JP2013200283A - Method and device for measuring filler in synthetic resin film - Google Patents

Method and device for measuring filler in synthetic resin film Download PDF

Info

Publication number
JP2013200283A
JP2013200283A JP2012070230A JP2012070230A JP2013200283A JP 2013200283 A JP2013200283 A JP 2013200283A JP 2012070230 A JP2012070230 A JP 2012070230A JP 2012070230 A JP2012070230 A JP 2012070230A JP 2013200283 A JP2013200283 A JP 2013200283A
Authority
JP
Japan
Prior art keywords
filler
synthetic resin
resin film
measured
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070230A
Other languages
Japanese (ja)
Inventor
Masaru Nakamura
優 中村
Masuo Yasuma
益男 安間
Takeshi Kanda
神田  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2012070230A priority Critical patent/JP2013200283A/en
Publication of JP2013200283A publication Critical patent/JP2013200283A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To measure a filling rate of a filler in a synthetic resin film, a dimension of the filler, and non-uniformity of filler distribution by quick and simple processing.SOLUTION: A film material formed by mixing minute filler in a synthetic resin base material is defined as a measuring object 100, X ray is applied to the measuring object 100, and a state of the filler is measured from a transmission quantity of the X ray. The method for measuring filler includes: dividing a measurement field of the measuring object into micro regions a, b, c, ...; obtaining detection values of the X rays transmitting the micro regions a, b, c, ...; creating frequency distribution of the detection values in the respective micro regions; and arithmetically processing the obtained frequency distribution to calculate the filling rate of the filler, the dimension of the filler, and the like.

Description

本発明は、合成樹脂フィルムの充填材測定方法、および合成樹脂フィルムの充填材測定装置に係り、特に合成樹脂製基材に微細な充填材を混ぜ込んだ合成樹脂シートの電磁波透過量から充填材の状態を測定する合成樹脂フィルムの充填材測定方法、および合成樹脂フィルムの充填材測定装置に関する。   The present invention relates to a synthetic resin film filler measurement method and a synthetic resin film filler measurement device, and more particularly, from the amount of electromagnetic wave transmission of a synthetic resin sheet in which a fine filler is mixed into a synthetic resin substrate. The present invention relates to a method for measuring a filler for a synthetic resin film and a device for measuring a filler for a synthetic resin film.

合成樹脂フィルムとして、導電性のある導電フィルムや、絶縁性のある絶縁フィルムがある。導電フィルムは、合成樹脂基材中に充填材として導電体である金属粒子等を混入して製造し、絶縁フィルムは、合成樹脂基材中に絶縁体であるセラミック微粒子等を混入して製造する。図15は被測定物である合成樹脂フィルムの構成を示す模式図である。いずれの合成樹脂フィルム10も、例えば図15(a)に示すように、厚さ寸法100〜200μmであり、同図(b)に示すように、合成樹脂製の基材11に充填材12として例えば数μm〜数十μmの微粒子を混入している。なお、図15(b)中の微粒子の形状は模式化しているため、実際の形状とは異なる。   Examples of the synthetic resin film include a conductive film having conductivity and an insulating film having insulation. The conductive film is manufactured by mixing metal particles or the like as a conductor as a filler in a synthetic resin base material, and the insulating film is manufactured by mixing ceramic fine particles or the like as an insulator in the synthetic resin base material. . FIG. 15 is a schematic diagram showing a configuration of a synthetic resin film that is an object to be measured. Any synthetic resin film 10 has a thickness dimension of 100 to 200 μm as shown in FIG. 15A, for example, and as shown in FIG. For example, fine particles of several μm to several tens of μm are mixed. In addition, since the shape of the microparticles | fine-particles in FIG.15 (b) is modeled, it differs from an actual shape.

このような合成樹脂フィルムを検査するに際して、充填材の充填率や、平均粒径、分布状態を非破壊、非接触で測定したいという要望がある。合成樹脂フィルムの製造時や受け入れ時に、流れ作業中に、できるだけ短時間で行うのである。   When inspecting such a synthetic resin film, there is a demand to measure the filling rate, average particle diameter, and distribution state of the filler in a non-destructive and non-contact manner. This is done in the shortest possible time during the flow operation during the production and acceptance of the synthetic resin film.

合成樹脂フィルムの充填材の充填率を非破壊で測定する方法として、次のものがある。図16は従来の合成樹脂フィルムの充填材測定方法の一例を示す模式図である。これは、合成樹脂フィルム10を被測定物として可視光を照射し、その透過状態を観察するものである。透過した光で投影像21(図16(c))得られる。   As a method for nondestructively measuring the filling rate of the synthetic resin film filler, there is the following method. FIG. 16 is a schematic view showing an example of a conventional method for measuring a filler of a synthetic resin film. In this case, visible light is irradiated with the synthetic resin film 10 as an object to be measured, and the transmission state is observed. A projected image 21 (FIG. 16C) is obtained with the transmitted light.

しかし、光学投影像21を観察するものにあっては、充填材12が投影方向に重なっていると、重なり状態を把握できず、充填率を正確に測定することができない。また、光の入射面における反射を制御することが難しく、測定精度が悪い。さらに、被測定物内部において、充填材による不要な反射により測定誤差が生じるといった問題がある。   However, in the case of observing the optical projection image 21, if the filler 12 is overlapped in the projection direction, the overlapping state cannot be grasped and the filling rate cannot be measured accurately. Moreover, it is difficult to control the reflection of light on the incident surface, and the measurement accuracy is poor. Furthermore, there is a problem that a measurement error occurs due to unnecessary reflection by the filler inside the object to be measured.

また、X線を用いた測定する方法として、特許文献1は、図17に示すように、あらかじめアルキメデス法で測定した密度と、X線透過量との関係(同図(b))を測定しておき、被測定物のX線透過像(同図(a))から、測定箇所の比重、すなわち充填率を計算する方法を開示する。   As a measurement method using X-rays, Patent Document 1 measures the relationship between the density measured in advance by the Archimedes method and the amount of X-ray transmission as shown in FIG. A method for calculating the specific gravity of the measurement location, that is, the filling rate, from the X-ray transmission image of the object to be measured ((a) in the figure) is disclosed.

また、特許文献2は、被測定物を複数領域に分割し、領域ごとの質量をX線透過量から求め、全領域にわたって積分することで全領域の質量を求める方法を開示する。   Further, Patent Document 2 discloses a method in which the object to be measured is divided into a plurality of regions, the mass for each region is obtained from the amount of X-ray transmission, and the mass of the entire region is obtained by integration over the entire region.

特開2001−201465公報JP 2001-201465 A 特開2002−296022公報Japanese Patent Laid-Open No. 2002-296022

しかしながら、特許文献1に記載の方法は、均一な被測定物の密度を測定することはできるが、不均一な被測定物を測定することができないし、充填材の大きさや面分布などを測定することができないという問題がある。   However, the method described in Patent Document 1 can measure the density of a uniform object to be measured, but cannot measure a non-uniform object to be measured, and measures the size and surface distribution of the filler. There is a problem that you can not.

また、特許文献2に記載の方法は、被測定物の平均質量を測定することができるが、充填材の大きさや面分布を測定することができず、またあらかじめ得ていた検量線との比較や全領域にわたっての積分を行う必要があるため、演算に時間や手間がかかってしまうという問題がある。   Moreover, although the method of patent document 2 can measure the average mass of a to-be-measured object, it cannot measure the magnitude | size and surface distribution of a filler, and is compared with the calibration curve obtained beforehand. In addition, since it is necessary to perform integration over the entire region, there is a problem that time and labor are required for the calculation.

本発明は上述した課題にかんがみてなされたものであり、迅速かつ簡単な処理で合成樹脂フィルム中の充填材の充填率、充填材の大きさ、充填材分布の不均一性を測定することができる合成樹脂フィルムの充填材測定方法、および合成樹脂フィルムの充填材測定装置を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and it is possible to measure the filling rate of the filler in the synthetic resin film, the size of the filler, and the non-uniformity of the filler distribution by a quick and simple process. An object of the present invention is to provide a synthetic resin film filler measurement method and a synthetic resin film filler measurement apparatus.

