JP2013202656A - Mold for continuous casting - Google Patents

Mold for continuous casting Download PDF

Info

Publication number
JP2013202656A
JP2013202656A JP2012074228A JP2012074228A JP2013202656A JP 2013202656 A JP2013202656 A JP 2013202656A JP 2012074228 A JP2012074228 A JP 2012074228A JP 2012074228 A JP2012074228 A JP 2012074228A JP 2013202656 A JP2013202656 A JP 2013202656A
Authority
JP
Japan
Prior art keywords
thermocouple
metal cap
mold
cooling plate
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074228A
Other languages
Japanese (ja)
Other versions
JP5439531B2 (en
Inventor
Kenya Suenaga
健也 末長
Shinichi Hirano
新一 平野
Osamu Tsutsue
修 筒江
Yuichi Ogawa
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2012074228A priority Critical patent/JP5439531B2/en
Publication of JP2013202656A publication Critical patent/JP2013202656A/en
Application granted granted Critical
Publication of JP5439531B2 publication Critical patent/JP5439531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold for continuous casting capable of simplifying a mounting structure and capable of improving temperature measurement accuracy of a cooling plate better than before.SOLUTION: A mold for continuous casting having a mold body formed with a space vertically penetrating inside is for manufacturing a cast slab by cooling and solidifying molten steel supplied to the space in the mold body. A rear surface side of a cooling plate 10 composing the mold body is provided with a sheathed thermocouple 14 including a temperature measurement part 11 covered with a metal cap 12 and the metal cap 12 mounted with a lead wire 13. The metal cap 12 is fixed to the rear surface of the cooling plate 10.

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。   The present invention relates to a continuous casting mold used for producing a slab.

従来、鋳片は、上下方向に貫通する空間部が内側に形成された鋳型本体を有する連続鋳造用鋳型を使用し、この空間部へ供給された溶鋼を鋳型本体で冷却しながら凝固させて鋳造している。
鋳片の製造に際しては、鋳型本体内で形成される凝固シェルの成長を確実に行う必要があるが、凝固シェルの成長が不安定な場合、凝固シェルが破れ、未凝固の溶鋼が流出するブレークアウトが発生し、例えば、鋳造作業の中断や長時間の休止、更には設備損傷のような事故を招く恐れがある。
そこで、このブレークアウトの発生を予知する方法として、例えば、特許文献1に示すように、鋳型本体を構成する冷却板に複数の熱電対を埋設し、これら熱電対の温度変化等を検出する方法が開示されている。
Conventionally, a slab has been cast by using a continuous casting mold having a mold body in which a space portion penetrating in the vertical direction is formed inside, and solidifying the molten steel supplied to the space portion while cooling the mold body. doing.
When producing slabs, it is necessary to ensure that the solidified shell formed in the mold body grows. However, if the solidified shell growth is unstable, the solidified shell is broken and breaks in which unsolidified molten steel flows out. Out may occur, for example, and there may be an accident such as interruption of a casting operation, a long pause, and damage to equipment.
Therefore, as a method for predicting the occurrence of this breakout, for example, as shown in Patent Document 1, a plurality of thermocouples are embedded in a cooling plate constituting a mold body, and a temperature change or the like of these thermocouples is detected. Is disclosed.

しかし、前記従来の技術で使用している熱電対は、銅コンスタンタン線の先端に銅線やエナメル線を接続し、これを熱電対の周りに巻き線として巻き付けた構造となっているため、構成が複雑であり、使い勝手が悪い。また、熱電対は、棒状(コンスタンタン棒)であるため曲げることが難しく、場所によっては取付けができない恐れがある。
そこで、本発明者らは、冷却板の温度測定を行う熱電対として、構成が簡単なシース熱電対を使用している。このシース熱電対の取付け構造を、図3に示す。
図3に示すように、冷却板80の裏面側には、多数の導水溝81が鋳造方向に沿って設けられ、この冷却板80の裏面に当接配置したバックプレート82の給水部及び排水部(図示しない)を介して、各導水溝81に冷却水を流し、冷却板80を冷却している。
However, the thermocouple used in the conventional technology has a structure in which a copper wire or enamel wire is connected to the tip of the copper constantan wire, and this is wound around the thermocouple as a winding. Is complicated and unusable. Moreover, since the thermocouple is rod-shaped (constantan rod), it is difficult to bend it, and there is a possibility that it cannot be installed depending on the location.
Therefore, the present inventors use a sheathed thermocouple having a simple configuration as a thermocouple for measuring the temperature of the cooling plate. The attachment structure of this sheath thermocouple is shown in FIG.
As shown in FIG. 3, on the back surface side of the cooling plate 80, a large number of water guide grooves 81 are provided along the casting direction, and the water supply portion and the drainage portion of the back plate 82 disposed in contact with the back surface of the cooling plate 80. Cooling water is allowed to flow in each water guide groove 81 via (not shown) to cool the cooling plate 80.

