JP2013203426A - Support structure for tank - Google Patents

Support structure for tank Download PDF

Info

Publication number
JP2013203426A
JP2013203426A JP2012073450A JP2012073450A JP2013203426A JP 2013203426 A JP2013203426 A JP 2013203426A JP 2012073450 A JP2012073450 A JP 2012073450A JP 2012073450 A JP2012073450 A JP 2012073450A JP 2013203426 A JP2013203426 A JP 2013203426A
Authority
JP
Japan
Prior art keywords
tank
support
support structure
brace
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012073450A
Other languages
Japanese (ja)
Other versions
JP6126789B2 (en
Inventor
Minoru Maejima
稔 前島
Masayuki Yugawa
雅之 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Sumikin Bridge Co Ltd
Original Assignee
Yokogawa Sumikin Bridge Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Sumikin Bridge Co Ltd filed Critical Yokogawa Sumikin Bridge Co Ltd
Priority to JP2012073450A priority Critical patent/JP6126789B2/en
Publication of JP2013203426A publication Critical patent/JP2013203426A/en
Application granted granted Critical
Publication of JP6126789B2 publication Critical patent/JP6126789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a support structure for a tank, which is capable of easily improving the seismic performance of an existing ground tank fixedly planted by support members including tilting materials, and in which regarding a new ground tank fixedly planted by support members including tilting materials, a reduction in diameter of a support can be achieved, and also, a reduction in the number of supports can be achieved, and thereby, a construction cost can be improved and a construction period can be shortened.SOLUTION: A support structure for a tank includes: a plurality of bases 5 provided in a ground around a spherical tank 1, and each including an anchor part; a plurality of supports 2 each suspended from each base 5; and a plurality of tilting materials 3, each of which obliquely connects the supports 2 and 2 adjacent to each other by one tilting material and has earthquake energy absorbing function capable of exhibiting the earthquake energy absorbing function by the drawing resistance or less of the anchor part just under the support 2 to which the lower end thereof is fixedly connected.

Description

本発明は、都市ガスや水素ガス等の圧縮ガス、LPG等の液化ガスを貯蔵するのに用いられる地上タンクの耐震性を向上させるタンクの支持構造に関する。   The present invention relates to a tank support structure that improves the earthquake resistance of a ground tank used for storing compressed gas such as city gas and hydrogen gas, and liquefied gas such as LPG.

従来から、石油やガス等の一次エネルギー資源を需要者に安定的に供給するために、供給系統の一部に貯蔵タンクを設けて備蓄することが行われてきている。貯蔵タンクには地上タンク、地下タンク等があり、地上タンクの形態には球形型タンク(球形タンク)や円筒型タンクがある。   Conventionally, in order to stably supply primary energy resources such as oil and gas to consumers, a storage tank has been provided in a part of the supply system for stockpiling. The storage tank includes an above-ground tank, an underground tank, and the like, and the above-described tank includes a spherical tank (spherical tank) and a cylindrical tank.

そして、これらのタンクは、都市ガスや水素ガス等の圧縮ガス、LPG等の液化ガスを貯蔵するのに用いられており、球形型タンクでは、多くはその下方部を、地上に立設された多数の支柱と隣り合う支柱同士を連結する筋交いで構成される支持部(脚部)で支持させることにより設置されている(図9参照)。   These tanks are used to store compressed gas such as city gas and hydrogen gas, and liquefied gas such as LPG, and many of the spherical tanks are erected on the ground at the lower part thereof. It is installed by supporting it with a support part (leg part) composed of braces that connect a large number of struts and adjacent struts (see FIG. 9).

円筒型タンクでは、多くはその周囲を、地上に立設された多数の支柱と隣り合う支柱同士を連結する上下の筋交いで構成される支持部で支持させることにより設置されている(図10参照)。   Many cylindrical tanks are installed by supporting the periphery of the tank with a support portion composed of upper and lower braces that connect a large number of struts standing on the ground and adjacent struts (see FIG. 10). ).

上記のように、地上タンクはその多くが支柱と隣接支柱間を連結する筋交いで支持されているため、大きな地震が発生すると地震の揺れにより筋交いが座屈したり変形、あるいは破断したりしてタンクに損傷が生じる恐れがある。   As mentioned above, most of the above-ground tanks are supported by braces that connect the struts to the adjacent struts. Therefore, when a large earthquake occurs, the braces buckle, deform, or break due to the shaking of the earthquake. May cause damage.

現に、東日本大震災では、ガスタンクを支える支柱の筋交いの破断が引き金となってガスタンクの爆発災害が発生している。従来から、球形タンク脚部の耐震性を高めるための工夫がなされてきているが、前記災害により、タンクの筋交いの耐震性を調べ、耐震基準を見直す動きもある。   In fact, in the Great East Japan Earthquake, a gas tank explosion disaster has been triggered by the breakage of the struts that support the gas tank. Conventionally, a device for improving the earthquake resistance of the spherical tank legs has been devised, but due to the above-mentioned disaster, there is a movement to check the earthquake resistance of the tank bracing and review the earthquake resistance standard.

従来の耐震技術としては、例えば、特許文献1には、球形タンクの球殻体を支持する基礎から球殻体に至る既設脚部の支持部及び接続部の外周の全体又は一部に半割り円筒管を用いた新規の円筒支持部材を被覆し、該支持部の支持部間に設けられている既設ブレースの外周の全体又は一部に割り円筒管を用いた新規の円筒ブレースを被覆した球形タンクの脚部耐震補強構造が記載されている。   As a conventional seismic technology, for example, Patent Document 1 discloses that the existing leg supporting part and the outer circumference of the connecting part from the foundation supporting the spherical shell of the spherical tank to the spherical shell are divided in half or entirely. A spherical shape in which a new cylindrical support member using a cylindrical tube is coated and a new cylindrical brace using a split cylindrical tube is coated on the whole or part of the outer periphery of an existing brace provided between the support portions of the support portion. The tank seismic reinforcement structure is described.

また、特許文献2には、上端部が球形タンクの周囲に固定され、下端部がタンク脚部用基礎で支持された球形タンクの周囲を支持する複数の細長い支持ポールと、上端が支持ポールの上部に連結された上部ブレースと下端が隣接する別の支持ポールの下部に連結された下部ブレースとその中間のエネルギー吸収ダンパーとからなり、支持ポールの上部を隣接する別の支持ポールの下部に斜めに連結するエネルギー吸収ブレースを備えた球形タンクの耐震構造が記載されている。   Further, in Patent Document 2, a plurality of elongated support poles supporting the periphery of a spherical tank whose upper end is fixed around the spherical tank and whose lower end is supported by a tank leg foundation, and the upper end of the support pole It consists of an upper brace connected to the upper part, a lower brace connected to the lower part of another supporting pole whose lower end is adjacent to it, and an energy absorbing damper in the middle, and the upper part of the supporting pole is inclined to the lower part of another adjacent supporting pole. The seismic structure of a spherical tank with an energy absorbing brace connected to is described.

一方、橋梁等のブレースを用いた構造物の耐震性を向上させる部材として、構造物の主要骨組の層間に組み込まれ、大きな層間変形が生じた際に芯材となる鋼材を塑性変形させることで地震エネルギーを吸収し、揺れを減衰させる種々の座屈拘束ブレースが知られている。   On the other hand, as a member that improves the earthquake resistance of structures using braces such as bridges, it is incorporated between the layers of the main frame of the structure, and when a large interlayer deformation occurs, the steel material that becomes the core material is plastically deformed Various buckling-restrained braces that absorb seismic energy and attenuate vibration are known.

