JP2013203613A - Method for controlling silicon nitride powder - Google Patents

Method for controlling silicon nitride powder Download PDF

Info

Publication number
JP2013203613A
JP2013203613A JP2012075592A JP2012075592A JP2013203613A JP 2013203613 A JP2013203613 A JP 2013203613A JP 2012075592 A JP2012075592 A JP 2012075592A JP 2012075592 A JP2012075592 A JP 2012075592A JP 2013203613 A JP2013203613 A JP 2013203613A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
group
slurry
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075592A
Other languages
Japanese (ja)
Inventor
Koji Shibata
耕司 柴田
Takuji Omaru
卓司 王丸
Takeshi Yamao
猛 山尾
Michio Honda
道夫 本田
Takayuki Fujii
孝行 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2012075592A priority Critical patent/JP2013203613A/en
Publication of JP2013203613A publication Critical patent/JP2013203613A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling silicon nitride powder so that a slurry viscosity of silicon nitride slurry is kept within a proper range, and to provide a control method capable of determining that silicon nitride powder is a quality product before it is used.SOLUTION: In a method for controlling silicon nitride powder, the ratio (N/O) between a mole concentration (N) of total functional groups of -Si-NH group (cillamine group) and -Si-NHgroup (silazane group) per unit surface area of the particle surface of the silicon nitride powder and a mole concentration (O) of -Si-OH group (silanol group) per unit surface area of the silicon nitride powder is used as a control index, and the control index is kept to be ≥2.0.

Description

本発明は、窒化ケイ素粉末の管理方法に関する。さらに詳しくは、窒化ケイ素粉末の粒子表面の複数の官能基のモル濃度比を管理指標とし、その管理指標を一定値以上に保つことで、窒化ケイ素粉末で調製したスラリーの品質(スラリー粘度)を維持することが可能な窒化ケイ素粉末の管理方法に関する。   The present invention relates to a method for managing silicon nitride powder. More specifically, the molar concentration ratio of a plurality of functional groups on the particle surface of the silicon nitride powder is used as a management index, and the quality (slurry viscosity) of the slurry prepared with the silicon nitride powder is maintained by maintaining the management index at a certain value or more. The present invention relates to a method for managing silicon nitride powder that can be maintained.

窒化ケイ素粉末を成形し加熱焼結することで得られる窒化ケイ素焼結体は、高強度、耐蝕性、耐熱衝撃性等に優れているため、切削チップやボールベアリング等の耐摩耗用部材、自動車エンジン部品等の高温構造用部材として使用されている。粉末の成形は、通常、ラバープレス成形、金型プレス成形、ホットプレス成形、射出成形、鋳込成形等の方法で行われる。ほとんどの成形プロセスには、窒化ケイ素粉末を含有するスラリー、すなわち窒化ケイ素スラリーの調製工程が含まれる。窒化ケイ素スラリーの溶媒には、作業性や耐環境性との観点から主に水が使用される。   A silicon nitride sintered body obtained by forming and heat-sintering silicon nitride powder is excellent in high strength, corrosion resistance, thermal shock resistance, etc., and therefore wear resistant members such as cutting tips and ball bearings, automobiles It is used as a member for high-temperature structures such as engine parts. Powder molding is usually performed by methods such as rubber press molding, mold press molding, hot press molding, injection molding, and cast molding. Most molding processes involve the preparation of a slurry containing silicon nitride powder, ie a silicon nitride slurry. Water is mainly used as the solvent for the silicon nitride slurry from the viewpoints of workability and environmental resistance.

調製した窒化ケイ素スラリーを用いた成形工程、例えば、ラバープレス成形、金型プレス成形等においては、成形原料として流動性の良好なスプレー乾燥顆粒を使用する。流動性の悪い顆粒を使用すると成形体が不均質(各部の密度が不均一)となり、焼結時の収縮が不均一となって変形したり、クラックが生じたりする。スプレー乾燥による顆粒調製においては、適正なスラリー粘度範囲があり、スラリー粘度をその範囲内に管理することが重要になる。スラリー粘度が高すぎると、窒化ケイ素スラリーを乾燥装置のアトマイザーに供給する際に、送液配管の途中またはスラリーの吹き出し口で閉塞が起こるので好ましくない。また、逆に、スラリー粘度が低すぎると、窒化ケイ素スラリーの送液中に粗粒成分が沈降して組成が不均一となる。更に、得られる乾燥顆粒が小さくなりすぎて顆粒の流動性が失われる。このように、良質の焼結体を得るためには、スラリー粘度を適正な範囲に収めることが求められる。   In a molding process using the prepared silicon nitride slurry, such as rubber press molding or die press molding, spray-dried granules having good fluidity are used as a molding raw material. If granules with poor fluidity are used, the compact becomes inhomogeneous (the density of each part is non-uniform), and the shrinkage during sintering becomes non-uniform and deforms or cracks occur. In granule preparation by spray drying, there is an appropriate slurry viscosity range, and it is important to control the slurry viscosity within that range. If the slurry viscosity is too high, when the silicon nitride slurry is supplied to the atomizer of the drying apparatus, clogging occurs in the middle of the liquid supply piping or at the slurry outlet, which is not preferable. On the other hand, if the slurry viscosity is too low, the coarse-grain component settles during the feeding of the silicon nitride slurry, resulting in a non-uniform composition. Furthermore, the resulting dry granules are too small and the fluidity of the granules is lost. Thus, in order to obtain a high-quality sintered body, it is required to keep the slurry viscosity within an appropriate range.

また、窒化ケイ素粉末は、太陽電池用途の多結晶シリコンインゴットの鋳造用鋳型の離型材として使用されている。多結晶シリコンインゴットは、高温で加熱溶融させたシリコン融液を鋳型内に注湯して凝固させることによって製造させるか、シリコン原料を鋳型内に入れて一旦溶融させた後、再び凝固させることによって製造される。   Moreover, silicon nitride powder is used as a mold release material for casting molds of polycrystalline silicon ingots for solar cell applications. Polycrystalline silicon ingots are manufactured by pouring a silicon melt that has been heated and melted at a high temperature into a mold to solidify it, or by melting the silicon raw material once in the mold and then solidifying again. Manufactured.

多結晶シリコンインゴット鋳造用鋳型としては、通常、インゴットの離型性を向上させる目的で、その内面に窒化ケイ素粉末を塗布して離型層が形成された、石英、シリカ、黒鉛等で作られた鋳型が用いられる。この離型層は、一般に、窒化ケイ素粉末と水を混合攪拌して得られるスラリーを、スプレーもしくは刷毛塗りなどによってコーティングすることで形成される(例えば、非特許文献1)。離型層は、溶融シリコンと鋳型内面との反応を抑制し、冷却時にシリコンインゴットが鋳型に張付いてクラックや割れが発生することを抑制する役割を果たす。また、離型層は、シリコンインゴット製造時に鋳型の不純物がシリコンインゴットに拡散し、得られたシリコンインゴットから製造された太陽電池の変換効率が低下することを抑制する役割ももつ。   As a casting mold for polycrystalline silicon ingot, it is usually made of quartz, silica, graphite, etc., with a release layer formed by applying silicon nitride powder on the inner surface for the purpose of improving the release property of the ingot. Molds are used. This release layer is generally formed by coating a slurry obtained by mixing and stirring silicon nitride powder and water by spraying or brushing (for example, Non-Patent Document 1). The release layer serves to suppress the reaction between the molten silicon and the mold inner surface, and to suppress the occurrence of cracks and cracks due to the silicon ingot sticking to the mold during cooling. The mold release layer also has a role of suppressing a reduction in conversion efficiency of a solar cell manufactured from the obtained silicon ingot due to diffusion of impurities in the mold into the silicon ingot when the silicon ingot is manufactured.

