JP2015138271A - Unevenness analysis method - Google Patents

Unevenness analysis method Download PDF

Info

Publication number
JP2015138271A
JP2015138271A JP2014007658A JP2014007658A JP2015138271A JP 2015138271 A JP2015138271 A JP 2015138271A JP 2014007658 A JP2014007658 A JP 2014007658A JP 2014007658 A JP2014007658 A JP 2014007658A JP 2015138271 A JP2015138271 A JP 2015138271A
Authority
JP
Japan
Prior art keywords
unevenness
analysis
local
area
population
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014007658A
Other languages
Japanese (ja)
Inventor
藤田 雄三
Yuzo Fujita
雄三 藤田
一朗 武田
Ichiro Takeda
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2014007658A priority Critical patent/JP2015138271A/en
Publication of JP2015138271A publication Critical patent/JP2015138271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for quantifying unevenness of a characteristic value such as distribution, density, or temperature distribution of components of a composite.SOLUTION: The unevenness analysis method for quantifying unevenness of distribution of a characteristic value from a digital image in which same characteristic value is drawn with same color, comprises: a first step for extracting an analysis area from the digital image; a second step for weighting by a predetermined amount to respective pixel in the analysis area according to color tone of the respective pixel; a third step for extracting a local area where is a spot symmetrical shape smaller than the analysis area, in which the respective pixels in the analysis area serve as a center; a fourth step for calculating average weight in the local area, by dividing total sum of weight of all pixels in the local areas by a total number of pixels of the local areas; a fifth step for making the average weight in the respective local area a parent population; and a sixth step for regarding variation of the parent populations as unevenness, and quantifying the unevenness by a variation coefficient or standard deviation of the parent population.

Description

本発明は、画像のムラを解析する方法に関し、特に複合材料の構成材の分布ムラ、特性値のムラの解析方法に関する。   The present invention relates to a method for analyzing image unevenness, and more particularly to a method for analyzing distribution unevenness and characteristic value unevenness of components of a composite material.

2つ以上の異なる構成材が一体的に組み合わされて生成された複合材料は、構成材の比率によって力学特性が異なる。例えば、母材であるエポキシ樹脂に炭素繊維を混合させる炭素繊維強化プラスチックであれば、炭素繊維の比率が多いほど高い剛性を示す。しかし、全体としては同じ比率で混合された複合材料であっても、構成材が均質に混合されている複合材料と、構成材の分布が非均質であり局所的な疎密が存在している複合材料とでは力学特性は異なる。また、構成材の分布は、濃度や温度といった特性値の分布にも影響を与える。特性値の分布は同じ特性値を同色で描いた画像を用い、特性値の高い箇所や低い箇所、特性値の範囲を示すことができる。しかし、全体の平均的な特性値が同じであっても、特性値が均質に分布しているか否かで複合材料の特性を同一とみなすかどうかは変わってくる。   A composite material produced by integrally combining two or more different constituent materials has different mechanical characteristics depending on the ratio of the constituent materials. For example, in the case of a carbon fiber reinforced plastic in which carbon fibers are mixed with an epoxy resin as a base material, the higher the ratio of carbon fibers, the higher the rigidity. However, even if it is a composite material mixed in the same ratio as a whole, a composite material in which the constituent materials are homogeneously mixed and a composite in which the distribution of the constituent materials is non-homogeneous and local density exists Mechanical properties differ from materials. The distribution of the constituent material also affects the distribution of characteristic values such as concentration and temperature. The distribution of characteristic values can use an image in which the same characteristic values are drawn with the same color, and can indicate a high or low characteristic value range or a characteristic value range. However, even if the overall average characteristic value is the same, whether or not the characteristics of the composite material are regarded as the same varies depending on whether or not the characteristic values are uniformly distributed.

以上のように、複合材料の構成材や特性値の分布の非均質性をムラと定義すると、ムラの均質性や同一性を示すためには、複合材料の断面画像や特性値の分布を示した画像を用いてムラの度合いを定量的に示す方法が必要である。ムラの度合いを定量的に示すことができれば、材料の品質保証に有効に活用できる。   As described above, if the non-homogeneity of the components of the composite material and the distribution of characteristic values is defined as unevenness, the cross-sectional image of the composite material and the distribution of characteristic values are shown in order to show the homogeneity and identity of the unevenness. There is a need for a method of quantitatively indicating the degree of unevenness using the obtained images. If the degree of unevenness can be shown quantitatively, it can be effectively used for quality assurance of materials.

ムラの定量化方法に関しては、画像処理の分野でいくつかの技術が知られている。特許文献1では、製品の光沢や印刷の色ムラの定量化を試みている。評価対象とする画像をフーリエ変換によって明部と暗部に分け、検出した閉区画画像領域の面積の分布を計算することにより、ムラを定量化している。   Regarding the method for quantifying unevenness, several techniques are known in the field of image processing. In Patent Document 1, an attempt is made to quantify product gloss and printing color unevenness. The unevenness is quantified by dividing the image to be evaluated into a bright part and a dark part by Fourier transform and calculating the distribution of the area of the detected closed section image region.