このバックプレート82は、多数のボルト83によって冷却板80に取付け固定されている。具体的には、ボルト83の先側に形成された雄ねじが、冷却板80に形成された雌ねじに螺合し、ボルト83の基側に形成された雄ねじに、バックプレート82の裏面側に配置される袋ナット84が螺合する。
ここで、冷却板80に当接するボルト83の先側には、Oリング85が取付けられ、バックプレート82の裏面から突出するボルト83の基側には、パッキン86、シールリング87、及びOリング88が取付けられ、冷却水の漏出を防止している。
The back plate 82 is attached and fixed to the cooling plate 80 by a large number of bolts 83. Specifically, the male screw formed on the front side of the bolt 83 is screwed with the female screw formed on the cooling plate 80, and the male screw formed on the base side of the bolt 83 is disposed on the back side of the back plate 82. The cap nut 84 to be engaged is screwed.
Here, an O-ring 85 is attached to the front side of the bolt 83 that contacts the cooling plate 80, and a packing 86, a seal ring 87, and an O-ring are provided on the base side of the bolt 83 protruding from the back surface of the back plate 82. 88 is attached to prevent leakage of cooling water.

このボルト83には、その軸心方向に貫通孔89が形成され、この貫通孔89に熱電対90を挿通し、熱電対90の先端部に設けられた温度測定部91を、冷却板80の裏面に押付けている。具体的には、先部にフランジ部92が設けられた熱電対90に、バネ材93、管状の圧下ロッド94、及びパイプ95を順次挿通し、袋ナット84を締め付けることで、フランジ部92と圧下ロッド94との間に配置されたバネ材93の弾性力により、冷却板80の裏面側に形成した穴96内に挿入された温度測定部91を、冷却板80の裏面に押付けている。
これにより、冷却板80の温度を、熱電対90により測定することができる。
A through hole 89 is formed in the bolt 83 in the axial direction. A thermocouple 90 is inserted into the through hole 89, and a temperature measuring unit 91 provided at the tip of the thermocouple 90 is connected to the cooling plate 80. Pressed against the back. Specifically, the spring member 93, the tubular reduction rod 94, and the pipe 95 are sequentially inserted into the thermocouple 90 provided with the flange portion 92 at the tip, and the cap nut 84 is tightened to The temperature measuring unit 91 inserted into the hole 96 formed on the back surface side of the cooling plate 80 is pressed against the back surface of the cooling plate 80 by the elastic force of the spring member 93 disposed between the reduction rod 94.
Thereby, the temperature of the cooling plate 80 can be measured by the thermocouple 90.

しかし、上記した鋳型は、熱電対90の温度測定部91を、バネ材93で冷却板80の裏面に押付ける構造となっているため、例えば、バネ材93の劣化等により、冷却板80への温度測定部91の押付け力が弱くなり、冷却板80の温度の熱電対への応答性が悪くなって、測温精度が低下する恐れがある。
また、上記したように、バネ材93を用いる構造であるため、熱電対90の取付け構造が複雑になる。このため、熱電対90の取付けに、より広い場所が必要となるため、例えば、熱電対90を密に配置することができず、多くの必要な測温情報を得ることができない場合があった。
However, since the above-described mold has a structure in which the temperature measuring unit 91 of the thermocouple 90 is pressed against the back surface of the cooling plate 80 by the spring material 93, for example, due to deterioration of the spring material 93 or the like, The pressing force of the temperature measuring unit 91 becomes weak, the responsiveness of the temperature of the cooling plate 80 to the thermocouple deteriorates, and the temperature measurement accuracy may be lowered.
Further, as described above, since the spring material 93 is used, the mounting structure of the thermocouple 90 is complicated. For this reason, since a wider place is needed for attachment of the thermocouple 90, for example, the thermocouple 90 could not be densely arranged and a lot of necessary temperature measurement information could not be obtained. .

そこで、例えば、特許文献2に示すように、被測温金属体に先端部を溶接固着させるシース熱電対(先端固着型シース熱電対)が開示されている。
このシース熱電対は、シースの外側に、このシースよりも良導電性の材料よりなる金属製補助管を外装すると共に、この金属製補助管の先端を先端部又はその近傍のシース外面に通電可能に接合し、金属製補助管を通じて溶接用高電流を流すことで、先端部が被測温金属体に溶接固着される構造であるので、溶接用高電流はシース外側の金属製補助管を流れ、内側のシースの赤熱現象が回避される。
Thus, for example, as shown in Patent Document 2, a sheath thermocouple (tip-fixed sheathed thermocouple) is disclosed in which a tip portion is welded and fixed to a metal body to be measured.
This sheath thermocouple is capable of encasing a metal auxiliary tube made of a material that is more conductive than the sheath on the outside of the sheath and energizing the tip of the metal auxiliary tube to the outer surface of the sheath at or near the tip. Since the tip is welded and fixed to the metal body to be measured by flowing a high current for welding through the metal auxiliary pipe, the high current for welding flows through the metal auxiliary pipe outside the sheath. The red heat phenomenon of the inner sheath is avoided.

