JP2013201845A - Diamagnetic actuator - Google Patents

Diamagnetic actuator Download PDF

Info

Publication number
JP2013201845A
JP2013201845A JP2012069146A JP2012069146A JP2013201845A JP 2013201845 A JP2013201845 A JP 2013201845A JP 2012069146 A JP2012069146 A JP 2012069146A JP 2012069146 A JP2012069146 A JP 2012069146A JP 2013201845 A JP2013201845 A JP 2013201845A
Authority
JP
Japan
Prior art keywords
diamagnetic
actuator
circumferential direction
rotor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012069146A
Other languages
Japanese (ja)
Inventor
Makoto Taniguchi
真 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012069146A priority Critical patent/JP2013201845A/en
Publication of JP2013201845A publication Critical patent/JP2013201845A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a diamagnetic motor 1 capable of generating a torque using a magnetic repulsive force of a diamagnetic sheet member 6, and reinforcing the generated torque.SOLUTION: In a rotor 3 of a diamagnetic motor 1, plural diamagnetic sheet members 6 held by a non-magnetic outer cylindrical member 7 are arranged at equal intervals in a circumferential direction, and a nonmagnetic part formed by the outer cylindrical member 7 is arranged between the adjacent diamagnetic sheet members 6. Also, the width of the diamagnetic sheet member 6 in the circumferential direction is made larger than the width of the non-magnetic part in the circumferential direction. The diamagnetic sheet member 6 is formed of a graphite sheet having film thickness of about several tenths mm, and arranged in a form of a plane orthogonal to a radial direction of the rotor 3. An opposite distance between the diamagnetic sheet member 6 and a magnetic pole of a stator 2 is set smaller at both circumferential ends than at a circumferential center of the diamagnetic sheet member 6.

Description

本発明は、工業用、学習用、遊戯用、家電用、自動車用等の回転アクチュエータに用いて好適な反磁性アクチュエータに関する。   The present invention relates to a diamagnetic actuator suitable for use in industrial, learning, amusement, home appliance, automobile, and other rotary actuators.

従来、産業用のブラシレスモータの分野では、レアアース磁石を利用したモータが主流であるが、磁石素材の偏在性から資源リスクや不経済性が叫ばれており、代替技術の開発が緊急の課題である。
代替技術の開発には、さまざまなアプローチで研究が成されているが、これらの研究では、何れの構成でも鉄片や鉄塊を利用しているので、電機子磁界に鉄片や鉄塊が引き寄せられる吸引力に起因するトルク(リラクタンストルク)しか生み出すことができないという問題がある(特許文献1参照)。
Conventionally, in the field of industrial brushless motors, motors using rare earth magnets have been the mainstream, but resource risks and uneconomicalities have been screamed because of the uneven distribution of magnet materials, and the development of alternative technologies is an urgent issue. is there.
There are various approaches to the development of alternative technologies, but these studies use iron pieces and iron blocks in any configuration, so the iron pieces and iron pieces are attracted to the armature magnetic field. There is a problem that only torque (reluctance torque) resulting from the attractive force can be generated (see Patent Document 1).

特開2006−325297号公報JP 2006-325297 A

反発力を生じる一つの事例として、グラファイトに代表される反磁性素材を利用すれば、従来の高温超伝導(例えばビスマス系素材であればマイナス200℃環境下)のマイスナー効果のごとき、強磁界中にて反発力を生む現象が室温環境下でも発生することが知られている。しかし、反磁性体の磁気反発力を利用して推進力やトルクを発生させるアクチュエータの提案はなされていない。
本発明は、上記事情に基づいて成されたものであり、その目的は、反磁性体の磁気反発力を利用してトルクを発生し、且つ、その発生トルクを増強できる反磁性アクチュエータを提供することにある。
One example of repulsive force is the use of a diamagnetic material typified by graphite, such as the Meissner effect of conventional high-temperature superconductivity (for example, minus 200 ° C for bismuth-based materials) in a strong magnetic field. It is known that the phenomenon of generating repulsion occurs at room temperature. However, there has been no proposal of an actuator that generates propulsive force or torque using the magnetic repulsive force of the diamagnetic material.
The present invention has been made based on the above circumstances, and an object thereof is to provide a diamagnetic actuator capable of generating torque by using the magnetic repulsive force of a diamagnetic material and enhancing the generated torque. There is.

(請求項1の発明)
本発明は、電機子巻線に多相交流を印加して回転磁界を生成する固定子と、この固定子と同軸に回転支持されると共に、反磁性の性質を持つ複数の反磁性部材が固定子の磁極と対向して周方向に所定の間隔を有して配置され、且つ、周方向に隣り合う反磁性部材同士の間に磁束を透過する非磁性部を有する回転子とを備え、回転磁界に対する反磁性部材の磁気反発力の作用によって回転子が回転する反磁性アクチュエータであって、回転子は、固定子の磁極と反磁性部材との間の距離が、反磁性部材の周方向の中央部より周方向の両端部の方が小さく設定されていることを特徴とする。
(Invention of Claim 1)
The present invention provides a stator that generates a rotating magnetic field by applying a polyphase alternating current to an armature winding, and a plurality of diamagnetic members that are rotatively supported coaxially with the stator and have diamagnetic properties are fixed. A rotor having a non-magnetic portion that is arranged at a predetermined interval in the circumferential direction so as to face the magnetic poles of the child and transmits a magnetic flux between adjacent diamagnetic members. A diamagnetic actuator in which a rotor rotates by the action of a magnetic repulsive force of a diamagnetic member against a magnetic field, wherein the rotor has a distance between the magnetic pole of the stator and the diamagnetic member in the circumferential direction of the diamagnetic member. Both end portions in the circumferential direction are set smaller than the center portion.