特許文献2では、液晶ディスプレイに用いられるガラス基盤や塗装した板に対して、全体の色彩データのヒストグラムを作成し、分割された領域の色彩データがその許容範囲内にあるかどうかを判定することにより、ムラを検査する手法を提供している。   In Patent Document 2, a histogram of the entire color data is created for a glass substrate or painted plate used for a liquid crystal display, and it is determined whether the color data of the divided area is within the allowable range. Provides a method for inspecting unevenness.

特許文献3では、液晶ディスプレイ等の表示装置表面に用いられる防眩フィルムのムラを、多重解像度解析を行い視覚系の周波数毎の感度を掛け合わせることにより、粗いムラと細かいムラの両方が混在したムラを定量化している。ムラの大小の比較や同一性判定にも用いることができる。   In Patent Document 3, unevenness of an antiglare film used on the surface of a display device such as a liquid crystal display is subjected to multiresolution analysis and multiplied by sensitivity for each frequency of the visual system, thereby mixing both rough unevenness and fine unevenness. Unevenness is quantified. It can also be used to compare unevenness and determine identity.

複合材料にムラの解析を適用した事例として、特許文献4〜6が挙げられる。   As examples of applying the analysis of unevenness to a composite material, Patent Documents 4 to 6 are cited.

特許文献4では分割された領域での異種構成材の混合比と既知の混合比との差により領域間での混合比のばらつきを評価している。   In Patent Document 4, the variation in the mixing ratio between the regions is evaluated based on the difference between the mixing ratio of different constituent materials in the divided areas and the known mixing ratio.

特許文献5では、構成材の局所的な含有量の違いについて、略平行に繊維が配置された繊維強化樹脂塑性物の断面を、相互に重なり合わない40〜100の等面積の略正方形の領域に分割し、全ての領域について、繊維の占める面積率を測定し、それらを母集団とした場合の母集団のバラツキを測定している。繊維強化複合材料中の繊維分布に限らず、様々な分布のムラを、この手法と同様に測定することができる。   In patent document 5, about the difference of local content of a constituent material, the cross section of the fiber reinforced resin plastic material by which the fiber was arrange | positioned substantially in parallel is a substantially square area | region of 40-100 equal areas which do not mutually overlap. In each region, the area ratio occupied by the fibers is measured, and the variation of the population when these are used as the population is measured. Not only the fiber distribution in the fiber-reinforced composite material but also various distribution unevenness can be measured in the same manner as this method.

特許文献6でも複合材料の断面を正方形の領域に区切り、領域ごとに繊維数を数え母集団とし、母集団の分散性を評価している。繊維配向角の定量化も可能である。   Patent Document 6 also divides the cross section of the composite material into square regions, counts the number of fibers for each region, and sets the population to evaluate the dispersibility of the population. Quantification of the fiber orientation angle is also possible.

繊維が一方向に揃った一方向繊維強化複合材料の断面から、繊維のランダム性を評価する方法には、非特許文献1で述べられているような次式(1)に示すRipley’s K function(K(h))がある。ここで、Aは解析領域の面積、Nは解析領域内の繊維数、I(dij<h)はi番目の繊維とj番目の繊維との距離dijがhよりも小さい場合の繊維数を数えることを意味している。つまり、i番目の繊維を中心とした半径hの円の中に含まれる繊維数を意味している。dijはi番目とj番目の繊維の距離である。Wは半径hの円が解析領域からはみ出る場合には、円の面積のうち解析領域と重なる面積の割合を示している。この方法により、hとK(h)の関係が滑らかな曲線となれば、繊維配置が規則的でないことが証明できる。 Ripley's K shown in the following formula (1) as described in Non-Patent Document 1 is used as a method for evaluating the randomness of the fiber from the cross section of the unidirectional fiber reinforced composite material in which the fibers are aligned in one direction. function (K (h)). Here, A is the area of the analysis region, N is the number of fibers in the analysis region, I (d ij <h) is the number of fibers when the distance d ij between the i-th fiber and the j-th fiber is smaller than h. Is meant to count. That is, it means the number of fibers contained in a circle with a radius h centered on the i-th fiber. d ij is the distance between the i th and j th fibers. W indicates the proportion of the area of the circle that overlaps the analysis region when the circle with the radius h protrudes from the analysis region. By this method, if the relationship between h and K (h) is a smooth curve, it can be proved that the fiber arrangement is not regular.