特開2006−284503号公報JP 2006-284503 A 実用新案登録第3150476号公報Utility Model Registration No. 3150476

しかしながら、前記従来のシース熱電対は、シースの外側に金属製補助管を外装する構造であるため、金属製補助管も含めたシース熱電対の幅(外径)が広く(大きく)なり、例えば、シース熱電対を密に配置できない恐れがある。また、金属製補助管の厚みによっては、シース熱電対を曲げることが難しくなり、場所によっては取付けができない恐れがある。そして、金属製補助管をシースの外側に外装する必要があるため、例えば、構造が複雑であり、またシース熱電対の使用前に、金属製補助管の細孔にシース熱電対を挿入する必要があって作業性が悪く、更には金属製補助管の長さが長くになる伴い、その材料コストがかかって不経済である。更に、シースの外側の金属製補助管が、良導電性の管(銅又は銅合金)であるため、温度測定時に測温点の熱が金属製補助管に伝わり(熱が奪われ)、正確な測温情報が得られない問題がある。   However, since the conventional sheathed thermocouple has a structure in which a metal auxiliary tube is externally provided on the outside of the sheath, the width (outer diameter) of the sheath thermocouple including the metal auxiliary tube becomes wide (large). The sheath thermocouple may not be densely arranged. Further, depending on the thickness of the metal auxiliary pipe, it is difficult to bend the sheath thermocouple, and there is a possibility that it cannot be attached depending on the location. And since it is necessary to arm the metal auxiliary tube outside the sheath, for example, the structure is complicated, and it is necessary to insert the sheath thermocouple into the pore of the metal auxiliary tube before using the sheath thermocouple Therefore, workability is poor, and further, the length of the metal auxiliary pipe is increased, which increases the material cost and is uneconomical. Furthermore, since the metal auxiliary pipe outside the sheath is a highly conductive pipe (copper or copper alloy), the heat at the temperature measuring point is transferred to the metal auxiliary pipe (heat is taken away) at the time of temperature measurement. There is a problem that can not be obtained temperature measurement information.

本発明はかかる事情に鑑みてなされたもので、取付け構造を簡単にできると共に、取付け位置の自由度を広げることができ、しかも作業性よく経済的に、冷却板の測温精度を従来よりも向上可能な連続鋳造用鋳型を提供することを目的とする。   The present invention has been made in view of such circumstances. The mounting structure can be simplified, the degree of freedom of the mounting position can be expanded, and the temperature measurement accuracy of the cooling plate is improved compared with the prior art with good workability and economy. An object of the present invention is to provide a continuous casting mold that can be improved.

前記目的に沿う本発明に係る連続鋳造用鋳型は、上下方向に貫通する空間部が内側に形成された鋳型本体を有し、該空間部へ供給された溶鋼を前記鋳型本体で冷却しながら凝固させて鋳片を製造する連続鋳造用鋳型において、
前記鋳型本体を構成する冷却板の裏面側には、温度測定部を金属キャップで覆い、しかも該金属キャップにリード線を取付けたシース熱電対が設けられ、前記冷却板の裏面に前記金属キャップが固着されている。
The continuous casting mold according to the present invention that meets the above object has a mold body in which a space portion penetrating in the vertical direction is formed inside, and solidifies while cooling the molten steel supplied to the space portion by the mold body. In a continuous casting mold for producing a slab,
On the back side of the cooling plate constituting the mold body, a sheath thermocouple is provided in which the temperature measuring part is covered with a metal cap and a lead wire is attached to the metal cap, and the metal cap is provided on the back side of the cooling plate. It is fixed.

本発明に係る連続鋳造用鋳型は、冷却板の裏面に、シース熱電対の温度測定部を覆った金属キャップが固着されているため、冷却板の温度のシース熱電対への応答性を良好にでき、冷却板の測温精度を従来よりも向上できる。
また、金属キャップにリード線が取付けられているため、金属キャップの固着に際しては、例えば、スタッド溶接法を用いてリード線に電流を流すことにより、金属キャップを冷却板の裏面に固着させることができるため、取付け構造を簡単にできる。
更に、リード線を用いて金属キャップを冷却板の裏面に固着させることができるので、従来のように、シースの外側に金属製補助管を外装する必要がない。これにより、シース熱電対を幅広とすることなく、しかもシース熱電対を容易に曲げることができるため、取付け位置の自由度を広げる(例えば、シース熱電対を密に配置する)ことができ、しかも、作業性が良好で経済的である。更に、温度測定時に測温点の熱が金属製補助管に奪われることもなくなり、正確な測温情報が得られ易くなる。
In the continuous casting mold according to the present invention, a metal cap that covers the temperature measuring portion of the sheath thermocouple is fixed to the back surface of the cooling plate, so that the response of the cooling plate temperature to the sheath thermocouple is excellent. The temperature measurement accuracy of the cooling plate can be improved as compared with the conventional case.
In addition, since the lead wire is attached to the metal cap, when the metal cap is fixed, for example, the metal cap can be fixed to the back surface of the cooling plate by passing a current through the lead wire using a stud welding method. Therefore, the mounting structure can be simplified.
Furthermore, since the metal cap can be fixed to the back surface of the cooling plate using the lead wire, it is not necessary to externally attach the metal auxiliary tube to the outside of the sheath. As a result, the sheath thermocouple can be easily bent without making the sheath thermocouple wide, so that the degree of freedom of the mounting position can be expanded (for example, the sheath thermocouple can be arranged densely). Good workability and economical. Furthermore, heat at the temperature measuring point is not lost to the metal auxiliary pipe during temperature measurement, and accurate temperature measurement information is easily obtained.