本発明に係る反磁性アクチュエータは、固定子に回転磁界が発生すると、その回転磁界の極性と反対方向に反磁性部材が磁化される。すなわち、固定子の磁極に対して反磁性部材に反発力が作用する。また、回転子は、周方向に隣り合う反磁性部材同士の間に非磁性部を有しているので、その非磁性部を磁束が通り抜けることにより、周方向に対して回転子に拘束力が働く。その結果、回転子が周方向に揺れ動くことが抑制されて姿勢が安定する。これにより、固定子に発生する回転磁界に同期して回転子が連れ動く(回転磁界と同方向に回転子が回転する)ので、本発明の反磁性アクチュエータを回転機、つまり、トルクを発生するモータとして利用できる。この反磁性部材の磁気反発力を利用してトルクを発生する原理は、本願発明者が先に出願した特願2011−235967の明細書に記載している。   In the diamagnetic actuator according to the present invention, when a rotating magnetic field is generated in the stator, the diamagnetic member is magnetized in the direction opposite to the polarity of the rotating magnetic field. That is, a repulsive force acts on the diamagnetic member with respect to the magnetic poles of the stator. Further, since the rotor has a nonmagnetic portion between diamagnetic members adjacent to each other in the circumferential direction, the magnetic flux passes through the nonmagnetic portion, so that a binding force is exerted on the rotor in the circumferential direction. work. As a result, the rotor is prevented from swinging in the circumferential direction and the posture is stabilized. As a result, the rotor moves in synchronization with the rotating magnetic field generated in the stator (the rotor rotates in the same direction as the rotating magnetic field), so that the diamagnetic actuator of the present invention generates a rotating machine, that is, torque. Can be used as a motor. The principle of generating torque using the magnetic repulsive force of the diamagnetic member is described in the specification of Japanese Patent Application No. 2011-235967 filed earlier by the inventor of the present application.

また、本発明の反磁性アクチュエータは、本願発明者の研究によれば、突極構造の回転子を有するリラクタンスモータと同様の磁束−力発生挙動を示すことが明らかになった。 さらに、リラクタンスモータは、突極の回転前方縁の近傍で吸引力を発生して回転するのに対し、本発明の反磁性アクチュエータ(モータ)は、反磁性部材の回転後方縁の近傍で反発力を発生して回転し、そのトルクの大きさは、q軸インダクタンスLqとd軸インダクタンスLdとの差に比例することが分かった。なお、d軸は、反磁性部材を回転子の磁極とした時の中心軸、つまり反磁性部材の周方向中心を半径方向に通る軸であり、そのd軸と電気的、磁気的に直交する軸、つまり周方向に隣り合う反磁性部材同士の間を半径方向に通る軸をq軸とする(図4参照)。   Further, according to the research of the present inventors, it has been clarified that the diamagnetic actuator of the present invention exhibits the same magnetic flux-force generation behavior as a reluctance motor having a salient pole structure rotor. Further, the reluctance motor rotates by generating an attractive force in the vicinity of the rotation front edge of the salient pole, whereas the diamagnetic actuator (motor) of the present invention has a repulsive force in the vicinity of the rotation rear edge of the diamagnetic member. It was found that the magnitude of the torque was proportional to the difference between the q-axis inductance Lq and the d-axis inductance Ld. The d-axis is a central axis when the diamagnetic member is used as the magnetic pole of the rotor, that is, an axis that passes through the center in the circumferential direction of the diamagnetic member in the radial direction, and is electrically and magnetically orthogonal to the d-axis. The axis, that is, the axis passing in the radial direction between the diamagnetic members adjacent in the circumferential direction is defined as the q axis (see FIG. 4).

上記の研究結果を基に、本発明の反磁性アクチュエータは、固定子の磁極と反磁性部材との間の距離が一定ではなく、反磁性部材の周方向の中央部より周方向の両端部の方が小さく設定されている。
この構成によれば、固定子の磁極と反磁性部材との間の距離が一定の場合、つまり、反磁性部材の周方向の両端と中央部とで固定子の磁極と対向する距離が同一に設定される場合(図4(a)参照)と比較して、トルクが増強できることが分かった。これは、本発明の方が、固定子の磁極と反磁性部材との間の距離が一定の場合よりもd軸インダクタンスLdが小さくなり、その結果、d軸インダクタンスLdとq軸インダクタンスLqとの差が大きくなることに起因する。
Based on the above research results, in the diamagnetic actuator of the present invention, the distance between the magnetic poles of the stator and the diamagnetic member is not constant, and the distance between the circumferential center portions of the diamagnetic member is longer than the circumferential direction. Is set smaller.
According to this configuration, when the distance between the magnetic pole of the stator and the diamagnetic member is constant, that is, the distance facing the stator magnetic pole is the same at both ends and the center of the diamagnetic member in the circumferential direction. It was found that the torque can be increased as compared with the case where it is set (see FIG. 4A). This is because the d-axis inductance Ld is smaller in the present invention than in the case where the distance between the magnetic pole of the stator and the diamagnetic member is constant, and as a result, the d-axis inductance Ld and the q-axis inductance Lq are reduced. This is due to the large difference.

実施例1に係る反磁性モータの平面図である。1 is a plan view of a diamagnetic motor according to Embodiment 1. FIG. 回転子の平面図である。It is a top view of a rotor. 回転子の斜視図である。It is a perspective view of a rotor. (a)先願例に係る磁束の流れを示す説明図、(b)本発明に係る磁束の流れを示す説明図である。(A) It is explanatory drawing which shows the flow of the magnetic flux which concerns on the example of a prior application, (b) It is explanatory drawing which shows the flow of the magnetic flux which concerns on this invention. 反磁性シート部材を多層構造とした回転子の一部を示す平面図である。It is a top view which shows a part of rotor which made the diamagnetic sheet member the multilayer structure. 反磁性シート部材を多層構造とした回転子の一部を示す平面図である。It is a top view which shows a part of rotor which made the diamagnetic sheet member the multilayer structure. 本発明の効果をトルク比で表した図である。It is a figure showing the effect of the present invention by torque ratio. 実施例2に係る反磁性モータの平面図である。6 is a plan view of a diamagnetic motor according to Embodiment 2. FIG. 実施例3に係る反磁性モータの斜視図である。7 is a perspective view of a diamagnetic motor according to Embodiment 3. FIG.