例えば、特許文献3には、鋼板からなる芯材と、前記芯材の断面周囲に設けた鋼製の座屈拘束材からなる座屈拘束ブレースにおいて、前記座屈拘束材の端部から突出する前記芯材の材端部の幅方向両端部に、芯材の幅方向とほぼ直交するフランジ鋼板が設けられている座屈拘束ブレースが記載されている。   For example, in Patent Document 3, in a buckling restrained brace made of a core material made of a steel plate and a steel buckling restraint material provided around the cross section of the core material, it protrudes from an end of the buckling restraint material. A buckling restrained brace is described in which flange steel plates that are substantially orthogonal to the width direction of the core material are provided at both ends of the core material in the width direction.

また、特許文献4には、基礎上に間隔をおいて立設された2本以上のRC部材の柱とこの柱の頂部に掛け渡されたRC部材の梁とからなるRCフレーム架構と、このRCフレーム架構の構面内に配置された座屈拘束ブレース等の制震機能を備えたブレース架構とから構成される制震橋脚構造であって、想定以上の地震動により塑性ヒンジが形成される前記RCフレーム架構の柱の上下端部にも、左右一対の柱を連結するブレースが配置され、この柱の上下端部のブレースの一端がそれぞれ、柱の上下端にそれぞれ形成したハンチに接合され、あるいは梁の下面と基礎の上面に接合されていることを特徴とする制震橋脚構造が記載されている。   Further, Patent Document 4 discloses an RC frame frame composed of two or more RC member columns standing upright on a foundation and RC member beams spanned on top of the columns, A vibration control pier structure including a brace frame having a vibration control function such as a buckling-restrained brace arranged in a surface of an RC frame frame, wherein a plastic hinge is formed by an earthquake motion more than expected. Braces that connect a pair of left and right columns are also arranged at the upper and lower ends of the columns of the RC frame frame, and one ends of the braces at the upper and lower ends of the columns are respectively joined to hunches formed on the upper and lower ends of the columns, Alternatively, a seismic control pier structure characterized by being joined to the lower surface of the beam and the upper surface of the foundation is described.

特開2011−184056号公報JP 2011-184056 A 特開2002−080090号公報JP 2002-080090 A 特開2001−214541号公報JP 2001-214541 A 特開2008−214973号公報JP 2008-214973 A

上記の通り、各種地上タンクにおいては、その支持部(脚部)の耐震性を高めるための工夫がなされてきている。   As described above, various ground tanks have been devised to enhance the earthquake resistance of the support portions (leg portions).

しかし、前述の通り、今回の東日本大震災では、球形タンクの脚部(筋交い)が損壊することにより漏洩したLPGに着火して爆発災害が発生したことから、縦揺れ、横揺れ、長周期振動が発生する高レベルの地震動に対しては従来の耐震性能では不十分であることが判明したため、地上タンクの支持構造の耐震性について、見直しと新たな技術開発の必要性が生じている。   However, as mentioned above, the Great East Japan Earthquake ignited the leaked LPG due to the damage of the leg of the spherical tank (the brace) and caused an explosion disaster. The existing seismic performance has proved insufficient for the high level of ground motion that is generated, and therefore there is a need to review and develop new technologies for the seismic performance of the support structure of the ground tank.

特許文献1のように支柱やブレースをより太くすれば耐震性は向上するものの、材料費や施工費が嵩んで経済的でなく、必ずしも高レベルの地震動に対して有効とは言えない。   If the struts and braces are made thicker as in Patent Document 1, the earthquake resistance is improved, but the material cost and the construction cost are increased, which is not economical, and is not necessarily effective for high-level earthquake motion.

また、特許文献2のようにオイルダンパーによるエネルギー吸収ブレースを用いれば種々の振動に対して対応し易くなるので高レベルの地震動に対しても効果が期待できるが、小さな振動に対しても作動してしまうのでタンクを安定して支持できず、オイルの劣化に対する対応もしなければならず、長期的なメンテナンスが大変である。オイルダンパーの端部に連結される上部ブレースと下部ブレースも必要となる。   In addition, if an energy absorbing brace using an oil damper is used as in Patent Document 2, it will be easy to cope with various vibrations, so it can be expected to be effective against high-level seismic motions, but it can also operate against small vibrations. Therefore, the tank cannot be supported stably, and it is necessary to cope with the deterioration of the oil, and long-term maintenance is difficult. An upper brace and a lower brace connected to the end of the oil damper are also required.

一方、特許文献3に示されるような弾塑性ブレース(座屈拘束ブレース)や摩擦ダンパーは従来からあり、特許文献4に示すように、橋梁に多く用いられたりしているが、地上タンクの支持に適用した例はない。   On the other hand, elastoplastic braces (buckling-restrained braces) and friction dampers as shown in Patent Document 3 have been conventionally used, and as shown in Patent Document 4, they are often used for bridges. There is no example applied to.

本願発明は、上述のような課題の解決を図ったものであり、傾斜材を含む支持部材により立設固定される既存地上タンクの耐震性能を簡便に向上させることができ、傾斜材を含む支持部材により立設固定される新設地上タンクにおいては、支柱の細径化、支柱本数の減少化が可能となり建設コストの改善、建設工期の短縮を可能とするタンクの支持構造を提供することを目的とする。   The present invention is intended to solve the above-described problems, and can easily improve the seismic performance of an existing ground tank that is erected and fixed by a support member including an inclined member. The purpose of the new ground tank standing and fixed by members is to provide a support structure for the tank that can reduce the diameter of the columns and reduce the number of columns, improve the construction cost, and shorten the construction period. And

本願の請求項1に係る発明は、支持部材により立設固定されるタンクの支持構造であって、前記支持部材は、前記タンク周囲の地面に設けられアンカー部を有する複数の基礎と、該各基礎から垂設される複数の支柱と、1本で前記支柱同士を斜めに連結する地震エネルギー吸収機能のある傾斜材とを複数備え、前記傾斜材は、該傾斜材の下端が連結固定されている支柱の直下にある前記アンカー部の引抜耐力以下で前記地震エネルギー吸収機能が発揮されるものであることを特徴とするタンクの支持構造である。   The invention according to claim 1 of the present application is a tank support structure that is erected and fixed by a support member, and the support member includes a plurality of foundations that are provided on the ground around the tank and have anchor portions, A plurality of supporting columns suspended from the foundation and a plurality of inclined members having a seismic energy absorbing function that connect the supporting columns obliquely with one, and the inclined member has a lower end of the inclined member connected and fixed. The tank support structure is characterized in that the seismic energy absorption function is exhibited below the pulling-out strength of the anchor portion directly below the supporting column.

本発明が対象とするタンクは、タンクの周囲に配される支持部材により立設固定される球形型や円筒型の地上タンク(ガスタンク、重油タンク等)であり、支持部材はアンカー部のある基礎、支柱、傾斜材(筋交い)を含むものである。タンクは既存のものでも新設のものでも良い。既存のタンクであれば、耐震補強をすることになる。新設のタンクであれば、従来に比べより耐震強化されたタンクとなる。   The tank targeted by the present invention is a spherical or cylindrical ground tank (gas tank, heavy oil tank, etc.) standing and fixed by a support member disposed around the tank, and the support member is a foundation having an anchor portion. , Struts, slanted material (bars). The tank may be an existing one or a new one. If it is an existing tank, it will be seismically reinforced. If it is a new tank, it will be a tank with stronger earthquake resistance than before.

本発明のタンクの支持構造は、タンク周囲の地面に設けられアンカー部を有する複数の基礎と、該各基礎から垂設される複数の支柱と、1本で前記支柱同士を斜めに連結する地震エネルギー吸収機能のある複数の傾斜材とを備えた支持部材とからなり、これら支持部材がタンクの周囲に連結して配設され、タンクを立設固定するものである。   The tank support structure according to the present invention includes a plurality of foundations provided on the ground around the tank and having anchor portions, a plurality of pillars suspended from the foundations, and an earthquake in which the pillars are obliquely connected to each other. The support member includes a plurality of inclined members having an energy absorbing function, and these support members are connected to and disposed around the tank to fix the tank upright.