(A)は本発明の一実施の形態に係る連続鋳造用鋳型に設けられた熱電対の取付け構造を示す部分側断面図、(B)は同熱電対の取付け前の状態を示す側面図、(C)は同熱電対の取付け構造を示す部分拡大側断面図である。(A) is a partial side sectional view showing a thermocouple mounting structure provided in a continuous casting mold according to an embodiment of the present invention, (B) is a side view showing a state before the thermocouple is mounted, (C) is a partial enlarged side sectional view showing the mounting structure of the thermocouple. (A)は本発明の他の実施の形態に係る連続鋳造用鋳型に設けられた熱電対の取付け構造を示す部分側断面図、(B)は同熱電対の取付け構造を示す裏面図である。(A) is a fragmentary sectional side view which shows the attachment structure of the thermocouple provided in the casting mold for continuous casting which concerns on other embodiment of this invention, (B) is a back view which shows the attachment structure of the thermocouple. . 従来例に係る連続鋳造用鋳型に設けられた熱電対の取付け構造を示す平断面図である。It is a plane sectional view which shows the attachment structure of the thermocouple provided in the casting mold for continuous casting which concerns on a prior art example.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1(A)〜(C)に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、上下方向に貫通する空間部(図示しない)が内側に形成された鋳型本体を有し、空間部へ供給された溶鋼を鋳型本体で冷却しながら凝固させて鋳片を製造するものであり、鋳型本体を構成し、それぞれ冷却板の一例である一対の短辺(図示しない)及び一対の長辺10の裏面側には、温度測定部11を金属キャップ12で覆い、しかも金属キャップ12にリード線13を取付けたシース熱電対14が設けられ、一対の短辺及び一対の長辺10の裏面に金属キャップ12が固着されている。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1A to 1C, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention has a space portion (not shown) penetrating in the vertical direction on the inside. The mold body is formed by solidifying while cooling the molten steel supplied to the space portion with the mold body, and the mold body is formed, and each of the pair is an example of a cooling plate. A sheath thermocouple 14 in which the temperature measuring unit 11 is covered with a metal cap 12 and a lead wire 13 is attached to the metal cap 12 is provided on the short side (not shown) and the back side of the pair of long sides 10. A metal cap 12 is fixed to the back side of the short side and the pair of long sides 10. This will be described in detail below.

図1(A)に示すように、鋳型は、間隔を有して対向配置された一対の短辺と、この短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺10とを有する四組鋳型である。
なお、各短辺と各長辺10は、銅又は銅合金で構成され、この短辺と長辺10の各裏面に当接し固定されるバックプレート15(支持部材の一例)は、ステンレス又は鋼で構成されている。また、各短辺と各長辺10の裏面側には、多数の導水溝が鋳造方向(引抜き方向)に設けられている(図3参照)。
As shown in FIG. 1 (A), the mold has a pair of short sides arranged opposite to each other with a gap, and a pair of long sides 10 arranged opposite to each other with the short sides sandwiched from both sides in the width direction. Is a quadruple mold having
In addition, each short side and each long side 10 are comprised with copper or a copper alloy, and the back plate 15 (an example of a support member) which contacts and is fixed to each back surface of this short side and the long side 10 is stainless steel or steel. It consists of Moreover, many water guide grooves are provided in the casting direction (drawing direction) on the back side of each short side and each long side 10 (see FIG. 3).

バックプレート15は、多数のボルト16によって、長辺10に取付け固定されている(短辺側も同様)。具体的には、ボルト16の先側に形成された雄ねじが、長辺10の裏側に形成された雌ねじに螺合し、ボルト16の基側に形成された雄ねじに、バックプレート15の裏面側に配置される袋ナットが螺合する。なお、長辺10に当接するボルト16の先側には、Oリング17が取付けられ、バックプレート15の裏面から突出するボルト16の基側には、パッキン、シールリング、及びOリングが取付けられ、冷却水の漏出を防止している(図3参照)。   The back plate 15 is attached and fixed to the long side 10 by a large number of bolts 16 (the same applies to the short side). Specifically, the male screw formed on the front side of the bolt 16 is screwed with the female screw formed on the back side of the long side 10, and the male screw formed on the base side of the bolt 16 is connected to the back side of the back plate 15. The cap nut arranged in is screwed together. An O-ring 17 is attached to the front side of the bolt 16 that contacts the long side 10, and a packing, a seal ring, and an O-ring are attached to the base side of the bolt 16 that protrudes from the back surface of the back plate 15. The leakage of cooling water is prevented (see FIG. 3).

図1(A)、(B)に示すように、上記したボルト16には、その軸心方向に貫通孔18が形成され、この貫通孔18内にシース熱電対14が挿通されている。
このシース熱電対14の基本構造は、従来公知であり、金属保護管19(例えば、ステンレス製)内に絶縁材20(酸化マグネシウム等の無機絶縁物)を介して、一対の互いに異なる熱電能を有する熱電対素線21、22(ここでは、銅とコンスタンタン)を配することで構成されている。なお、一対の熱電対素線21、22は、袋ナットの軸心方向に設けられた貫通孔から外部へ突出し、使用にあっては、各熱電対素線21、22の2つの接点の一端(冷接点)と他端(熱接点)に温度差が与えられることで、起電力が生じ、この起電力の電圧を測定し、既知の起電力表と対比することにより、他端の温度が測温される。
As shown in FIGS. 1A and 1B, the bolt 16 has a through hole 18 formed in the axial direction thereof, and a sheath thermocouple 14 is inserted into the through hole 18.
The basic structure of the sheath thermocouple 14 is conventionally known, and a pair of different thermoelectric powers are provided via an insulating material 20 (inorganic insulator such as magnesium oxide) in a metal protective tube 19 (for example, made of stainless steel). The thermocouple element wires 21 and 22 (here, copper and constantan) are provided. The pair of thermocouple wires 21 and 22 protrudes from a through hole provided in the axial direction of the cap nut, and in use, one end of two contact points of each thermocouple wire 21 and 22 is used. An electromotive force is generated when a temperature difference is given between the (cold junction) and the other end (thermal junction), and the voltage of this electromotive force is measured and compared with a known electromotive force table. The temperature is measured.