特開平6−222002号公報JP-A-6-222002 特開平9−210789号公報JP-A-9-210789 特開2009−229391号公報JP 2009-229391 A 特開平8−271402号公報JP-A-8-271402 特開平8−164521号公報JP-A-8-164521 特開2004−28669号公報JP 2004-28669 A

Generation of random distribution of fibres in long−fibre reinforced composites、A.R.Melro,P.P.camanho、S.T.Pinho、Composites Science and Technology 68(2008)2092−2102Generation of random distribution of fibres in long-fiber reinformed composites, A.R. R. Melro, P.M. P. camanho, S .; T. T. et al. Pinho, Composites Science and Technology 68 (2008) 2092-2102

しかしながら、従来技術では、次のような問題を有している。   However, the prior art has the following problems.

特許文献1では二値化を前提としているため、色彩を含む画像によるムラの定量化には適用できない。また、閉区画領域の面積の分布を評価しているため、例えば繊維強化プラスチックの断面に繊維が分布している場合、繊維の断面積の分布は評価できるが、断面内に生じる繊維の疎密の評価ができない。   Since Patent Document 1 presupposes binarization, it cannot be applied to unevenness quantification using an image including a color. In addition, since the distribution of the area of the closed region is evaluated, for example, when the fiber is distributed in the cross section of the fiber reinforced plastic, the distribution of the cross sectional area of the fiber can be evaluated, but the density of the fibers generated in the cross section can be evaluated. Cannot be evaluated.

特許文献2では、ムラの存在する箇所を示す手法であり、複合材料間のムラの差を示すことはできない。   In Patent Document 2, it is a technique for indicating a portion where unevenness exists, and a difference in unevenness between composite materials cannot be indicated.

特許文献3では多重解像度解析により解像度と周波数強度の関係を導くことで精度の高いムラの解析が可能である。しかし、特性値ではなく、周波数強度を比較するため、複合材料においてムラによって発生する局所的な領域での特性値や構成材の含有量のばらつきを定量的に示すことができない。   In Patent Document 3, it is possible to analyze unevenness with high accuracy by deriving the relationship between resolution and frequency intensity by multi-resolution analysis. However, since the frequency intensity is compared rather than the characteristic value, it is impossible to quantitatively show the variation in the characteristic value and the content of the constituent material in a local region caused by unevenness in the composite material.

領域に区切ってその領域内の分布物の面積率を測定する特許文献4、特許文献5および特許文献6で開示される方法では、ばらつきの大小と同時に、構成材の含有量がばらつく範囲も示すことができるが、領域の区切り方により、ばらつきの度合いが変動してしまう。また、繊維があるかないかの疎密は評価できるものの、ある成分がどの程度の濃度で分布しているかや温度分布など、段階的に変化する特性値のムラの定量化ができない。   In the methods disclosed in Patent Document 4, Patent Document 5 and Patent Document 6 in which the area ratio of the distribution in the region is measured by dividing into regions, the range in which the content of the constituent material varies as well as the size of the variation is shown. However, the degree of variation varies depending on how the areas are separated. In addition, although the density of whether or not there is a fiber can be evaluated, it is impossible to quantify the unevenness of characteristic values that change stepwise, such as the concentration of a certain component and the temperature distribution.

Ripley’s K functionでは、一方向繊維強化複合材料の繊維配置のランダム性を証明することはできるが、各繊維を中心として作成する円の中の繊維数を数え、全ての円の中の繊維数を足す手法であるため、繊維が疎な領域と密な領域が存在する場合と繊維が均一に分布している場合の差を示すことが難しい。   Ripley's K function can prove the randomness of the fiber arrangement of the unidirectional fiber reinforced composite material, but count the number of fibers in the circle created around each fiber, and the fibers in all the circles. Since it is a technique of adding numbers, it is difficult to show the difference between the case where there are sparse and dense regions of fibers and the case where the fibers are uniformly distributed.

かかる背景に鑑み、本発明では、領域の区切り方に依存するばらつきの変動を最小限に抑えた、特性値や構成材の分布のムラを定量化するためのムラの解析方法を提供することを課題とする。   In view of such a background, the present invention provides a method for analyzing unevenness for quantifying unevenness in the distribution of characteristic values and constituent materials while minimizing fluctuations in variation depending on how the regions are separated. Let it be an issue.

上記課題を解決するために、本発明のムラの解析方法は、次の構成を有する。すなわち、同一の特性値を同色で描いたデジタル画像から特性値の分布のムラを定量化するムラの解析方法であって、デジタル画像内から解析領域を抽出する第1ステップ、解析領域内の各々の画素に対し、各画素が持つ色調に応じて所定の重みを与える第2ステップ、解析領域内の各々の画素を中心として解析領域よりも小さな点対称形状である局所領域を抽出する第3ステップ、各局所領域内の全ての画素の重みの合計を局所領域の総画素数で割り局所領域内の平均的な重みを算出する第4ステップ、各局所領域内の平均的な重みを母集団とする第5ステップおよび、母集団のばらつきをムラとし、母集団の変動係数または標準偏差によりムラを定量化する第6ステップを有するムラの解析方法である。   In order to solve the above problems, the method for analyzing unevenness of the present invention has the following configuration. That is, a non-uniformity analysis method for quantifying nonuniformity in distribution of characteristic values from a digital image in which the same characteristic values are drawn in the same color, the first step of extracting an analysis area from the digital image, A second step of giving a predetermined weight to each pixel according to the color tone of each pixel, and a third step of extracting a local region having a point symmetric shape smaller than the analysis region around each pixel in the analysis region The fourth step of calculating the average weight in the local region by dividing the total weight of all the pixels in each local region by the total number of pixels in the local region, and calculating the average weight in each local region as the population And a sixth analysis step of quantifying the unevenness by the variation coefficient or the standard deviation of the population.