前記課題を解決する請求項1に記載の発明は、合成樹脂基材中に微細な充填材を混ぜ込んだフィルム材を被測定物とし、該被測定物に電磁波を照射し、該電磁波の透過量から充填材の状態を測定する合成樹脂フィルム材の充填材測定方法において、被測定物の測定領域を微小領域に分割し、該微小領域を透過した電磁波の検出値を取得し、各微小量領域における検出値の度数分布を作成し、取得した度数分布を演算処理して充填材の状態を演算する、ことを特徴とする。
本発明によれば、微小領域における検出値の度数分布を演算処理して充填材の状態を得るので、処理を簡単かつ迅速に行うことができ、合成樹脂フィルム中の充填材の状態を測定することができる。
The invention according to claim 1, which solves the above problem, uses a film material in which a fine filler is mixed in a synthetic resin substrate as a measurement object, irradiates the measurement object with electromagnetic waves, and transmits the electromagnetic waves. In the filler measurement method for a synthetic resin film material that measures the state of the filler from the quantity, the measurement area of the object to be measured is divided into minute areas, and the detected value of the electromagnetic wave that has passed through the minute area is obtained, and each minute quantity A frequency distribution of detection values in a region is created, and the obtained frequency distribution is processed to calculate the state of the filler.
According to the present invention, the frequency distribution of the detected values in the micro area is calculated to obtain the state of the filler, so that the process can be performed easily and quickly, and the state of the filler in the synthetic resin film is measured. be able to.

同じく請求項2の発明は、請求項1に記載の合成樹脂フィルムの充填材測定方法において、前記統計処理は、度数分布状態の平均値を求めるものであり、この求めた平均値から被測定物における充填材の平均充填率を求めることを特徴とする。
本発明によれば、微小領域における検出値の平均値を求めることから充填材の平均充填率を簡単、高精度かつ迅速に求めることできる。
Similarly, the invention of claim 2 is the method for measuring a filler of a synthetic resin film according to claim 1, wherein the statistical processing is to obtain an average value of the frequency distribution state, and the measured object is obtained from the obtained average value. The average filling rate of the filler in is obtained.
According to the present invention, since the average value of the detected values in the minute region is obtained, the average filling rate of the filler can be obtained easily, with high accuracy and quickly.

同じく請求項3の発明は、請求項1に記載の合成樹脂フィルムの充填材測定方法において、前記分割する微小領域を面積の異なる複数種設定し、電磁波の透過量を異なる面積の微小領域ごとに検出し、微量領域の面積ごとに前記検出値の度数分布を作成し、検出値の度数分布に基づいて、微小領域の面積と、分散値との関係曲線を求め、この関係曲線の変動に基づいて充填材の大きさを測定することを特徴とする。
本発明によれば、微小領域の面積と、分散値との関係曲線の変化から充填材の大きさを簡単かつ迅速に求めることできる。
Similarly, the invention of claim 3 is the synthetic resin film filler measurement method according to claim 1, wherein the divided micro-regions are set to have a plurality of different areas, and the amount of electromagnetic wave transmitted is set for each micro-area of different areas. Detect and create a frequency distribution of the detected values for each area of the micro area, obtain a relationship curve between the area of the micro area and the variance value based on the frequency distribution of the detected value, and based on the variation of the relationship curve And measuring the size of the filler.
According to the present invention, the size of the filler can be determined easily and quickly from the change in the relationship curve between the area of the minute region and the dispersion value.

同じく請求項4の発明は、請求項1に記載の合成樹脂フィルムの充填材測定方法において、被測定物のライン上に微小領域を設定し、該微小領域における検出値から、前記ラインにおける充填材の平均充填率と、分散値とを求めることを特徴とする。
本発明によれば、被測定物のライン上の平均充填率と、分散値とを簡単かつ迅速に求めることができ、搬送中の被測定物の測定を行うのに好適である。
Similarly, the invention of claim 4 is the method for measuring a filler of a synthetic resin film according to claim 1, wherein a minute region is set on the line of the object to be measured, and the filler in the line is determined from the detected value in the minute region. The average filling rate and the dispersion value are obtained.
According to the present invention, the average filling factor on the line of the object to be measured and the dispersion value can be obtained easily and quickly, which is suitable for measuring the object to be measured during conveyance.

同じく請求項5の発明は、請求項1に記載の合成樹脂フィルムの充填材測定方法において、前記検出値の度数分布から測定領域における充填材の均一性を判定することを特徴とする。
本発明によれば、簡単かつ迅速に合成樹脂フィルにおける充填材の分散均一性を判定することができる。
Similarly, the invention of claim 5 is characterized in that, in the synthetic resin film filler measurement method according to claim 1, uniformity of the filler in the measurement region is determined from the frequency distribution of the detected values.
According to the present invention, the dispersion uniformity of the filler in the synthetic resin fill can be determined easily and quickly.

同じく請求項6の発明は、請求項1から請求項5のいずれかに記載の合成樹脂フィルムの充填材測定方法において、前記電磁波はX線であることを特徴とする。
本発明によれば、被測定物の物性にあわせて所定の強度、波長のX線を使用することができる。
Similarly, the invention of claim 6 is the synthetic resin film filler measurement method according to any one of claims 1 to 5, wherein the electromagnetic wave is an X-ray.
According to the present invention, X-rays having a predetermined intensity and wavelength can be used in accordance with the physical properties of the object to be measured.

請求項7の発明は、合成樹脂フィルムの充填材測定装置において、基材に微細な充填材を混ぜ込んだシートを被測定物とし、該被測定物に電磁波を照射し、該電磁波の透過量から充填材の状態を測定する充填材の測定装置において、被測定物に電磁波を照射する電磁波源と、被測定物の各領域における電磁波の透過量を検出する検出手段と、各微小量領域における検出値の度数分布を作成し、取得した度数分布を演算処理して充填材の状態を演算する演算処理手段と、を備えることを特徴とする。
本発明によれば、微小領域における検出値の度数分布を演算処理して充填材の状態を得るので、処理を簡単かつ迅速に行うことができ、合成樹脂フィルム中の充填材の状態を測定することができる。
According to a seventh aspect of the present invention, in the synthetic resin film filler measurement apparatus, a sheet in which a fine filler is mixed into a base material is used as an object to be measured, and the object to be measured is irradiated with an electromagnetic wave. In the filler measuring apparatus for measuring the state of the filler from the electromagnetic wave source, the electromagnetic wave source for irradiating the object to be measured, the detecting means for detecting the transmission amount of the electromagnetic wave in each region of the object to be measured, and the minute amount region Computational processing means for creating a frequency distribution of detected values and calculating the state of the filler by calculating the acquired frequency distribution.
According to the present invention, the frequency distribution of the detected values in the micro area is calculated to obtain the state of the filler, so that the process can be performed easily and quickly, and the state of the filler in the synthetic resin film is measured. be able to.

同じく請求項8の発明は、請求項7に記載の合成樹脂フィルムの充填材測定装置において、前記電磁波源は前記被測定物のあらかじめ定めた測定領域に電磁波を照射し、前記検出手段は、電磁波が照射された測定領域の各点における電磁波の透過量を検出することを特徴とする。
本発明によれば、短時間の電磁波の照射で測定領域における充填材の状態を簡単かつ迅速に測定することができる。
Similarly, the invention of claim 8 is the synthetic resin film filling material measuring apparatus according to claim 7, wherein the electromagnetic wave source irradiates an electromagnetic wave to a predetermined measurement region of the object to be measured, and the detection means includes an electromagnetic wave The amount of transmission of electromagnetic waves at each point of the measurement region irradiated with is detected.
According to the present invention, the state of the filler in the measurement region can be measured easily and quickly by irradiation with electromagnetic waves for a short time.