1本の傾斜材で斜めに連結する支柱同士は、隣接する支柱同士、もしくは、一つの支柱に対し隣接する支柱の一つ先の支柱との支柱同士である。   The struts that are obliquely connected with one slant are either the struts adjacent to each other or the struts that are the one struts ahead of the struts adjacent to one strut.

傾斜材は、弾塑性ブレース(座屈拘束ブレース)、摩擦ダンパー等の地震エネルギー吸収機能のあるものであり、かつ、両端を他の傾斜材(例えば、特許文献1に記載される上部ブレースと下部ブレース)に連結させることなく1本で傾斜材としての機能を果たすものである。   The inclined member has a seismic energy absorbing function such as an elastoplastic brace (buckling restrained brace), a friction damper, etc., and both ends have other inclined members (for example, an upper brace and a lower portion described in Patent Document 1). It functions as an inclined member without being connected to a brace.

本発明のタンクの支持構造では、上述の通り、タンクの周囲に垂設された複数の支柱において、1本の前記傾斜材で支柱同士を斜めに連結した構造とする。既存のタンクであれば、設置されている既存の傾斜材(筋交い)の一部又は全部を取り外し、上記傾斜材を取付けて上記構造とする。新設のタンクであれば、最初から上記傾斜材により上記構造とする。   In the tank support structure of the present invention, as described above, in a plurality of support columns suspended from the periphery of the tank, the support columns are obliquely connected to each other by the one inclined material. In the case of an existing tank, a part or all of the existing inclined members (struts) installed are removed, and the inclined members are attached to form the above structure. In the case of a new tank, the above structure is made from the inclined material from the beginning.

前記基礎、前記支柱等の他の支持部材は、既存のタンクを耐震補強するのであれば、そのまま利用できる。タンクを新設するのであれば、従来より細い径の支柱を用いたり支柱の本数を減らしたりすることも可能となり基礎の建設コストの縮減にも繋がる。   Other support members such as the foundation and the support column can be used as they are if the existing tank is seismically reinforced. If a new tank is installed, it is possible to use struts with a smaller diameter than before and reduce the number of struts, leading to a reduction in foundation construction costs.

本発明のタンクの支持構造で用いる傾斜材は、該傾斜材の下端が連結固定されている支柱の直下にある基礎中のアンカー部の引抜耐力以下で地震エネルギー吸収機能が発揮されるものであることが重要である。これは、地震により発生するタンクの慣性力がアンカー部に伝達される際、その発生力がアンカー部の引抜耐力以上になるとアンカー部は破壊に至り、タンクの支持機能を失ってしまい大事故に繋がる可能性があるためである。   The inclined member used in the tank support structure of the present invention exhibits a seismic energy absorbing function below the pulling-out strength of the anchor portion in the foundation located immediately below the column to which the lower end of the inclined member is connected and fixed. This is very important. This is because when the inertia force of the tank generated by an earthquake is transmitted to the anchor part, if the generated force exceeds the pulling-out strength of the anchor part, the anchor part will be destroyed and the support function of the tank will be lost, resulting in a major accident. This is because there is a possibility of connection.

このような傾斜材は、例えば、弾塑性ブレース(座屈拘束ブレース)であれば、図3に示す降伏荷重Pyをアンカー部の引抜耐力以下とし、また、摩擦ダンパーであれば、図4に示す、すべり荷重Psをアンカー部の引抜耐力以下に設定して製作することで得られる。   For example, if such an inclined material is an elastoplastic brace (buckling restraint brace), the yield load Py shown in FIG. 3 is set to be equal to or less than the pulling strength of the anchor portion, and if it is a friction damper, it is shown in FIG. It can be obtained by setting the sliding load Ps to be equal to or less than the pulling-out strength of the anchor portion.

このような傾斜材を用いた支持構造とすることにより、アンカー部が引き抜かれる前に、傾斜材が弾塑性ブレース(座屈拘束ブレース)であれば塑性変形を起し、また、摩擦ダンパーであればすべり変形を起すので、支柱アンカー部の損壊を免れることができ、高耐震性の支持構造となる。   By adopting such a support structure using an inclined member, if the inclined member is an elasto-plastic brace (buckling restrained brace) before the anchor portion is pulled out, plastic deformation will occur, and a friction damper may be used. Since slip deformation occurs, damage to the column anchor can be avoided, and a highly earthquake-resistant support structure is obtained.

本願の請求項2に係る発明は、前記傾斜材が弾塑性ブレースであり、前記弾塑性ブレースは、その降伏荷重が前記引抜耐力以下となるものであることを特徴とする請求項1に記載のタンクの支持構造である。   The invention according to claim 2 of the present application is characterized in that the inclined material is an elastoplastic brace, and the elastoplastic brace has a yield load equal to or less than the pulling strength. This is a tank support structure.

弾塑性ブレースとは、構造物の犠牲部材として開発され、構造物に大規模地震動が作用した際、ブレース芯材のある領域を塑性変形させることで、地震エネルギーを吸収し、構造物の制振制御を可能とすることができるブレースであり、座屈拘束ブレースとも言われ、例えば、特開2012−13157、特開2003−193699、特開2001−214541、特開2000−27293等に記載されるものが挙げられる。   Elasto-plastic brace was developed as a sacrificial member of a structure. When large-scale earthquake motion acts on the structure, the area where the brace core material is deformed is plastically deformed to absorb seismic energy and control the structure. A brace that can be controlled and is also called a buckling-restrained brace, and is described in, for example, Japanese Patent Application Laid-Open Nos. 2012-13157, 2003-193699, 2001-214541, and 2000-27293. Things.

これを傾斜材として用いることによって大規模地震が発生した場合には、この傾斜材に部材損傷を集中させて地震エネルギーを吸収するといった効果が得られるので好ましい。   When a large-scale earthquake occurs by using this as an inclined material, it is preferable because an effect of concentrating member damage on the inclined material and absorbing earthquake energy can be obtained.

但し、ここで用いる弾塑性ブレースは、その降伏荷重が弾塑性ブレースの下端が連結固定されている支柱の直下にある基礎中のアンカー部の引抜耐力以下となるように設計されたものである。このように限定するのは、支持構造に設置されたブレース芯材が塑性化する前にアンカー部が破壊してしまうと、設置効果(塑性変形による地震エネルギーの吸収効果)が有効に発揮されないからである。   However, the elastoplastic brace used here is designed so that its yield load is equal to or less than the pulling strength of the anchor portion in the foundation directly below the column to which the lower end of the elastoplastic brace is connected and fixed. The reason for this limitation is that if the anchor part breaks before the brace core material installed in the support structure is plasticized, the installation effect (the effect of absorbing seismic energy due to plastic deformation) will not be exhibited effectively. It is.

このような弾塑性ブレースは、前述の通り、塑性変形させる部材断面の降伏荷重Pyがアンカー部の引抜耐力以下になるように設定して製作することで得ることができる。   Such an elasto-plastic brace can be obtained by setting the yield load Py of the cross section of the member to be plastically deformed to be equal to or less than the pulling strength of the anchor portion as described above.

本願の請求項3に係る発明は、前記傾斜材が摩擦ダンパーであり、前記摩擦ダンパーは、その摩擦荷重が前記引抜耐力以下となるものであることを特徴とする請求項1に記載のタンクの支持構造である。   The invention according to claim 3 of the present application is the tank according to claim 1, wherein the inclined material is a friction damper, and the friction damper has a friction load equal to or less than the pulling strength. Support structure.

