部の表面から芯部に向かって起こる腐食に対して配慮されているとは言い難い。
本発明は、正極板の格子基板の格子骨部を適切に設計することにより、格子基板に保持させる活物質量を減じることなく、また、長寿命も維持できる鉛蓄電池を提供することを目的とする。
However, the design freedom of the grid substrate is limited by the capacity and appearance dimensions of the lead storage battery. When creating a large lattice substrate, if the bones of the lattice bone (vertical and horizontal bones) are too thick, the total number of bones will have to be reduced, so the distance between the bones becomes wide and the active material is sufficient. There is a concern that the active material may not fall off and cause the active material to fall off.
On the other hand, if the bone of the lattice bone portion is made too thin, there is a concern that the electrode plate collapses preferentially due to bone corrosion mainly in the positive electrode plate.
The invention of Patent Document 1 is intended to increase the cross-sectional area of the lattice bone portion in the same direction as the long side direction of the lattice substrate in conjunction with increasing the dimension in the long side direction of the lattice substrate. However, simply increasing the cross-sectional area may not change the thickness by increasing the width of the lattice bone, or may not increase the width by increasing the thickness of the lattice bone. It is hard to say that consideration is given to corrosion that occurs from the surface toward the core.
It is an object of the present invention to provide a lead-acid battery that can maintain a long life without reducing the amount of active material held on the lattice substrate by appropriately designing the lattice portion of the lattice substrate of the positive electrode plate. To do.

上記課題を解決するために、本発明は、格子基板に活物質を保持した正極板と格子基板に活物質を保持した負極板を外装ケースに収容した鉛蓄電池であって、前記格子基板は、枠骨部と、縦骨と横骨からなる格子骨部とで構成され、当該格子骨部の周囲は枠骨部に連結されている。そして、前記正極板の格子基板は、下記の式(1)及び式(2)の関係を有することを特徴とする(請求項1)。
0.55≧S1/S≧0.45 ・・・式(1)
0.50≧R/L≧0.30 ・・・・式(2)
但し、S :格子基板を平面視したときの外形線で囲まれる面積
S1:面積Sから格子骨部領域を平面視したときの空隙部面積を除いた面積
R :格子基板を厚み方向に切断したときの格子骨部切断面に現れる面積が最小となる部位において当該切断面内に描ける最大円の半径
L :前記面積が最小となる部位における格子骨部の格子基板厚み方向高さ
好ましくは、上記発明において、鉛蓄電池を構成する正極板の格子基板と負極板の格子基板が下記の式(3)の関係を有することを特徴とする(請求項2)。
2.7≧MP/MN≧2.5 ・・・式(3)
但し、MP:鉛蓄電池を構成する正極板の格子基板の総質量
MN:鉛蓄電池を構成する負極板の格子基板の総質量
In order to solve the above problems, the present invention is a lead-acid battery in which a positive electrode plate holding an active material on a lattice substrate and a negative electrode plate holding an active material on the lattice substrate are housed in an exterior case, The frame is composed of a frame bone and a lattice bone composed of vertical and horizontal bones, and the periphery of the lattice bone is connected to the frame bone. The lattice substrate of the positive electrode plate has a relationship of the following formulas (1) and (2) (claim 1).
0.55 ≧ S1 / S ≧ 0.45 (1)
0.50 ≧ R / L ≧ 0.30 (2)
However, S: Area surrounded by outline when the lattice substrate is viewed in plan S1: Area excluding void area when the lattice bone region is viewed in plan from the area S R: The lattice substrate is cut in the thickness direction The radius of the maximum circle that can be drawn in the cut surface at the portion where the area appearing on the lattice bone section cut surface is minimum L: the height in the lattice substrate thickness direction of the lattice bone portion at the portion where the area is minimum In the invention, the grid substrate of the positive electrode plate and the grid substrate of the negative electrode plate constituting the lead storage battery have a relationship of the following formula (3) (Claim 2).
2.7 ≧ MP / MN ≧ 2.5 Formula (3)
MP: total mass of the positive electrode plate lattice substrate constituting the lead storage battery MN: total negative electrode plate lattice substrate mass constituting the lead storage battery

正極板の格子基板を平面視したときの外形線で囲まれる面積が同一の格子基板であっても、本発明の構成によれば、式(1)に基づき活物質を保持するための格子骨部領域の空隙部面積を適切に設定し、活物質量を十分に確保して電池容量を損なうことがなくなる。また、式(2)に基づき格子骨部の最小骨太さ(格子骨部の表面から芯部に至る距離)も適切に確保し、骨の腐食による正極板の早期崩壊も抑制して鉛蓄電池の長寿命化を図ることができる。
加えて、鉛蓄電池を構成する正極板の格子基板と負極板の格子基板が式(3)の関係を有するようにすると、骨の腐食による正極板の早期崩壊を抑制しながら、さらに適切に高容量化を図れる効果がある。
According to the configuration of the present invention, the lattice bone for holding the active material based on the formula (1) even if the area surrounded by the outline when the grid substrate of the positive electrode plate is viewed in plan is the same The void area of the partial region is set appropriately, and a sufficient amount of active material is secured so that the battery capacity is not impaired. Moreover, the minimum bone thickness (distance from the surface of the lattice bone portion to the core portion) of the lattice bone portion is appropriately ensured based on the formula (2), and the early collapse of the positive electrode plate due to the corrosion of the bone is suppressed, and the lead storage battery Long life can be achieved.
In addition, if the grid substrate of the positive electrode plate and the grid substrate of the negative electrode plate constituting the lead storage battery have the relationship of the formula (3), it is possible to further appropriately increase the height while suppressing the early collapse of the positive electrode plate due to bone corrosion. There is an effect of increasing the capacity.