同じく請求項9の発明は、請求項8に記載の合成樹脂フィルムの充填材測定装置において、前記演算処理手段は、検出手段が取得した測定領域の各点における透過量から、照射領域をあらかじめ定めた面積で分割した微小領域における透過量を取得することを特徴とする。
本発明によれば、任意の面積の微小領域の透過量に基づく度数分布を短時間の測定で簡単かつ迅速に取得することができる。
Similarly, the invention of claim 9 is the synthetic resin film filling material measuring apparatus according to claim 8, wherein the arithmetic processing means predetermines an irradiation area from a transmission amount at each point of the measurement area acquired by the detection means. The transmission amount in a minute region divided by an area is acquired.
According to the present invention, it is possible to easily and quickly obtain a frequency distribution based on the amount of transmission of a minute region having an arbitrary area with a short-time measurement.

同じく請求項10の発明は、請求項7から請求項9のいずれかに記載の合成樹脂フィルムの充填材測定装置において、複数の被測定物を前記電磁波源と前記検出手段との間に順次搬送する搬送手段を備えることを特徴とする。
本発明によれば、被測定物を搬送しつつ充填材の簡単かつ迅速に測定を行うことができる。
Similarly, the invention of claim 10 is the synthetic resin film filling material measuring apparatus according to any one of claims 7 to 9, wherein a plurality of objects to be measured are sequentially conveyed between the electromagnetic wave source and the detection means. It has the conveyance means to do.
ADVANTAGE OF THE INVENTION According to this invention, it can measure a filler easily and rapidly, conveying a to-be-measured object.

同じく請求項11の発明は、請求項7から請求項10のいずれかに記載の合成樹脂フィルムの充填材測定方法において、前記電磁波源は被測定物にX線を照射し、前記検出手段は被測定物を透過したX線を検出することを特徴とする。
本発明によれば、被測定物の物性にあわせて所定の強度、波長のX線を使用することができる。
Similarly, the invention of claim 11 is the synthetic resin film filler measurement method according to any one of claims 7 to 10, wherein the electromagnetic wave source irradiates the object to be measured with X-rays, and the detection means is the object to be measured. X-rays transmitted through the measurement object are detected.
According to the present invention, X-rays having a predetermined intensity and wavelength can be used in accordance with the physical properties of the object to be measured.

同じく請求項12の発明は、請求項7から請求項11のいずれかに記載の合成樹脂フィルムの充填材測定方法において、請求項1から請求項7のいずれかに記載の充填材の測定方法に基づいて充填材の状態を演算することを特徴とする。
本発明によれば、充填率、充填材の大きさ、充填の不均一状態を簡単かつ迅速に測定することができる。
Similarly, the invention of claim 12 is the synthetic resin film filler measurement method according to any one of claims 7 to 11, wherein the filler measurement method according to any one of claims 1 to 7 is used. Based on this, the state of the filler is calculated.
According to the present invention, the filling rate, the size of the filler, and the non-uniform state of filling can be measured easily and quickly.

本発明に係る合成樹脂フィルムの充填材測定方法、および合成樹脂フィルムの充填材測定装置によれば、迅速かつ簡単な処理で合成樹脂フィルム中の充填材の充填率、充填材の大きさ、充填材分布の不均一性を測定することができる。   According to the synthetic resin film filler measurement method and the synthetic resin film filler measurement device according to the present invention, the filling rate, the size of the filler, and the filling rate of the filler in the synthetic resin film can be quickly and easily processed. The non-uniformity of the material distribution can be measured.

被測定物を示すものであり、(a)、(b)、(c)は被測定物のX線写真、(d)は被測定物の構造を示す模式図である。FIGS. 2A and 2B show an object to be measured, and FIGS. 3A and 3B are X-ray photographs of the object to be measured, and FIG. 3D is a schematic diagram showing a structure of the object to be measured. 実施形態1に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。It is a schematic diagram which shows the basic process of the filler measuring method of the synthetic resin film which concerns on Embodiment 1. FIG. 実施形態1に係る合成樹脂フィルムの充填材測定方法によるX線の透過度数分布例を示すグラフである。4 is a graph showing an example of an X-ray transmission number distribution by the method for measuring a filler of a synthetic resin film according to Embodiment 1. 同合成樹脂フィルムの充填材測定方法に使用する検量線を示すグラフである。It is a graph which shows the calibration curve used for the filler measuring method of the synthetic resin film. 同合成樹脂フィルムの充填材測定方法において度数分布のピークが2つある場合を示すグラフである。It is a graph which shows the case where there are two peaks of frequency distribution in the filler measuring method of the synthetic resin film. 実施形態2に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。It is a schematic diagram which shows the basic process of the filler measuring method of the synthetic resin film which concerns on Embodiment 2. FIG. 被測定物のX線透過度数分布を示すグラフである。It is a graph which shows X-ray transmittance number distribution of a to-be-measured object. 図7に示したグラフに基づいて得た半値幅と微小領域の面積との関係を示すグラフである。It is a graph which shows the relationship between the half value width obtained based on the graph shown in FIG. 7, and the area of a micro area | region. 他の被測定物のX線透過度数分布を示すグラフである。It is a graph which shows the X-ray transmittance frequency distribution of another to-be-measured object. 図9に示したグラフに基づいて得た半値幅と微小領域の面積との関係を示すグラフである。It is a graph which shows the relationship between the half value width obtained based on the graph shown in FIG. 9, and the area of a micro area | region. 実施形態3に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。It is a schematic diagram which shows the basic process of the filler measuring method of the synthetic resin film which concerns on Embodiment 3. FIG. 実施形態3に係る合成樹脂フィルムの充填材測定方法の測定例を示すものであり、(a)は測定のラインを示すX線写真、(b)はライン上におけるX線カウントを示すグラフである。The measurement example of the filler measuring method of the synthetic resin film which concerns on Embodiment 3 is shown, (a) is an X-ray photograph which shows the line of measurement, (b) is a graph which shows the X-ray count on a line. . 実施形態4に係る合成樹脂フィルムの充填材測定装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the synthetic resin film filler measuring apparatus which concerns on Embodiment 4. FIG. 図13に示した合成樹脂フィルムの充填材測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the filler measuring apparatus of the synthetic resin film shown in FIG. 被測定物である合成樹脂フィルムの構成を示す模式図である。It is a schematic diagram which shows the structure of the synthetic resin film which is a to-be-measured object. 従来の合成樹脂フィルムの充填材測定方法の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional filler measuring method of a synthetic resin film. 従来の合成樹脂フィルムの充填材測定方法の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional filler measuring method of a synthetic resin film.

以下、本発明を実施するための形態に係る合成樹脂フィルムの充填材測定方法、および合成樹脂フィルムの充填材測定装置について説明する。   Hereinafter, a synthetic resin film filler measurement method and a synthetic resin film filler measurement device according to embodiments for carrying out the present invention will be described.

まず、以下に説明する合成樹脂フィルムの充填材測定方法で充填物の測定を行う被測定物について説明する。図1は被測定物を示すものであり、(a)、(b)、(c)は被測定物のX線写真、(d)は被測定物の構造を示す模式図である。   First, an object to be measured for measuring a filler by the method for measuring a filler of a synthetic resin film described below will be described. FIG. 1 shows an object to be measured. (A), (b), and (c) are X-ray photographs of the object to be measured, and (d) is a schematic diagram showing the structure of the object to be measured.

被測定物である合成樹脂フィルムは絶縁フィルムであり、セラミック微粒子の充填率、および膜厚寸法の違いにより3種類(A、B、C)準備した。絶縁シートの厚さ寸法は、A:130μm、B:100μm、C:90μmであった。また、各絶縁フィルムは、図1(d)に示すように、2枚の保護材(厚さ100μm)の間に絶縁シートをはさんだ構造である。なお、この保護材はX線に対して透明であり、測定に影響を与えない。   A synthetic resin film as an object to be measured was an insulating film, and three types (A, B, C) were prepared depending on the filling rate of ceramic fine particles and the difference in film thickness. The thickness dimensions of the insulating sheet were A: 130 μm, B: 100 μm, and C: 90 μm. Each insulating film has a structure in which an insulating sheet is sandwiched between two protective materials (thickness: 100 μm) as shown in FIG. This protective material is transparent to X-rays and does not affect the measurement.