また、上記課題を解決するために、本発明のムラの大きさの推定手法は、次の構成を有する。すなわち、局所領域の面積を変えて母集団を複数準備し、各々の母集団に対して前記したムラの解析方法を実行する、ムラの大きさの推定手法である。   Moreover, in order to solve the said subject, the estimation method of the magnitude | size of the nonuniformity of this invention has the following structure. In other words, this is an unevenness estimation method in which a plurality of populations are prepared by changing the area of the local region, and the above-described unevenness analysis method is executed for each population.

本発明によれば、局所的なムラの有無を考慮して、物体の特性値の分布、複合材料の構成材の分布を定量的に示し、分布のばらつきからムラの度合いを定量的に示すことができる。   According to the present invention, taking into account the presence or absence of local unevenness, the distribution of the characteristic value of the object and the distribution of the constituent material of the composite material are quantitatively indicated, and the degree of unevenness is quantitatively indicated from the distribution variation. Can do.

同一の特性値を同色で描いたデジタル画像の一例である。It is an example of the digital image which drawn the same characteristic value with the same color. 画素の集合体と、ある画素を中心とした局所領域の概略図である。It is the schematic of the local area | region centering on the aggregate | assembly of a pixel and a certain pixel. 樹脂に均質に分散されたコアシェルゴムの分布を示すデジタル画像の一例である。It is an example of the digital image which shows distribution of the core-shell rubber uniformly disperse | distributed to resin. 樹脂に非均質に分散されたコアシェルゴムの分布を示すデジタル画像の一例である。It is an example of the digital image which shows distribution of the core-shell rubber disperse | distributed non-homogeneously to resin. 図3と図4を用いたムラ解析から得られた局所領域の半径と母集団の標準偏差の関係を示すグラフである。It is a graph which shows the relationship between the radius of the local region obtained from the nonuniformity analysis using FIG. 3 and FIG. 4, and the standard deviation of a population. 図3と図4を用いたムラ解析から得られた局所領域の半径と母集団の尖度の関係を示すグラフである。It is a graph which shows the relationship between the radius of a local area | region obtained from the nonuniformity analysis using FIG. 3 and FIG. 4, and the kurtosis of a population. 局所領域の半径が20画素の場合における図3の母集団のヒストグラムである。FIG. 4 is a histogram of the population in FIG. 3 when the radius of the local region is 20 pixels. 局所領域の半径が20画素の場合における図4の母集団のヒストグラムである。5 is a histogram of the population in FIG. 4 when the radius of the local region is 20 pixels. 図3、図4から重み1以上の画素を中心として局所領域を抽出した場合の、局所領域の半径と母集団の標準偏差の関係を示すグラフである。FIG. 5 is a graph showing a relationship between a radius of a local region and a standard deviation of a population when a local region is extracted around a pixel having a weight of 1 or more from FIGS. 図3、図4から重み1以上の画素を中心として局所領域を抽出した場合の、局所領域の半径と母集団の尖度の関係を示すグラフである。FIG. 5 is a graph showing the relationship between the radius of a local region and the kurtosis of a population when a local region is extracted around a pixel having a weight of 1 or more from FIGS. 局所領域の半径が20画素の場合で、重みが0以上の画素を中心とした局所領域を抽出した場合における図3の母集団のヒストグラムである。FIG. 4 is a histogram of the population in FIG. 3 in a case where a local area centering on a pixel having a weight of 0 or more is extracted when the radius of the local area is 20 pixels. 局所領域の半径が20画素の場合で、重みが0以上の画素を中心とした局所領域を抽出した場合における図4の母集団のヒストグラムである。FIG. 5 is a histogram of the population in FIG. 4 when a local region having a radius of 20 pixels and a local region centered on a pixel having a weight of 0 or more is extracted. 熱可塑樹脂中に炭素繊維が非均質に分散された複合材料の断面を二値化したデジタル画像の一例である。It is an example of the digital image which binarized the cross section of the composite material in which the carbon fiber was disperse | distributed heterogeneously in the thermoplastic resin. 熱可塑樹脂中に炭素繊維が均質に分散された複合材料の断面を二値化したデジタル画像の一例である。It is an example of the digital image which binarized the cross section of the composite material in which carbon fiber was uniformly disperse | distributed in the thermoplastic resin. 図13と図14を用いたムラ解析から得られた局所領域の半径と母集団の標準偏差の関係を示すグラフである。It is a graph which shows the relationship between the radius of the local area | region obtained from the nonuniformity analysis using FIG. 13 and FIG. 14, and the standard deviation of a population. 図13と図14を用いたムラ解析から得られた局所領域の半径と母集団の尖度の関係を示すグラフである。It is a graph which shows the relationship between the radius of a local area | region obtained from the nonuniformity analysis using FIG. 13 and FIG. 14, and the kurtosis of a population. 局所領域の半径が40画素の場合における図13のムラの解析から得られた母集団のヒストグラムである。14 is a histogram of the population obtained from the unevenness analysis of FIG. 13 when the radius of the local region is 40 pixels. 局所領域の半径が40画素の場合における図14のムラの解析から得られた母集団のヒストグラムである。15 is a histogram of a population obtained from the unevenness analysis of FIG. 14 when the radius of the local region is 40 pixels. 解析領域を重なり合わない領域で区切った場合の母集団の標準偏差を、区切る位置を変えて評価した結果である。This is the result of evaluating the standard deviation of the population when the analysis area is divided by non-overlapping areas while changing the position of the division. 繊維が規則的に配置された一方向繊維強化複合材料の繊維直角方向の断面図である。It is sectional drawing of the fiber right angle direction of the unidirectional fiber reinforced composite material in which the fiber is regularly arranged. 繊維がランダムに配置された一方向繊維強化複合材料の繊維直角方向の断面図である。It is sectional drawing of the fiber right angle direction of the unidirectional fiber reinforced composite material in which the fiber was arrange | positioned at random. 疎密差が大きく繊維が配置された一方向繊維強化複合材料の繊維直角方向の断面図である。It is sectional drawing of the fiber right angle direction of the unidirectional fiber reinforced composite material with which the density difference was large and the fiber was arrange | positioned. 標準偏差を用いて図20、図21、図22の繊維配置を評価した結果である。It is the result of having evaluated the fiber arrangement | positioning of FIG.20, FIG.21, FIG.22 using a standard deviation. 尖度を用いて図20、図21、図22の繊維配置を評価した結果である。It is the result of having evaluated the fiber arrangement | positioning of FIG.20, FIG.21, FIG.22 using kurtosis. Ripley’s K functionを用いて図20、図21、図22の繊維配置を評価した結果である。It is the result of having evaluated the fiber arrangement | positioning of FIG.20, FIG.21, FIG.22 using Ripley's K function.