摩擦ダンパーとは、物体の摩擦抵抗を利用した制振ダンパーであり、例えば、高力ボルトを用いた摩擦接合部を内蔵したダンパーが挙げられる。これを傾斜材として用いることによって、大規模地震が発生した場合には、この傾斜材に部材損傷を集中させて地震エネルギーを吸収させることができるといった効果が得られるので好ましい。   The friction damper is a vibration damper that utilizes the frictional resistance of an object, and includes, for example, a damper that includes a friction joint using a high-strength bolt. By using this as an inclined material, when a large-scale earthquake occurs, it is preferable because an effect of concentrating member damage on the inclined material and absorbing earthquake energy can be obtained.

但し、ここで用いる摩擦ダンパーは、その摩擦荷重(すべり荷重)が、摩擦ダンパーの下端が連結固定されている支柱の直下にある基礎中のアンカー部の引抜耐力以下となるものである。   However, the friction damper used here has a friction load (sliding load) that is equal to or less than the pulling-out strength of the anchor portion in the foundation directly below the column to which the lower end of the friction damper is connected and fixed.

このように限定するのは、支持構造に設置された摩擦ダンパーがすべり荷重に達する前に支持構造のアンカー部が破壊してしまうと、設置効果(すべり変形による地震エネルギーの吸収効果)が有効に発揮されないからである。   The reason for this limitation is that if the anchor part of the support structure breaks before the friction damper installed on the support structure reaches the sliding load, the installation effect (the effect of absorbing seismic energy due to slip deformation) is effective. It is because it is not demonstrated.

このような摩擦ダンパーは、例えば、摩擦面の摩擦係数(すべり係数)を把握した上で摩擦接合部への導入軸力を設定し、すべり荷重Psがアンカー部の引抜耐力以下になるように設定して製作することで得ることができる。   Such a friction damper is set so that, for example, the axial force to be introduced into the friction joint is set after grasping the friction coefficient (slip coefficient) of the friction surface, and the slip load Ps is equal to or less than the pulling strength of the anchor portion. And can be obtained by making.

本願の請求項4に係る発明は、前記傾斜材は、前記支柱にピン結合で連結されていることを特徴とする請求項1〜3のいずれかに記載のタンクの支持構造である。   The invention according to claim 4 of the present application is the tank support structure according to any one of claims 1 to 3, wherein the inclined member is connected to the support column by pin coupling.

ピン結合とは、結合部に曲げモーメントを伝達させない結合方式である。   The pin connection is a connection method in which a bending moment is not transmitted to the connection part.

従来、地上タンクの支持構造においては、筋交い等の傾斜材は支持部材に溶接方式により連結されている場合が多い。また、従来の座屈拘束ブレースや摩擦ダンパーは、橋梁等の構造物において高力ボルトによる摩擦接合方式により接合されている場合が多い。   Conventionally, in a support structure for a ground tank, inclined members such as braces are often connected to a support member by a welding method. In addition, conventional buckling-restrained braces and friction dampers are often joined by a friction joining method using high-strength bolts in structures such as bridges.

これらの連結方式を単に本発明のタンクの支持構造に流用した場合、支持部材との接合部において支持部材に局所的に過大な曲げ応力を発生させてしまい、結果的にその領域に損傷を与えてしまうといった問題が生じる虞があるので好ましくない。傾斜材の支柱への連結をピン結合にすることにより、傾斜材には軸力のみを伝達させ曲げ応力を伝達させなくなるので好ましい。   If these connection methods are simply applied to the tank support structure of the present invention, excessive bending stress is locally generated in the support member at the joint portion with the support member, resulting in damage to the region. This is not preferable because there is a possibility of causing a problem such as. By using a pin connection to connect the inclined member to the support column, it is preferable because only the axial force is transmitted to the inclined member and the bending stress is not transmitted.

本願の請求項5に係る発明は、前記傾斜材は、隣設される傾斜材が傾斜方向を交互に変えてW字状に設けられていることを特徴とする請求項1〜4のいずれかに記載のタンクの支持構造である。   The invention according to claim 5 of the present application is characterized in that the inclined material is provided in a W shape by alternately changing the inclined direction of the adjacent inclined material. It is the support structure of the tank as described in above.

本発明のタンクの支持構造では、各傾斜材を設置する支柱間においては傾斜材が右斜め方向か左斜め方向のいずれかの方向に1本だけ設けられた構造となっているが、全体的には、タンクの周囲に垂設される複数の支柱間で、隣設される傾斜材が傾斜方向を交互に変えたW字状に設置された構造となっている方が好ましい。   The tank support structure according to the present invention has a structure in which only one inclined member is provided in either the right oblique direction or the left oblique direction between the support columns on which the inclined members are installed. In this case, it is preferable that the inclined material that is provided next to each other is disposed in a W shape in which the inclination direction is alternately changed between a plurality of support columns that are provided around the tank.

このような構造とすることにより、少ない傾斜材で高耐震化が図れるのでコスト低減になり、また、既存のタンクを耐震補強する場合には、簡便かつ低コストで改修工事が行える。   By adopting such a structure, high earthquake resistance can be achieved with a small number of inclined members, so that the cost can be reduced. In addition, when an existing tank is retrofitted with earthquake resistance, repair work can be performed easily and at low cost.

本発明のタンクの支持構造によれば、傾斜材を含む支持部材により立設固定される既存地上タンクの耐震性能を簡便かつ低コストで向上させることができる。   According to the tank support structure of the present invention, it is possible to improve the seismic performance of an existing ground tank that is erected and fixed by a support member including an inclined member, simply and at low cost.

また、傾斜材を含む支持部材により立設固定される新設地上タンクにおいては、支柱の細径化、支柱本数の減少化が可能となり建設コストの改善、建設工期の短縮が図れるので、低コストで高耐震性のタンクが得られる。   In addition, in a new ground tank that is erected and fixed by a support member including an inclined member, it is possible to reduce the diameter of the columns and the number of columns to improve the construction cost and shorten the construction period. A highly earthquake-resistant tank is obtained.

既存の球形型の地上タンク(球形タンク)の支持部(脚部)を耐震補強して構築した本発明のタンクの支持構造の一例を示す正面図である。It is a front view which shows an example of the support structure of the tank of this invention constructed | assembled by earthquake-proofing the support part (leg part) of the existing spherical type ground tank (spherical tank). 既存の円筒型の地上タンク(円筒型タンク)の支持部を耐震補強して構築した本発明のタンクの支持構造の一例を示す正面図である。It is a front view which shows an example of the support structure of the tank of this invention constructed | assembled by earthquake-proofing the support part of the existing cylindrical ground tank (cylindrical tank). 弾塑性ブレースの荷重−変位履歴特性例を示す図である。It is a figure which shows the example of the load-displacement log | history characteristic of an elastic-plastic brace. 摩擦ダンパーの荷重−変位履歴特性例を示す図である。It is a figure which shows the example of the load-displacement log | history characteristic of a friction damper. 本発明のタンクの支持構造における基礎の構造例を示す断面図である。It is sectional drawing which shows the structural example of the foundation in the support structure of the tank of this invention. 支柱下端での傾斜材の支柱への取付構造例を示す図である。It is a figure which shows the example of attachment structure to the support | pillar of the inclined material in a support | pillar lower end. 本発明のタンクの支持構造を用い新設した球形タンクの支持部(脚部)の一例を示す正面図である。It is a front view which shows an example of the support part (leg part) of the spherical tank newly installed using the support structure of the tank of this invention. 本発明のタンクの支持構造を用い新設した球形タンクの支持部(脚部)の他の例を示す正面図である。It is a front view which shows the other example of the support part (leg part) of the spherical tank newly installed using the support structure of the tank of this invention. 既存の球形型の地上タンク(球形タンク)を示す正面図である。It is a front view which shows the existing spherical type ground tank (spherical tank). 既存の円筒型の地上タンク(円筒型タンク)を示す正面図である。It is a front view which shows the existing cylindrical ground tank (cylindrical tank). 接合部を別に有する取付部材を用いた傾斜材の支柱下端への取付け例であり、ボルト取りの位置をピン接合部と90度ずらした例を示す正面図である。It is a front view which is an example of the attachment to the lower end of the support | pillar of the inclined material using the attachment member which has a junction part separately, and shows the example which shifted | deviated the position of the bolt removal from the pin junction part. 取付部材を用いた傾斜材の支柱下端への取付け例であり、ボルト取りの位置をピン接合部で兼用した例を示す正面図である。It is a front view which is an example of attachment to the support | pillar lower end of the inclined material using an attachment member, and shows the example which shared the position of bolt removal with the pin junction part. 既存の球形型の地上タンク(球形タンク)の支持部(脚部)を耐震補強して構築した本発明のタンクの支持構造の他例を示す正面図である。It is a front view which shows the other example of the support structure of the tank of this invention constructed | assembled by earthquake-proofing the support part (leg part) of the existing spherical type ground tank (spherical tank).