上述の役割を果たすため、窒化ケイ素離型層には、均質で、適度に緻密な構造が求められる。離型層の密度が低いとシリコン融液が離型層に浸透し、鋳型と張付いて離型性が悪くなる。さらには、シリコン融液が鋳型に達してしまうため、鋳型からの不純物がシリコンインゴットに拡散してしまう。一方、離型層が緻密すぎると、層自体が固くなり、離型層と鋳型との熱膨張差を吸収できなくなり、層が脱落し離型性が悪くなる。   In order to fulfill the above-mentioned role, the silicon nitride release layer is required to have a homogeneous and moderately dense structure. If the density of the release layer is low, the silicon melt penetrates into the release layer and sticks to the mold, resulting in poor release properties. Furthermore, since the silicon melt reaches the mold, impurities from the mold diffuse into the silicon ingot. On the other hand, if the release layer is too dense, the layer itself becomes hard, and it becomes impossible to absorb the difference in thermal expansion between the release layer and the mold, and the layer falls off, resulting in poor release properties.

このように、高品質の多結晶シリコンインゴットを製造するための鋳型には、均質で、適度に緻密な窒化ケイ素離型層が求められる。そのためには、窒化ケイ素スラリーのスラリー粘度の管理が重要となる。スラリー粘度が適正な範囲よりも低いと、離型層の密度が低くなりすぎるし、被覆工程で液垂れを起こし、均質な離型層ができなくなる。一方、スラリー粘度が高すぎると、離型層の密度が高くなりすぎるし、スプレー塗布工程での目詰まりを引き起こし、生産性が低下する。   As described above, a mold for producing a high-quality polycrystalline silicon ingot is required to have a uniform and appropriately dense silicon nitride release layer. For that purpose, management of the slurry viscosity of the silicon nitride slurry is important. If the slurry viscosity is lower than the proper range, the density of the release layer becomes too low, and dripping occurs in the coating process, making it impossible to form a homogeneous release layer. On the other hand, if the slurry viscosity is too high, the density of the release layer becomes too high, causing clogging in the spray coating process, and the productivity is lowered.

15th Photovoltaic Specialists Conf. (1981), P576〜P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FORPOLYCRYSTALLINE SOLAR GRADE SILICON"15th Photovoltaic Specialists Conf. (1981), P576-P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FORPOLYCRYSTALLINE SOLAR GRADE SILICON"

上述のように、高品質の窒化ケイ素焼結体を製造する上でも、高品質の窒化ケイ素離型層を形成する上でも、窒化ケイ素スラリーの粘度を適切な範囲に管理することが必要である。焼結体においては成形体の相対密度や焼結のしやすさの点から、離型層形成においては焼付け時の粒子同士の結合性やルツボ表面への密着性の点から、通常原料窒化ケイ素粉末は高純度で粒子が小さく粒度分布が狭い粉末が用いられるが、微粒子の窒化ケイ素粉末は活性が高く、空気中に保存していると、時間経過と共に粉末特性が変化してしまう。そして、そのような窒化ケイ素粉末を原料としたスラリーは粘度が増加し、窒化ケイ素焼結体製造においては、成形体が不均質になり良質の焼結体が得られなくなる。また、離型層形成においては、離型層の剥がれや離型層密度の低下が起こり、多結晶シリコンインゴット製造での歩留まりが悪化するなどの課題があった。さらには、保存時間経過によって徐々にスラリー粘度が上昇することに加えて、予測できないある時点で急激にスラリーの粘度が上昇し、スラリーとして使用できなくなるという課題もあった。   As described above, it is necessary to manage the viscosity of the silicon nitride slurry within an appropriate range for producing a high-quality silicon nitride sintered body and for forming a high-quality silicon nitride release layer. . In the case of a sintered body, the raw material silicon nitride is usually used from the viewpoint of the relative density of the molded body and ease of sintering, and in the formation of the release layer, from the viewpoint of the bonding between particles during baking and the adhesion to the crucible surface. As the powder, a powder having high purity, small particles, and narrow particle size distribution is used, but fine silicon nitride powder has high activity, and when stored in air, the powder characteristics change with time. And the slurry which used such silicon nitride powder as a raw material increases a viscosity, and in a silicon nitride sintered compact manufacture, a molded object becomes heterogeneous and a high quality sintered compact cannot be obtained. In forming the release layer, there has been a problem that the release layer is peeled off or the density of the release layer is lowered, and the yield in the production of the polycrystalline silicon ingot is deteriorated. Furthermore, in addition to the gradual increase in slurry viscosity over the course of storage time, there is also a problem that the slurry viscosity suddenly increases at a certain point that cannot be predicted, and cannot be used as a slurry.

そこで本発明は、窒化ケイ素スラリーのスラリー粘度が適切な範囲になるように窒化ケイ素粉末を管理する方法、および、窒化ケイ素粉末を使用する前にそれが良品であることを判断できる管理方法を提供する。   Accordingly, the present invention provides a method for managing silicon nitride powder so that the slurry viscosity of the silicon nitride slurry falls within an appropriate range, and a management method for determining that the silicon nitride powder is a good product before using the silicon nitride powder. To do.

スラリー粘度は粉末の凝集状態に影響を受ける。スラリー中の凝集粒子が多くなると、せん断応力がかかった時の粒子同士の相互作用が大きくなりスラリー粘度が高くなる。また、凝集粒子間に水が取り込まれて自由水が減ることもスラリー粘度上昇に影響する。   The slurry viscosity is affected by the agglomeration state of the powder. When the aggregated particles in the slurry increase, the interaction between the particles when shearing stress is applied increases and the slurry viscosity increases. In addition, a reduction in free water due to water being taken in between the aggregated particles also affects the increase in slurry viscosity.

本発明者らは、窒化ケイ素粉末の粒子表面の状態と、その粉末から得られる窒化ケイ素スラリーのスラリー粘度について鋭意研究した結果、窒化ケイ素スラリーのスラリー粘度の変化が、窒化ケイ素粉末の粒子表面に存在する、前記窒化ケイ素粉末の単位表面積あたりの−Si−NH基(以下シラミン基と記す)と−Si−NH基(以下シラザン基と記す)とを併せた官能基の濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりの−Si−OH基(シラノール基と記す)の濃度(O)とのモル比(N/O)の変化に起因することを見出し、さらに、前記N/Oを一定の値に保つ窒化ケイ素粉末の管理方法を見出し、以下の発明に至った。 As a result of diligent research on the state of the particle surface of the silicon nitride powder and the slurry viscosity of the silicon nitride slurry obtained from the powder, the inventors have found that the change in the slurry viscosity of the silicon nitride slurry is on the particle surface of the silicon nitride powder. Functional group concentration (N) in which -Si 2 —NH group (hereinafter referred to as silamine group) and —Si—NH 2 group (hereinafter referred to as silazane group) per unit surface area of the silicon nitride powder are present And a change in the molar ratio (N / O) to the concentration (O) of -Si-OH groups (referred to as silanol groups) per unit surface area of the silicon nitride powder. The management method of the silicon nitride powder which keeps O to a fixed value was discovered, and it came to the following invention.