なお、図1に示したX線写真の撮影領域は、横336μm、縦256μmであり、撮像ドット(1×1)の大きさは0.25μm×0.25μmである。またX線源とX線検出器として浜松ホトニクス(株)製の製品型名L11091とC7876を使用した。なお、以下の実施形態では、撮像に使用するためX線を使用した。X線の波長、強度は被測定物の素材、厚さなどで最適なものを予め実験により選択する。また、使用する電磁波は、必ずしもX線に限らず、被測定物の透過像を撮像できるものであれば、他の波長領域のものを使用することができる。   Note that the radiographing area shown in FIG. 1 is 336 μm wide and 256 μm long, and the size of the imaging dots (1 × 1) is 0.25 μm × 0.25 μm. Further, product type names L11091 and C7876 manufactured by Hamamatsu Photonics Co., Ltd. were used as the X-ray source and the X-ray detector. In the following embodiments, X-rays are used for imaging. The optimum wavelength and intensity of the X-ray are selected in advance by experiments in accordance with the material and thickness of the object to be measured. Further, the electromagnetic wave to be used is not necessarily limited to the X-ray, and any other wavelength region can be used as long as it can capture a transmission image of the object to be measured.

<実施形態1>
まず、実施形態1に係る合成樹脂フィルムの充填材測定方法について説明する。まず基本的な処理の流れについて説明する。図2は実施形態1に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。
<Embodiment 1>
First, the synthetic resin film filler measurement method according to Embodiment 1 will be described. First, the basic processing flow will be described. FIG. 2 is a schematic diagram illustrating a basic process of the synthetic resin film filler measurement method according to the first embodiment.

実施形態1に係る合成樹脂フィルムの充填材測定方法では、まず、被測定物の測定領域を微小領域に分割し(図1(a)、(b))、この微小領域を透過したX線の検出値を取得する。すなわち、被測定物100の測定領域110を図1(b)に示すように分割し、微小領域1、2、3、4、…、を設定する(同(a))。   In the synthetic resin film filler measurement method according to the first embodiment, first, the measurement region of the object to be measured is divided into minute regions (FIGS. 1A and 1B), and X-rays transmitted through the minute region are measured. Get the detection value. That is, the measurement region 110 of the device under test 100 is divided as shown in FIG. 1B, and minute regions 1, 2, 3, 4,... Are set (the same (a)).

微小領域の大きさは、被測定物の充填材の大きさと同等か、それより小さいものとし、測定領域としてあらかじめ定めた所定の領域を分割する。例えば図1(a)、(b)、(c)で示したX線写真を撮影した装置を用いて、測定領域として、横336μm、縦256μmの領域を設定し、微小領域として0.25μm×0.25μmを画素(1×1)として設定する。   The size of the minute region is equal to or smaller than the size of the filler of the object to be measured, and a predetermined region that is predetermined as the measurement region is divided. For example, using the apparatus that has taken the X-ray photographs shown in FIGS. 1A, 1B, and 1C, a region of 336 μm in width and 256 μm in length are set as a measurement region, and a micro region of 0.25 μm × 0.25 μm is set as a pixel (1 × 1).

そして、実施形態1では、微小領域1、2、3、4、…が測定領域110を規則的に覆うように設定する。これにより、絶縁フィルムの充填材の充填率をより正確に測定することができる。なお、微小領域は、必ずしも測定領域全面に隙間なく配置する必要はなく、微小領域と微小領域の間に隙間が生じてもよい。また微小領域を規則的に連続させる必要はなく、測定領域の任意の位置に任意の配置パターンで設定してもよい。なお、図1(a)では、充填材の大きさを強調してあるので、その大きさ、形状は実際のものとは異なる。   In the first embodiment, the minute regions 1, 2, 3, 4,... Are set so as to regularly cover the measurement region 110. Thereby, the filling rate of the filler of an insulating film can be measured more correctly. Note that the micro area does not necessarily have to be arranged on the entire measurement area without a gap, and a gap may be formed between the micro area and the micro area. Further, it is not necessary to make the minute regions regularly continuous, and the minute regions may be set at any position in the measurement region with any arrangement pattern. In FIG. 1A, since the size of the filler is emphasized, the size and shape are different from the actual ones.

次にこの被測定物100にX線を照射して、各微小領域におけるX線の透過量を測定する。具体的には撮像したX線透過画像の各微小領域の濃度に基づいてX線のカウント数を取得する。そして、図2(c)に示すように、各微小量領域におけるカウント数の度数分布表を作成する。ついで、合成樹脂フィルム材の充填材測定方法度数分布状態の平均値を求め、この求めた平均値から被測定物における充填材の平均充填率を求める。   Next, the measurement object 100 is irradiated with X-rays to measure the amount of X-ray transmission in each minute region. Specifically, the X-ray count is acquired based on the density of each micro area of the captured X-ray transmission image. Then, as shown in FIG. 2C, a frequency distribution table of count numbers in each minute amount region is created. Next, the average value of the filler distribution measuring method frequency distribution state of the synthetic resin film material is obtained, and the average filling rate of the filler in the object to be measured is obtained from the obtained average value.

この度数分布の平均値(X線平均カウント値)は被測定物の(平均充填率×厚さ)を表すものであり、所定の計算で数値化する。   The average value (X-ray average count value) of the frequency distribution represents (average filling rate × thickness) of the object to be measured, and is quantified by a predetermined calculation.

実施形態1に係る合成樹脂フィルムの充填材測定方法の測定例について説明する。図3は実施形態1に係る合成樹脂フィルムの充填材測定方法によるX線の透過度数分布例を示すグラフ、図4は同合成樹脂フィルムの充填材測定方法に使用する検量線を示すグラフである。図4に示した検量線のグラフは、〔厚さ(mm)×充填率(vol%)〕とX線カウント数の関係からあらかじめ作成しておく   A measurement example of the synthetic resin film filler measurement method according to Embodiment 1 will be described. FIG. 3 is a graph showing an example of X-ray transmission number distribution by the synthetic resin film filler measurement method according to Embodiment 1, and FIG. 4 is a graph showing a calibration curve used in the synthetic resin film filler measurement method. . The calibration curve graph shown in FIG. 4 is prepared in advance from the relationship between [thickness (mm) × filling rate (vol%)] and the number of X-ray counts.

この例では、前述したA、B、Cの絶縁フィルムを被測定物とした。図3に得られた度数分布表から、X線カウントの平均値をそれぞれ求めた(なお、図3中それぞれの値をA、B、Cの上にバーを記載して示す)。そして、図4に示した検量線にこの平均値を当てはめ、既知の厚さ寸法から、A:充填率49vol%、B:充填率49vol%、C:62vol%を得た。   In this example, the A, B, and C insulating films described above were used as objects to be measured. From the frequency distribution table obtained in FIG. 3, the average values of the X-ray counts were obtained (in FIG. 3, the respective values are indicated by bars on A, B, and C). And this average value was applied to the calibration curve shown in FIG. 4, and A: filling rate 49 vol%, B: filling rate 49 vol%, and C: 62 vol% were obtained from known thickness dimensions.

この値は、破壊法で得た各被測定物の充填率(A:50vol%、B:50vol%、C:60vol%)と高い精度で一致する。   This value agrees with the filling rate (A: 50 vol%, B: 50 vol%, C: 60 vol%) of each object obtained by the destruction method with high accuracy.

なお、度数分布の形状が正規分布と外れる場合、以下の判断を行う。図5は同合成樹脂フィルムの充填材測定方法において度数分布のピークが2つある場合を示すグラフである。このような場合、度数分布から充填材充填率の分散均一性を判定できる。   In addition, when the shape of the frequency distribution deviates from the normal distribution, the following determination is performed. FIG. 5 is a graph showing a case where there are two peaks in the frequency distribution in the synthetic resin film filler measurement method. In such a case, the dispersion uniformity of the filler filling rate can be determined from the frequency distribution.