シース熱電対14は、線径が、例えば、φ1mm〜φ5mm程度のものであり、その先端部の温度測定部11が、アルメル製の金属キャップ(金属製のキャップ)12で覆われている。
このシース熱電対14への金属キャップ12の取付けは、図1(C)に示すように、金属キャップ12の基側に形成された断面円形の凹部23内に、シース熱電対14の温度測定部11を差込み、金属キャップ12の基端部をシース熱電対14の金属保護管19に、銀ロウ24を用いて固定することにより行っている。しかし、金属キャップがシース熱電対から脱落しなければ、この方法に特に限定されるものではなく、他の方法を採用することも勿論可能である。
The sheath thermocouple 14 has a wire diameter of, for example, about φ1 mm to φ5 mm, and the temperature measuring unit 11 at the tip is covered with an alumel metal cap (metal cap) 12.
The metal cap 12 is attached to the sheath thermocouple 14 as shown in FIG. 1C, in the recess 23 having a circular cross section formed on the base side of the metal cap 12, the temperature measuring portion of the sheath thermocouple 14. 11 is inserted, and the base end portion of the metal cap 12 is fixed to the metal protective tube 19 of the sheath thermocouple 14 by using a silver solder 24. However, the method is not particularly limited to this method as long as the metal cap does not fall off the sheath thermocouple, and other methods can of course be employed.

ここで、図1(B)に示すように、未使用状態(固着前)の金属キャップ12の先部は、先細り形状(円錐状)となって尖っている(図1(A)の二点鎖線)が、これに限定されるものではない。
また、金属キャップの材質は、アルメルに限定されるものではなく、導電性があって適度な強度を有する他の材質、例えば、銅や銅合金、又はニッケル合金等でもよい。
そして、上記したシース熱電対は、例えば、バックプレートに貫通孔を形成し、この貫通孔内に挿通することもできる。この場合、バックプレートの裏面側にシール部材を設けて、貫通孔からの冷却水の漏出を防止する。
Here, as shown in FIG. 1B, the tip portion of the metal cap 12 in an unused state (before fixing) has a tapered shape (conical shape) and is pointed (two points in FIG. 1A). The chain line) is not limited to this.
The material of the metal cap is not limited to alumel, and may be another material having conductivity and appropriate strength, such as copper, copper alloy, or nickel alloy.
And the above-mentioned sheath thermocouple can also be formed, for example, by forming a through hole in the back plate and inserting it into the through hole. In this case, a sealing member is provided on the back side of the back plate to prevent leakage of cooling water from the through hole.

上記した金属キャップ12には、図1(B)に示すように、リード線13が取付けられている。なお、金属保護管19の表面は、PTFE(ポリテトラフルオロエチレン)製の熱収縮チューブ25で覆われているが、絶縁耐熱テープを巻装したり、絶縁耐熱チューブを外装したり、あるいは絶縁保護ペーストを塗布したりすることもできる。
具体的には、片面を接着処理したPTFE樹脂フィルムからなるテープや無機ガラス繊維からなるテープ、無機ガラス繊維からなるチューブ、無機セラミックス系接着剤などの絶縁耐熱ペーストなどを用いることができる。
A lead wire 13 is attached to the metal cap 12 as shown in FIG. The surface of the metal protective tube 19 is covered with a heat-shrinkable tube 25 made of PTFE (polytetrafluoroethylene). However, the insulating heat-resistant tape is wound around, the insulating heat-resistant tube is externally mounted, or the insulation protection is performed. A paste can also be applied.
Specifically, a tape made of a PTFE resin film bonded on one side, a tape made of inorganic glass fiber, a tube made of inorganic glass fiber, an insulating heat resistant paste such as an inorganic ceramic adhesive, or the like can be used.

リード線13は、例えば、複数本の細い銅線(φ0.2mm程度)を縒ってFEP(テトラフルオロエチレン及びヘキサフルオロプロピレンの共重合体を主成分とする樹脂)で被覆した線であり、金属キャップ12の基部の金属保護管19に、熱収縮チューブ25を介して複数回(ここでは、3回)巻付けられ、銀ロウで固定されている。
なお、リード線の素材は、例えば、金属保護管19と比較して電気抵抗が低く、良導電性の素材であれば、上記した構成に限定されるものではなく、他の素材(例えば、銅合金)を用いることも勿論できる。また、この素材(例えば、銅線)を被覆する被覆材は、溶接電流の短絡を防止して、溶接をより確実にできるものであれば、特に限定されるものではなく、上記した金属保護管の表面を被覆する材料を用いることもできる。
The lead wire 13 is, for example, a wire covered with FEP (a resin mainly composed of a copolymer of tetrafluoroethylene and hexafluoropropylene) over a plurality of thin copper wires (about φ0.2 mm), The metal protective tube 19 at the base of the metal cap 12 is wound a plurality of times (here, three times) via a heat shrinkable tube 25 and fixed with silver solder.
Note that the material of the lead wire is not limited to the above-described configuration as long as it has a low electrical resistance compared to the metal protective tube 19 and a highly conductive material. For example, other materials (for example, copper Of course, an alloy can also be used. Further, the covering material for covering this material (for example, copper wire) is not particularly limited as long as it can prevent welding current from being short-circuited and make welding more reliable. It is also possible to use a material that coats the surface.