本発明は同一の特性値を同色で描いたデジタル画像から特性値の分布のムラを定量化する手法に関する。画像はコンピュータに取り込みムラの定量化を行うので、デジタル画像であることを前提とする。デジタル画像は温度や濃度等の分布を、センサ等を用いた測定器により測定し得ることができる。得た画像がアナログ画像であれば、デジタル化して用いる。   The present invention relates to a technique for quantifying unevenness of distribution of characteristic values from digital images in which the same characteristic values are drawn with the same color. Since the image is taken into a computer and the unevenness of the image is quantified, it is assumed that the image is a digital image. A digital image can measure the distribution of temperature, concentration, etc. with a measuring device using a sensor or the like. If the obtained image is an analog image, it is digitized and used.

本発明によるムラの解析方法は、以下の手順を有する。まず、デジタル画像から解析領域を選定し抽出する。次いで、解析領域の各々の画素に対し、各画素が持つ色調に応じて所定の重みを与える。ここで、重みとはデジタル画像の色調あるいは輝度に応じた特性値であることが好ましい。   The unevenness analysis method according to the present invention has the following procedure. First, an analysis area is selected and extracted from a digital image. Next, a predetermined weight is given to each pixel in the analysis region according to the color tone of each pixel. Here, the weight is preferably a characteristic value corresponding to the color tone or luminance of the digital image.

次に、解析領域内の各々の画素を中心として解析領域よりも小さな点対称な形状である局所領域を抽出する。局所領域は別の局所領域と重なっても良い。局所領域は中心を定義できることから、円や長方形等に代表される点対称な形状である必要がある。   Next, a local region having a point-symmetrical shape smaller than the analysis region is extracted around each pixel in the analysis region. A local region may overlap another local region. Since the local area can define the center, the local area needs to have a point-symmetric shape represented by a circle or a rectangle.