具体的は、度数分布のピークが1つであれば、分散は均一であると見なす。また、度数分布が、図5に示すように、ピークが2つある場合、大きな2つの面分布があると判断できる。さらに、ピークが3つであれば、3つの面分布があると判断でき、度数分布の形状がいびつになる場合は複数の面分布が重なりあっていると判断できる。   Specifically, if the frequency distribution has one peak, the dispersion is considered to be uniform. Further, when the frequency distribution has two peaks as shown in FIG. 5, it can be determined that there are two large surface distributions. Furthermore, if there are three peaks, it can be determined that there are three surface distributions, and if the shape of the frequency distribution is distorted, it can be determined that a plurality of surface distributions overlap.

<実施形態2>
次に実施形態2に係る合成樹脂フィルムの充填材測定方法について説明する。図6は実施形態2に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。実施形態2に係る合成樹脂フィルムの充填材測定方法では、まず、被測定物100の測定領域110に微小領域を設定するに際して、分割する微小領域を面積の異なる複数種設定する。
<Embodiment 2>
Next, a method for measuring a filler in a synthetic resin film according to Embodiment 2 will be described. FIG. 6 is a schematic diagram showing a basic process of the synthetic resin film filler measurement method according to the second embodiment. In the synthetic resin film filler measurement method according to the second embodiment, first, when setting a micro area in the measurement area 110 of the object to be measured 100, a plurality of micro areas to be divided are set to have different areas.

この例では、図6(a)、(b)に示すように、最小の微小領域a(a1、a2、a3)、…をまず設定する。次に微小領域b、微小領域cを設定する。ここで、微少領域微小領域aは、X線撮像の最小画素(1×1)の大きさとし、微小領域bは、微小領域aの4倍(2×2)の大きさ、微小領域cは、微小領域aの9倍(3×3)の大きさとする。このようにして大きさの異なる微小領域を順次必要な数だけ設定する。この例では、微小領域の大きさを、最小の微小領域aの2のN乗倍(Nは2以上の自然数)の大きさとし、大きさをNで表示するものとする。   In this example, as shown in FIGS. 6A and 6B, the minimum minute regions a (a1, a2, a3),... Are set first. Next, a micro area b and a micro area c are set. Here, the micro area a is the size of the minimum pixel (1 × 1) for X-ray imaging, the micro area b is four times (2 × 2) the micro area a, and the micro area c is The size is 9 times (3 × 3) the micro area a. In this way, a necessary number of minute regions having different sizes are sequentially set. In this example, it is assumed that the size of the minute region is the size of N 2 times the smallest minute region a (N is a natural number of 2 or more), and the size is displayed as N.

ついで、X線の透過量(カウント数)を、各微小領域a、b、c、…、で計数して、図6(c)に示すように、微量領域ごとに前記検出値の度数分布を作成し、各微小領域における度数分布の幅、例えば分散や半値幅を求める。同(c)には、微小領域a、b、cについての度数分布を記載している。次に、図6(c)に示すように、微小領域a、b、c、…の面積と、分散値または半値幅との関係曲線を求め、この関係曲線の変化に基づいて充填材の大きさを測定する。この変化が起こる点として特定される変化点としては、例えば、変曲点や傾斜が異なる領域の各曲線による漸近線の交点を採用することができる。   Next, the amount of X-ray transmission (count number) is counted in each micro area a, b, c,..., And as shown in FIG. The width of the frequency distribution in each minute region, for example, the variance or the half value width is obtained. The same (c) shows the frequency distribution for the minute regions a, b, and c. Next, as shown in FIG. 6C, a relationship curve between the area of the minute regions a, b, c,... And the dispersion value or the half value width is obtained, and the size of the filler is determined based on the change in the relationship curve. Measure the thickness. As a change point identified as a point where this change occurs, for example, an inflection point or an intersection of asymptotes of each curve in a region having a different slope can be adopted.

このように、グラフ変化点で充填材の平均粒径が判断することができるのは、以下の理由による。まず、微小領域が平均粒径以下の面積のとき、各微少領域におけるX線カウント数についてみる。この場合、各微小領域においてX線は完全に遮断されるか完全に透過するかのいずれかのものが大半となり、度数分布の分散値は最大となる。そして、微小領域が最小のものから大きくなるにつれて、微少領域のX線カウント数の分散が小さくなっていく。そして、微小領域を最大限大きくして、測定領域の全域を設定すると、X線カウントの分布はカウント数Nの直線となり分散値は0となる。このように微小領域の面積を大きくしつつ、分散値の値に注目すると、微少領域が平均粒径を越えると、変化が生じることになる。このような理由により、分散値の大きさの傾向が変わる分散値のグラフ変化点を求めることにより、平均粒径を計測することができるのである。   Thus, the reason why the average particle diameter of the filler can be determined from the graph change point is as follows. First, when the micro area has an area equal to or smaller than the average particle diameter, the X-ray count number in each micro area is examined. In this case, most of the X-rays are completely blocked or completely transmitted in each minute region, and the variance value of the frequency distribution is maximized. As the micro area increases from the smallest one, the variance of the X-ray count number in the micro area decreases. When the micro area is maximized and the entire measurement area is set, the X-ray count distribution becomes a straight line with the count number N, and the dispersion value becomes zero. When attention is paid to the value of the dispersion value while increasing the area of the minute region in this way, a change occurs when the minute region exceeds the average particle diameter. For this reason, the average particle diameter can be measured by obtaining a graph change point of the dispersion value at which the tendency of the dispersion value changes.

実施形態2に係る合成樹脂フィルムの充填材測定方法の測定例について説明する。まず測定例1について説明する。図7は被測定物のX線透過度数分布を示すグラフである。図6に示した例では、Nとして、1、2、3、4、5、6、7の例を示している。   A measurement example of the synthetic resin film filler measurement method according to Embodiment 2 will be described. First, measurement example 1 will be described. FIG. 7 is a graph showing the X-ray transmission frequency distribution of the object to be measured. In the example shown in FIG. 6, examples of N, 1, 2, 3, 4, 5, 6, 7 are shown as N.

測定例1では、微小領域a〔N=1(1×1画素)〕として、実施形態1の測定と同じ0.25μm×0.25μm(1×1)とする。ついで微小領域b〔N=2(2×2画素)〕、微小領域c(N=3(4×4)、…)、微少領域g(N=7(64×64画素))としたが、Nとしてより大きな数を測定する(例えばN=100)。   In the measurement example 1, the micro area a [N = 1 (1 × 1 pixel)] is set to 0.25 μm × 0.25 μm (1 × 1), which is the same as the measurement in the first embodiment. Next, a micro area b [N = 2 (2 × 2 pixels)], a micro area c (N = 3 (4 × 4),...), And a micro area g (N = 7 (64 × 64 pixels)) A larger number is measured as N (for example, N = 100).

ついで、測定領域を各微小領域a〜gでスキャンして、各スキャン位置でX線透過量(X線カウント数)を計測し、これに基づいて度数分布曲線を描いた(図7(a))。この度数分布は測定値に基づいているため、測定時の雑音、その他の影響で凹凸が生じている。このため、図7(b)、(c)に示すように、曲線をなめらかに補正する。補正は、最小自乗法などで行う。そして、この6本の曲線を正規化し(図7(d))、それぞれの分布曲線の半値幅を求める。   Next, the measurement area was scanned with each of the micro areas a to g, the X-ray transmission amount (X-ray count number) was measured at each scan position, and a frequency distribution curve was drawn based on this (FIG. 7A). ). Since this frequency distribution is based on measured values, unevenness occurs due to noise during measurement and other effects. For this reason, as shown in FIGS. 7B and 7C, the curve is corrected smoothly. Correction is performed by the method of least squares. Then, the six curves are normalized (FIG. 7D), and the half width of each distribution curve is obtained.