鉛蓄電池極板の格子基板の模式図である。It is a schematic diagram of the lattice substrate of a lead storage battery electrode plate. 鉛蓄電池正極板の格子基板において、(a)は格子基板を平面視したときの外形線で囲まれる面積Sを示し、(b)は面積Sから格子骨部領域を平面視したときの空隙部面積を除いた面積S1を示した説明図である。塗り潰し部分が、面積S、面積S1である。In the lattice substrate of the lead-acid battery positive plate, (a) shows an area S surrounded by an outline when the lattice substrate is viewed in plan, and (b) is a gap portion when the lattice bone region is viewed in plan from the area S. It is explanatory drawing which showed area S1 except the area. The filled portions are area S and area S1. 鉛蓄電池正極板の格子基板において、格子基板を厚み方向に切断したときの格子骨部切断面に現れる面積が最小となる部位において当該切断面内に描ける最大円の半径Rと前記面積が最小となる部位における格子骨部の格子基板厚み方向高さLを示した説明図である。(a)はR/Lが相対的に小さい場合を示し、(b)は大きい場合を示している。In the grid substrate of the lead-acid battery positive plate, the radius R of the maximum circle that can be drawn in the cut surface at the portion where the area appearing on the grid bone section cut surface when the grid substrate is cut in the thickness direction and the area is the minimum It is explanatory drawing which showed the lattice board thickness direction height L of the lattice bone part in the site | part which becomes. (A) shows the case where R / L is relatively small, and (b) shows the case where it is large. 鉛蓄電池の構成を示した説明図である。It is explanatory drawing which showed the structure of the lead acid battery. 加速寿命試験において放電積算による実使用相当年数と正極板の格子基板の腐食量との関係を実施例と比較例で対比したグラフである。It is the graph which contrasted the relationship between the actual use equivalent years by integration of discharge in the accelerated life test, and the amount of corrosion of the grid substrate of the positive electrode plate in Examples and Comparative Examples.

<枠骨部>
本発明にて述べる枠骨部は、後述する極板の格子基板の外形形状を形成するものであり、最終的に使用される鉛蓄電池の外装ケースの内部形状に合わせることが好ましく、より具体的には、平面視にて正方形又は長方形となるものを用いることができる。
枠骨部の厚みは、特に限定されるものではないが、好ましくは、1〜6mm程度が好ましい。これは、1mmより薄いと物理的強度が不足して、格子基板製造時のハンドリングが悪くなり、重力鋳造方式にて格子基板を作製するのが難しくなることに起因する。逆に、枠骨部が6mmより厚い格子基板の場合は、ペースト状活物質を裏面まで均一に、且つ、格子骨部の露出なしに充填することが困難になる。
枠骨部は、鉛を主原料とするもので、これに合金成分として、スズ、カルシウム、アンチモン等を用いることができ、中でも、スズ及びカルシウムの両方を用いるのが好ましい。これは、カルシウムを添加することにより自己放電を抑制でき、一方、カルシウムを添加して格子骨部の腐食が起こり易くなるのを、スズの添加により抑制できるからである。
<Frame bone part>
The frame part described in the present invention forms the outer shape of the grid substrate of the electrode plate described later, and it is preferable to match the inner shape of the exterior case of the lead storage battery to be used finally, more specifically. In this case, a square or rectangular shape in plan view can be used.
The thickness of the frame bone portion is not particularly limited, but preferably about 1 to 6 mm. This is because if the thickness is less than 1 mm, the physical strength is insufficient, handling at the time of manufacturing the lattice substrate is deteriorated, and it becomes difficult to manufacture the lattice substrate by the gravity casting method. On the other hand, in the case of a lattice substrate having a frame frame portion thicker than 6 mm, it becomes difficult to fill the paste-like active material uniformly to the back surface without exposing the lattice frame portion.
The frame bone portion is mainly made of lead, and tin, calcium, antimony, or the like can be used as an alloy component for this, and it is preferable to use both tin and calcium. This is because the addition of calcium can suppress self-discharge, while the addition of calcium can easily inhibit the corrosion of the lattice bone by adding tin.

<格子骨部>
本発明にて述べる正極板の格子骨部は、先に述べた枠骨部に囲まれて位置し枠骨部に連結されたものである。より具体的には、縦骨と横骨からなり格子を形成するように配置される。
格子を形成する縦骨と横骨は、枠骨部の外形形状を維持すると共に、後に述べる活物質を保持する機能と集電の機能を有し、その配置本数と太さは、式(1)及び式(2)に基づき設定する。
縦骨と横骨は、その全てに同じ太さのものを用いる必要はなく、太骨と、この太骨よりも細い細骨とを混在して用いることができ、特に、太骨が、連続して配置されないように、太骨と太骨との間に1本又は複数本の細骨を配置させることが好ましい。これは、太骨が連続配置されるよりも、太骨の間に細骨を配置した方が、ペースト状活物質を格子基板にその一方面(表面側)から裏面側に向かって充填したとき、裏面に回り込み易くなるためである。
細骨の太さは、必ずしも1種類にする必要はなく、太骨の太さよりも細い、複数種類のものを使用することもできる。また、縦骨と横骨は、その何れか一方のみに、太骨及び細骨を配置し、他方を全て同じ太さとすることもできるが、前記ペースト状活物質の裏面への回り込み易さから、縦骨と横骨の双方が、太骨及び細骨部を有することが好ましい。
格子骨部を形成する縦骨と横骨の材質は、先に述べた枠骨部と同じであっても異なっていても良いが、枠骨部と格子骨部とを容易に一括一体鋳造できるように、同じ材質とすることが好ましい。
<Lattice bone>
The lattice bone portion of the positive electrode plate described in the present invention is located and connected to the frame bone portion surrounded by the frame bone portion described above. More specifically, they are arranged so as to form a lattice composed of longitudinal bones and transverse bones.
The vertical bones and horizontal bones forming the lattice maintain the outer shape of the frame bone part, and have a function of holding an active material and a function of collecting current, which will be described later. ) And formula (2).
Longitudinal and transverse bones need not all have the same thickness, and can be a mixture of thick bones and fine bones that are thinner than these thick bones. It is preferable to arrange one or a plurality of fine bones between the thick bones and the thick bones. This is because when the thin bones are arranged between the thick bones, the paste-like active material is filled into the lattice substrate from one side (front side) to the back side rather than continuously arranging the thick bones. This is because it becomes easier to wrap around the back surface.
The thickness of the thin bone does not necessarily need to be one type, and a plurality of types can be used that are thinner than the thickness of the thick bone. In addition, the vertical bone and the horizontal bone can be arranged only in one of them, the thick bone and the thin bone, and the other can be all the same thickness, but from the ease of wrapping around the back surface of the paste-like active material It is preferable that both the longitudinal bone and the transverse bone have a thick bone and a thin bone.
The material of the longitudinal bone and the lateral bone forming the lattice bone portion may be the same as or different from the frame bone portion described above, but the frame bone portion and the lattice bone portion can be easily and integrally cast together. Thus, it is preferable to use the same material.