以下、本発明の実施形態例について、図面に基づいて詳細に説明する。なお、本発明は、以下に説明する実施形態例に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments described below.

図1は、既存の球形型の地上タンク(球形タンク)の支持部(脚部)を耐震補強して構築した本発明のタンクの支持構造の一例を示す正面図である。   FIG. 1 is a front view showing an example of a support structure for a tank according to the present invention, which is constructed by seismic reinforcement of a support part (leg part) of an existing spherical tank (spherical tank).

図に示すように、球形タンク1は支持部4によって地上に立設固定されている。支持部4は本発明のタンクの支持構造で構築されており、大略、アンカー部(図示省略)のある基礎5と支柱2と傾斜材3とからなっている。   As shown in the figure, the spherical tank 1 is erected and fixed on the ground by a support portion 4. The support portion 4 is constructed by the tank support structure of the present invention, and generally includes a base 5 having an anchor portion (not shown), a support column 2 and an inclined member 3.

そして、支柱2は基礎5の上方に垂設されており、隣接する支柱2、2間には各々1本の傾斜材3が設けられており、支柱2、2同士を斜めに連結している。傾斜材3は、隣接する各支柱間で傾斜方向を交互に変えてW字状に設けられている。   And the support | pillar 2 is hung above the foundation 5, and the one inclination material 3 is provided between the adjacent support | pillars 2 and 2, respectively, and the support | pillars 2 and 2 are connected diagonally. . The inclined member 3 is provided in a W shape by alternately changing the inclination direction between adjacent columns.

支柱2の下端には支柱部材幅より広めの端板が取り付けられており、これをベースプレート6とし、アンカーボルト7によって基礎5に固定され、上端は直接球形タンクと溶接によってタンクに固定されている。   An end plate wider than the width of the column member is attached to the lower end of the column 2, which is used as a base plate 6, and is fixed to the base 5 by anchor bolts 7, and the upper end is directly fixed to the spherical tank and the tank by welding. .

傾斜材3は、地震エネルギー吸収機能のあるものであり、図に示すように1本で傾斜材を形成するものであれば限定されないが、中でも、弾塑性ブレースや摩擦ダンパーは油圧ダンパーに比べ、維持管理の手間もかからずコストが安価であるので好ましい。弾塑性ブレースは座屈拘束ブレースとも言われ多くの種類があるが、特に限定されない。   The inclined member 3 has a seismic energy absorbing function and is not limited as long as the inclined member is formed as a single piece as shown in the figure. Among them, the elastoplastic brace and the friction damper are compared with the hydraulic damper, This is preferable because it does not require maintenance and management and is inexpensive. There are many types of elastoplastic braces, which are also called buckling-restrained braces, but are not particularly limited.

図1は、図9に示す既存の球形タンクの支持部(脚部)を上記の通りに改造し耐震補強したものである。図9は図1の改造前の既存のタンクである。隣接する支柱2、2間には筋交い10が設けられている。改造は筋交い10についてのみ行い、支柱3や基礎5は従来のままである。   FIG. 1 shows the existing spherical tank support part (leg part) shown in FIG. FIG. 9 shows an existing tank before the modification shown in FIG. A brace 10 is provided between adjacent struts 2 and 2. The remodeling is performed only for the brace 10, and the support column 3 and the foundation 5 remain the same as before.

すなわち、耐震補強は、単に従来の筋交い10を取り外し傾斜材3に置き換えるといった簡便なものである。新たに設置した傾斜材3は既存の支柱3にピン結合によって取付けられている。   That is, the seismic reinforcement is simple, such as simply removing the conventional brace 10 and replacing it with the inclined member 3. The newly installed inclined member 3 is attached to the existing support column 3 by pin connection.

図2は、既存の円筒型の地上タンク(円筒型タンク)の支持部を耐震補強して構築した本発明のタンクの支持構造の一例を示す正面図である。   FIG. 2 is a front view showing an example of a tank support structure according to the present invention constructed by seismically reinforcing a support portion of an existing cylindrical ground tank (cylindrical tank).

円筒型タンク9の周囲には支持部4が設けられており、支持部4は、アンカー部(図示省略)のある基礎5と、その上に垂設された支柱2とがあり、隣接する支柱2、2間の下方部には各々1本の傾斜材3が設けられて支柱2、2同士を斜めに連結しており、上方部には既存の筋交い10が取り外されず残存している。   A support portion 4 is provided around the cylindrical tank 9, and the support portion 4 includes a base 5 having an anchor portion (not shown) and a support column 2 provided on the base 5. One inclined member 3 is provided in the lower part between 2 and 2 to connect the support pillars 2 and 2 diagonally, and the existing brace 10 remains in the upper part without being removed.

ここでも傾斜材3は、隣接する各支柱間で傾斜方向を交互に変えてW字状に設けられている。このように、既存のタンクを耐震補強してなる本発明のタンクの支持構造では、既存の筋交いやブレースを一部残しておいても良く、このような場合のものも本発明の範囲に含まれる。   Here again, the inclined member 3 is provided in a W shape by alternately changing the inclination direction between adjacent columns. Thus, in the tank support structure of the present invention formed by seismic reinforcement of an existing tank, part of the existing braces and braces may be left, and such a case is also included in the scope of the present invention. It is.

傾斜材3は、上記球形タンク1の場合と同様であり、また支柱3や基礎5も上記球形タンク1の場合と同様、従来のままである。   The inclined member 3 is the same as in the case of the spherical tank 1, and the support column 3 and the foundation 5 are the same as in the case of the spherical tank 1.

図10は、図2に示すタンクの改造前の既存の円筒型タンクである。図に示すように、円筒型タンク9の周囲には支持部4が設けられ、隣接する支柱2、2間には、上方部と下方部に各々筋交い10が設けられている。   FIG. 10 shows an existing cylindrical tank before the modification of the tank shown in FIG. As shown in the figure, a support portion 4 is provided around the cylindrical tank 9, and a brace 10 is provided between the adjacent support columns 2, 2 at the upper portion and the lower portion, respectively.

改造は下方部の筋交い10についてのみ行い、上方部の筋交い10や支柱3や基礎5は従来のままである。すなわち、耐震補強は、単に従来の下方部の筋交い10を取り外し傾斜材3に置き換えるといった簡便なものである。新たに設置した傾斜材3は既存の支柱3にピン結合によって取付けられている。   Remodeling is performed only for the lower brace 10, and the upper brace 10, support column 3 and foundation 5 remain the same as before. That is, the seismic reinforcement is simple such that the conventional brace 10 at the lower portion is simply removed and replaced with the inclined member 3. The newly installed inclined member 3 is attached to the existing support column 3 by pin connection.