次に、この半値幅と、微小領域の面積と関係をグラフにし、関係曲線を描く。図8は図7に示したグラフに基づいて得た半値幅と微小領域の面積との関係を示すグラフである。図8では、微小領域の大きさを前述したNを用いて表し、半値幅をN=1を1としたときの相対値で表している。そして、関係曲線の変化点、例えば異なる傾斜部の漸近線の交点を求める。図8に示す例では、2本の漸近線の交点はN=20となる、これにより、充填材の平均粒径が0.25μm×20=5μm程度であることが分かる。   Next, the relationship between the half width and the area of the minute region is graphed to draw a relationship curve. FIG. 8 is a graph showing the relationship between the half width obtained based on the graph shown in FIG. 7 and the area of the minute region. In FIG. 8, the size of the minute region is expressed by using N described above, and the half-value width is expressed by a relative value when N = 1 is 1. Then, a change point of the relation curve, for example, an intersection of asymptotic lines of different inclined portions is obtained. In the example shown in FIG. 8, the intersection of the two asymptotes is N = 20, which indicates that the average particle diameter of the filler is about 0.25 μm × 20 = 5 μm.

他の測定例2として異なる被測定物の測定を測定例1と同様に行った。図9は他の被測定物のX線透過度数分布を示すグラフ、図10は図9に示したグラフに基づいて得た半値幅と微小領域の面積との関係を示すグラフである。   As another measurement example 2, different objects to be measured were measured in the same manner as measurement example 1. FIG. 9 is a graph showing the X-ray transmission frequency distribution of another object to be measured, and FIG. 10 is a graph showing the relationship between the full width at half maximum obtained based on the graph shown in FIG. 9 and the area of the minute region.

測定例2では、測定例1と同様の処理を行い、被測定物には充填材の平均粒径は、N=12、すなわち0.25μm×12=3.0μm程度であることが分かる。   In measurement example 2, the same process as in measurement example 1 is performed, and it is found that the average particle size of the filler in the object to be measured is N = 12, that is, about 0.25 μm × 12 = 3.0 μm.

なお、測定例1、2では、充填材としてその直径がほぼ等しい1種類のものを使用した場合について説明した。充填材として2またはそれ以上の種類の直径のものを使用した場合には、関係曲線には2またはそれ以上の箇所に変化点があらわれる。このため、この場合も同様に各充填材の平均粒径を求めることができる。   In the measurement examples 1 and 2, the case where one type of filler having substantially the same diameter was used was described. When two or more types of diameters are used as the filler, change points appear at two or more locations in the relationship curve. For this reason, the average particle diameter of each filler can be similarly obtained in this case.

<実施形態3>
次に実施形態3に係る合成樹脂フィルムの充填材測定方法について説明する。図11は実施形態3に係る合成樹脂フィルムの充填材測定方法の基本的な処理を示す模式図である。実施形態3に係る合成樹脂フィルムの充填材測定方法では、まず図11(a)に示すように、被測定物100に1本のライン111を設定する。このライン111の位置は必要に応じて定めることができる。そして、このライン111上に整列する微小領域を設定する。そして、図11(b)に示すように、該微小領域における検出値の度数分布を求め、この度数分布からラインにおける充填材の平均充填率と分散値とを求める。
<Embodiment 3>
Next, a method for measuring a filler in a synthetic resin film according to Embodiment 3 will be described. FIG. 11 is a schematic diagram showing a basic process of the synthetic resin film filler measurement method according to the third embodiment. In the synthetic resin film filler measurement method according to the third embodiment, first, one line 111 is set on the device under test 100 as shown in FIG. The position of the line 111 can be determined as necessary. Then, a minute region aligned on the line 111 is set. And as shown in FIG.11 (b), the frequency distribution of the detected value in this micro area | region is calculated | required, and the average filling rate and dispersion value of the filler in a line are calculated | required from this frequency distribution.

また、図11(c)に示すように、1ラインの強度分布を平均値ラインの上に描く。これにより、1ラインでの平均充填率、分散値とライン上の分布を計測することができる。この方法は、特に量産工程での進行方向(図11(a)中の矢印)に対し直角となるライン上の分布を計測できる。   Further, as shown in FIG. 11C, an intensity distribution of one line is drawn on the average value line. Thereby, the average filling rate in one line, the dispersion value, and the distribution on the line can be measured. This method can measure a distribution on a line that is perpendicular to the direction of travel in the mass production process (arrow in FIG. 11A).

実施形態3に係る合成樹脂フィルムの充填材測定方法の測定例について説明する。図12は実施形態3に係る合成樹脂フィルムの充填材測定方法の測定例を示すものであり、(a)は測定のラインを示すX線写真、(b)はライン上におけるX線カウントを示すグラフである。図11(b)に示すように、ライン上の充填材の充填状態を表示することができる。   A measurement example of the synthetic resin film filler measurement method according to Embodiment 3 will be described. FIG. 12 shows a measurement example of the synthetic resin film filler measurement method according to Embodiment 3, wherein (a) shows an X-ray photograph showing a measurement line, and (b) shows an X-ray count on the line. It is a graph. As shown in FIG. 11B, the filling state of the filler on the line can be displayed.

この例では、前述した絶縁シートA(図1参照)について測定を行ったところ、測定ラインでの平均充填率として50vol%を得た。   In this example, when the above-described insulating sheet A (see FIG. 1) was measured, 50 vol% was obtained as an average filling rate in the measurement line.

<実施形態4>
次に実施形態4に係る合成樹脂フィルムの充填材測定装置について説明する。図13は実施形態4に係る合成樹脂フィルムの充填材測定装置の外観を示す斜視図、図14は図13に示した合成樹脂フィルムの充填材測定装置の構成を示すブロック図である。
<Embodiment 4>
Next, a synthetic resin film filler measuring apparatus according to Embodiment 4 will be described. FIG. 13 is a perspective view showing the appearance of the synthetic resin film filler measuring apparatus according to Embodiment 4, and FIG. 14 is a block diagram showing the configuration of the synthetic resin film filler measuring apparatus shown in FIG.

実施形態4に係る合成樹脂フィルムの充填材測定装置200は、実施形態1から実施形態3に係る合成樹脂フィルムの充填材測定方法を実施するものである。充填材測定装置200は、電磁波源でありX線を出力するX線管ユニット201と、検出手段であるX線カメラ202と、X線カメラ202の駆動制御行うX線カメラコントローラ203と、X線管ユニットの制御を行うX線コントールユニット204と、被測定物である合成樹脂フィルムを、搬送する搬送手段である搬入ベルト205および搬出ベルト206とを備える。   The synthetic resin film filler measuring apparatus 200 according to the fourth embodiment performs the synthetic resin film filler measuring method according to the first to third embodiments. The filler measuring apparatus 200 includes an X-ray tube unit 201 that is an electromagnetic wave source and outputs X-rays, an X-ray camera 202 that is detection means, an X-ray camera controller 203 that controls driving of the X-ray camera 202, and an X-ray An X-ray control unit 204 that controls the tube unit, and a carry-in belt 205 and a carry-out belt 206 that are carrying means for carrying the synthetic resin film that is the object to be measured are provided.

また、充填材測定装置200は、図14に示すように、X線カメラ202の撮影像から測定領域110の微小領域におけるX線透過度数を計測する度数計数手段210と、計数された度数から、度数分布を作成し平均値、分散、半値幅などを演算する演算処理手段220と、各種情報を表示する表示手段230、必要な支持、条件等を入力する入力手段240と、充填材測定装置200の全体制御を行う制御装置250と、搬入ベルト205、搬出ベルト206の制御を行う搬送コントロールユニット260とを備える。   Further, as shown in FIG. 14, the filler measuring apparatus 200 includes a frequency counting unit 210 that measures the X-ray transmission frequency in a minute region of the measurement region 110 from the image captured by the X-ray camera 202, and from the counted frequency, An arithmetic processing unit 220 that creates a frequency distribution and calculates an average value, variance, half-value width, etc., a display unit 230 that displays various information, an input unit 240 that inputs necessary support, conditions, etc., and a filler measuring apparatus 200 And a transport control unit 260 that controls the carry-in belt 205 and the carry-out belt 206.