上記した金属キャップ12の長辺10の裏面への固着は、以下の手順で行う。
まず、温度測定位置に凹部26が形成された長辺10の裏面にバックプレート15を配置し、多数のボルト16でバックプレート15の取付け固定を行った後、予め準備したシース熱電対14、即ち温度測定部11が金属キャップ12で覆われ、しかも金属キャップ12にリード線13が取付けられたシース熱電対14を、各ボルト16の貫通孔18内に挿通する。
これにより、長辺10の裏面側に、シース熱電対14が配置される。
The metal cap 12 is fixed to the back surface of the long side 10 according to the following procedure.
First, after the back plate 15 is arranged on the back surface of the long side 10 where the concave portion 26 is formed at the temperature measurement position, and the back plate 15 is attached and fixed with a large number of bolts 16, the sheath thermocouple 14 prepared in advance, that is, The sheath thermocouple 14 in which the temperature measuring unit 11 is covered with the metal cap 12 and the lead wire 13 is attached to the metal cap 12 is inserted into the through hole 18 of each bolt 16.
Thereby, the sheath thermocouple 14 is arranged on the back side of the long side 10.

次に、スタッド溶接機(図示しない)の一方の電極をリード線13の素材が露出した部分(被覆材で覆われていない部分)に取付け、他方の電極を長辺10の側壁に接続して、通電状態で凹部26内に金属キャップ12を配置する。
これにより、凹部26の底位置と金属キャップ12とが、十分接近したところで高電流が流れ、金属キャップ12の先端部分と凹部26の底との間でアークが発生し、金属キャップ12が長辺10の裏面に固着(溶着)される(短辺も同様)。
Next, one electrode of a stud welding machine (not shown) is attached to a portion where the material of the lead wire 13 is exposed (portion not covered with the covering material), and the other electrode is connected to the side wall of the long side 10. The metal cap 12 is disposed in the recess 26 while being energized.
As a result, a high current flows when the bottom position of the recess 26 and the metal cap 12 are sufficiently close to each other, an arc is generated between the tip portion of the metal cap 12 and the bottom of the recess 26, and the metal cap 12 has a long side. 10 is fixed (welded) to the back surface (the same applies to the short side).

従って、金属キャップ12を溶着させる際に発生する熱で、肉厚が非常に薄い(例えば、0.1〜0.5mm程度)金属保護管を損傷させる(例えば、溶損、劣化、破れ)ことなく、金属キャップ12を長辺10の裏面に固着できる。
このように、金属キャップ12を長辺10の裏面へ固着した場合、図1(C)に示すように、シース熱電対14の各熱電対素線21、22が、長辺10の裏面に直接接触することが好ましいが、シース熱電対の各熱電対素線が、金属キャップの金属を介して、長辺の裏面に間接的に接触してもよい。
Therefore, the heat generated when the metal cap 12 is welded damages the metal protective tube having a very thin thickness (for example, about 0.1 to 0.5 mm) (for example, melting, deterioration, and tearing). The metal cap 12 can be fixed to the back surface of the long side 10.
When the metal cap 12 is fixed to the back surface of the long side 10 in this way, the thermocouple wires 21 and 22 of the sheath thermocouple 14 are directly attached to the back surface of the long side 10 as shown in FIG. Although it is preferable to contact, each thermocouple strand of a sheath thermocouple may contact the back surface of a long side indirectly through the metal of a metal cap.

なお、長辺10の裏面にバックプレート15を取付け固定する前に、金属キャップ12を長辺10の裏面に固着させることもできる。この場合、長辺10に多数のボルト16を取付け、シース熱電対14を各ボルト16の貫通孔18内に挿通し、上記した方法で、金属キャップ12を長辺10の裏面に固着させた後、長辺10の裏面にバックプレート15を取付け固定する。
上記したように、長辺10の裏面に金属キャップ12を固着させることで、シース熱電対14の取付け構造を簡単にできると共に、長辺10の温度のシース熱電対14への応答性を良好にでき、長辺10の測温精度を従来よりも向上できる。
The metal cap 12 can be fixed to the back surface of the long side 10 before the back plate 15 is attached and fixed to the back surface of the long side 10. In this case, after attaching a large number of bolts 16 to the long side 10, inserting the sheath thermocouple 14 into the through holes 18 of each bolt 16, and fixing the metal cap 12 to the back surface of the long side 10 by the method described above. The back plate 15 is attached and fixed to the back surface of the long side 10.
As described above, by attaching the metal cap 12 to the back surface of the long side 10, the mounting structure of the sheath thermocouple 14 can be simplified, and the response to the sheath thermocouple 14 at the temperature of the long side 10 can be improved. The temperature measurement accuracy of the long side 10 can be improved as compared with the conventional case.