図1はデジタル画像の一例を示している。aはデジタル画像内から選定された解析領域であり、bは色と特性値の対応、c、dは局所領域である。局所領域は全て同じサイズと形状であることが好ましいが、例外として、局所領域dのように局所領域の一部が解析領域からはみ出ている場合は解析領域と局所領域の重なる部分eを局所領域として扱う。次に、各局所領域内において、次式(2)により局所領域内に含まれる全ての画素の重みの合計を局所領域の総画素数で割り局所領域内の平均的な重みを算出する。そして、各局所領域内の平均的な重みを母集団とする。局所領域内に含まれる画素とは、画素の中心が局所領域の中に含まれている画素としてもよい。あるいは、画素が面積を持つ正方形であるとみなした場合に、少しでも局所領域と重なっている画素を局所領域に含まれるとしてもよく、その際は画素の面積のうち局所領域内に含まれる面積の割合を画素の重みにかけた値を画素の重みとしてもよい。   FIG. 1 shows an example of a digital image. a is an analysis region selected from the digital image, b is a correspondence between a color and a characteristic value, and c and d are local regions. It is preferable that all the local areas have the same size and shape. However, as an exception, when a part of the local area protrudes from the analysis area as in the local area d, the overlapping area e between the analysis area and the local area is defined as the local area. Treat as. Next, in each local region, the total weight of all the pixels included in the local region is divided by the total number of pixels in the local region by the following equation (2) to calculate an average weight in the local region. Then, an average weight in each local region is set as a population. The pixel included in the local region may be a pixel in which the center of the pixel is included in the local region. Alternatively, when the pixel is considered to be a square having an area, a pixel that overlaps with the local region may be included in the local region, and in that case, the area included in the local region out of the area of the pixel A value obtained by multiplying the ratio by the pixel weight may be used as the pixel weight.

図2はデジタル画像の拡大図の一例であり、画素fが集合している。gは解析領域の縁である。この画像では、濃度を重みとし、画素の輝度に応じて濃度を与え、色が暗い箇所は濃度が濃いことを想定している。h、iはある画素を中心とした局所領域を示している。画素は各々が色調を持っており、色調は画素の色と濃度の対応jに対応した濃度を意味している。ここでは濃度を重みとしている。画素の中心が局所領域の中に含まれている場合に該画素が局所領域に含まれるとみなした場合、局所領域h内には9個の画素が存在しており、9個の画素の重みの合計を、9で割り、局所領域内の平均的な重みを算出すると2となる。前述のように解析領域の縁gから一部がはみ出ている場合は解析領域と局所領域が重なる領域を局所領域とし、局所領域i内の総画素数は3、平均的な重みは1となる。   FIG. 2 is an example of an enlarged view of a digital image, in which pixels f are gathered. g is the edge of the analysis region. In this image, it is assumed that density is weighted, density is given according to the luminance of the pixel, and the density is high at a dark part. h and i indicate local regions centered on a certain pixel. Each pixel has a color tone, and the color tone means a density corresponding to the correspondence j between the color and density of the pixel. Here, density is a weight. If the center of the pixel is included in the local region and the pixel is considered to be included in the local region, there are nine pixels in the local region h, and the weight of the nine pixels Is divided by 9, and the average weight in the local region is calculated to be 2. As described above, when part of the edge of the analysis region protrudes from the edge g, the region where the analysis region overlaps with the local region is defined as the local region, the total number of pixels in the local region i is 3, and the average weight is 1. .

各画素を中心として重なり合いを許容し局所領域を抽出することで、局所領域の数や位置に依存せず、漏れなく任意の領域での平均的な重みを評価することができる。最後に、母集団の変動係数または標準偏差を計算し、母集団のばらつきをムラとして評価する。変動係数や標準偏差が大きいほどムラが大きく、小さいほどムラがなく均質であるということを示す。   By extracting the local area while allowing overlap with each pixel as the center, it is possible to evaluate the average weight in an arbitrary area without depending on the number and position of the local areas. Finally, the coefficient of variation or standard deviation of the population is calculated and the variation of the population is evaluated as unevenness. The larger the coefficient of variation and the standard deviation, the larger the unevenness, and the smaller the variation coefficient, the more uniform and uniform.

本発明は局所的な領域での特性値を局所領域の重なり合いを許容し満遍なく抽出することから、特にデジタル画像として、2種類以上の構成材から成る複合材料の特性値の分布を示したものを用いれば、複合材料の特性値のムラの評価に有効である。単一材料と異なり、異なる構成材間で生じる非連続的な特性値の差は複合材料では顕著であり、満遍なく局所的な特性値を抽出することで複合材料の局所的な特性値のムラも抽出できる。   In the present invention, the characteristic values in the local region are extracted evenly by allowing the overlapping of the local regions, and in particular, as the digital image, the distribution of the characteristic value of the composite material composed of two or more kinds of components is shown. If used, it is effective in evaluating the unevenness of the characteristic value of the composite material. Unlike single materials, the difference in discontinuous property values that occur between different components is significant in composite materials, and local property values are uneven by extracting local property values uniformly. Can be extracted.