本発明を実施するための形態を以下の実施例により詳細に説明する。   The mode for carrying out the present invention will be described in detail with reference to the following examples.

(実施例1)
実施例1に示す反磁性アクチュエータは、図1に示す様に、固定子2と回転子3とが径方向にギャップを有して対向するラジアルギャップ型であり、且つ、固定子2の内径側に回転子3を配置した内転型モータに本発明の構成を適用した一例である。以下、本発明の反磁性アクチュエータを反磁性モータ1と呼ぶ。
固定子2は、固定子コア2aに電機子巻線(図示せず)を巻装して電機子を構成している。固定子コア2aは、周方向に複数(実施例1では48個)のスロット2bを等ピッチに打ち抜いた円環状の電磁鋼板を複数枚積層して構成される。
Example 1
The diamagnetic actuator shown in the first embodiment is a radial gap type in which the stator 2 and the rotor 3 face each other with a gap in the radial direction as shown in FIG. This is an example in which the configuration of the present invention is applied to an adder motor in which a rotor 3 is arranged. Hereinafter, the diamagnetic actuator of the present invention is referred to as a diamagnetic motor 1.
The stator 2 constitutes an armature by winding an armature winding (not shown) around the stator core 2a. The stator core 2a is configured by laminating a plurality of annular electromagnetic steel plates obtained by punching a plurality (48 in the first embodiment) of slots 2b in the circumferential direction at an equal pitch.

電機子巻線は、例えば、位相が120度異なる三相のコイルを星形結線して構成され、周知の巻線仕様(集中巻き、分布巻き、全節巻き、短節巻き等)によって固定子コア2aに巻装される。この電機子巻線は、各相のコイル端部(中性点と反対側のコイル端部)が周知のインバータ(図示せず)に接続され、直流電源(図示せず)から得られる直流電力がインバータにより交流電力(例えば、対称三相交流)に変換されて供給される。
回転子3は、図2、図3に示す様に、円筒状のボス部4と、このボス部4の外周から放射状に延びる8本のスポーク部材5と、このスポーク部材5の先端(反ボス部側の端部)に支持される8枚の反磁性シート部材6と、この8枚の反磁性シート部材6の外周を保持する外筒部材7とで構成される。
The armature winding is composed of, for example, three-phase coils that are 120 degrees out of phase in a star connection, and the stator according to known winding specifications (concentrated winding, distributed winding, full-pitch winding, short-pitch winding, etc.) It is wound around the core 2a. This armature winding is connected to a well-known inverter (not shown) at the coil end of each phase (coil end opposite to the neutral point), and the DC power obtained from a DC power supply (not shown). Is converted into AC power (for example, symmetrical three-phase AC) by an inverter and supplied.
As shown in FIGS. 2 and 3, the rotor 3 includes a cylindrical boss portion 4, eight spoke members 5 extending radially from the outer periphery of the boss portion 4, and a tip (anti-boss) of the spoke member 5. 8 diamagnetic sheet members 6 supported on the end portion on the part side, and an outer cylinder member 7 that holds the outer periphery of the eight diamagnetic sheet members 6.

ボス部4は、例えば、ポリアミド系のナイロン樹脂(デュポン社の登録商標)やPPS樹脂(ポリフェニレンサルファイド樹脂)等によって形成され、図1に示す様に、固定子2の径方向中心を通る回転軸8の外周に圧着固定されている。
スポーク部材5は、例えば、ボス部4と同一の材料によりボス部4と一体に形成され、ボス部4の周方向に等間隔に配置されている。なお、スポーク部材5をボス部4と別体に形成して、ボス部4の外周に接着固定する構成を採用することもできる。
反磁性シート部材6は、本発明の反磁性部材であり、例えば、コンマ数mm程度の膜厚を有するグラファイトシートによって長方形に形成されている。この反磁性シート部材6は、図3に示す様に、長方形の短手方向(図示上下方向)がボス部4の軸心方向に沿って配置され、長方形の長手方向がスポーク部材5と直交する回転子3の周方向に配置され、且つ、長手方向の中央部がスポーク部材5の先端面に接着固定されている。
The boss portion 4 is formed of, for example, a polyamide-based nylon resin (a registered trademark of DuPont), a PPS resin (polyphenylene sulfide resin), or the like, and as illustrated in FIG. 1, a rotating shaft that passes through the radial center of the stator 2. The outer periphery of 8 is fixed by crimping.
The spoke members 5 are formed integrally with the boss portion 4 from the same material as the boss portion 4, for example, and are arranged at equal intervals in the circumferential direction of the boss portion 4. It is also possible to employ a configuration in which the spoke member 5 is formed separately from the boss portion 4 and is adhered and fixed to the outer periphery of the boss portion 4.
The diamagnetic sheet member 6 is the diamagnetic member of the present invention, and is formed in a rectangular shape by, for example, a graphite sheet having a film thickness of about several millimeters of commas. As shown in FIG. 3, the diamagnetic sheet member 6 has a rectangular short direction (vertical direction in the drawing) arranged along the axial direction of the boss portion 4, and the rectangular longitudinal direction is orthogonal to the spoke member 5. Arranged in the circumferential direction of the rotor 3, the central portion in the longitudinal direction is bonded and fixed to the tip surface of the spoke member 5.