この充填材測定装置200は、合成樹脂フィルムの製造ラインの搬出箇所や、搬入箇所に配置する。そして、製造された絶縁フィルムや導電フィルム等の被測定物100を搬入ベルト205でX線カメラ202の撮像位置に搬送し、X線管ユニット201からのX線の透過像を撮影する。 This filler measuring device 200 is arranged at a carry-out place or a carry-in place of a synthetic resin film production line. Then, the manufactured object 100 such as an insulating film or a conductive film is transported to the imaging position of the X-ray camera 202 by the carry-in belt 205, and an X-ray transmission image from the X-ray tube unit 201 is taken.

X線カメラ202は、例えば横336μm、縦256μmの領域を撮像し、撮像ドット(1×1)の大きさは0.25μm×0.25μmとする。撮像が終了した被測定物100は、搬出ベルト206で搬出される。   The X-ray camera 202 images, for example, an area of 336 μm in width and 256 μm in length, and the size of the imaging dot (1 × 1) is 0.25 μm × 0.25 μm. The DUT 100 for which imaging has been completed is carried out by the carry-out belt 206.

X線カメラ202で取得されたX線撮影像は、度数計数手段210で、必要な領域の、必要な微小領域サイズにおける透過量計数(X線カウント)がされ、必要な度数分布が取得される。そして、演算処理手段220であらかじめ定めた、平均値、分散値、半値幅等の統計値が取得され、この統計値に基づいて充填材の充填率、粒径、分布状態等が取得できる。   An X-ray image obtained by the X-ray camera 202 is counted by a frequency counting unit 210 to perform a transmission amount count (X-ray count) in a necessary minute area size of a necessary area, and a necessary frequency distribution is obtained. . Then, statistical values such as an average value, a variance value, and a half value width, which are determined in advance by the arithmetic processing unit 220, are acquired. Based on the statistical values, the filling rate, particle size, distribution state, and the like of the filler can be acquired.

ここで、演算処理手段220は、CPU、ROM、RAM、HDD等を備えたコンピュータとし、CPUで所定のプログラムを実行することで、各処理を実行する。これにより、入力手段240から指定した実施形態1、2、3の合成樹脂フィルムの充填材測定方法を実行できる。   Here, the arithmetic processing unit 220 is a computer including a CPU, a ROM, a RAM, an HDD, and the like, and executes each process by executing a predetermined program by the CPU. Thereby, the filler measuring method of the synthetic resin film of Embodiment 1, 2, 3 designated from the input means 240 can be performed.

すなわち、実施形態1に係る合成樹脂フィルムの充填材測定方法を実行するには以下の手順による。まず、入力手段240から被測定物100の厚さ寸法を入力する。そして、被測定物100を搬入ベルト205で搬入して、X線管ユニット201およびX線カメラ202を動作して、被測定物100のX線像を撮影する。そしてX線カメラ202の出力から度数計数手段210が各画素におけるカウント値を取得する。次に、演算処理手段220が度数分布(図2(c)、図3参照)を作成し、この度数分布から被測定物100における充填材の充填率を求め、さらに、充填材の分布の状態を調べる(図5参照)。   In other words, the synthetic resin film filler measurement method according to Embodiment 1 is performed according to the following procedure. First, the thickness dimension of the DUT 100 is input from the input unit 240. Then, the DUT 100 is carried in by the carry-in belt 205, and the X-ray tube unit 201 and the X-ray camera 202 are operated to take an X-ray image of the DUT 100. Then, the frequency counting means 210 acquires the count value in each pixel from the output of the X-ray camera 202. Next, the arithmetic processing means 220 creates a frequency distribution (see FIGS. 2C and 3), obtains the filling rate of the filler in the DUT 100 from this frequency distribution, and further, the state of the distribution of the filler (See FIG. 5).

また、実施形態2に係る合成樹脂フィルムの充填材測定方法を実行するには、同様に得られたX線カメラ202の撮影像から、度数計数手段210で異なる大きさの微小領域でのX線の透過量(カウント数)を計数する。そして、演算処理手段220で、図5(c)に示すように、微量領域ごとに前記検出値の度数分布を作成し、各微小領域における度数分布の幅、例えば分散や半値幅を求める。次に、演算処理手段220で、図5(c)に示すように、各大きさの微小領域の面積と、分散値または半値幅との関係曲線を求め、この関係曲線の変化に基づいて充填材の大きさを取得する。   In addition, in order to execute the synthetic resin film filler measurement method according to the second embodiment, X-rays in minute regions having different sizes by the frequency counting unit 210 are obtained from images obtained by the X-ray camera 202 similarly obtained. The amount of permeation (count number) is counted. Then, as shown in FIG. 5C, the arithmetic processing means 220 creates a frequency distribution of the detected values for each minute region, and obtains the width of the frequency distribution in each minute region, for example, the variance and the half-value width. Next, as shown in FIG. 5C, the arithmetic processing means 220 obtains a relational curve between the area of each minute region and the dispersion value or half-value width, and fills based on the change in the relational curve. Get the size of the material.

また、実施形態3に係る合成樹脂フィルムの充填材測定方法を実行するには、同様に得られたX線カメラ202の撮影像から、必要な1ラインにおける微小領域における検出値の度数分布(図11(b))を求め、この度数分布からラインにおける充填材の平均充填率と分散値とを求める(図11(c))。   In addition, in order to execute the synthetic resin film filler measurement method according to the third embodiment, the frequency distribution of detected values in a minute region in one necessary line from the captured image of the X-ray camera 202 similarly obtained (see FIG. 11 (b)), and the average filling rate and dispersion value of the filler in the line are obtained from this frequency distribution (FIG. 11 (c)).

10:合成樹脂フィルム
11:基材
12:充填材
21:光学投影像
22:X線投影像
100:被測定物
110:測定領域
200:充填材測定装置
201:X線管ユニット
202:X線カメラ
203:X線カメラコントローラ
204:X線コントールユニット
205:搬入ベルト
206:搬出ベルト
210:度数計数手段
220:演算処理手段
230:表示手段
240:入力手段
250:制御装置
260:搬送コントロールユニット
10: Synthetic resin film 11: Base material 12: Filler 21: Optical projection image 22: X-ray projection image 100: Object to be measured 110: Measurement area 200: Filler measurement device 201: X-ray tube unit 202: X-ray camera 203: X-ray camera controller 204: X-ray control unit 205: carry-in belt 206: carry-out belt 210: frequency counting means 220: arithmetic processing means 230: display means 240: input means 250: control device 260: transport control unit

Claims (12)