このように、シース熱電対14の取付け構造は簡単であるため、図2(A)、(B)に示すように、複数のシース熱電対14を長辺27の裏面に密に取付けることも可能である。以下、簡単に説明する。
まず、長辺27の裏面側の温度測定位置に穴28を、例えば、2〜10mm(好ましくは上限5mm)の間隔で複数形成する。この各穴28は、金属キャップ12を配置する小径穴部29(例えば、直径が1.5〜6mm程度)と、この小径穴部29の基側に連続し、直径が小径穴部29より大きい大径穴部30(例えば、直径が3〜10mm程度)とで構成されている。
As described above, since the attachment structure of the sheath thermocouple 14 is simple, a plurality of sheath thermocouples 14 can be densely attached to the back surface of the long side 27 as shown in FIGS. It is. A brief description is given below.
First, a plurality of holes 28 are formed at intervals of, for example, 2 to 10 mm (preferably an upper limit of 5 mm) at the temperature measurement position on the back side of the long side 27. Each of the holes 28 is continuous with a small-diameter hole portion 29 (for example, having a diameter of about 1.5 to 6 mm) in which the metal cap 12 is disposed and a base side of the small-diameter hole portion 29, and has a diameter larger than the small-diameter hole portion 29. It is comprised with the large diameter hole part 30 (for example, a diameter is about 3-10 mm).

そして、ボルト31、座金32、シールゴム33、及び座金34が取付けられた各シース熱電対14を、複数の穴28内にそれぞれ配置する。このとき、温度測定部11は小径穴部29内に配置され、ボルト31、座金32、シールゴム33、及び座金34は大径穴部30内に配置され、ボルト31を回すことにより、大径穴部30側から小径穴部29内への冷却水の漏出を防止できる。
ここで、金属キャップ12は、小径穴部29内の長辺27の裏面に固着させているが、この固着時期は、ボルト31によって座金32、シールゴム33、及び座金34を固定する前又は後のいずれでもよい。
Each sheath thermocouple 14 to which the bolt 31, the washer 32, the seal rubber 33, and the washer 34 are attached is disposed in the plurality of holes 28. At this time, the temperature measuring unit 11 is disposed in the small-diameter hole 29, and the bolt 31, the washer 32, the seal rubber 33, and the washer 34 are disposed in the large-diameter hole 30. The leakage of the cooling water from the portion 30 side into the small diameter hole portion 29 can be prevented.
Here, the metal cap 12 is fixed to the back surface of the long side 27 in the small-diameter hole 29. This fixing time is before or after fixing the washer 32, the seal rubber 33, and the washer 34 with the bolt 31. Either is acceptable.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、シース熱電対を、一対の短辺及び一対の長辺の各裏面に固着させた場合について説明したが、シース熱電対を、短辺の裏面のみ又は長辺の裏面のみに、固着させてもよい。また、シース熱電対の取付け構造を、従来の取付け構造(図3参照)と併用することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the above embodiment, the case where the sheath thermocouple is fixed to the back surfaces of the pair of short sides and the pair of long sides has been described. Further, it may be fixed. Moreover, the attachment structure of a sheath thermocouple can also be used together with the conventional attachment structure (refer FIG. 3).

また、前記実施の形態においては、熱電対を設ける対象が、四組鋳型の鋳型本体の冷却板である場合について説明したが、熱電対を設ける鋳型であれば、特に限定されるものではなく、例えば、ビレットやビームブランク(H型鋼用に使用)を製造する鋳型、更には、鍛造又は鍛造した銅ブロックに導水孔を穿孔したブロック鋳型に、本願発明を適用することも勿論可能である。なお、鋳型の構造は、例えば、従来公知の垂直曲げ型の連続鋳造機に使用する鋳型でもよく、また湾曲型の連続鋳造機に使用する鋳型でもよい。   Further, in the above-described embodiment, the case where the target for providing the thermocouple is the cooling plate of the mold body of the four-set mold is not particularly limited as long as the mold is provided with the thermocouple, For example, it is of course possible to apply the present invention to a mold for manufacturing a billet or a beam blank (used for H-shaped steel), and further to a block mold in which water conduction holes are drilled in a forged or forged copper block. The mold structure may be, for example, a mold used in a conventionally known vertical bending type continuous casting machine or a mold used in a curved type continuous casting machine.

そして、前記実施の形態においては、シース熱電対として、熱電対素線を銅とコンスタンタンで構成したものを使用したが、これに限定されるものではなく、使用環境に応じて、例えば、JIS C1602−1995のN熱電対(+脚(熱起電力を図る計器の+端子へ接続すべき脚):ニッケル、クロム、及びシリコンを主とした合金、−脚(+脚とは反対側の脚):ニッケル及びシリコンを主とした合金)、K熱電対(+脚:ニッケル及びクロムを主とした合金、−脚:ニッケルを主とした合金)、E熱電対(+脚:ニッケル及びクロムを主とした合金、−脚:銅及びニッケルを主とした合金)、J熱電対(+脚:鉄、−脚:銅及びニッケルを主とした合金)、T熱電対(+脚:銅、−脚:銅及びニッケルを主とした合金)等、がある。   In the embodiment, the sheath thermocouple is a thermocouple element made of copper and constantan. However, the present invention is not limited to this, and, for example, JIS C1602 can be used depending on the use environment. -1995 N thermocouple (+ leg (leg to be connected to the + terminal of the instrument for thermoelectromotive force): an alloy mainly composed of nickel, chromium and silicon,-leg (+ leg opposite to the leg) : Alloy mainly composed of nickel and silicon), K thermocouple (+ leg: alloy mainly composed of nickel and chromium,-Leg: alloy mainly composed of nickel), E thermocouple (+ leg: mainly composed of nickel and chromium) Alloy,-leg: alloy mainly composed of copper and nickel), J thermocouple (+ leg: iron,-leg: alloy mainly composed of copper and nickel), T thermocouple (+ leg: copper,-leg) : Alloys mainly composed of copper and nickel).