すなわち本発明は、窒化ケイ素粉末の粒子表面の単位表面積あたりのシラミン基とシラザン基とを併せた官能基のモル濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりのシラノール基のモル濃度(O)との比(N/O)を管理指標とし、該管理指標を2.0以上に保つことを特徴とする窒化ケイ素粉末の管理方法に関する。   That is, the present invention relates to the molar concentration (N) of the functional group that combines silamine groups and silazane groups per unit surface area of the particle surface of the silicon nitride powder, and the molar concentration of silanol groups per unit surface area of the silicon nitride powder ( The present invention relates to a method for managing silicon nitride powder, characterized in that the ratio (N / O) to O) is a management index, and the management index is maintained at 2.0 or more.

また本発明は、前記管理指標を2.0以上に保つ保管条件を予め測定し、その条件内で保管することを特徴とする窒化ケイ素粉末の管理方法に関する。   The present invention also relates to a method for managing silicon nitride powder, characterized in that storage conditions for maintaining the management index at 2.0 or higher are measured in advance and stored within the conditions.

また本発明は、前記管理指標が2.3以上である窒化ケイ素粉末を、露点が−20℃以下の乾燥雰囲気下、1〜200℃の温度範囲で保存し、保存期間を365日以内にすることを特徴とする窒化ケイ素粉末の管理方法に関する。   Moreover, this invention preserve | saves the silicon nitride powder whose said management parameter | index is 2.3 or more in the temperature range of 1-200 degreeC in the dry atmosphere whose dew point is -20 degrees C or less, and makes a storage period within 365 days. The present invention relates to a method for managing silicon nitride powder.

また本発明は、前記管理指標が2.3以上である窒化ケイ素粉末を、水蒸気透過度が0.1g/m・day以下である素材からなる保存用袋に収容して保存し、保存期間を365日以内にすることを特徴とする窒化ケイ素粉末の管理方法に関する。 In the present invention, the silicon nitride powder having a management index of 2.3 or more is stored and stored in a storage bag made of a material having a water vapor permeability of 0.1 g / m 2 · day or less. It is related with the management method of the silicon nitride powder characterized by making it into 365 days.

また本発明は、前記保存の期間が200日以上であることを特徴とする窒化ケイ素粉末の管理方法に関する。   The present invention also relates to a method for managing silicon nitride powder, wherein the storage period is 200 days or more.

また本発明は、定期的に前記管理指標を測定して2.0以上であることを確認することを特徴とする窒化ケイ素粉末の管理方法に関する。   The present invention also relates to a method for managing silicon nitride powder, wherein the management index is periodically measured and confirmed to be 2.0 or more.

本発明により、窒化ケイ素粉末の粒子表面の複数の官能基のモル濃度比を管理指標とし、その管理指標を一定値以上に保つことで、窒化ケイ素スラリーのスラリー粘度を一定範囲に維持管理することができ、前記窒化ケイ素粉末を原料とする、高温構造部材用の焼結体およびシリコンインゴット用鋳造鋳型の離型層の品質を一定以上に保つことができる。また、前記管理指標を測定することで、窒化ケイ素粉末を使用する以前に、それが良品であるかどうかを判断することが可能になる。   According to the present invention, the molar concentration ratio of a plurality of functional groups on the surface of silicon nitride powder is used as a management index, and the management index is maintained at a certain value or more, thereby maintaining the slurry viscosity of the silicon nitride slurry in a certain range. The quality of the release layer of the sintered body for high-temperature structural members and the casting mold for silicon ingot using the silicon nitride powder as a raw material can be kept above a certain level. Further, by measuring the management index, it is possible to determine whether or not the silicon nitride powder is a good product before using it.

以下に、本発明に係わる窒化ケイ素粉末の管理方法の実施形態について詳しく説明する。   Hereinafter, embodiments of the method for managing silicon nitride powder according to the present invention will be described in detail.

本発明は、窒化ケイ素粉末の粒子表面の単位表面積あたりのシラミン基とシラザン基とを併せた官能基のモル濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりのシラノール基のモル濃度(O)との比(N/O)を管理指標とし、該管理指標を2.0以上に保つことを特徴とする窒化ケイ素粉末の管理方法に関する。   The present invention relates to a molar concentration (N) of a functional group that combines a silamine group and a silazane group per unit surface area of the particle surface of the silicon nitride powder, and a molar concentration (O) of the silanol group per unit surface area of the silicon nitride powder. (N / O) as a management index, and the management index is maintained at 2.0 or more.

本発明に係る窒化ケイ素粉末は、前記N/Oが2.0以上の窒化ケイ素粉末であれば、その製造方法が特に限定されるものではなく、金属シリコン直接窒化法、シリカ還元法、シリコンジイミド熱分解法などのいずれの方法で製造された窒化ケイ素粉末でも良い。   The method for producing the silicon nitride powder according to the present invention is not particularly limited as long as the N / O is a silicon nitride powder having an N / O of 2.0 or more. The metal silicon direct nitridation method, silica reduction method, silicon diimide Silicon nitride powder produced by any method such as pyrolysis may be used.

前記N/Oを2.0以上に保つことで、前記窒化ケイ素粉末をスラリー化した際、得られた窒化ケイ素スラリーの適切なスラリー粘度を維持することができる。以下に、前記N/Oについて説明する。   By maintaining the N / O at 2.0 or more, an appropriate slurry viscosity of the obtained silicon nitride slurry can be maintained when the silicon nitride powder is slurried. The N / O will be described below.

窒化ケイ素粉末の粒子表面の窒化ケイ素粉末の単位表面積あたりのシラミン基とシラザン基とを併せた官能基のモル濃度(N)とシラノール基のモル濃度(O)とのの比(N/O)について説明する。窒化ケイ素の微粒子は、粒子内部は窒化ケイ素の結晶構造をとるが、粒子表面では、SiとNの結合が満たされなくなり、シラミン基、シラザン基、シラノール基のような表面官能基が存在する。これらの官能基は、水中でプロトンを解離、或いはプロトンと結合し、ブレンステッド酸性点または塩基性点を形成する。これら官能基の解離挙動はスラリーのpHに依存する。   The ratio (N / O) of the molar concentration (N) of the functional group combining silamine groups and silazane groups per unit surface area of the silicon nitride powder on the particle surface of the silicon nitride powder and the molar concentration (O) of the silanol group Will be described. The silicon nitride fine particle has a silicon nitride crystal structure inside the particle, but the bond between Si and N is not satisfied on the particle surface, and surface functional groups such as a silamine group, a silazane group, and a silanol group exist. These functional groups dissociate protons in water or combine with protons to form Bronsted acidic points or basic points. The dissociation behavior of these functional groups depends on the pH of the slurry.

表面官能基からプロトンが解離すると、窒化ケイ素粉末の粒子表面は負に帯電し、プロトンが結合する粒子表面は正に帯電する。粒子表面に電位が発生すると、電位に従って水中のイオンの分布が変化し、粒子表面に電気二重層が発生し、粒子同士の斥力が誘起される。シラミン基とシラザン基のpH変化による解離特性はほぼ同じであるが、シラノール基の解離特性は大きく異なる。従って、窒化ケイ素粉末の粒子表面の単位表面積あたりのシラミン基とシラザン基とを併せた官能基のモル濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりのシラノール基のモル濃度(O)との比(N/O)によって粒子同士の斥力が変化し、スラリー特性が変化する。即ち、同条件でスラリー調製し、pHを一定値に調整しても、表面状態(N/O)によってスラリー粘度が変化する。   When protons are dissociated from the surface functional groups, the particle surface of the silicon nitride powder is negatively charged, and the particle surface to which the protons are bonded is positively charged. When a potential is generated on the particle surface, the distribution of ions in water changes according to the potential, an electric double layer is generated on the particle surface, and repulsive force between the particles is induced. Although the dissociation characteristics of silamine groups and silazane groups due to pH change are almost the same, the dissociation characteristics of silanol groups are greatly different. Therefore, the molar concentration (N) of the functional group that combines the silamine group and the silazane group per unit surface area of the particle surface of the silicon nitride powder, and the molar concentration (O) of silanol group per unit surface area of the silicon nitride powder, Depending on the ratio (N / O), the repulsive force between the particles changes, and the slurry characteristics change. That is, even if the slurry is prepared under the same conditions and the pH is adjusted to a constant value, the slurry viscosity changes depending on the surface state (N / O).