<格子基板>
本発明にて述べる正極板の格子基板は、先に述べた枠骨部と格子骨部を有するものであり、式(1)と式(2)を満足するものとする。
図2を用いて詳細に述べると、Sは、格子基板を平面視したときの外形線で囲まれる面積であり、図2(a)に示すように、格子基板1が方形であるならば、枠骨部2の「縦寸法×横寸法」にて算出することができる。
尚、枠骨部2の外周部分に、集電を行う耳部等を形成することができるが、Sを算出する場合は、耳等の付加部分を取り除いて計算する。
S1は、図2(b)に示すように、先に述べた面積Sから、格子骨部3領域を平面視したときの空隙部面積を除いた面積である。
S1/Sを0.45以上とすることは、正極板の格子基板を厚み方向に切断したとき格子骨部の切断面に描ける最大円の半径を大きくできるようにすることであり、このようにすることで、骨の腐食による短寿命化を阻止することができる。
S1/Sは、0.45〜0.55であり、更に好ましくは、0.5程度とする。S1/Sが0.45未満であると、格子骨部が細すぎて活物質が脱落しやすくなる。また格子骨部腐食による極板の崩壊が早まってしまう。また、S1/Sが0.55を越えると、正極板の格子基板に充填する活物質量が不足して電池容量を損なう。
<Lattice substrate>
The lattice substrate of the positive electrode plate described in the present invention has the frame bone portion and the lattice bone portion described above, and satisfies the expressions (1) and (2).
Describing in detail with reference to FIG. 2, S is an area surrounded by an outline when the lattice substrate is viewed in plan view, and as shown in FIG. 2A, if the lattice substrate 1 is square, It can be calculated by “vertical dimension × horizontal dimension” of the frame 2.
In addition, although the ear | edge part etc. which collect current can be formed in the outer peripheral part of the frame frame part 2, when calculating S, it calculates by removing additional parts, such as an ear | edge.
As shown in FIG. 2B, S1 is an area obtained by removing the gap area when the lattice bone 3 region is viewed in plan from the area S described above.
Setting S1 / S to 0.45 or more is to increase the radius of the maximum circle that can be drawn on the cut surface of the lattice bone when the lattice substrate of the positive electrode plate is cut in the thickness direction. By doing so, it is possible to prevent shortening of the life due to bone corrosion.
S1 / S is 0.45 to 0.55, and more preferably about 0.5. When S1 / S is less than 0.45, the lattice bone portion is too thin, and the active material easily falls off. In addition, the collapse of the electrode plate due to lattice bone corrosion is accelerated. On the other hand, if S1 / S exceeds 0.55, the amount of the active material filled in the grid substrate of the positive electrode plate is insufficient and the battery capacity is impaired.

<格子骨部断面積>
正極板の格子骨部は、図3に示すように、格子基板を厚み方向に切断したときの格子骨部切断面に現れる面積が最小となる部位において当該切断面内に描ける最大円の半径をRとし、当該部位において格子骨部の格子基板厚み方向高さをLとして、R/Lが、0.30〜0.50である。
格子骨部を格子基板の厚み方向にて切断した際の断面積の大きさは、先に述べたように、太骨と細骨を混在させて部位によって異ならせることが好ましいが、同じとしても良い。
そして、断面積が異なる場合は、その最も小さい部位において、断面積が同じである場合は、任意の部位において、R/Lを算出する。R/Lは、格子骨部の断面形状が正方形である場合に、最大の0.50となり、正方形からの変形量が大きい程、小さな数値となるが、最低でも0.30とすることにより、正極板の格子骨部の切断面に描ける最大円の半径が大きくなり腐食に対する耐久性が増す。
尚、R/Lは、0.25未満になると、数値が小さくなるに従い、徐々に、断面形状が格子基板の厚み方向に長くなり、断面積を十分にとっていても、格子骨部の切断面に描ける最大円の半径Rが小さくなり、腐食による格子骨部の崩壊が早まってしまう。
<Lattice bone cross section>
As shown in FIG. 3, the grid bone portion of the positive electrode plate has the radius of the maximum circle that can be drawn in the cut surface at the portion where the area appearing on the grid bone cut surface when the grid substrate is cut in the thickness direction is minimum. R is L, and L / L is 0.30 to 0.50, where L is the height in the lattice substrate thickness direction of the lattice bone portion at the part.
As described above, the size of the cross-sectional area when the lattice bone part is cut in the thickness direction of the lattice substrate is preferably mixed with thick bones and thin bones to be different depending on the part. good.
When the cross-sectional areas are different, R / L is calculated at an arbitrary part when the cross-sectional areas are the same at the smallest part. R / L is 0.50 at the maximum when the cross-sectional shape of the lattice bone portion is square, and becomes a smaller value as the amount of deformation from the square is larger, but by setting it to 0.30 at the minimum, The radius of the maximum circle that can be drawn on the cut surface of the lattice part of the positive electrode plate is increased, and the durability against corrosion is increased.
When R / L is less than 0.25, as the value decreases, the cross-sectional shape gradually increases in the thickness direction of the lattice substrate, and even if the cross-sectional area is sufficient, The radius R of the maximum circle that can be drawn becomes small, and the lattice bone part collapses due to corrosion.