以上の通り、本発明のタンクの支持構造によって傾斜材(筋交い)を含む支持部材により立設固定される既存の地上タンクの耐震補強を行えば、既存の傾斜材(筋交い)のみを本発明で規定する傾斜材に取り換えればよいので、耐震性能を簡便かつ低コストで向上させることができる。   As described above, if the existing ground tank that is erected and fixed by the support member including the inclined member (the brace) is supported by the tank support structure of the present invention, only the existing inclined member (the brace) is used in the present invention. Since it is only necessary to replace the specified inclined material, the earthquake resistance can be improved easily and at low cost.

本発明のタンクの支持構造では、傾斜材3は、該傾斜材3の下端が連結固定されている支柱2の直下にあるアンカー部の引抜耐力以下で地震エネルギー吸収機能が発揮されるものであるため、傾斜材3が弾塑性ブレースである場合は、該弾塑性ブレースは、その降伏荷重が前記引抜耐力以下となるものであるのが好ましい。   In the tank support structure of the present invention, the inclined member 3 exhibits a seismic energy absorbing function below the pulling-out strength of the anchor portion directly below the column 2 to which the lower end of the inclined member 3 is connected and fixed. Therefore, when the inclined member 3 is an elastoplastic brace, it is preferable that the elastoplastic brace has a yield load equal to or less than the pulling strength.

図3は、弾塑性ブレースの荷重−変位履歴特性例を示す図である。Pyは降伏荷重、K1はブレース芯材が弾性範囲内にあるときの剛性を示し、K2はブレース芯材が塑性化した際の剛性を示す。   FIG. 3 is a diagram showing an example of load-displacement history characteristics of an elastoplastic brace. Py represents the yield load, K1 represents the rigidity when the brace core is within the elastic range, and K2 represents the rigidity when the brace core is plasticized.

この図からわかるように、降伏荷重Pyをアンカー部の引抜耐力以下に設定しておくと、アンカー部が健全である範囲内にあるうちに先に弾塑性ブレースが塑性変形して地震エネルギーを吸収するので好ましい。   As can be seen from this figure, if the yield load Py is set below the pulling strength of the anchor part, the elastic-plastic brace will first plastically deform and absorb the earthquake energy while the anchor part is within a healthy range. This is preferable.

降伏荷重が前記アンカー部の引抜耐力以下となる弾塑性ブレースは、芯材材質の降伏耐力に芯材断面の断面積を乗じた値がアンカー部の引抜耐力以下となるように設計して製作することで得られる。   An elastoplastic brace whose yield load is less than the pullout strength of the anchor part is designed and manufactured so that the value obtained by multiplying the yield strength of the core material by the cross-sectional area of the core material cross section is less than the pullout strength of the anchor part. Can be obtained.

また、傾斜材3が摩擦ダンパーである場合は、該摩擦ダンパーは、その摩擦荷重(すべり荷重)が前記引抜耐力以下となるものであるのが好ましい。   When the inclined member 3 is a friction damper, it is preferable that the friction damper has a friction load (sliding load) that is equal to or less than the pulling strength.

図4は、摩擦ダンパーの荷重−変位履歴特性例を示す図である。Psはすべり荷重(摩擦荷重)、K1はダンパー軸力がすべり荷重に達するまでの剛性を示したものである。   FIG. 4 is a diagram illustrating an example of load-displacement history characteristics of the friction damper. Ps indicates a sliding load (friction load), and K1 indicates the rigidity until the damper axial force reaches the sliding load.

この図からわかるように、すべり荷重Psをアンカー部の引抜耐力以下に設定しておくと、アンカー部が健全である範囲内にあるうちに先に摩擦ダンパーがすべり変形して地震エネルギーを吸収するので好ましい。   As can be seen from this figure, when the sliding load Ps is set to be equal to or less than the pulling strength of the anchor portion, the friction damper first slips and absorbs the seismic energy while the anchor portion is within a healthy range. Therefore, it is preferable.

すべり荷重(摩擦荷重)が前記アンカー部の引抜耐力以下となる摩擦ダンパーは、例えば、高力ボルト摩擦接合を内蔵させた場合、摩擦接合面の摩擦係数にボルトに導入した軸力を乗じた値がアンカー部の引抜耐力以下となるように設計して製作することで得られる。   For example, when a high-strength bolt friction joint is built in, the friction damper whose sliding load (friction load) is less than the pullout strength of the anchor part is a value obtained by multiplying the friction coefficient of the friction joint surface by the axial force introduced into the bolt. Can be obtained by designing and manufacturing so that it becomes less than the pulling strength of the anchor portion.

図5は、本発明のタンクの支持構造における基礎の構造例を示す断面図である。基礎5は図1、2に示すように、各タンクの周囲の地面に複数設けられている。   FIG. 5 is a cross-sectional view showing an example of the basic structure of the tank support structure of the present invention. As shown in FIGS. 1 and 2, a plurality of foundations 5 are provided on the ground around each tank.

基礎5はコンクリート製で半ば地面に埋設しており、支柱2が垂設・固定されたベースプレート6を基礎5に固定するためのアンカー部(ここではアンカーボルト7)を有する。支柱2はベースプレート6に溶接で固定され、ベースプレート6は基礎5にアンカーボルト7の頭部にあるボルトナットで取付けられている。   The foundation 5 is made of concrete and is buried in the middle of the ground, and has an anchor portion (an anchor bolt 7 in this case) for fixing the base plate 6 to which the support column 2 is suspended and fixed to the foundation 5. The column 2 is fixed to the base plate 6 by welding, and the base plate 6 is attached to the foundation 5 with bolt nuts at the heads of the anchor bolts 7.

既存のタンクの支持部材を耐震補強して本発明のタンクの支持構造とする場合は、既存の基礎5をそのまま利用することができる。   When the existing tank support member is seismically reinforced to provide the tank support structure of the present invention, the existing foundation 5 can be used as it is.

本発明で言うアンカー部の引抜耐力とは、アンカーボルト7が基礎5から抜けてしまう時の引張力であって、図5の例と図6の例とは対応しており、アンカーボルト7が4本で構成されているので、アンカーボルト1本あたりの引抜耐力を4倍にした値である。   The pulling-out strength of the anchor portion referred to in the present invention is a tensile force when the anchor bolt 7 comes off from the foundation 5, and the example of FIG. 5 corresponds to the example of FIG. Since it is composed of four bolts, it is a value obtained by quadrupling the pulling strength per anchor bolt.

図6は、支柱下端での傾斜材の支柱への取付構造例を示す図である。隣り合う2つの傾斜材3が、図5に示すようにして基礎5の上方に垂設されている支柱2の下端に取付けられた1つの取付部材8を介してピン結合で取付けられている。   FIG. 6 is a diagram illustrating an example of a structure for attaching the inclined member to the support at the lower end of the support. Two adjacent slant members 3 are attached by pin connection via one attachment member 8 attached to the lower end of the column 2 suspended above the foundation 5 as shown in FIG.

取付部材8は、事前に半割された鋼管部材にピン接合に必要なリブ等が溶接されたものであり、接合部材12により支柱2に取付けられている。傾斜材3は、ピン11によるピン接合により、該取付け部材8に取付けられている。   The attachment member 8 is obtained by welding a rib or the like necessary for pin joining to a steel pipe member that has been divided in advance, and is attached to the support column 2 by the joining member 12. The inclined member 3 is attached to the attachment member 8 by pin joining using the pins 11.