上述のように、窒化ケイ素粉末の粒子表面状態によりスラリー粘度が変わるのであるが、窒化ケイ素粉末を空気中で保存しておくと、時間の経過と共に空気中の水分によりシラノール基のモル濃度が増加し、製造直後の状態を維持できなくなる。通常、工業的には、スラリーの調整条件は製造直後の粉末で決められるので、保存中に粉末特性が変化した粉末を用いると、製品の歩留まりや性能の低下を招く。窒化ケイ素の場合においても、長時間の保存によりシラノール基のモル濃度が増加した粉末で、製造直後の粉末特性に合わせて設定した条件でスラリー化すると、スラリー粘度が高くなり、場合によってはスラリー化できなくなる。   As described above, the viscosity of the slurry changes depending on the particle surface state of the silicon nitride powder. However, if the silicon nitride powder is stored in the air, the molar concentration of silanol groups increases with the moisture in the air over time. As a result, the state immediately after manufacture cannot be maintained. Usually, industrially, the conditions for adjusting the slurry are determined by the powder immediately after production, so using a powder whose powder characteristics have changed during storage leads to a decrease in product yield and performance. Even in the case of silicon nitride, if the slurry has increased the molar concentration of silanol groups due to storage for a long period of time, and slurrying under conditions set according to the powder properties immediately after production, the slurry viscosity increases, and in some cases slurrying occurs. become unable.

窒化ケイ素粉末の表面官能基を定量評価する方法として、飛行時間型二次イオン質量分析法(TOF−SIMS)、X線電子分光(XPS)、核磁気共鳴(NMR)、フーリエ変換型赤外分光(FT−IR)、昇温脱離ガス分析(TPD)、ラベル化剤法等がある。本発明では、深さ方向10Å以下の最表面を精度が良く測定でき、操作が簡便な飛行時間型二次イオン質量分析法によって、窒化ケイ素粉末の表面官能基、すなわち、シラノール基、シラミン基、シラザン基のモル濃度比を測定した。   Time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray electron spectroscopy (XPS), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy are methods for quantitative evaluation of surface functional groups of silicon nitride powder. (FT-IR), temperature programmed desorption gas analysis (TPD), labeling agent method, and the like. In the present invention, the surface functional groups of the silicon nitride powder, that is, silanol groups, silamine groups, by the time-of-flight secondary ion mass spectrometry that can measure the outermost surface in the depth direction of 10 mm or less with high accuracy and are easy to operate. The molar concentration ratio of the silazane group was measured.

本発明においては、シラノール基のモル濃度は正電荷を帯びたSiOH(質量数45)の強度(O)とし、シラミン基とシラザン基を合わせたモル濃度は正電荷を帯びたSi2N(質量数70)の強度(N)として、モル濃度比(N/O)を算出した。   In the present invention, the molar concentration of silanol groups is the strength (O) of positively charged SiOH (mass number 45), and the combined molar concentration of silamine groups and silazane groups is the positively charged Si2N (mass number 70). The molar concentration ratio (N / O) was calculated as the strength (N).

本発明は、前記管理指標を2.0以上に保つ保管条件を予め測定し、その条件内で窒化ケイ素粉末を保管することを特徴とする。保管条件を予め測定し、その条件内で窒化ケイ素粉末を保管することで、保管後の窒化ケイ素粉末のN/Oを使用前に測定することなく、窒化ケイ素スラリーの原料として適切に使用することができる。   The present invention is characterized in that a storage condition for maintaining the management index at 2.0 or more is measured in advance, and the silicon nitride powder is stored under the condition. By measuring the storage conditions in advance and storing the silicon nitride powder within the conditions, the N / O of the stored silicon nitride powder should be used appropriately as a raw material for the silicon nitride slurry without measuring before use. Can do.

保管条件を予め測定し、その条件内で窒化ケイ素粉末を保管する方法について、2通りの具体的な方法を説明する。   Two specific methods for measuring the storage conditions in advance and storing the silicon nitride powder within the conditions will be described.

まず、第1の方法について説明する。   First, the first method will be described.

前記管理指標が2.3以上である窒化ケイ素粉末を、露点が−20℃以下の乾燥雰囲気下、1〜200℃の温度範囲で保存し、保存期間を365日以内にすることを特徴とする窒化ケイ素粉末の管理方法である。   The silicon nitride powder having a management index of 2.3 or more is stored in a temperature range of 1 to 200 ° C. in a dry atmosphere with a dew point of −20 ° C. or less, and the storage period is 365 days or less. This is a method for managing silicon nitride powder.

前記管理指標が2.3以上である窒化ケイ素粉末を、露点が−20℃以下の乾燥雰囲気下、1〜200℃の温度範囲で保存することで、少なくとも365日間は、前記N/Oを2以上に保つことが可能になる。   By storing the silicon nitride powder having the management index of 2.3 or more in a temperature range of 1 to 200 ° C. in a dry atmosphere having a dew point of −20 ° C. or less, the N / O is set to 2 for at least 365 days. It becomes possible to keep above.

前記管理指標が2.3以上である窒化ケイ素粉末を、露点が−20℃以下の乾燥雰囲気下、1〜200℃の温度範囲で保存する方法は、それが可能であればいかなる方法でも良く、例えばガラスデシケーター等のような密閉容器に窒化ケイ素粉末を導入し、ヒートレス吸着式エアドライヤーのような乾燥カラムで露点を調整した乾燥空気を流通させる方法を採ることができる。また、密閉容器の中に不可逆反応の吸湿剤を入れても露点を調整しても良い。密閉容器への外気進入を防ぐ点からすると容器圧力を高くしても良いが、容器の耐圧範囲内である。   The method of storing the silicon nitride powder having a management index of 2.3 or more in a temperature range of 1 to 200 ° C. in a dry atmosphere having a dew point of −20 ° C. or less may be any method as long as it is possible. For example, it is possible to adopt a method in which silicon nitride powder is introduced into a closed container such as a glass desiccator and dried air having a dew point adjusted with a drying column such as a heatless adsorption air dryer is circulated. Also, the dew point may be adjusted by placing an irreversible hygroscopic agent in the sealed container. From the viewpoint of preventing outside air from entering the sealed container, the container pressure may be increased, but it is within the pressure resistance range of the container.

前記管理指標が2.3以上である窒化ケイ素粉末を保存する雰囲気の露点が−20℃を超えると、雰囲気中の水分が窒化ケイ素粉末表面に吸着する量が多くなる。そうすると、シラザン基が加水分解されてシラノール基になり、シラミン基とシラザン基合計のモル濃度(N)と、シラノール基のモル濃度(O)との比(N/O)が2以下になり、スラリー粘度が高くなって、良好な焼結体や離型層が得られなくなる。また、吸着水分量が多くなると粒子の接触点に水分が吸着し、毛管圧力により粒子が凝集し、スラリー粘度が高くなる。   When the dew point of the atmosphere storing the silicon nitride powder having the management index of 2.3 or more exceeds -20 ° C, the amount of moisture in the atmosphere adsorbed on the surface of the silicon nitride powder increases. Then, the silazane group is hydrolyzed to become a silanol group, and the ratio (N / O) of the molar concentration (N) of the total silamine group and silazane group and the molar concentration (O) of the silanol group is 2 or less, The slurry viscosity becomes high, and a good sintered body and release layer cannot be obtained. Further, when the amount of adsorbed water increases, the water adsorbs at the contact point of the particles, the particles are aggregated by capillary pressure, and the slurry viscosity increases.