外筒部材7は、例えば、ポリアミド等の非磁性フィルム材により円筒形に形成されて、回転子3の外径面を構成すると共に、8枚の反磁性シート部材6を周方向に等間隔に保持している。
反磁性シート部材6は、スポーク部材5と直交して平面状に配置され、長手方向の両端が外筒部材7の内周面に接着固定される。周方向に隣り合う反磁性シート部材6同士の間には一定の間隔が確保されている。すなわち、周方向に隣り合う反磁性シート部材6同士の間は、外筒部材7によって形成される本発明の非磁性部となる。
また、反磁性シート部材6の長手方向の長さは、周方向に隣り合うスポーク部材5同士の間に形成される非磁性部の周方向幅より大きく形成されている。
周方向に隣り合うスポーク部材5同士の間、および、反磁性シート部材6と外筒部材7との間は、それぞれ空間となっている。もしくは、これらの空間にフィルム状の非磁性部材(例えばナイロン樹脂)を張ることもできる。
The outer cylinder member 7 is formed in a cylindrical shape by a nonmagnetic film material such as polyamide, for example, and constitutes the outer diameter surface of the rotor 3, and the eight diamagnetic sheet members 6 are equally spaced in the circumferential direction. keeping.
The diamagnetic sheet member 6 is arranged in a plane perpendicular to the spoke member 5, and both ends in the longitudinal direction are bonded and fixed to the inner peripheral surface of the outer cylinder member 7. A constant interval is secured between the diamagnetic sheet members 6 adjacent in the circumferential direction. That is, between the diamagnetic sheet members 6 adjacent to each other in the circumferential direction is a nonmagnetic portion of the present invention formed by the outer cylinder member 7.
Moreover, the length of the longitudinal direction of the diamagnetic sheet | seat member 6 is formed larger than the circumferential direction width | variety of the nonmagnetic part formed between the spoke members 5 adjacent to the circumferential direction.
There are spaces between the spoke members 5 adjacent to each other in the circumferential direction and between the diamagnetic sheet member 6 and the outer cylinder member 7. Alternatively, a film-like nonmagnetic member (for example, nylon resin) can be stretched in these spaces.

(実施例1の作用および効果)
実施例1の反磁性モータ1は、電機子巻線に対称三相交流が供給されて固定字2に回転磁界が発生すると、回転磁界の極性と反対方向に反磁性シート部材6が磁化されるため、固定子2の磁極に対して反磁性シート部材6に反発力が作用し、この反発力によって回転子3に回転力が発生する。
回転子3が発生するトルクTの大きさは、下記(1)式で示される様に、q軸インダクタンスLqとd軸インダクタンスLdとの差に比例する。
T∝(Lq−Ld) ………………………(1)
なお、図4に示す様に、反磁性シート部材6の周方向中心を半径方向に通る軸をd軸、そのd軸と電気的、磁気的に直交する軸、つまり、周方向に隣り合う二枚の反磁性シート部材6の間を半径方向に通る軸をq軸とする。
(Operation and Effect of Example 1)
In the diamagnetic motor 1 of the first embodiment, when a symmetric three-phase alternating current is supplied to the armature winding and a rotating magnetic field is generated in the fixed character 2, the diamagnetic sheet member 6 is magnetized in the direction opposite to the polarity of the rotating magnetic field. Therefore, a repulsive force acts on the diamagnetic sheet member 6 with respect to the magnetic poles of the stator 2, and a rotational force is generated on the rotor 3 by this repulsive force.
The magnitude of the torque T generated by the rotor 3 is proportional to the difference between the q-axis inductance Lq and the d-axis inductance Ld, as shown by the following equation (1).
T∝ (Lq−Ld) ………………… (1)
As shown in FIG. 4, the axis passing through the center in the circumferential direction of the diamagnetic sheet member 6 in the radial direction is the d axis, and the axis is electrically and magnetically orthogonal to the d axis, that is, two adjacent in the circumferential direction. An axis passing between the diamagnetic sheet members 6 in the radial direction is defined as a q axis.

さらに、実施例1の反磁性モータ1は、固定子2の磁極と反磁性シート部材6との間の距離が一定ではなく、図1に示す様に、反磁性シート部材6の周方向の中央部より周方向の両端部の方が小さく設定されている。この構成によれば、図4(a)に示す先願例の場合より、d軸インダクタンスLdが小さくなり、q軸インダクタンスとの差が大きくなることからトルクが増強する。なお、上記の先願例は、本願発明者が先に出願した特願2011−235967の明細書に記載された一実施例に相当するもので、固定子2の磁極と反磁性シート部材6との間の距離が一定、つまり、反磁性シート部材6が回転子3の中心から等距離の円弧状に湾曲して形成されている。   Furthermore, in the diamagnetic motor 1 according to the first embodiment, the distance between the magnetic poles of the stator 2 and the diamagnetic sheet member 6 is not constant, and as shown in FIG. Both end portions in the circumferential direction are set smaller than the portion. According to this configuration, the d-axis inductance Ld becomes smaller and the difference from the q-axis inductance becomes larger than in the case of the prior application example shown in FIG. The above prior application example corresponds to an embodiment described in the specification of Japanese Patent Application No. 2011-235967 filed earlier by the inventor of the present application. The magnetic pole of the stator 2 and the diamagnetic sheet member 6 The diamagnetic sheet member 6 is formed to be curved in an arc shape at an equal distance from the center of the rotor 3.