<活物質>
本発明にて述べる活物質は、特に限定されるものでないが、一酸化鉛を含んだ鉛粉、水、硫酸等を混練(正極、負極の特性に合わせてカットファイバ、炭素粉末、リグニン、硫酸バリウム、鉛丹等の添加物を加える場合もある)して作製するのが好ましい。
また、活物質の充填は、様々な方法により行うことができるが、格子基板に、一方の側から裏面に向かって圧力をかけながらペースト状の活物質を充填し、更に、この活物質をローラーにより押し込むようにする。このようにすれば、充填した活物質から縦骨及び横骨の露出がないように、作業を行うことができる。
<Active material>
The active material described in the present invention is not particularly limited, but kneaded lead powder containing lead monoxide, water, sulfuric acid, etc. (cut fiber, carbon powder, lignin, sulfuric acid according to the characteristics of the positive electrode and the negative electrode) In some cases, additives such as barium and red lead may be added).
In addition, the active material can be filled by various methods. The active material in a paste form is filled into the lattice substrate while applying pressure from one side to the back side, and this active material is further added to the roller. To push in. In this way, the work can be performed so that the vertical and horizontal bones are not exposed from the filled active material.

<鉛蓄電池>
本発明にて述べる鉛蓄電池は、前述した格子基板に活物質を充填した極板を、正極板として用いるものであり、他に限定されるものはない。
鉛蓄電池としては、正極板の他に、この正極板を設置する電槽、負極板、正極板と負極板との短絡を防止するセパレータ、電解液等を用い、これらは、従来使用されているものを、適宜使用することができる。
<Lead battery>
The lead-acid battery described in the present invention uses the above-described electrode plate in which the lattice substrate is filled with an active material as the positive electrode plate, and is not limited thereto.
As a lead-acid battery, in addition to the positive electrode plate, a battery case in which the positive electrode plate is installed, a negative electrode plate, a separator for preventing a short circuit between the positive electrode plate and the negative electrode plate, an electrolytic solution, and the like are used, and these are conventionally used. Can be used as appropriate.

<正極板と負極板の格子基板の総質量比>
鉛蓄電池を構成する正極板と負極板の格子基板の総質量比は、特に限定されるものではないが、正極板の格子基板総質量:MPと、負極板の格子基板総質量:MNとが、MP/MNが2.5〜2.7であることが好ましい。
MP/MNの数値が小さくなるに従って、徐々に負極板の割合が大きくなる。電槽の容積が決定されているのであれば、必然的に正極板の割合が減るので、電池容量が十分に確保できないこととなる。
またMP/MNの数値が大きくなるに従って、必然的に負極板に対して正極板の割合が増えて、電池容量が平衡となる。
尚、格子基板の総質量とは、鉛蓄電池を構成する正極板、負極板それぞれに用いている格子基板全ての質量の積算(総和)値を意味する。鉛蓄電池内に、正極板と負極板とが、同数設置されている場合は、正極板の格子基板1枚と、負極板の格子基板1枚との質量比を計算すれば良いが、正極板と負極板とが、異なる数設置されている場合は、各々の格子基板の質量全てを積算して、質量比を計算する。尚、格子基板の質量には、枠骨部に設けられている耳部や必要に応じ設けられる足部の質量を含む。
<Total mass ratio of grid substrate of positive electrode plate and negative electrode plate>
The total mass ratio of the positive electrode plate and the negative electrode plate constituting the lead storage battery is not particularly limited. However, the positive electrode plate lattice mass: MP and the negative electrode plate lattice mass: MN , MP / MN is preferably 2.5 to 2.7.
As the MP / MN value decreases, the proportion of the negative electrode plate gradually increases. If the capacity of the battery case is determined, the proportion of the positive electrode plate is inevitably reduced, so that sufficient battery capacity cannot be secured.
Further, as the MP / MN value increases, the ratio of the positive electrode plate to the negative electrode plate inevitably increases, and the battery capacity becomes balanced.
Note that the total mass of the lattice substrate means an integrated (total) value of the masses of all the lattice substrates used for each of the positive electrode plate and the negative electrode plate constituting the lead storage battery. When the same number of positive plates and negative plates are installed in the lead storage battery, the mass ratio between one grid substrate of the positive plate and one grid substrate of the negative plate may be calculated. When different numbers of the negative electrode plates are provided, the mass ratio is calculated by adding up all the masses of the respective lattice substrates. Note that the mass of the lattice substrate includes the mass of the ears provided in the frame bone and the legs provided as necessary.

以下、本発明の実施例について、詳細に説明する。
実施例1
スズ:1.0〜1.8質量%、カルシウム:0.05〜0.1質量%を含有する鉛合金を溶融し、重力鋳造方式により正極板用の格子基板を作製した。
この格子基板1は、枠骨部2の内側に縦骨4及び横骨5の配列パターンが図1に示した例と同様の格子骨部3を備えている。格子基板1は、縦骨4及び横骨5がそれぞれ太骨と細骨で構成されている。太骨の厚みが枠骨部2の厚みよりも小さく設定されている。
すなわち、太横骨の厚み方向の一端側の端面及び他端側の端面が枠骨部2の厚み方向の一端側の端面及び他端側の端面よりも厚み方向の内側に配置されている。また、太縦骨の厚み方向の一端側の端面及び他端側の端面が枠骨部2の厚み方向の一端側の端面及び他端側の端面よりも厚み方向の内側に配置されている。
そして、細横骨の幅及び厚みは、太横骨の幅及び厚みよりもそれぞれ小さく設定され、細縦骨の幅及び厚みは、太縦骨の幅及び厚みよりもそれぞれ小さく設定されている。
さらに、各細横骨及び細縦骨は、それぞれの厚み方向の一端側の端面を太横骨及び太縦骨の厚み方向の一端側の端面が配置された平面寄りに偏った位置に位置させた状態で設けられている。より具体的には、格子基板1は、活物質充填時に上方に向けた状態で配置される細縦骨及び細横骨の厚み方向の一端側の端面を、太縦骨及び太横骨の厚み方向の一端側の端面と同一の平面上に位置させた。
Examples of the present invention will be described in detail below.
Example 1
A lead alloy containing tin: 1.0 to 1.8% by mass and calcium: 0.05 to 0.1% by mass was melted, and a grid substrate for a positive electrode plate was produced by a gravity casting method.
The lattice substrate 1 includes a lattice bone portion 3 similar to the example shown in FIG. 1 in the arrangement pattern of the longitudinal bones 4 and the horizontal bones 5 inside the frame bone portion 2. In the lattice substrate 1, the longitudinal bone 4 and the lateral bone 5 are each composed of a thick bone and a thin bone. The thickness of the thick bone is set to be smaller than the thickness of the frame bone portion 2.
That is, the end surface on the one end side in the thickness direction of the thick transverse bone and the end surface on the other end side are arranged on the inner side in the thickness direction of the end surface on the one end side in the thickness direction and the end surface on the other end side. In addition, the end face on one end side and the end face on the other end side in the thickness direction of the thick vertical bone are disposed on the inner side in the thickness direction with respect to the end face on one end side in the thickness direction and the end face on the other end side.
The width and thickness of the thin horizontal bone are set smaller than the width and thickness of the thick horizontal bone, respectively, and the width and thickness of the thin vertical bone are set smaller than the width and thickness of the thick vertical bone, respectively.
Furthermore, each thin transverse bone and thin longitudinal bone are positioned at positions where the end faces on one end side in the thickness direction are biased toward the plane where the end faces on one end side in the thickness direction of the thick transverse bone and thick longitudinal bone are arranged. It is provided in the state. More specifically, the lattice substrate 1 has an end face on one end side in the thickness direction of the thin vertical bone and the thin horizontal bone arranged in an upward direction when the active material is filled. It was located on the same plane as the end face on one end side in the direction.