前記管理指標が2.3以上である窒化ケイ素粉末を保存する雰囲気の温度が1℃よりも低くなると、粒子表面への水分凝縮が加速され、粉末の凝集が急速に進行し、スラリー粘度が上昇するので好ましくない。また、1℃未満に冷却した粉末をスラリー調製のため保存環境から室内に出した時、粉末が冷えすぎているため粉末表面に水分が凝縮するので好ましくない。一方、前記窒化ケイ素粉末を保存する雰囲気の温度が200℃を超えると、水やアンモニアの脱離を伴いながらシラノール基、シラミン基、シラザン基の凝縮が著しくなってしまう。官能基が凝縮して消失し官能基のモル濃度が低くなると、表面官能基の水中でのプロトンの授受がなくなるので粒子の表面電位が低下し、分散性が悪くなることでスラリー粘度が上昇するので好ましくない。前記窒化ケイ素粉末を保存する雰囲気の温度範囲として、より好ましいのは20〜100℃である。   When the temperature of the atmosphere in which the silicon nitride powder having the management index of 2.3 or more is stored is lower than 1 ° C., moisture condensation on the particle surface is accelerated, the powder aggregation rapidly proceeds, and the slurry viscosity increases. This is not preferable. In addition, when the powder cooled to less than 1 ° C. is taken out of the storage environment to prepare a slurry, the powder is too cold, and moisture is condensed on the powder surface. On the other hand, when the temperature of the atmosphere in which the silicon nitride powder is stored exceeds 200 ° C., condensation of silanol groups, silamine groups, and silazane groups becomes remarkable with the elimination of water and ammonia. When the functional group is condensed and disappears, and the molar concentration of the functional group is lowered, the surface functional group is not exchanged with protons in water, so that the surface potential of the particle is lowered and the dispersibility is deteriorated, thereby increasing the viscosity of the slurry. Therefore, it is not preferable. The temperature range of the atmosphere for storing the silicon nitride powder is more preferably 20 to 100 ° C.

次に、第2の方法について説明する。   Next, the second method will be described.

前記管理指標が2.3以上である窒化ケイ素粉末を、水蒸気透過度が0.1g/m・day以下である素材からなる保存用袋に収容して保存し、保存期間を365日以内にすることを特徴とする窒化ケイ素粉末の管理方法である。 The silicon nitride powder having a management index of 2.3 or more is stored in a storage bag made of a material having a water vapor permeability of 0.1 g / m 2 · day or less, and the storage period is within 365 days. And a silicon nitride powder management method.

前記管理指標が2.3以上である窒化ケイ素粉末を、水蒸気透過度が0.1g/m・day以下である素材を加工して得られた保存用袋に収容して保存することで、少なくとも365日間は、前記N/Oを2.0以上に保つことが可能になる。 By storing and storing the silicon nitride powder having the management index of 2.3 or more in a storage bag obtained by processing a material having a water vapor permeability of 0.1 g / m 2 · day or less, The N / O can be kept at 2.0 or more for at least 365 days.

水蒸気透過度が0.1g/m・day以下である素材を加工して得られた保存用袋としては、延伸ナイロン/アルミニウム蒸着層/直鎖低密度ポリエチレンからなるアルミニウムラミネート袋(水蒸気透過度0.01g/m・day)、或いはPET/アルミナ蒸着層/シリケート・ポリビニルアルコールハイブリッドコーティング層とからなるアルミナラミネート袋(水蒸気透過度0.04g/m・day)等を使用することができる。 As a storage bag obtained by processing a material having a water vapor permeability of 0.1 g / m 2 · day or less, an aluminum laminated bag made of stretched nylon / aluminum vapor-deposited layer / linear low density polyethylene (water vapor permeability) can be used 0.01g / m 2 · day), or PET / alumina vapor deposited layer / silicate polyvinyl alumina laminated bag consisting of an alcohol hybrid coating layer (water vapor permeability of 0.04 g / m 2 · day), etc. .

前記管理指標が2.3以上である窒化ケイ素粉末を、水蒸気透過度が0.1g/m・dayより大きい素材を加工して得られた保存用袋に収容して、密閉して保存しても、保存時間の経過と共に、フィルムを透過した空気中の水分が前記窒化ケイ素粉末の粒子表面に影響を及ぼし、前記N/Oが徐々に変わり、365日経過以前に前記N/Oを2.0以上に保てない場合が生じることがある。前記N/Oが2.0未満になった場合、前記窒化ケイ素粉末でスラリーを調製すると凝集して、スラリー粘度が高くなる。 The silicon nitride powder having a management index of 2.3 or more is contained in a storage bag obtained by processing a material having a water vapor permeability greater than 0.1 g / m 2 · day, and is stored in a sealed state. However, as the storage time elapses, moisture in the air that has permeated through the film affects the particle surface of the silicon nitride powder, and the N / O gradually changes. In some cases, the value cannot be kept above 0. When the N / O is less than 2.0, when the slurry is prepared with the silicon nitride powder, the slurry is agglomerated and the slurry viscosity is increased.

透過水蒸気の影響は保存用袋の表面積の影響を受ける。保存用袋の表面積に対し粉末の量が少なすぎると、単位粉末量当たりの透過水蒸気量が多くなりすぎて効果がなくなる。封筒形状の保存用袋に液体を充填したときの最大容量Vmax(cm)は、短辺をa(cm)、長辺をb(cm)とすると、下記の式(1)から求められる(大須賀弘著「食品包装用フィルム」日報)。 The effect of permeated water vapor is affected by the surface area of the storage bag. If the amount of the powder is too small relative to the surface area of the storage bag, the amount of permeated water vapor per unit powder amount becomes too large and the effect is lost. The maximum capacity Vmax (cm 3 ) when an envelope-shaped storage bag is filled with liquid is obtained from the following formula (1), where a (cm) is the short side and b (cm) is the long side ( Osuga Hiroshi “Food Packaging Film” Daily).

Vmax=(0.33×a×b)−(0.11×a)・・・・(1) Vmax = (0.33 × a × b 2 ) − (0.11 × a 3 ) (1)

保存用袋に充填する窒化ケイ素粉末の容量は、粉末の重量と嵩密度から算出することができる。本発明での粉末の充填率、即ち(窒化ケイ素粉末の容量)/(保存用袋の最大容量)の値は、0.3以上が好ましい。(窒化ケイ素粉末の容量)/(袋の最大容量)が0.3未満であると袋面積に対して粉末が少なすぎ、単位粉末量あたりの透過水蒸気量が多くなりすぎ、粉末の凝集が進行しスラリー粘度が高くなりやすい。0.7を超えると、保存用袋の形状が円柱形状に近くなり積み重ねができなくなることや粉末が多すぎて袋が破れやすくなるなど、保存用袋の取扱が困難になる。   The volume of the silicon nitride powder filled in the storage bag can be calculated from the weight and bulk density of the powder. The powder filling rate in the present invention, that is, the value of (volume of silicon nitride powder) / (maximum capacity of storage bag) is preferably 0.3 or more. When (volume of silicon nitride powder) / (maximum capacity of bag) is less than 0.3, the amount of powder is too small relative to the bag area, the amount of permeated water vapor per unit powder amount is too large, and powder aggregation proceeds. The slurry viscosity tends to be high. If it exceeds 0.7, the shape of the storage bag becomes close to a columnar shape, making it impossible to stack, and the powder is too much to easily break the bag.