詳述すると、図4(a)に示す先願例の場合は、固定子2からのd軸磁束Φdaに対し、反磁性シート部材6の端部が発生する反磁界Hrがd軸磁束Φdaを半径方向に遠ざけようとする方向に作用する。これに対し、本実施例の構成、つまり、反磁性シート部材6の周方向の両端部より周方向の中央部の方が固定子2の磁極との間の距離が大きくなっている構成では、図4(b)に示す様に、固定子2からのd軸磁束Φdbに対向する方向成分を含む方向に反磁界Hrが発生する。この反磁界Hrは、反磁性シート部材6の表面に垂直方向に発生する。その結果、q軸を横断(直交)する磁路の磁気抵抗が大きくなって、q軸を横断する磁束、すなわち、d軸磁束Φdbが減少し、相対的に反磁性シート部材6の内径側(反固定子側)を通過するq軸磁束が増加する。このため、周方向に隣り合う二枚の反磁性シート部材6の間、つまり非磁性部(q軸)の磁界強度が増大して、反磁性シート部材6に作用する反発力も大きくなるのである。   More specifically, in the case of the prior application example shown in FIG. 4A, the demagnetizing field Hr generated at the end of the diamagnetic sheet member 6 becomes the d-axis flux Φda with respect to the d-axis flux Φda from the stator 2. Acts in the direction of moving away from the radial direction. On the other hand, in the configuration of the present embodiment, that is, in the configuration in which the distance between the central portion in the circumferential direction and the magnetic pole of the stator 2 is larger than both circumferential ends of the diamagnetic sheet member 6, As shown in FIG. 4B, a demagnetizing field Hr is generated in a direction including a directional component facing the d-axis magnetic flux Φdb from the stator 2. The demagnetizing field Hr is generated in the direction perpendicular to the surface of the diamagnetic sheet member 6. As a result, the reluctance of the magnetic path crossing (orthogonal) the q-axis increases, the magnetic flux crossing the q-axis, that is, the d-axis magnetic flux Φdb decreases, and the inner diameter side of the diamagnetic sheet member 6 ( The q-axis magnetic flux passing through the non-stator side) increases. For this reason, the magnetic field strength between the two diamagnetic sheet members 6 adjacent to each other in the circumferential direction, that is, the nonmagnetic portion (q-axis) is increased, and the repulsive force acting on the diamagnetic sheet member 6 is also increased.

上記の効果(反発力の増大によるトルクの増強効果)を一層引き出すには、例えば、図5に示す様に、複数枚の反磁性シート部材6を一定の空隙9(非磁性部)を有して層状に配置した多層構造とする構成が有効である。この場合、多層に配置された反磁性シート部材6は、ボス部4から延びる2本のスポーク部材5の間に挟まれて接着保持される。なお、図5では4枚の反磁性シート部材6を層状に配置しているが、4枚に限定するものではない。
また、反磁性シート部材6は、図6に示す様に、周方向の中央部が両端部に対し回転子3の内径方向、言い換えると、径方向の反固定子側へ湾曲した凹曲形状とし、その凹曲形状の反磁性シート部材6を一定の空隙9を有して層状に配置した多層構造とすることもできる。
In order to further draw out the above effect (torque enhancement effect by increasing the repulsive force), for example, as shown in FIG. 5, a plurality of diamagnetic sheet members 6 have a constant gap 9 (non-magnetic portion). Therefore, it is effective to use a multilayer structure in which the layers are arranged in layers. In this case, the diamagnetic sheet members 6 arranged in multiple layers are sandwiched and held between the two spoke members 5 extending from the boss portion 4. In FIG. 5, four diamagnetic sheet members 6 are arranged in layers, but the number is not limited to four.
Further, as shown in FIG. 6, the diamagnetic sheet member 6 has a concave shape in which the central portion in the circumferential direction is curved toward the inner diameter direction of the rotor 3 with respect to both ends, in other words, toward the anti-stator side in the radial direction. The concave-shaped diamagnetic sheet member 6 may have a multilayer structure in which a certain gap 9 is arranged in a layered manner.

上記の図5および図6に示す例、すなわち、複数枚の反磁性シート部材6を一定の空隙9を有して層状に配置した多層構造の場合は、反磁性シート部材6を単層(1枚)とした場合より、前記反磁界Hrを増強することができ、d軸インダクタンスLdを一層小さくできることが本願発明者の研究で明らかとなった。
ここで、反磁性モータ1の発生トルクを計測したシミュレーション結果を図7に示す。 なお、このシミュレーションには、上記の先願例の構成に対応するモデルA、平面状の反磁性シート部材6を単層とした実施例1の構成に対応するモデルB、平面状の反磁性シート部材6を多層構造とした図5の構成に対応するモデルC、凹曲形状の反磁性シート部材6を多層構造とした図6の構成に対応するモデルDを使用した。
In the example shown in FIG. 5 and FIG. 6, that is, in the case of a multilayer structure in which a plurality of diamagnetic sheet members 6 are arranged in layers with a certain gap 9, the diamagnetic sheet member 6 is a single layer (1 The present inventor's research revealed that the demagnetizing field Hr can be increased and the d-axis inductance Ld can be further reduced.
Here, a simulation result of measuring the torque generated by the diamagnetic motor 1 is shown in FIG. In this simulation, the model A corresponding to the configuration of the above-mentioned prior application example, the model B corresponding to the configuration of Example 1 in which the planar diamagnetic sheet member 6 is a single layer, the planar diamagnetic sheet A model C corresponding to the configuration of FIG. 5 in which the member 6 has a multilayer structure and a model D corresponding to the configuration of FIG. 6 in which the concave-shaped diamagnetic sheet member 6 has a multilayer structure were used.