上記の格子基板1においては、枠骨部2の縦寸法を385mm、横寸法を140mm、厚みを5.8mm、幅を4.4mmとし、枠骨部2の内側に、太縦骨及び細縦骨を備えた縦骨4と、太横骨及び細横骨を備えた横骨5とを形成した。太縦骨及び太横骨の断面形状は、厚みが幅よりも大きい六角形とし、厚みを5.4mm、幅を4.3mmとした。また、細縦骨及び細横骨の断面形状も厚みが幅よりも大きい六角形とし、それぞれの厚み(すなわち、L)を3.6mm、幅を2.8mmとした。
格子基板1に対して、ペースト充填機によりペースト状の正極活物質を充填し、その後、熟成・乾燥をして未化成の正極板を作製した。
ペースト状の正極活物質は、一酸化鉛を主成分とする鉛粉の質量に対して、ポリエステル繊維を0.1質量%加えて混合した後、水を12質量%、希硫酸を16質量%加えて混練をして作製した。この正極活物質の作製方法は、従来から行われている方法と同様である。
In the lattice substrate 1 described above, the frame frame 2 has a vertical dimension of 385 mm, a horizontal dimension of 140 mm, a thickness of 5.8 mm, and a width of 4.4 mm. A longitudinal bone 4 with bones and a transverse bone 5 with thick and thin transverse bones were formed. The cross-sectional shapes of the thick longitudinal bone and the thick transverse bone were hexagons having a thickness larger than the width, the thickness was 5.4 mm, and the width was 4.3 mm. Further, the cross-sectional shapes of the thin vertical bone and the thin horizontal bone were also hexagons having a thickness larger than the width, and each thickness (ie, L) was 3.6 mm and the width was 2.8 mm.
The lattice substrate 1 was filled with a paste-like positive electrode active material with a paste filling machine, and then aged and dried to produce an unformed positive electrode plate.
The paste-like positive electrode active material was mixed by adding 0.1% by mass of polyester fiber to the mass of lead powder containing lead monoxide as a main component, and then mixed with 12% by mass of water and 16% by mass of dilute sulfuric acid. In addition, it knead | mixed and produced. The method for producing the positive electrode active material is the same as the conventional method.

また、負極板用の格子基板としては、以下に示す方法で作製したものを用いた。
スズ1.8〜2.2質量%、カルシウム0.8〜1.2質量%を含有する鉛合金を溶融し、重力鋳造方式によって枠骨部の縦寸法が385mm、横寸法が140mm、厚さが3.0mmの負極用格子基板を作製した。枠骨部の内側の横骨及び縦骨は、すべて、厚さが2.6mm、幅が1.8mmの六角形の断面形状を有する格子骨部により形成した。
負極用格子基板1に対して、ペースト充填機によりペースト状の負極用活物質を充填し、その後、熟成・乾燥をして未化成の負極板を作製した。
ペースト状の負極活物質は、先ず一酸化鉛を主成分とする鉛粉の質量に対して、リグニンを0.2質量%、硫酸バリウムを0.1質量%、一般に市販されている黒鉛等のカーボン粉末を0.2質量%、ポリエステル繊維を0.1質量%加えて混合し、次に、水を12質量%加えて混練をした後、更に希硫酸を13質量%加えて再び混練をして作製した。この負極活物質の作製方法は従来から行われている方法と同様である。
上記の正極板と負極板とを、その間にセパレータを介在させながら1枚ずつ交互に積層し(正極板24枚、負極板25枚の構成)、同極性の極板の耳部同士をストラップで連結して極板群を作製した。この極板群を電槽の中に入れた後、希硫酸を注入し、化成を行って2V系鉛蓄電池とした。
Moreover, what was produced by the method shown below was used as a lattice board | substrate for negative electrode plates.
A lead alloy containing 1.8-2.2% by mass of tin and 0.8-1.2% by mass of calcium is melted, and the vertical dimension of the frame bone portion is 385 mm, the horizontal dimension is 140 mm, and the thickness by the gravity casting method. A negative electrode grid substrate having a thickness of 3.0 mm was produced. The transverse bone and longitudinal bone inside the frame bone were all formed by a lattice bone having a hexagonal cross-sectional shape with a thickness of 2.6 mm and a width of 1.8 mm.
The negative electrode grid substrate 1 was filled with a paste-like negative electrode active material by a paste filling machine, and then aged and dried to produce an unformed negative electrode plate.
First, the paste-like negative electrode active material is composed of 0.2% by mass of lignin and 0.1% by mass of barium sulfate with respect to the mass of the lead powder containing lead monoxide as a main component. Add 0.2% by mass of carbon powder and 0.1% by mass of polyester fiber, mix, then add 12% by mass of water and knead, then add 13% by mass of dilute sulfuric acid and knead again. Made. The method for producing the negative electrode active material is the same as a conventional method.
The positive electrode plate and the negative electrode plate are alternately laminated one by one with a separator interposed therebetween (configuration of 24 positive electrode plates and 25 negative electrode plates), and the ears of the same polarity electrode plates are connected with straps. The electrode group was produced by linking. After this electrode plate group was put in a battery case, dilute sulfuric acid was injected and chemical conversion was performed to obtain a 2V lead acid battery.