また本発明は、前記保存の期間を200日以上にすることができる窒化ケイ素粉末の管理方法である。本発明によれば、200日以上にわたって前記管理指標を2.0以上に保つことができ、200日以上の保存期間を経ても、適切なスラリー粘度の窒化ケイ素スラリーを得ることが可能な窒化ケイ素粉末を提供できる。   Moreover, this invention is a management method of the silicon nitride powder which can make the said preservation | save period 200 days or more. According to the present invention, silicon nitride that can maintain the management index at 2.0 or more for 200 days or more and can obtain a silicon nitride slurry having an appropriate slurry viscosity even after a storage period of 200 days or more. A powder can be provided.

また本発明は、定期的に前記管理指標を測定して2.0以上であることを確認することを特徴とする窒化ケイ素粉末の管理方法である。本発明によれば、窒化ケイ素粉末を使用する前に、前記管理指標を測定することで、それが良品であること、すなわち、適切なスラリー粘度の窒化ケイ素スラリーを得ることが可能な窒化ケイ素粉末であることを確認できる。   Moreover, this invention is a management method of the silicon nitride powder characterized by measuring the said management parameter | index regularly and confirming that it is 2.0 or more. According to the present invention, the silicon nitride powder can be obtained by measuring the control index before using the silicon nitride powder, that is, a silicon nitride slurry having an appropriate slurry viscosity. It can be confirmed.

本発明によれば、窒化ケイ素粉末の粒子表面の単位表面積あたりの−Si−NH基(シラミン基)と−Si−NH基(シラザン基)とを併せた官能基のモル濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりの−Si−OH基(シラノール基)のモル濃度(O)との比(N/O)を管理指標とし、該管理指標を2.0以上に保つ保管条件を予め測定し、その条件内で保管することで、適切なスラリー粘度の窒化ケイ素スラリーを得ることが可能な窒化ケイ素粉末を確実に提供できる。また、本発明によれば、定期的に前記管理指標を測定して2.0以上であれば良品とすることができるので、窒化ケイ素粉末を使用する前に、適切なスラリー粘度の窒化ケイ素スラリーを得ることが可能な窒化ケイ素粉末であることを確認できる。 According to the present invention, the molar concentration (N) of the functional group that combines -Si 2 —NH group (silamine group) and —Si—NH 2 group (silazane group) per unit surface area of the particle surface of the silicon nitride powder. And the ratio (N / O) to the molar concentration (O) of -Si-OH groups (silanol groups) per unit surface area of the silicon nitride powder as a management index, and keeping the management index at 2.0 or higher By measuring the conditions in advance and storing them within the conditions, a silicon nitride powder capable of obtaining a silicon nitride slurry having an appropriate slurry viscosity can be reliably provided. In addition, according to the present invention, since the management index is periodically measured to be a non-defective product if it is 2.0 or more, a silicon nitride slurry having an appropriate slurry viscosity is used before using the silicon nitride powder. It can be confirmed that this is a silicon nitride powder capable of obtaining

以下、本発明を実施例に基づき詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

以下の実施例及び比較例では比表面積10.5m/g、嵩密度0.40g/mlの窒化ケイ素粉末を使用した。 In the following examples and comparative examples, silicon nitride powder having a specific surface area of 10.5 m 2 / g and a bulk density of 0.40 g / ml was used.

(露点)
窒化ケイ素粉末の保存時の雰囲気の露点は静電容量式露点計(SANZO社製、DP300)で測定した。
(Dew point)
The dew point of the atmosphere during storage of the silicon nitride powder was measured with a capacitance type dew point meter (manufactured by SANZO, DP300).

(比表面積、粒度分布)
窒化ケイ素粉末の比表面積は窒素ガス吸着によるBET1点法(島津製作所社製、フローソーブ2300)で測定し、粒度分布はレーザー回折/散乱式粒子径分布測定装置(堀場製作所社製、LA−950)で測定した。
(Specific surface area, particle size distribution)
The specific surface area of the silicon nitride powder is measured by a BET one-point method by nitrogen gas adsorption (Shimadzu Corporation, Flowsorb 2300), and the particle size distribution is a laser diffraction / scattering particle size distribution measuring apparatus (Horiba, LA-950). Measured with

(表面官能基濃度)
窒化ケイ素粉末表面のシラノール基、シラミン基、シラザン基のモル濃度比は、飛行時間型二次イオン質量分析装置(アルバック・ファイ社製、TORIFT V)で測定した。シラミン基とシラザン基を合わせたモル濃度は正電荷を帯びたSi2N(質量数70)の強度(N)とし、シラノール基モル濃度は正電荷を帯びたSiOH(質量数45)の強度(O)として、モル濃度比(N/O)を算出した。
(Surface functional group concentration)
The molar concentration ratio of silanol groups, silamine groups, and silazane groups on the surface of the silicon nitride powder was measured with a time-of-flight secondary ion mass spectrometer (TORIFT V, manufactured by ULVAC-PHI). The combined molar concentration of the silamine group and the silazane group is the strength (N) of the positively charged Si2N (mass number 70), and the silanol group molar concentration is the strength (O) of the positively charged SiOH (mass number 45). As a result, the molar concentration ratio (N / O) was calculated.

(スラリー粘度)
スラリーは、窒化ケイ素粉末30gを用いて、窒化ケイ素粉末40質量%とイオン交換水60質量%を混合し、1時間ボールミルして得た。スラリー粘度はE型粘度計(トキメック社製 VISCONIC ELD型)で、スラリー温度20℃、ローター回転数10rpmで測定した。
(Slurry viscosity)
The slurry was obtained by using 30 g of silicon nitride powder, mixing 40% by mass of silicon nitride powder and 60% by mass of ion-exchanged water, and ball milling for 1 hour. The slurry viscosity was measured with an E-type viscometer (VISCONIC ELD type manufactured by Tokimec) at a slurry temperature of 20 ° C. and a rotor rotation speed of 10 rpm.

(実施例1、実施例2、比較例3)
内部の空気を循環できるバルブが配設された、内容積5Lの流通式ガラスデシケーターに、ガラストレーに入れた窒化ケイ素粉末200gを収容した。ヒートレス吸着式エアドライヤーで、露点を−40、−20、及び0℃に調整した空気をデシケーター中に流量0.1L/minで流通させながら、20℃に保った状態で窒化ケイ素粉末を保存した。所定の期間経過毎に粉末を取り出し、すぐに比表面積、粒度分布、表面官能基のモル濃度比及びスラリー粘度を測定した。結果を表1に示す。実施例1及び2ではスラリー粘度の上昇は見られなかったが、比較例1では、保存期間200日でN/Oが1.8になってスラリー粘度が上昇し、また、保存期間200日で、N/Oが1.2になってE型粘度計の測定上限である600mPa・s以上の粘度に上昇した。
(Example 1, Example 2, Comparative Example 3)
200 g of silicon nitride powder placed in a glass tray was accommodated in a flow-through glass desiccator having an internal volume of 5 L in which a valve capable of circulating internal air was disposed. The silicon nitride powder was stored in a state maintained at 20 ° C. while air having a dew point adjusted to −40, −20, and 0 ° C. was passed through the desiccator at a flow rate of 0.1 L / min with a heatless adsorption air dryer. . The powder was taken out for each predetermined period, and immediately measured for specific surface area, particle size distribution, molar concentration ratio of surface functional groups and slurry viscosity. The results are shown in Table 1. In Examples 1 and 2, no increase in slurry viscosity was observed, but in Comparative Example 1, N / O became 1.8 with a storage period of 200 days, and the slurry viscosity increased. N / O became 1.2, and the viscosity increased to 600 mPa · s or more, which is the upper limit of measurement of the E-type viscometer.