図7に示す測定結果は、モデルAに対するモデルB、モデルC、モデルDのトルク比を棒グラフで表示したものであり、モデルBで約1.5倍、モデルCで約3倍、モデルDで7倍超のトルク増加を確認できた。
このシミュレーション結果からも明らかな様に、反磁性シート部材6の周方向の両端より周方向の中央部で固定子2の磁極との対向距離を大きく確保した方が、固定子2の磁極と反磁性シート部材6との間の距離が一定の場合(モデルA)と比較して、トルクの増強を図ることができ、さらに、反磁性シート部材6を多層化することによって、より大きなトルクを発生することが可能となる。
なお、実施例1では、回転子3の反磁性シート部材6を磁極とする8極、固定子2のスロット数が48個の事例を記載しているが、これに限定されるものではない。
The measurement results shown in FIG. 7 are obtained by displaying the torque ratios of model B, model C, and model D with respect to model A as a bar graph, about 1.5 times for model B, about 3 times for model C, and about model D. A torque increase of more than 7 times was confirmed.
As is clear from the simulation results, it is more effective to secure the opposing distance to the magnetic pole of the stator 2 at the center in the circumferential direction than the both ends of the diamagnetic sheet member 6 in the circumferential direction. Compared to the case where the distance to the magnetic sheet member 6 is constant (model A), it is possible to increase the torque, and further generate a larger torque by multilayering the diamagnetic sheet member 6. It becomes possible to do.
In the first embodiment, an example is described in which the diamagnetic sheet member 6 of the rotor 3 is 8 poles and the number of slots of the stator 2 is 48. However, the present invention is not limited to this.

(実施例2)
この実施例2に係る反磁性モータ1は、図8に示す様に、固定子2と回転子3とが径方向にギャップを有して対向するラジアルギャップ型であり、且つ、固定子2の外径側に回転子3を配置した外転型モータに本発明を適用した一例である。なお、実施例1と同一の構成および機能を有する部品には同一の番号を付している。
(Example 2)
As shown in FIG. 8, the diamagnetic motor 1 according to the second embodiment is a radial gap type in which the stator 2 and the rotor 3 are opposed to each other with a gap in the radial direction. This is an example in which the present invention is applied to an abduction motor in which a rotor 3 is arranged on the outer diameter side. In addition, the same number is attached | subjected to the components which have the same structure and function as Example 1. FIG.

この実施例2に示す回転子3は、回転子3の外径面を形成する外筒部材7と、回転子3の内径面を形成する内筒部材10と、外筒部材7と内筒部材10との間に配置される反磁性シート部材6と、この反磁性シート部材6の両端を支持するスポーク部材5とで構成される。反磁性シート部材6は、周方向の両端部に対し周方向の中央部が径方向の反固定子側、つまり、回転子3の径方向外側へ湾曲する凹曲形状を有し、且つ、複数枚(図8では3枚)の反磁性シート部材6が非磁性部を形成する一定の空隙9を有して層状に配置されている。   The rotor 3 shown in the second embodiment includes an outer cylinder member 7 that forms an outer diameter surface of the rotor 3, an inner cylinder member 10 that forms an inner diameter surface of the rotor 3, an outer cylinder member 7, and an inner cylinder member. 10 and a spoke member 5 that supports both ends of the diamagnetic sheet member 6. The diamagnetic sheet member 6 has a concave curved shape in which the central portion in the circumferential direction is curved toward the radial anti-stator side, that is, radially outward of the rotor 3 with respect to both ends in the circumferential direction. One (three in FIG. 8) diamagnetic sheet members 6 are arranged in layers with a certain gap 9 forming a nonmagnetic portion.

スポーク部材5は、回転子3の半径方向に配置されて、外周端が外筒部材7の内周面に接着固定され、内周端が内筒部材10の外周面に接着固定されている。また、周方向に隣り合う二枚の反磁性シート部材6の間は、隣り合うスポーク部材5とスポーク部材5との間に空間(非磁性部)が設けられている。
この実施例2に示す反磁性モータ1においても、実施例1で説明した同様の原理で回転子3にトルクを発生でき、且つ、実施例1に記載した先願例(モデルA)の構成より、発生トルクを増強できる。
The spoke member 5 is disposed in the radial direction of the rotor 3, and the outer peripheral end is bonded and fixed to the inner peripheral surface of the outer cylindrical member 7, and the inner peripheral end is bonded and fixed to the outer peripheral surface of the inner cylindrical member 10. A space (nonmagnetic portion) is provided between the two diamagnetic sheet members 6 adjacent in the circumferential direction between the adjacent spoke members 5 and the spoke members 5.
Also in the diamagnetic motor 1 shown in the second embodiment, torque can be generated in the rotor 3 by the same principle explained in the first embodiment, and the configuration of the prior application example (model A) described in the first embodiment is used. The generated torque can be increased.

(実施例3)
この実施例3に係る反磁性モータ1は、図9に示す様に、固定子2と回転子3とが軸方向(図示上下方向)にギャップを有して対向するアキシャルギャップ型モータに本発明を適用した一例である。なお、実施例1と同一の構成および機能を有する部品には同一の番号を付している。また、図9に示す反磁性モータ1は、回転子3の反磁性シート部材6で形成される磁極数が6、固定子2のスロット数が36個の事例を記載しているが、これに限定されるものではない。
(Example 3)
As shown in FIG. 9, the diamagnetic motor 1 according to the third embodiment is an axial gap type motor in which the stator 2 and the rotor 3 face each other with a gap in the axial direction (vertical direction in the drawing). It is an example which applied. In addition, the same number is attached | subjected to the components which have the same structure and function as Example 1. FIG. Further, the diamagnetic motor 1 shown in FIG. 9 describes an example in which the diamagnetic sheet member 6 of the rotor 3 has 6 magnetic poles and the stator 2 has 36 slots. It is not limited.