実施例2〜5、比較例1〜3、従来例1
上記実施例1の外形寸法を維持しつつ、格子骨部3の幅および厚みについて、式(3)を満足し、式(1)、式(2)を満足する正極板格子基板と満足しない正極板格子基板の検討を実施し、幾つかを実施例、比較例として選出して、各例の腐食量と電池容量を比較する。具体的には、MP/MNを2.70に固定する。そして、S1/Sにおいて、Sを固定してS1を可変、すなわち、格子骨部の骨の幅と本数を変えた。また、R/Lにおいて、Lを固定してRを可変、すなわち、格子骨部の骨の幅を変えた。
各例の鉛蓄電池について、放電容量と正極板格子基板の格子骨部の腐食度合いを確認した。
容量評価は、(社)電池工業会の規格に準拠し、鉛蓄電池(単電池)が満充電されている状態から10HR(10時間率)放電を実施し、電池電圧が1.8V(終止電圧)に達するまでの放電時間から放電容量を計算する。例えば、公称容量1500Ahの単電池を150Aで放電し、終止電圧に到達するまでの時間が5時間なら750Ah、10時間なら1500Ahである。
腐食評価は、鉛蓄電池を充放電の繰り返しに供し、節目で鉛蓄電池を解体し正極格子基板を取り出して行なう。正極格子基板の酸化腐食層をアルカリ性溶液で溶解除去し、洗浄後の格子基板の質量を測定し初期質量との差を求める。当該差が少ないほど腐食量が少ないといえる。
評価は、放電容量が同等以上であるなら腐食の進行度合いが低いほど良好であるとし、「○」と「×」で表1に示した。「○」「×」の判定は以下を意味する。
腐食評価では、○:従来技術より優れる
×:従来技術と同等以下
容量評価では、○:従来技術と同等以上
×:従来技術を下回る
Examples 2 to 5, Comparative Examples 1 to 3, Conventional Example 1
While maintaining the outer dimensions of the first embodiment, the positive and negative electrode plates satisfying the expression (3), the expression (1) and the expression (2) and the positive electrode not satisfying the expression (3). The examination of the plate lattice substrate is carried out, some are selected as examples and comparative examples, and the corrosion amount and battery capacity of each example are compared. Specifically, MP / MN is fixed at 2.70. In S1 / S, S is fixed and S1 is variable, that is, the width and number of the bones of the lattice bone are changed. Moreover, in R / L, L was fixed and R was variable, that is, the width of the bone of the lattice bone portion was changed.
About the lead acid battery of each example, the discharge capacity | capacitance and the corrosion degree of the lattice part of the positive electrode plate grid board | substrate were confirmed.
The capacity evaluation is based on the standards of the Battery Industry Association, and 10 HR (10 hour rate) discharge is performed from a fully charged lead acid battery (single cell), and the battery voltage is 1.8 V (end voltage). ) Calculate the discharge capacity from the discharge time until it reaches). For example, a unit cell with a nominal capacity of 1500 Ah is discharged at 150 A, and the time to reach the end voltage is 750 Ah for 5 hours and 1500 Ah for 10 hours.
Corrosion evaluation is performed by subjecting the lead-acid battery to repeated charging and discharging, disassembling the lead-acid battery at a joint, and taking out the positive grid substrate. The oxidation corrosion layer of the positive grid substrate is dissolved and removed with an alkaline solution, and the mass of the washed grid substrate is measured to determine the difference from the initial mass. It can be said that the smaller the difference, the less the corrosion amount.
The evaluation is that the lower the progress of the corrosion, the better the discharge capacity is equal to or higher, and the results are shown in Table 1 with “◯” and “×”. The determination of “◯” or “×” means the following.
In corrosion evaluation, ○: superior to conventional technology
×: Less than or equal to conventional technology In capacity evaluation, ○: Same or more than conventional technology
×: Lower than conventional technology

表1から明らかなように、実施例1〜5は、腐食評価において従来技術(従来例1)を上回り、且つ、従来技術と同等以上の放電容量を得られた。比較例1〜3は、放電容量もしくは腐食評価において従来技術より劣っていた。
尚、実施例3と比較例2は、S1/Sが実施例1より小さく、正極活物質量は実施例1より増しているが、放電容量が負極活物質量支配となっており、実施例3と比較例2の間で負極活物質量は変わらないので、放電容量にはほとんど差がない。
As apparent from Table 1, Examples 1 to 5 exceeded the prior art (conventional example 1) in corrosion evaluation, and a discharge capacity equal to or higher than that of the prior art was obtained. Comparative Examples 1-3 were inferior to the prior art in discharge capacity or corrosion evaluation.
In Example 3 and Comparative Example 2, S1 / S is smaller than that in Example 1 and the amount of positive electrode active material is larger than that in Example 1. However, the discharge capacity is dominated by the amount of negative electrode active material. Since the amount of negative electrode active material does not change between 3 and Comparative Example 2, there is almost no difference in discharge capacity.