Figure 2013203613
Figure 2013203613

(実施例3、比較例2)
内部の空気を循環できるようなバルブのついた内容積5Lのステンレス製の流通式デシケーターに、ステンレス製トレーに入れた窒化ケイ素粉末200gを収容した。ヒートレス吸着式エアドライヤーで露点を−20℃に調整した0.1L/minの空気をデシケーター中に流通させながら、180℃及び300℃に保った状態で窒化ケイ素粉末を保存した。所定の期間経過毎に窒化ケイ素粉末を取り出し、すぐに比表面積、粒度分布、表面官能基のモル濃度比、及びスラリー粘度を測定した。結果を表3に示す。実施例5ではスラリー粘度の上昇は見られなかったが、比較例3では、保存期間100日でN/Oが1.9になってスラリー粘度が上昇し、保存期間200日でE型粘度計の測定上限である600mPa・s以上の粘度に上昇した。
(Example 3, Comparative Example 2)
200 g of silicon nitride powder placed in a stainless steel tray was accommodated in a stainless steel flow-type desiccator having an internal volume of 5 L with a valve capable of circulating the internal air. The silicon nitride powder was stored in a state maintained at 180 ° C. and 300 ° C. while 0.1 L / min of air having a dew point adjusted to −20 ° C. was circulated through the desiccator with a heatless adsorption air dryer. The silicon nitride powder was taken out every time a predetermined period passed, and the specific surface area, particle size distribution, molar ratio of surface functional groups, and slurry viscosity were immediately measured. The results are shown in Table 3. In Example 5, the increase in slurry viscosity was not observed, but in Comparative Example 3, the slurry viscosity increased with N / O being 1.9 after a storage period of 100 days, and the E-type viscometer after a storage period of 200 days. The viscosity increased to 600 mPa · s or more, which is the upper limit of the measurement.

Figure 2013203613
Figure 2013203613

(実施例4)
水蒸気透過度が0.01g/m・dayである、袋の外側から順に、延伸ナイロン/アルミニウム蒸着層/直鎖低密度ポリエチレンで構成される縦17cm、横12cmの保存用袋を作製し、その中に、窒化ケイ素粉末を0.2kg収容して、インパルスシーラーで加熱圧着して、密閉した。このときの(窒化ケイ素粉末の容量)/(袋の最大容量)の値は0.52である。保存用袋を、温度20℃、湿度40%に調整した恒温恒湿槽に入れ、窒化ケイ素粉末を保存した。所定の期間経過毎に窒化ケイ素粉末を取り出し、すぐに比表面積、粒度分布、表面官能基のモル濃度比、及びスラリー粘度を測定した。結果を表2に示す。
Example 4
A water vapor permeability of 0.01 g / m 2 · day, in order from the outside of the bag, a storage bag having a length of 17 cm and a width of 12 cm made of stretched nylon / aluminum vapor-deposited layer / linear low density polyethylene is prepared Inside, 0.2 kg of silicon nitride powder was accommodated and heat-pressed with an impulse sealer and sealed. The value of (volume of silicon nitride powder) / (maximum capacity of bag) at this time is 0.52. The storage bag was placed in a constant temperature and humidity chamber adjusted to a temperature of 20 ° C. and a humidity of 40% to store the silicon nitride powder. The silicon nitride powder was taken out every time a predetermined period passed, and the specific surface area, particle size distribution, molar ratio of surface functional groups, and slurry viscosity were immediately measured. The results are shown in Table 2.

(実施例5)
水蒸気透過度が0.04g/m・dayである、袋の外側から順に、ポリエチレンテレフタラート(PET)/アルミナ蒸着層/シリケート・ポリビニルアルコールハイブリッドコーティングで構成される縦17cm、横12cmの保存用袋を作製し、その中に、窒化ケイ素粉末を0.2kg収容して、インパルスシーラーで加熱圧着して、密閉した。このときの(窒化ケイ素粉末の容量)/(袋の最大容量)の値は0.52である。保存用袋を、温度20℃、湿度40%に調整した恒温恒湿槽に入れ、窒化ケイ素粉末を保存した。所定の期間経過毎に窒化ケイ素粉末を取り出し、すぐに比表面積、粒度分布、表面官能基のモル濃度比、及びスラリー粘度を測定した。結果を表2に示す。
(Example 5)
For storage of 17cm length and 12cm width composed of polyethylene terephthalate (PET) / alumina deposited layer / silicate / polyvinyl alcohol hybrid coating in order from the outside of the bag with water vapor permeability of 0.04g / m 2 · day A bag was prepared, 0.2 kg of silicon nitride powder was accommodated in the bag, and it was heat-pressed with an impulse sealer and sealed. The value of (volume of silicon nitride powder) / (maximum capacity of bag) at this time is 0.52. The storage bag was placed in a constant temperature and humidity chamber adjusted to a temperature of 20 ° C. and a humidity of 40% to store the silicon nitride powder. The silicon nitride powder was taken out every time a predetermined period passed, and the specific surface area, particle size distribution, molar ratio of surface functional groups, and slurry viscosity were immediately measured. The results are shown in Table 2.

(比較例2)
水蒸気透過度が36g/m・dayである低密度ポリエチレン(LDPE)で構成される縦17cm、横12cmの保存用袋を作製し、その中に、窒化ケイ素粉末を0.2kg収容して、インパルスシーラーで加熱圧着して、密閉した。このときの(窒化ケイ素粉末の容量)/(袋の最大容量)の値は0.52である。保存用袋を、温度20℃、湿度40%に調整した恒温恒湿槽に入れ、窒化ケイ素粉末を保存した。所定の期間経過毎に窒化ケイ素粉末を取り出し、すぐに比表面積、粒度分布、表面官能基のモル濃度比、及びスラリー粘度を測定した。結果を表2に示す。
(Comparative Example 2)
A storage bag having a length of 17 cm and a width of 12 cm made of low-density polyethylene (LDPE) having a water vapor permeability of 36 g / m 2 · day is prepared, and 0.2 kg of silicon nitride powder is contained therein, It heat-pressed with the impulse sealer and sealed. The value of (volume of silicon nitride powder) / (maximum capacity of bag) at this time is 0.52. The storage bag was placed in a constant temperature and humidity chamber adjusted to a temperature of 20 ° C. and a humidity of 40% to store the silicon nitride powder. The silicon nitride powder was taken out every time a predetermined period passed, and the specific surface area, particle size distribution, molar ratio of surface functional groups, and slurry viscosity were immediately measured. The results are shown in Table 2.

実施例4及び5では、保存日数365日でもスラリー粘度の上昇は見られなかったが、比較例2では、保存日数200日でN/Oが1.8になってスラリー粘度が上昇し、保存日数365日でE型粘度計の測定上限である600mPa・s以上の粘度に上昇した。   In Examples 4 and 5, the increase in slurry viscosity was not observed even in the storage days of 365 days, but in Comparative Example 2, the N / O became 1.8 and the slurry viscosity increased in the storage days of 200 days. The viscosity increased to 600 mPa · s or more, which is the upper limit of measurement of the E-type viscometer, in 365 days.