この実施例3に示す回転子3は、固定子2の磁極と対向して配置される円盤プレート11と、この円盤プレート11の反固定子側(図示上側)に配置される反磁性シート部材6と、この反磁性シート部材6の両端を支持するスポーク部材5とで構成される。
円盤プレート11は、例えば、ポリアミド等の非磁性フィルム材により、外周が円形を有する円盤状に形成され、径方向の中央部で回転軸8に接着固定されている。
The rotor 3 shown in the third embodiment includes a disk plate 11 disposed opposite to the magnetic poles of the stator 2, and a diamagnetic sheet member 6 disposed on the anti-stator side (the upper side in the drawing) of the disk plate 11. And a spoke member 5 that supports both ends of the diamagnetic sheet member 6.
The disk plate 11 is formed into a disk shape having a circular outer periphery, for example, of a non-magnetic film material such as polyamide, and is bonded and fixed to the rotating shaft 8 at the center in the radial direction.

反磁性シート部材6は、円盤プレート11の内径側から外径に向かって周方向の幅が次第に拡がる扇状に形成され、且つ、周方向の両端部に対し周方向の中央部が軸方向の反固定子側へ湾曲する凹曲形状に形成されている。また、複数枚(図9では2枚)の反磁性シート部材6が非磁性部を形成する空隙9を有して層状に配置されている。
スポーク部材5は、反磁性シート部材6の周方向両側を回転子3の半径方向に延びて配置され、円盤プレート11の表面に接着固定される。なお、スポーク部材5を円盤プレート11と一体に設けることも可能である。
The diamagnetic sheet member 6 is formed in a fan shape in which the circumferential width gradually increases from the inner diameter side to the outer diameter of the disk plate 11, and the central portion in the circumferential direction is axially opposite to both ends in the circumferential direction. It is formed in a concave shape that curves to the stator side. Further, a plurality of (two in FIG. 9) diamagnetic sheet members 6 are arranged in layers with gaps 9 forming nonmagnetic portions.
The spoke members 5 are disposed on both sides in the circumferential direction of the diamagnetic sheet member 6 so as to extend in the radial direction of the rotor 3, and are bonded and fixed to the surface of the disk plate 11. It is also possible to provide the spoke member 5 integrally with the disk plate 11.

周方向に隣り合う反磁性シート部材6同士の間は、隣り合うスポーク部材5とスポーク部材5との間に空間(非磁性部)が設けられている。
この実施例3に示す反磁性モータ1においても、実施例1で説明した同様の原理で回転子3にトルクを発生でき、且つ、実施例1に記載した先願例(モデルA)の構成より、発生トルクを増強できる。
Between the adjacent diamagnetic sheet members 6 in the circumferential direction, a space (nonmagnetic portion) is provided between the adjacent spoke members 5 and the spoke members 5.
Also in the diamagnetic motor 1 shown in the third embodiment, torque can be generated in the rotor 3 by the same principle described in the first embodiment, and the configuration of the prior application example (model A) described in the first embodiment is used. The generated torque can be increased.

1 反磁性モータ(反磁性アクチュエータ)
2 固定子
3 回転子
6 反磁性シート部材(反磁性部材)
7 外筒部材(非磁性部)
1 Diamagnetic motor (diamagnetic actuator)
2 Stator 3 Rotor 6 Diamagnetic sheet member (diamagnetic member)
7 Outer cylinder member (non-magnetic part)

Claims (11)