発明を用いて複合材料の一部の構成材の含有量を特性値とし、一部の構成材の分布ムラの定量化に適用してもよい。単一材料であっても空孔を含む場合は空気との複合材料とも言え、空孔分布ムラを定量化する目的にも用いることが可能である。構成材の分布ムラの定量化では、複合材料の断面画像を用い、一部の構成材を示す画素と、それ以外の構成材を示す画素を二値化により明確に区別した画像を用いることが好ましい。この場合、一部の構成材を示す画素の重みを1、それ以外の構成材を示す画素の重みを0とすれば、局所領域内の平均的な重みが一部の構成材の含有量と同値となる。本発明はデジタル画像を元に実行する方法であり、切断面から得る断面画像でなくとも、内部をX線CT装置等の透過し撮影できる装置を用いて複合材料内部の一断面の画像を得てもよい。   The present invention may be applied to the quantification of the distribution unevenness of some constituent materials by using the content of some constituent materials of the composite material as a characteristic value. Even if it is a single material, when it contains pores, it can be said to be a composite material with air, and it can also be used for the purpose of quantifying the pore distribution unevenness. In quantifying the distribution unevenness of the constituent material, it is necessary to use a cross-sectional image of the composite material and use an image in which pixels showing some constituent materials and pixels showing other constituent materials are clearly distinguished by binarization. preferable. In this case, if the weights of the pixels indicating some constituent materials are 1 and the weights of the pixels indicating other constituent materials are 0, the average weight in the local region is the content of the partial constituent materials. Equivalent. The present invention is a method that is executed based on a digital image. Even if it is not a cross-sectional image obtained from a cut surface, an image of one cross-section inside a composite material is obtained using an apparatus capable of transmitting and photographing the inside such as an X-ray CT apparatus. May be.

本発明の解析方法では原則として、解析領域内の全ての画素を中心として局所領域を作成するが、一部の重み範囲を示す画素に限定して該画素を中心に局所領域を作成して抽出してもよい。例えば、解析領域の中に異物が存在する場合は、その異物を示す画素を中心とした局所領域は作成せず、母集団の中に含めないことが好ましい。この場合、局所領域内の全ての画素ではなく、異物を除いた画素の重みから局所領域内の平均的な重みを算出することが好ましい。また、一部の構成材の分布ムラを評価する場合で一部の構成材の含有量が非常に小さい場合は、一部の構成材を示す画素のみを中心として局所領域を作成し母集団としてもよい。局所領域の抽出数が少なくなることで計算速度も速くなる。   In principle, in the analysis method of the present invention, a local region is created centering on all pixels in the analysis region. However, the local region is created and extracted centering on the pixels limited to pixels indicating a part of the weight range. May be. For example, when a foreign substance exists in the analysis area, it is preferable not to create a local area centered on a pixel indicating the foreign substance and include it in the population. In this case, it is preferable to calculate the average weight in the local region from the weights of the pixels excluding foreign substances, not all the pixels in the local region. In addition, if the distribution unevenness of some constituent materials is evaluated and the content of some constituent materials is very small, a local region is created around only the pixels indicating some constituent materials as a population. Also good. A reduction in the number of local regions extracted increases the calculation speed.

母集団のばらつきの評価は基本的には変動係数または標準偏差で評価が可能であるが、変動係数や標準偏差が同程度である場合、尖度を用いてムラの評価が可能である。尖度が大きいほど平均値に近い母集団が多いためムラが小さく、尖度が低いほどムラが大きいことになる。尖度は各局所領域内の平均的な重みXi(i=1〜解析領域内の総画素数N)と母集団の平均値μ、分散σを用いて次式(3)で求めることができる。母集団の分布が正規分布よりも平均値に寄っている場合、尖度は3より大きくなり、正規分布よりも広い広がりを持つ場合、尖度は3より小さくなる。   Evaluation of variation in the population can be basically performed using a coefficient of variation or standard deviation, but if the coefficient of variation and standard deviation are similar, unevenness can be evaluated using kurtosis. The greater the kurtosis, the more the population is closer to the average value, so the unevenness is smaller. The lower the kurtosis, the greater the unevenness. The kurtosis can be obtained by the following equation (3) using the average weight Xi in each local region (i = 1 to the total number of pixels N in the analysis region), the average value μ of the population, and the variance σ. . The kurtosis is greater than 3 when the population distribution is closer to the average value than the normal distribution, and the kurtosis is less than 3 when the population distribution is wider than the normal distribution.

局所領域の大きさは、分布物の含有量や解像度に合わせて経験的に決定してもよく、複数の面積の局所領域から、複数の母集団を作成してもよい。局所領域の面積を変更して各々の母集団に対して繰り返しムラの解析方法を実行することで、局所領域の面積と母集団の標準偏差や尖度などのばらつきとの関係を導いたうえで、他のサンプルとの母集団のばらつきを比較して、ムラの大きさを推定してもよい。また、二つ以上のサンプルでムラの大きさと変動係数、標準偏差、尖度の関係を比べ、サンプル間で差が大きくなる局所領域の面積から、ムラの大きさを定量化することも可能である。   The size of the local area may be determined empirically according to the content and resolution of the distribution, and a plurality of populations may be created from the local areas having a plurality of areas. After changing the area of the local area and repeatedly executing the method of analyzing unevenness for each population, the relationship between the area of the local area and variations such as the standard deviation and kurtosis of the population was derived. The size of the unevenness may be estimated by comparing the variation of the population with other samples. It is also possible to quantify the size of unevenness from the area of the local area where the difference between samples is large, comparing the relationship between the size of the unevenness and the coefficient of variation, standard deviation, and kurtosis in two or more samples. is there.