Figure 2013203613
Figure 2013203613

本発明に係る管理指標を用いて窒化ケイ素粉末を管理し、その管理指標で管理された窒化ケイ素粉末を用いることで、常時、一定品質の窒化ケイ素焼結体を製造でき、信頼性の高い工具等の耐摩耗用部材、自動車部品等の高温構造用部材の製造が可能になる。また、多結晶シリコンインゴット用鋳造鋳型に、常時、一定品質の離型層を形成することができ、多結晶シリコンインゴットの歩留まりが上がることで、より信頼性の高い太陽電池を製造すること可能になる。   A silicon nitride powder is managed using the management index according to the present invention, and by using the silicon nitride powder managed by the management index, a silicon nitride sintered body of a constant quality can be manufactured at all times, and a highly reliable tool It is possible to manufacture high-temperature structural members such as wear-resistant members such as automobile parts. In addition, it is possible to always form a release layer of constant quality on a casting mold for polycrystalline silicon ingots, and to increase the yield of polycrystalline silicon ingots, making it possible to manufacture more reliable solar cells. Become.

Claims (6)

窒化ケイ素粉末の粒子表面の単位表面積あたりの−Si−NH基(シラミン基)と−Si−NH基(シラザン基)とを併せた官能基のモル濃度(N)と、前記窒化ケイ素粉末の単位表面積あたりの−Si−OH基(シラノール基)のモル濃度(O)との比(N/O)を管理指標とし、該管理指標を2.0以上に保つことを特徴とする窒化ケイ素粉末の管理方法。 The molar concentration (N) of the functional group combining -Si 2 —NH group (silamine group) and —Si—NH 2 group (silazane group) per unit surface area of the particle surface of the silicon nitride powder, and the silicon nitride powder Silicon nitride, characterized by using as a management index the ratio (N / O) to the molar concentration (O) of -Si-OH groups (silanol groups) per unit surface area and maintaining the management index at 2.0 or more Powder management method. 前記管理指標を2.0以上に保つことができる保管条件を予め測定し、その条件内で保管することを特徴とする請求項1記載の窒化ケイ素粉末の管理方法。   2. The method for managing silicon nitride powder according to claim 1, wherein the storage condition capable of maintaining the management index at 2.0 or higher is measured in advance and stored within the condition. 前記管理指標が2.3以上である窒化ケイ素粉末を、露点が−20℃以下の乾燥雰囲気下、1〜200℃の温度範囲で保存し、保存期間を365日以内にすることを特徴とする請求項1記載の窒化ケイ素粉末の管理方法。   The silicon nitride powder having a management index of 2.3 or more is stored in a temperature range of 1 to 200 ° C. in a dry atmosphere with a dew point of −20 ° C. or less, and the storage period is 365 days or less. The method for managing silicon nitride powder according to claim 1. 前記管理指標が2.3以上である窒化ケイ素粉末を、水蒸気透過度が0.1g/m・day以下である素材からなる保存用袋に収容して保存し、保存期間を365日以内にすることを特徴とする請求項1記載の窒化ケイ素粉末の管理方法。 The silicon nitride powder having a management index of 2.3 or more is stored in a storage bag made of a material having a water vapor permeability of 0.1 g / m 2 · day or less, and the storage period is within 365 days. The method for managing silicon nitride powder according to claim 1, wherein: 前記保存の期間が200日以上であることを特徴とする請求項1に記載の窒化ケイ素粉末の管理方法。   The method for managing silicon nitride powder according to claim 1, wherein the storage period is 200 days or more. 定期的に前記管理指標を測定して2.0以上であることを確認することを特徴とする請求項1記載の窒化ケイ素粉末の管理方法。   The method for managing silicon nitride powder according to claim 1, wherein the management index is periodically measured to confirm that it is 2.0 or more.
JP2012075592A 2012-03-29 2012-03-29 Method for controlling silicon nitride powder Pending JP2013203613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075592A JP2013203613A (en) 2012-03-29 2012-03-29 Method for controlling silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075592A JP2013203613A (en) 2012-03-29 2012-03-29 Method for controlling silicon nitride powder

Publications (1)

Publication Number Publication Date
JP2013203613A true JP2013203613A (en) 2013-10-07

Family

ID=49523112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075592A Pending JP2013203613A (en) 2012-03-29 2012-03-29 Method for controlling silicon nitride powder

Country Status (1)

Country Link
JP (1) JP2013203613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210209A1 (en) * 2021-03-30 2022-10-06
WO2022210179A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body
WO2022210214A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210209A1 (en) * 2021-03-30 2022-10-06
WO2022210179A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, and method for producing silicon nitride sintered body
WO2022210214A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder, slurry, and method for producing silicon nitride sintered compact
WO2022210209A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Silicon nitride powder and method for producing silicon nitride sintered body
JP7171973B1 (en) * 2021-03-30 2022-11-15 デンカ株式会社 Method for producing silicon nitride powder, slurry, and silicon nitride sintered body
JP7223918B1 (en) * 2021-03-30 2023-02-16 デンカ株式会社 Method for producing silicon nitride powder and silicon nitride sintered body
JP7242972B2 (en) 2021-03-30 2023-03-20 デンカ株式会社 Method for producing silicon nitride powder and silicon nitride sintered body

Similar Documents

Publication Publication Date Title
US7794557B2 (en) Tape casting method and tape cast materials
US20060138716A1 (en) Method for producing a ceramic crucible
CN103269975B (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
WO2018041031A1 (en) Thermal conductive copper powder with high capillary rate and low density under loose packing, and manufacturing method thereof
CN103361722A (en) Polycrystalline silicon ingots and preparation method thereof, polycrystalline silicon chips and polycrystalline silicon ingot casting crucible
CN108439982B (en) Axial composite negative temperature coefficient thermal sensitive ceramic material and preparation method thereof
CN101428273B (en) Silicon nitride spray finishing method for quartz crucible for polysilicon solar battery casting ingot
TWI712698B (en) Sputtering target
US8973888B2 (en) Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
CN103360077B (en) Silicon nitride crucible and preparation method thereof
US20130015318A1 (en) Layered crucible for casting silicon ingot and method of producing same
JP2013203613A (en) Method for controlling silicon nitride powder
Liu et al. Phase change nanocomposites with tunable melting temperature and thermal energy storage density
EP2733488B1 (en) Detection device for molten metal
CN103865496A (en) Electricity-insulation heat-conduction powder and material, and preparation methods thereof
US20120167817A1 (en) Method and device for producing silicon blocks
JP7034268B2 (en) Heat dissipation element
TW201344135A (en) Crucibles for holding molten material and methods for producing them and for their use
CA2585187C (en) Hydrogen separation membrane, sputtering target for forming said hydrogen separation membrane, and manufacturing method thereof
SG191386A1 (en) Mold for casting polycrystalline silicon ingot, and silicon nitride powder for mold release material thereof, slurry containing silicon nitride powder for mold release layer thereof and mold release material for casting thereof
CN104310417B (en) A kind of containing zirconium cordierite composite diphase material and preparation method thereof
Ament et al. Shear thinning behavior of aqueous alumina nanoparticle suspensions with saccharides
US20110027159A1 (en) APPLICATION METHOD OF SILICON POWDER AND RAW MATERIAL SILICON BRICK WITH GOOD FILLING PROPERTY IN MONO-CRYSTAL FURNACE OR MULTI-CRYSTAL FURNACE (amended)
CN103298983B (en) Crucible
CN108315629B (en) Preparation method of Al/SiC metal ceramic composite material