このように、傾斜材3の取付けはピン結合によるものが好ましいが、これは、支柱2の取付け部に過大な曲げモーメントを伝達させず軸力だけを傾斜材に伝えるためである。   As described above, it is preferable that the inclined member 3 is attached by pin coupling. This is because only an axial force is transmitted to the inclined member without transmitting an excessive bending moment to the attaching portion of the column 2.

図11、図12は、ピン結合による傾斜材3の支柱2への取付け例である。いずれも取付部材8の支柱2に対する着脱が簡単にできるように接合部(接合部材12)をボルト取りした例であり、図11はボルト取りの位置をピン接合部と90度ずらした例で、図12に示す例は接合部の位置をピン接合部で兼用した例である。   FIG. 11 and FIG. 12 are examples of attaching the inclined member 3 to the support column 2 by pin connection. Both are examples in which the joint portion (joining member 12) is bolted so that the mounting member 8 can be easily attached to and detached from the column 2, and FIG. 11 is an example in which the position of the bolt removal is shifted 90 degrees from the pin joint portion. The example shown in FIG. 12 is an example in which the position of the joint is also used as the pin joint.

ここでは、図6と同様、支柱下端での傾斜材の支柱への取付構造例を示すが、支柱上端においても、傾斜材は同様の構造で支柱に取付けられているのが好ましい。   Here, as in FIG. 6, an example of a structure for attaching the inclined material to the support at the lower end of the support is shown, but the inclined material is preferably attached to the support with the same structure also at the upper end of the support.

図11では、ピン孔を有する半割りの取付部材8が接合部材12により支柱2に締結固定された構造となっている。接合部材12はピン接合部に発生する軸力以上の継手耐力を有するように設計がなされている。   In FIG. 11, a halved mounting member 8 having a pin hole is fastened and fixed to the column 2 by a joining member 12. The joining member 12 is designed so as to have a joint strength greater than the axial force generated at the pin joint.

また、傾斜材3の端部にもピン孔が設けられており、ピン11によって取付部材8に連結している。ピン11は、ピン接合部に発生する軸力以上のせん断耐力を有する構造になっている。   A pin hole is also provided at the end of the inclined member 3 and is connected to the mounting member 8 by a pin 11. The pin 11 has a structure having a shear strength greater than the axial force generated at the pin joint.

図12では、ボルト取りの位置をピン接合部で兼用しているが、基本的には図11と同様である。   In FIG. 12, the position of the bolt removing is also used for the pin joint, but it is basically the same as FIG.

図7は、本発明のタンクの支持構造を用い新設した球形タンクの支持部(脚部)の一例を示す正面図である。   FIG. 7 is a front view showing an example of a support portion (leg portion) of a spherical tank newly provided using the tank support structure of the present invention.

従来、球形タンクの支持部4は図9に示すような支持構造であり、支柱2は、一般的に、外径80cm程度の鋼管柱が用いられている。しかし、図7に示すように、本発明のタンクの支持構造を用いて球形タンクを新設した場合は、支柱2を同材で構築した場合は外径を60cm程度まで細くすることができる。   Conventionally, the support portion 4 of the spherical tank has a support structure as shown in FIG. 9, and the column 2 is generally a steel pipe column having an outer diameter of about 80 cm. However, as shown in FIG. 7, when a spherical tank is newly installed using the tank support structure of the present invention, the outer diameter can be reduced to about 60 cm when the column 2 is constructed of the same material.

本発明のタンクの支持構造であれば、このように支柱2の径を細くしても耐震性能の向上が図れるので、経済的である。   The tank support structure according to the present invention is economical because the seismic performance can be improved even if the diameter of the support column 2 is reduced.

球形タンクの支持部4の構築方法は、従来と同様の方法で行えば良いが、傾斜材3の支柱2への取付けは、図6に示すようなピン結合で行うことが好ましい。   The spherical tank support 4 may be constructed by a method similar to the conventional method, but the inclined member 3 is preferably attached to the support column 2 by pin connection as shown in FIG.

図8は、本発明のタンクの支持構造を用い新設した球形タンクの支持部(脚部)の他の例を示す正面図である。   FIG. 8 is a front view showing another example of a support part (leg part) of a spherical tank newly installed using the tank support structure of the present invention.

本発明のタンクの支持構造を用いて球形タンクを新設した場合は、図7に示すように、図9に示す従来の球形タンクに比べ支柱2の本数が同じであれば径を細くすることができるが、図8に示すように、支柱2の径は同じにして本数を減らすこともできる。   When a spherical tank is newly installed using the tank support structure of the present invention, as shown in FIG. 7, the diameter can be reduced if the number of support columns 2 is the same as that of the conventional spherical tank shown in FIG. However, as shown in FIG. 8, the diameter of the support columns 2 can be the same and the number of the support columns 2 can be reduced.

例えば、従来16本使用されていたものを12本に減らすことができる。この場合は、傾斜材3の長さは長くなるので、図7に示す場合に比べ、太くより高剛性の傾斜材3を用いることが好ましい。   For example, the conventional number of 16 can be reduced to 12. In this case, since the length of the inclined member 3 becomes longer, it is preferable to use a thicker and more rigid inclined member 3 than in the case shown in FIG.

本発明のタンクの支持構造であれば、このように支柱2の本数を減らしても耐震性能の向上が図れるので、経済的である。球形タンクの支持部4の構築方法は、従来と同様の方法で行えば良いが、この場合も傾斜材3の支柱2への取付けは、図6に示すようなピン結合で行うことが好ましい。   The tank support structure of the present invention is economical because the seismic performance can be improved even if the number of the support columns 2 is reduced in this way. The method for constructing the support portion 4 of the spherical tank may be performed by a method similar to the conventional method, but in this case as well, it is preferable to attach the inclined member 3 to the support column 2 by pin connection as shown in FIG.

図13は、既存の球形型の地上タンク(球形タンク)の支持部(脚部)を耐震補強して構築した本発明のタンクの支持構造の図1以外の他例を示す正面図である。   FIG. 13 is a front view showing another example of the support structure of the tank according to the present invention which is constructed by seismic reinforcement of the support part (leg part) of an existing spherical ground tank (spherical tank).

ここでは、図に示すように、傾斜材3は一つの支柱2に対し隣接する支柱2を飛ばしてその一つ先の支柱2との支柱2、2同士間で連結している。このように、本発明のタンクの支持構造は、隣接する支柱間2、2を傾斜材3で連結した支持構造だけでなく、他の支柱2との間2、2を傾斜材3で連結した場合の支持構造も含む。   Here, as shown in the figure, the inclined member 3 is connected between the columns 2 and 2 of the column 2 adjacent to the column 2 by skipping the column 2 adjacent to the column 2. Thus, the support structure of the tank of the present invention is not only the support structure in which the adjacent struts 2 and 2 are connected by the slanting member 3 but also the other struts 2 and 2 are connected by the slanting member 3. In some cases, the support structure is also included.

図1と図13を比較してわかるように、図13の例では図1の例に比べ支柱本数が多く、隣接する支柱間が狭くなっている。このように支柱本数が多い場合は補強効果や施工効率を勘案して、図13に示す支持構造を適用することもできる。どちらの構造にするかは、設置本数や設置角度の違いによる設置効果を見極めた上で決められる。   As can be seen by comparing FIG. 1 and FIG. 13, the example of FIG. 13 has more columns than the example of FIG. 1, and the space between adjacent columns is narrower. Thus, when there are many support | pillars, the support structure shown in FIG. 13 can also be applied in consideration of a reinforcement effect and construction efficiency. Which structure is selected is determined after ascertaining the installation effect due to the difference in the number of installations and installation angles.