10:長辺(冷却板)、11:温度測定部、12:金属キャップ、13:リード線、14:シース熱電対、15:バックプレート、16:ボルト、17:Oリング、18:貫通孔、19:金属保護管、20:絶縁材、21、22:熱電対素線、23:凹部、24:銀ロウ、25:熱収縮チューブ、26:凹部、27:長辺、28:穴、29:小径穴部、30:大径穴部、31:ボルト、32:座金、33:シールゴム、34:座金 10: Long side (cooling plate), 11: Temperature measuring part, 12: Metal cap, 13: Lead wire, 14: Sheath thermocouple, 15: Back plate, 16: Bolt, 17: O-ring, 18: Through hole, 19: Metal protective tube, 20: Insulating material, 21, 22: Thermocouple wire, 23: Recess, 24: Silver brazing, 25: Heat shrinkable tube, 26: Recess, 27: Long side, 28: Hole, 29: Small diameter hole, 30: Large diameter hole, 31: Bolt, 32: Washer, 33: Seal rubber, 34: Washer

Claims (1)

上下方向に貫通する空間部が内側に形成された鋳型本体を有し、該空間部へ供給された溶鋼を前記鋳型本体で冷却しながら凝固させて鋳片を製造する連続鋳造用鋳型において、
前記鋳型本体を構成する冷却板の裏面側には、温度測定部を金属キャップで覆い、しかも該金属キャップにリード線を取付けたシース熱電対が設けられ、前記冷却板の裏面に前記金属キャップが固着されていることを特徴とする連続鋳造用鋳型。
In a continuous casting mold for producing a slab by solidifying the molten steel supplied to the space portion while cooling with the mold body, the mold body having a space portion penetrating in the vertical direction formed inside,
On the back side of the cooling plate constituting the mold body, a sheath thermocouple is provided in which the temperature measuring part is covered with a metal cap and a lead wire is attached to the metal cap, and the metal cap is provided on the back side of the cooling plate. A continuous casting mold characterized by being fixed.
JP2012074228A 2012-03-28 2012-03-28 Continuous casting mold and manufacturing method thereof Active JP5439531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074228A JP5439531B2 (en) 2012-03-28 2012-03-28 Continuous casting mold and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074228A JP5439531B2 (en) 2012-03-28 2012-03-28 Continuous casting mold and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013202656A true JP2013202656A (en) 2013-10-07
JP5439531B2 JP5439531B2 (en) 2014-03-12

Family

ID=49522345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074228A Active JP5439531B2 (en) 2012-03-28 2012-03-28 Continuous casting mold and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5439531B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367480A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Thermocouple mounting method in metal body
JPS6071924A (en) * 1983-09-29 1985-04-23 Hitachi Zosen C B I Kk Method for attaching thermocouple
JP2010240719A (en) * 2009-04-08 2010-10-28 Nippon Steel Engineering Co Ltd Continuous casting mold

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367480A (en) * 1976-11-29 1978-06-15 Hitachi Ltd Thermocouple mounting method in metal body
JPS6071924A (en) * 1983-09-29 1985-04-23 Hitachi Zosen C B I Kk Method for attaching thermocouple
JP2010240719A (en) * 2009-04-08 2010-10-28 Nippon Steel Engineering Co Ltd Continuous casting mold

Also Published As

Publication number Publication date
JP5439531B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5556575B2 (en) Thermocouple for temperature measurement and manufacturing method thereof
JP5503717B1 (en) Temperature detector, temperature sensor, and method of manufacturing temperature detector
JP4913151B2 (en) Tube for temperature measurement
US3969696A (en) Refractory resistor with supporting terminal
JP4987397B2 (en) Simulated fuel rod for nuclear reactor
JP5439531B2 (en) Continuous casting mold and manufacturing method thereof
US10139286B2 (en) Junction assembly of electrical cables, and thermocouple sensor comprising such junction
EP2647973B1 (en) Method of manufacturing temperature sensor and the temperature sensor
JP6367449B1 (en) Continuous casting mold
JP6152463B1 (en) thermocouple
CN110560825B (en) Sensor element
JP4662307B2 (en) Polyimide-coated sheath thermocouple
JP3150476U (en) Tip-fixed sheath thermocouple and its mounting structure
RU2700726C1 (en) Heat flux sensor
JP3617294B2 (en) Mounting method of a sheathed thermocouple for measuring the temperature of a metal body
JP2015178973A (en) Thermocouple and method for manufacturing thermocouple
JP2002005753A (en) Temperature measuring device
JPH1163968A (en) Method for measuring air gap by thermal flux detection of casting mold, and thermal flux detector and sensor in the same device
JP2019215266A (en) Corrosion sensor and corrosion sensor manufacturing method
JP6571156B2 (en) Micro heater with non-heat generating part
JP6736163B2 (en) Iron sheath type thermocouple
JP2007078420A (en) Thin-diametric thermocouple coated with pfa resin, and manufacturing method therefor
JP2017182910A (en) heater
JP2002267546A (en) Temperature sensor
JP2020051788A (en) Temperature calibrator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130807

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5439531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250