次に、実施例1〜5、比較例1、比較例2における正極板を使用した単板電池を作製し、高温(75℃)で充放電を繰り返す加速寿命試験を行い、放電量積算による実使用相当年数と正極板の格子基板の腐食量の関係を求め、結果を図5に示した。
図5では、正極板の格子基板の腐食が進行して初期に対する腐食の割合が所定値に達したときを腐食量100として示してあり、そのときの使用相当年数を推定寿命としている。前記初期に対する腐食の割合は、格子骨部切断面に現れる面積が最小となる部位においてのものである。
実施例1〜5と比較例1、2を対比すると、実施例では17年実使用相当、比較例では10年実使用相当で寿命に到達していることが分かる。
尚、図5において、腐食量が100を越える領域では、格子骨部の腐食が芯部にまで進んでおり、格子基板がもはや自立してその形状を維持できない状態にある。
Next, a single plate battery using the positive electrode plate in Examples 1 to 5, Comparative Example 1 and Comparative Example 2 was prepared, and an accelerated life test in which charging / discharging was repeated at a high temperature (75 ° C.) was conducted. The relationship between the number of years of use and the amount of corrosion of the grid substrate of the positive electrode plate was determined, and the results are shown in FIG.
In FIG. 5, when the corrosion rate of the grid substrate of the positive electrode plate progresses and the rate of corrosion with respect to the initial value reaches a predetermined value, the corrosion amount is 100, and the equivalent number of years at that time is the estimated life. The rate of corrosion relative to the initial stage is at a site where the area appearing on the lattice bone cut surface is minimized.
Comparing Examples 1 to 5 with Comparative Examples 1 and 2, it can be seen that the life has reached 17 years of actual use in the Examples, and 10 years of actual use in the Comparative Examples.
In FIG. 5, in the region where the amount of corrosion exceeds 100, the corrosion of the lattice bone portion has progressed to the core portion, and the lattice substrate is no longer self-supporting and cannot maintain its shape.

実施例6〜8
次に、実施例1において、格子基板に充填する活物質量を一定として、負極板の枚数を固定し、正極板の枚数を変えて正極板の格子基板と負極板の格子基板の総質量比、つまり、MP/MNを変化させた場合の、放電容量と電槽容積を実施例1と比較した。
具体的には、実施例1は、負極板に対して正極板が1枚少ない。
実施例6は、実施例1より正極板を1枚減らし、負極板に対して正極板が2枚少ない。
実施例7は、実施例1より正極板を1枚増やし、正極板と負極板の数が同じである。
実施例8は、実施例1より正極板を2枚減らし、負極板に対して正極板が3枚少ない。
尚、負極板に対して正極板が2枚以上少ない構成である実施例6、7においては、一部で負極板同士が隣り合せて積層されている。
評価は、放電容量が同等であるなら電槽容積が小さいほど良好であるとし、「○」と「×」で表2に示した。「○」「×」の判定は以下を意味する。
容量評価は、○:実施例1と同等以上
×:実施例1を下回る
電槽容積は、○:実施例1と同等以下
×:実施例1を上回る
Examples 6-8
Next, in Example 1, the amount of active material filled in the grid substrate is constant, the number of negative electrode plates is fixed, and the total number of the positive electrode plate and negative electrode plate lattice ratios is changed by changing the number of positive electrode plates. That is, the discharge capacity and the battery capacity when the MP / MN was changed were compared with those in Example 1.
Specifically, Example 1 has one fewer positive electrode plate than the negative electrode plate.
In Example 6, the number of positive electrode plates is reduced by one from that of Example 1, and the number of positive electrode plates is two less than that of the negative electrode plate.
In Example 7, the number of positive plates is increased by one from Example 1, and the number of positive plates and negative plates is the same.
In Example 8, the number of positive electrode plates is reduced by 2 from Example 1, and the number of positive electrode plates is 3 less than that of the negative electrode plate.
In Examples 6 and 7 in which the number of positive electrode plates is two or more less than that of the negative electrode plate, the negative electrode plates are partially stacked adjacent to each other.
If the discharge capacity is the same, the smaller the battery volume is, the better the evaluation is. Table 2 shows “◯” and “×”. The determination of “◯” or “×” means the following.
Capacity evaluation: ○: Same as or better than Example 1
X: less than Example 1 Battery case volume is equal to or less than ○: Example 1
X: Exceeding Example 1

表2から明らかなように、実施例6は、実施例1と同等の電池容量と電槽容積であった。実施例7は、実施例1より電槽容積が増してしまった。また、実施例8は、従来例より優れているものの、電池容量が実施例1より小さくなってしまった。   As is clear from Table 2, Example 6 had the same battery capacity and battery case volume as Example 1. In Example 7, the battery case volume increased from that in Example 1. Moreover, although Example 8 was superior to the conventional example, the battery capacity was smaller than that of Example 1.

1:格子基板
2:枠骨部
3:格子骨部
4:縦骨
5:横骨
1: Lattice substrate 2: Frame bone portion 3: Lattice bone portion 4: Longitudinal bone 5: Horizontal bone

Claims (2)