上記の通り、新設においては球形タンクでの例を示したが、円筒型タンクでも同様である。以上の通り、傾斜材を含む支持部材により立設固定される本発明のタンクの支持構造を用いた新設地上タンクにおいては、支柱の細径化、支柱本数の減少化が可能となり建設コストの改善、建設工期の短縮が図れるので、低コストで高耐震性のタンクが得られる。   As described above, the example of the spherical tank is shown in the new installation, but the same applies to the cylindrical tank. As described above, in the new ground tank using the tank support structure of the present invention that is erected and fixed by the support member including the inclined member, it is possible to reduce the diameter of the columns and the number of columns, thereby improving the construction cost. Because the construction period can be shortened, a low cost and high earthquake resistance tank can be obtained.

1…球形タンク、2…支柱、3…傾斜材、4…支持部(脚部)、5…基礎、6…ベースプレート、7…アンカーボルト(アンカー部)8…取付部材、9…円筒型タンク、10…筋交い(既存の傾斜材)、11…ピン、12…接合部材   DESCRIPTION OF SYMBOLS 1 ... Spherical tank, 2 ... Support | pillar, 3 ... Inclined material, 4 ... Support part (leg part), 5 ... Base, 6 ... Base plate, 7 ... Anchor bolt (anchor part) 8 ... Mounting member, 9 ... Cylindrical tank, 10 ... Bracing (existing inclined material), 11 ... Pin, 12 ... Joining member

Claims (5)

支持部材により立設固定されるタンクの支持構造であって、前記支持部材は、前記タンク周囲の地面に設けられアンカー部を有する複数の基礎と、該各基礎から垂設される複数の支柱と、1本で前記支柱同士を斜めに連結する地震エネルギー吸収機能のある傾斜材とを複数備え、前記傾斜材は、該傾斜材の下端が連結固定されている支柱の直下にある前記アンカー部の引抜耐力以下で前記地震エネルギー吸収機能が発揮されるものであることを特徴とするタンクの支持構造。   A support structure for a tank that is erected and fixed by a support member, wherein the support member includes a plurality of foundations that are provided on the ground around the tank and have anchor portions, and a plurality of columns that are suspended from the foundations. A plurality of slant members having a seismic energy absorption function that obliquely connect the struts with one piece, and the slant member is formed of the anchor portion directly below the strut to which the lower end of the slant member is coupled and fixed. A tank support structure characterized in that the seismic energy absorbing function is exhibited below the pulling-out strength. 前記傾斜材が弾塑性ブレースであり、前記弾塑性ブレースは、その降伏荷重が前記引抜耐力以下となるものであることを特徴とする請求項1に記載のタンクの支持構造。   2. The tank support structure according to claim 1, wherein the inclined member is an elastoplastic brace, and the yield load of the elastoplastic brace is equal to or less than the pulling strength. 前記傾斜材が摩擦ダンパーであり、前記摩擦ダンパーは、その摩擦荷重が前記引抜耐力以下となるものであることを特徴とする請求項1に記載のタンクの支持構造。   The tank support structure according to claim 1, wherein the inclined material is a friction damper, and the friction damper has a friction load equal to or less than the pulling strength. 前記傾斜材は、前記支柱にピン結合で連結されていることを特徴とする請求項1〜3のいずれかに記載のタンクの支持構造。   The tank support structure according to any one of claims 1 to 3, wherein the inclined member is connected to the support column by pin coupling. 前記傾斜材は、隣設される傾斜材が傾斜方向を交互に変えてW字状に設けられていることを特徴とする請求項1〜4のいずれかに記載のタンクの支持構造。   The tank support structure according to any one of claims 1 to 4, wherein the inclined member is provided in a W shape by alternately changing the inclined direction.
JP2012073450A 2012-03-28 2012-03-28 Tank support structure Active JP6126789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012073450A JP6126789B2 (en) 2012-03-28 2012-03-28 Tank support structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012073450A JP6126789B2 (en) 2012-03-28 2012-03-28 Tank support structure

Publications (2)

Publication Number Publication Date
JP2013203426A true JP2013203426A (en) 2013-10-07
JP6126789B2 JP6126789B2 (en) 2017-05-10

Family

ID=49522961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012073450A Active JP6126789B2 (en) 2012-03-28 2012-03-28 Tank support structure

Country Status (1)

Country Link
JP (1) JP6126789B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648533A (en) * 2020-12-28 2021-04-13 中国石油工程建设有限公司 Spherical tank device and supporting structure thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135147A (en) * 1977-04-28 1978-11-25 Nippon Kokan Kk <Nkk> Support construction of multi-column structure
JPS5674462A (en) * 1979-11-07 1981-06-19 Nippon Kokan Kk Earthquakeeproof brace
JPS6231098U (en) * 1985-08-10 1987-02-24
JPH1018418A (en) * 1996-07-02 1998-01-20 Ohbayashi Corp Damping structure of building
JP2002080090A (en) * 2000-09-07 2002-03-19 Ishikawajima Harima Heavy Ind Co Ltd Aseismatic structure of spherical tank
JP2011184056A (en) * 2010-03-05 2011-09-22 Ishii Iron Works Co Ltd Leg earthquake-proof reinforcing structure for spherical tank
JP3184182U (en) * 2013-04-05 2013-06-13 新日鉄住金エンジニアリング株式会社 Spherical tank support structure and cross brace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53135147A (en) * 1977-04-28 1978-11-25 Nippon Kokan Kk <Nkk> Support construction of multi-column structure
JPS5674462A (en) * 1979-11-07 1981-06-19 Nippon Kokan Kk Earthquakeeproof brace
JPS6231098U (en) * 1985-08-10 1987-02-24
JPH1018418A (en) * 1996-07-02 1998-01-20 Ohbayashi Corp Damping structure of building
JP2002080090A (en) * 2000-09-07 2002-03-19 Ishikawajima Harima Heavy Ind Co Ltd Aseismatic structure of spherical tank
JP2011184056A (en) * 2010-03-05 2011-09-22 Ishii Iron Works Co Ltd Leg earthquake-proof reinforcing structure for spherical tank
JP3184182U (en) * 2013-04-05 2013-06-13 新日鉄住金エンジニアリング株式会社 Spherical tank support structure and cross brace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648533A (en) * 2020-12-28 2021-04-13 中国石油工程建设有限公司 Spherical tank device and supporting structure thereof

Also Published As

Publication number Publication date
JP6126789B2 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
US7188452B2 (en) Sleeved bracing useful in the construction of earthquake resistant structures
JP4861067B2 (en) Steel frame
TWI617724B (en) Seismic-free chemical method for existing steel-braced support structures
JP5885950B2 (en) Seismic control wall frame structure
KR101112577B1 (en) Double Steel Frame Earthquake-Proof Device
KR101188784B1 (en) Circular brace and Construction method using that
JP5908688B2 (en) Exposed-type column base structure of steel column
JP4838554B2 (en) Boiler damping support structure
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP2001262774A (en) Steel concrete composite structural member
JP4908039B2 (en) Structure for mounting vibration energy absorber of wooden building
JP5483525B2 (en) Seismic wall
JP6122740B2 (en) Seismic reinforcement structure
JP6126789B2 (en) Tank support structure
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP2010047933A (en) Damping reinforcement frame
KR102083066B1 (en) Frame-type Damping Device and Reinforcing Method Using The Same
KR101299574B1 (en) Moment connection structure using panel zone of rectangular shape
JP2012013157A (en) Vibration-proof construction method and vibration-proof structure using elastoplastic brace
CN105464236B (en) Self-resetting buckling restrained brace
JP2011231574A (en) Attachment structure of seismic isolator
JP2006077492A (en) Earthquake resisting pier
KR102209624B1 (en) Seismic reinforcing structure
JP2017210830A (en) Junction structure of reinforcement frame column for vibration control
JP2021021287A (en) Load bearing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170216

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R150 Certificate of patent or registration of utility model

Ref document number: 6126789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250