合成樹脂基材中に微細な充填材を混ぜ込んだフィルム材を被測定物とし、該被測定物に電磁波を照射し、該電磁波の透過量から充填材の状態を測定する合成樹脂フィルム材の充填材測定方法において、
被測定物の測定領域を微小領域に分割し、
該微小領域を透過した電磁波の検出値を取得し、
各微小量領域における検出値の度数分布を作成し、
取得した度数分布を演算処理して充填材の状態を演算する、
ことを特徴とする合成樹脂フィルム材の充填材測定方法
A synthetic resin film material in which a fine filler is mixed in a synthetic resin substrate is used as an object to be measured, the object is irradiated with electromagnetic waves, and the state of the filler is measured from the amount of transmission of the electromagnetic waves. In the filler measurement method,
Divide the measurement area of the object under measurement into small areas,
Obtaining the detection value of the electromagnetic wave that has passed through the minute region,
Create a frequency distribution of detected values in each minute area,
Compute the acquired frequency distribution to calculate the state of the filler,
Method for measuring filler in synthetic resin film material
前記統計処理は、度数分布状態の平均値を求めるものであり、この求めた平均値から被測定物における充填材の平均充填率を求めることを特徴とする請求項1に記載の合成樹脂フィルムの充填材測定方法。   The said statistical process calculates | requires the average value of a frequency distribution state, and calculates | requires the average filling rate of the filler in a to-be-measured object from this calculated | required average value. The synthetic resin film of Claim 1 characterized by the above-mentioned. Filler measurement method. 前記分割する微小領域を面積の異なる複数種設定し、
電磁波の透過量を異なる面積の微小領域ごとに検出し、
微量領域の面積ごとに前記検出値の度数分布を作成し、
検出値の度数分布に基づいて、微小領域の面積と、度数分布の広がりとの関係曲線を求め、この関係曲線の変動に基づいて充填材の大きさを測定することを特徴とする請求項1に記載の合成樹脂フィルムの充填材測定方法。
Set a plurality of types of micro-regions to be divided, with different areas,
Detect the amount of electromagnetic wave transmission for each micro area of different area,
Create a frequency distribution of the detected value for each area of the trace area,
2. A relationship curve between the area of the minute region and the spread of the frequency distribution is obtained based on the frequency distribution of the detected values, and the size of the filler is measured based on the fluctuation of the relationship curve. The filler measuring method of the synthetic resin film as described in 2.
被測定物のライン上に微小領域を設定し、
該微小領域における検出値から、前記ラインにおける充填材の平均充填率と、分散値とを求めることを特徴とする請求項1に記載の合成樹脂フィルムの充填材測定方法。
Set a minute area on the line of the object to be measured,
The method for measuring a filler of a synthetic resin film according to claim 1, wherein an average filling rate and a dispersion value of the filler in the line are obtained from a detected value in the minute region.
前記検出値の度数分布から測定領域における充填材の均一性を判定することを特徴とする請求項1に記載の合成樹脂フィルムの充填材測定方法。 The method for measuring a filler in a synthetic resin film according to claim 1, wherein the uniformity of the filler in the measurement region is determined from the frequency distribution of the detected values. 前記電磁波はX線であることを特徴とする請求項1から請求項5のいずれかに記載の合成樹脂フィルムの充填材測定方法。   6. The synthetic resin film filler measurement method according to claim 1, wherein the electromagnetic wave is an X-ray. 基材に微細な充填材を混ぜ込んだシートを被測定物とし、該被測定物に電磁波を照射し、該電磁波の透過量から充填材の状態を測定する充填材の測定装置において、
被測定物に電磁波を照射する電磁波源と、
被測定物の各領域における電磁波の透過量を検出する検出手段と、
各微小量領域における検出値の度数分布を作成し、取得した度数分布を演算処理して充填材の状態を演算する演算処理手段と、
を備えることを特徴とする合成樹脂フィルムの充填材測定装置。
In a measuring device for a filler, in which a sheet in which a fine filler is mixed into a substrate is an object to be measured, the object is irradiated with electromagnetic waves, and the state of the filler is measured from the amount of transmission of the electromagnetic waves.
An electromagnetic wave source for irradiating the object to be measured with an electromagnetic wave;
Detecting means for detecting the amount of electromagnetic wave transmitted in each region of the object to be measured;
Calculation processing means for creating a frequency distribution of detected values in each minute amount region, calculating the acquired frequency distribution and calculating the state of the filler,
A synthetic resin film filler measurement apparatus comprising:
前記電磁波源は前記被測定物のあらかじめ定めた測定領域に電磁波を照射し、前記検出手段は、電磁波が照射された測定領域の各点における電磁波の透過量を検出することを特徴とする請求項7に記載の合成樹脂フィルムの充填材測定装置。   The electromagnetic wave source irradiates an electromagnetic wave to a predetermined measurement region of the object to be measured, and the detection means detects the transmission amount of the electromagnetic wave at each point of the measurement region irradiated with the electromagnetic wave. The synthetic resin film filler measuring apparatus according to claim 7. 前記演算処理手段は、検出手段が取得した測定領域の各点における透過量から、照射領域をあらかじめ定めた面積で分割した微小領域における透過量を取得することを特徴とする請求項8に記載の合成樹脂フィルムの充填材測定装置。   The said arithmetic processing means acquires the transmission amount in the micro area | region which divided | segmented the irradiation area | region into the predetermined area from the transmission amount in each point of the measurement area | region acquired by the detection means. Synthetic resin film filler measuring device. 複数の被測定物を前記電磁波源と前記検出手段との間に順次搬送する搬送手段を備えることを特徴とする請求項7から請求項9のいずれかに記載の合成樹脂フィルムの充填材測定装置。   The synthetic resin film filling material measuring apparatus according to any one of claims 7 to 9, further comprising conveying means for sequentially conveying a plurality of objects to be measured between the electromagnetic wave source and the detecting means. . 前記電磁波源は被測定物にX線を照射し、前記検出手段は被測定物を透過したX線を検出することを特徴とする請求項7から請求項10のいずれかに記載の合成樹脂フィルムの充填材測定方法。   The synthetic resin film according to any one of claims 7 to 10, wherein the electromagnetic wave source irradiates an object to be measured with X-rays, and the detection means detects X-rays transmitted through the object to be measured. Filling material measurement method. 請求項1から請求項7のいずれかに記載の充填材の測定方法に基づいて充填材の状態を演算することを特徴とする請求項7から請求項11のいずれかに記載の合成樹脂フィルムの充填材測定方法。   The synthetic resin film according to any one of claims 7 to 11, wherein a state of the filler is calculated based on the method for measuring the filler according to any one of claims 1 to 7. Filler measurement method.
JP2012070230A 2012-03-26 2012-03-26 Method and device for measuring filler in synthetic resin film Pending JP2013200283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070230A JP2013200283A (en) 2012-03-26 2012-03-26 Method and device for measuring filler in synthetic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070230A JP2013200283A (en) 2012-03-26 2012-03-26 Method and device for measuring filler in synthetic resin film

Publications (1)

Publication Number Publication Date
JP2013200283A true JP2013200283A (en) 2013-10-03

Family

ID=49520625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070230A Pending JP2013200283A (en) 2012-03-26 2012-03-26 Method and device for measuring filler in synthetic resin film

Country Status (1)

Country Link
JP (1) JP2013200283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111633828A (en) * 2020-05-28 2020-09-08 三一专用汽车有限责任公司 Measuring device, mixing drum, concrete mixing and transporting vehicle and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111633828A (en) * 2020-05-28 2020-09-08 三一专用汽车有限责任公司 Measuring device, mixing drum, concrete mixing and transporting vehicle and measuring method
CN111633828B (en) * 2020-05-28 2021-07-30 三一专用汽车有限责任公司 Measuring device, mixing drum, concrete mixing and transporting vehicle and measuring method

Similar Documents

Publication Publication Date Title
JP2016535258A (en) Multiscale uniformity analysis of materials
JP5686139B2 (en) Manufacturing method of glass substrate for liquid crystal display panel
US11099063B2 (en) Apparatus and method for profiling a beam of a light emitting semiconductor device
JP2019219267A (en) In-line internal defect inspection method and system
JP2011191252A (en) Surface quality evaluation method of metal and surface quality evaluation apparatus of metal
JP2008014696A (en) Image display device and method, and unevenness inspection device and method
JP2013200283A (en) Method and device for measuring filler in synthetic resin film
JP2015138271A (en) Unevenness analysis method
JP7456135B2 (en) Molding support device and molding support method
JP6013819B2 (en) Surface shape inspection apparatus and surface shape inspection method
JP5356184B2 (en) Inspection equipment
JP2014119361A (en) Surface defect detection device and surface defect detection method
JP2013145188A (en) Particle abundance ratio calculation method and particle crystal size calculation method
TWM579378U (en) Wafer film measuring device and measuring system
JP2009080030A (en) X-ray inspection device
JP6339493B2 (en) Method for measuring plate width of continuum and method for producing steel plate
JP5724441B2 (en) Optical characteristic evaluation method and optical element inspection method
CN108195339A (en) The uncertainty of plane planeness measurement result determines method under site environment
Arenhart et al. Design of a multi-wave standard to evaluate the frequency response of CT measuring systems
JP2015503110A (en) Sensor for measuring surface non-uniformity
JP2014044108A (en) Surface roughness estimation method, and surface roughness estimation device
Chen et al. In-situ volumetric topography of IC chips for defect detection using infrared confocal measurement with active structured light
Yoshida et al. Particle size measurement of reference particle candidates and uncertainty region of count and mass based cumulative distribution
He et al. Calibrating the Z-magnification of atomic force microscope below 10 nm by single-atom steps
JP6358045B2 (en) X-ray analysis method for surface-coated fine particles and X-ray analyzer for surface-coated fine particles