電機子巻線に多相交流を印加して回転磁界を生成する固定子(2)と、
この固定子(2)と同軸に回転支持されると共に、反磁性の性質を持つ複数の反磁性部材(6)が前記固定子(2)の磁極と対向して周方向に所定の間隔を有して配置され、且つ、周方向に隣り合う前記反磁性部材(6)同士の間に磁束を透過する非磁性部を有する回転子(3)とを備え、
前記回転磁界に対する前記反磁性部材(6)の磁気反発力の作用によって前記回転子(3)が回転する反磁性アクチュエータ(1)であって、
前記回転子(3)は、前記固定子(2)の磁極と前記反磁性部材(6)との間の距離が、前記反磁性部材(6)の周方向の中央部より周方向の両端部の方が小さく設定されていることを特徴とする反磁性アクチュエータ。
A stator (2) for generating a rotating magnetic field by applying multiphase alternating current to the armature winding;
A plurality of diamagnetic members (6) that are rotatably supported coaxially with the stator (2) and have a diamagnetic property are opposed to the magnetic poles of the stator (2) and have a predetermined interval in the circumferential direction. And a rotor (3) having a nonmagnetic part that transmits magnetic flux between the diamagnetic members (6) adjacent in the circumferential direction.
A diamagnetic actuator (1) in which the rotor (3) rotates by the action of the magnetic repulsive force of the diamagnetic member (6) on the rotating magnetic field,
In the rotor (3), the distance between the magnetic poles of the stator (2) and the diamagnetic member (6) is such that both ends of the diamagnetic member (6) in the circumferential direction from the circumferential center of the diamagnetic member (6). A diamagnetic actuator characterized in that is set smaller.
請求項1に記載した反磁性アクチュエータ(1)において、
前記回転子(3)は、複数の前記反磁性部材(6)が周方向に等間隔に配置されていることを特徴とする反磁性アクチュエータ。
In the diamagnetic actuator (1) according to claim 1,
The rotor (3) has a plurality of the diamagnetic members (6) arranged at equal intervals in the circumferential direction.
請求項1または2に記載した反磁性アクチュエータ(1)において、
前記回転子(3)は、前記反磁性部材(6)の周方向幅より、前記非磁性部の周方向幅の方が小さく設定されていることを特徴とする反磁性アクチュエータ。
In the diamagnetic actuator (1) according to claim 1 or 2,
In the rotor (3), the circumferential width of the nonmagnetic portion is set smaller than the circumferential width of the diamagnetic member (6).
請求項1〜3に記載した何れか一つの反磁性アクチュエータ(1)において、
前記回転子(3)は、前記固定子(2)の内径側にギャップを介して対向配置されていることを特徴とする反磁性アクチュエータ。
In any one diamagnetic actuator (1) described in Claims 1-3,
The diamagnetic actuator, wherein the rotor (3) is disposed opposite to an inner diameter side of the stator (2) via a gap.
請求項1〜3に記載した何れか一つの反磁性アクチュエータ(1)において、
前記回転子(3)は、前記固定子(2)の外径側にギャップを介して対向配置されていることを特徴とする反磁性アクチュエータ。
In any one diamagnetic actuator (1) described in Claims 1-3,
The diamagnetic actuator, wherein the rotor (3) is disposed opposite to the outer diameter side of the stator (2) via a gap.
請求項1〜3に記載した何れか一つの反磁性アクチュエータ(1)において、
前記固定子(2)と前記回転子(3)は、軸方向にギャップを介して対向配置されていることを特徴とする反磁性アクチュエータ。
In any one diamagnetic actuator (1) described in Claims 1-3,
The diamagnetic actuator, wherein the stator (2) and the rotor (3) are arranged to face each other via a gap in the axial direction.
請求項4に記載した反磁性アクチュエータ(1)において、
前記反磁性部材(6)は、一定の膜厚を有するシート状に形成され、周方向の両端の間が前記回転子(3)の半径方向と直交する平面状に形成されている、あるいは、周方向の両端部に対し周方向の中央部が径方向の反固定子側へ凹む凹状に形成されていることを特徴とする反磁性アクチュエータ。
In the diamagnetic actuator (1) according to claim 4,
The diamagnetic member (6) is formed in a sheet shape having a certain film thickness, and a space between both ends in the circumferential direction is formed in a planar shape perpendicular to the radial direction of the rotor (3), or A diamagnetic actuator, characterized in that a central portion in the circumferential direction is formed in a concave shape recessed toward a radial anti-stator side with respect to both ends in the circumferential direction.
請求項5に記載した反磁性アクチュエータ(1)において、
前記反磁性部材(6)は、一定の膜厚を有するシート状に形成され、周方向の両端部に対し周方向の中央部が径方向の反固定子側へ凹む凹状に形成されていることを特徴とする反磁性アクチュエータ。
In the diamagnetic actuator (1) according to claim 5,
The said diamagnetic member (6) is formed in the sheet form which has a fixed film thickness, and is formed in the concave shape in which the center part of the circumferential direction is dented to the radial anti-stator side with respect to the both ends of the circumferential direction. A diamagnetic actuator characterized by
請求項6に記載した反磁性アクチュエータ(1)において、
前記反磁性部材(6)は、一定の膜厚を有するシート状に形成され、周方向の両端部に対し周方向の中央部が軸方向の反固定子側へ凹む凹状に形成されていることを特徴とする反磁性アクチュエータ。
In the diamagnetic actuator (1) according to claim 6,
The said diamagnetic member (6) is formed in the sheet form which has a fixed film thickness, and is formed in the concave shape where the center part of the circumferential direction is dented to the anti-stator side of an axial direction with respect to the both ends of the circumferential direction. A diamagnetic actuator characterized by
請求項7〜9に記載した何れか一つの反磁性アクチュエータ(1)において、
前記反磁性部材(6)は、所定の空隙(9)を有して層状に配置される多層構造を形成していることを特徴とする反磁性アクチュエータ。
In any one diamagnetic actuator (1) according to claims 7-9,
The diamagnetic member (6) has a multilayer structure arranged in layers with a predetermined gap (9).
請求項1〜10に記載した何れか一つの反磁性アクチュエータ(1)において、
前記反磁性部材(6)は、グラファイト素材をシート状に加工したグラファイトシートによって形成されていることを特徴とする反磁性アクチュエータ。
In any one diamagnetic actuator (1) according to claims 1-10,
The diamagnetic member (6) is formed of a graphite sheet obtained by processing a graphite material into a sheet shape.
JP2012069146A 2012-03-26 2012-03-26 Diamagnetic actuator Pending JP2013201845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069146A JP2013201845A (en) 2012-03-26 2012-03-26 Diamagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069146A JP2013201845A (en) 2012-03-26 2012-03-26 Diamagnetic actuator

Publications (1)

Publication Number Publication Date
JP2013201845A true JP2013201845A (en) 2013-10-03

Family

ID=49521653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069146A Pending JP2013201845A (en) 2012-03-26 2012-03-26 Diamagnetic actuator

Country Status (1)

Country Link
JP (1) JP2013201845A (en)

Similar Documents

Publication Publication Date Title
JP5969946B2 (en) Synchronous reluctance motor
JP6019875B2 (en) Rotating electric machine
JP2005094955A (en) Axial permanent magnet motor
JP2008271640A (en) Axial gap motor
JP5272831B2 (en) Rotating electric machine
US20110163618A1 (en) Rotating Electrical Machine
JP2009136046A (en) Toroidally-wound dynamo-electric machine
JP2016154406A (en) Rotary electric machine
WO2015140941A1 (en) Rotor of permanent magnet motor
JP2008278649A (en) Axial gap rotary electric machine and field magnetic element
JP2008278590A (en) Rotary electric machine
JP2008067561A (en) Permanent-magnet electromotor
JP6260994B2 (en) Axial gap type motor
JP2012249347A (en) Rotor of axial gap rotary electric machine
JP5582149B2 (en) Rotor, rotating electric machine and generator using the same
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
WO2019187205A1 (en) Rotary electric machine
JP6990014B2 (en) Rotating machine
JP2012019605A (en) Permanent magnet rotating electrical machine
JP2009118594A (en) Axial gap type motor
JP6282479B2 (en) Axial gap type motor
JP2013201845A (en) Diamagnetic actuator
JP2011193627A (en) Rotor core and rotary electric machine
JP6260995B2 (en) Axial gap type motor
JP2006217764A (en) Axial gap rotating electric machine