格子基板に活物質を保持した正極板と格子基板に活物質を保持した負極板を外装ケースに収容した鉛蓄電池であって、前記格子基板は、枠骨部と、縦骨と横骨からなる格子骨部とで構成され、当該格子骨部の周囲は枠骨部に連結されており、
前記正極板の格子基板は、下記の式(1)及び式(2)の関係を有することを特徴とする鉛蓄電池。
0.55≧S1/S≧0.45 ・・・式(1)
(但し、S:格子基板を平面視したときの外形線で囲まれる面積、S1:面積Sから格子骨部領域を平面視したときの空隙部面積を除いた面積)
0.50≧R/L≧0.30 ・・・・式(2)
(但し、R:格子基板を厚み方向に切断したときの格子骨部切断面に現れる面積が最小となる部位において当該切断面内に描ける最大円の半径、L:前記面積が最小となる部位における格子骨部の格子基板厚み方向高さ)
A lead-acid battery in which a positive electrode plate holding an active material on a lattice substrate and a negative electrode plate holding an active material on the lattice substrate are housed in an outer case, the lattice substrate comprising a frame bone portion, vertical bones and horizontal bones It is composed of a lattice bone, and the periphery of the lattice bone is connected to the frame bone,
The lead-acid battery, wherein the grid substrate of the positive electrode plate has a relationship of the following formulas (1) and (2).
0.55 ≧ S1 / S ≧ 0.45 (1)
(However, S: the area surrounded by the outline when the lattice substrate is viewed in plan, S1: the area excluding the void area when the lattice bone region is viewed in plan from the area S)
0.50 ≧ R / L ≧ 0.30 (2)
(However, R: radius of the maximum circle that can be drawn in the cut surface at the portion where the area appearing on the lattice bone section cut surface when the lattice substrate is cut in the thickness direction, L: at the portion where the area is minimized. (Lattice height in the direction of the thickness of the lattice substrate)
鉛蓄電池を構成する正極板の格子基板と負極板の格子基板が下記の式(3)の関係を有することを特徴とする請求項1記載の鉛蓄電池。
2.7≧MP/MN≧2.5 ・・・・式(3)
(但し、MP:鉛蓄電池を構成する正極板の格子基板の総質量、MN:鉛蓄電池を構成する負極板の格子基板の総質量)
The lead storage battery according to claim 1, wherein the grid substrate of the positive electrode plate and the grid substrate of the negative electrode plate constituting the lead storage battery have a relationship of the following formula (3).
2.7 ≧ MP / MN ≧ 2.5 Formula (3)
(However, MP: the total mass of the grid substrate of the positive electrode plate constituting the lead storage battery, MN: the total mass of the grid substrate of the negative electrode plate constituting the lead storage battery)
JP2012077323A 2012-03-29 2012-03-29 Lead acid battery Pending JP2013206839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012077323A JP2013206839A (en) 2012-03-29 2012-03-29 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077323A JP2013206839A (en) 2012-03-29 2012-03-29 Lead acid battery

Publications (1)

Publication Number Publication Date
JP2013206839A true JP2013206839A (en) 2013-10-07

Family

ID=49525693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077323A Pending JP2013206839A (en) 2012-03-29 2012-03-29 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2013206839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126924A (en) * 2015-01-05 2016-07-11 株式会社Gsユアサ Control valve type lead-acid storage battery
JP2017068953A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Punching current collector for lead-acid storage battery, method of manufacturing the same and lead-acid storage battery
CN107895817A (en) * 2016-10-03 2018-04-10 株式会社杰士汤浅国际 Lead accumulator and collector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169472U (en) * 1986-04-18 1987-10-27
JPH11354128A (en) * 1998-06-11 1999-12-24 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2001068117A (en) * 1999-08-25 2001-03-16 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2002260716A (en) * 2001-03-01 2002-09-13 Japan Storage Battery Co Ltd Lead battery
WO2010073588A1 (en) * 2008-12-22 2010-07-01 新神戸電機株式会社 Lattice plate for lead storage battery, pole plate and lead storage battery provided with this pole plate
JP4892651B1 (en) * 2010-10-18 2012-03-07 新神戸電機株式会社 Lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169472U (en) * 1986-04-18 1987-10-27
JPH11354128A (en) * 1998-06-11 1999-12-24 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2001068117A (en) * 1999-08-25 2001-03-16 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2002075379A (en) * 2000-08-24 2002-03-15 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2002260716A (en) * 2001-03-01 2002-09-13 Japan Storage Battery Co Ltd Lead battery
WO2010073588A1 (en) * 2008-12-22 2010-07-01 新神戸電機株式会社 Lattice plate for lead storage battery, pole plate and lead storage battery provided with this pole plate
JP4892651B1 (en) * 2010-10-18 2012-03-07 新神戸電機株式会社 Lead acid battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016126924A (en) * 2015-01-05 2016-07-11 株式会社Gsユアサ Control valve type lead-acid storage battery
JP2017068953A (en) * 2015-09-29 2017-04-06 株式会社Gsユアサ Punching current collector for lead-acid storage battery, method of manufacturing the same and lead-acid storage battery
CN107895817A (en) * 2016-10-03 2018-04-10 株式会社杰士汤浅国际 Lead accumulator and collector
JP2018060629A (en) * 2016-10-03 2018-04-12 株式会社Gsユアサ Lead storage battery and current collector
JP7024177B2 (en) 2016-10-03 2022-02-24 株式会社Gsユアサ Lead-acid battery and current collector
CN107895817B (en) * 2016-10-03 2022-06-10 株式会社杰士汤浅国际 Lead storage battery and current collector
AU2017235920B2 (en) * 2016-10-03 2022-10-27 Gs Yuasa International Ltd. Lead-acid battery and current collector

Similar Documents

Publication Publication Date Title
JP5387666B2 (en) Lattice plate for lead-acid battery, electrode plate and lead-acid battery provided with this electrode plate
JP7098874B2 (en) Manufacturing method of lead-acid battery and positive electrode plate for lead-acid battery
JP2017063001A (en) Lead storage battery
JP2013206839A (en) Lead acid battery
JP4884748B2 (en) Lattice substrate for lead acid battery
EP3203572B1 (en) Positive electrode plate for lead-acid battery, lead-acid battery and method of manufacturing positive electrode plate for lead-acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP6759988B2 (en) Lead-acid battery
JP7005945B2 (en) Electrode grid for lead-acid batteries
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JP7338140B2 (en) Current collector for lead-acid battery, lead-acid battery, and method for manufacturing lead-acid battery current collector
JP6921037B2 (en) Lead-acid battery
JP4292666B2 (en) Sealed lead acid battery
JP5787181B2 (en) Lead acid battery
JP5025317B2 (en) Lattice substrate for lead acid battery
JP2001273905A (en) Lead-acid battery
JP2001043863A (en) Sealed lead-acid battery
JP5184145B2 (en) Negative electrode grid substrate for lead acid battery and control valve type lead acid battery using the same
JP7294057B2 (en) lead acid battery
JP2000340235A (en) Lead-acid battery
JP5682530B2 (en) Method for producing paste-like positive electrode active material for lead acid battery and positive electrode plate for lead acid battery
JP2024025093A (en) Lead storage battery
JP2023020656A (en) Liquid type lead storage battery and manufacturing method of them
JP2010118249A (en) Method of manufacturing lead storage battery
JP2003346887A (en) Valve regulated lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151119

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160317