以上のムラの解析方法を用いることで、同じ特性値を同色で示したデジタル画像や複合材料の断面画像から、ムラを定量化することが可能である。   By using the unevenness analysis method described above, it is possible to quantify unevenness from a digital image or a cross-sectional image of a composite material that shows the same characteristic values in the same color.

以下に具体例を挙げて、本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with specific examples.

(実施例1)
図3、図4はコアシェルゴムが分散した樹脂の断面写真の輝度から、各画素の重みを決めたデジタル画像である。図3はコアシェルゴムが均質に分散しており、図4はコアシェルゴムの分布にムラがある。色が濃いほど、コアシェルゴムが凝集し、高い重みを持つと仮定している。局所領域を円形とし、局所領域の半径を変えながらすなわち局所領域面積を変えながら、局所領域面積とムラの関係を定量化した。
Example 1
3 and 4 are digital images in which the weight of each pixel is determined from the brightness of a cross-sectional photograph of the resin in which the core-shell rubber is dispersed. In FIG. 3, the core-shell rubber is uniformly dispersed, and in FIG. 4, the distribution of the core-shell rubber is uneven. It is assumed that the darker the color, the more the core shell rubber is agglomerated and has a higher weight. The relationship between the local area area and unevenness was quantified while changing the radius of the local area, that is, changing the local area area.

図3と図4において母集団のばらつきを標準偏差と尖度で評価した結果をそれぞれ図5と図6に示す。部分的に凝集した図4の画像の方が標準偏差は高くなっているが、尖度も高くなっている。   FIGS. 5 and 6 show the results of evaluation of the variation of the population with the standard deviation and the kurtosis in FIGS. 3 and 4, respectively. Although the standard deviation of the partially aggregated image of FIG. 4 is higher, the kurtosis is also higher.

図7、図8に、半径20画素の局所領域で図3と図4の画像についてムラを解析して得た母集団のヒストグラムを示す。図8では最頻値がヒストグラムの左端に来ており、これはコアシェルゴムの含有量が小さいためであり、コアシェルゴムが疎な領域で重みが0の画素を多く含む局所領域内の平均的な重みが尖度に支配的となっているためである。このような場合で標準偏差が同程度の場合でも、尖度による比較を行なうためには、重みが1以上の画素を中心とした局所領域のみ、すなわち一部の重み範囲を示す画素に限定して該画素を中心に局所領域を抽出して母集団を作成し、ムラの解析を行うのがよい。このとき、局所領域内の総画素数には重みが0の画素も考慮している。   7 and 8 show histograms of the population obtained by analyzing the unevenness of the images of FIGS. 3 and 4 in the local region having a radius of 20 pixels. In FIG. 8, the mode value comes to the left end of the histogram, because the content of the core-shell rubber is small, and the average value in the local area including many pixels with a weight of 0 in the area where the core-shell rubber is sparse. This is because the weight is dominant in kurtosis. In such a case, even when the standard deviation is similar, in order to perform comparison by kurtosis, it is limited to only a local region centered on a pixel having a weight of 1 or more, that is, a pixel showing a partial weight range. Thus, it is preferable to analyze the unevenness by extracting a local region around the pixel and creating a population. At this time, a pixel having a weight of 0 is also taken into consideration for the total number of pixels in the local region.

局所領域の面積と標準偏差、尖度との関係をそれぞれ図9、図10に、局所領域の半径が20画素の場合の図3と図4の母集団のヒストグラムをそれぞれ図11、図12に示した。このグラフから、図4の画像では標準偏差が大きく、尖度が低くなっており、ヒストグラムも最頻値が疎な領域の影響を受けておらず、母集団のばらつきが大きいことがわかる。これにより、母材である樹脂に分散したコアシェルゴムの分布について、図3の均質性と図4の非均質性が示された。また、母集団から、図3においては濃度が最大値0から最小値0.8の範囲で分布しており、図4においては、最大値0から最小値1.2の範囲で分布していることがわかる。   FIGS. 9 and 10 show the relationship between the area of the local region, the standard deviation, and the kurtosis, respectively. FIGS. 11 and 12 show the histograms of the populations in FIGS. 3 and 4 when the radius of the local region is 20 pixels, respectively. Indicated. From this graph, it can be seen that in the image of FIG. 4, the standard deviation is large and the kurtosis is low, and the histogram is not affected by the region where the mode is sparse, and the variation of the population is large. Thereby, the homogeneity of FIG. 3 and the non-homogeneity of FIG. 4 were shown about distribution of the core-shell rubber disperse | distributed to resin which is a base material. Further, from the population, the concentration is distributed in the range from the maximum value 0 to the minimum value 0.8 in FIG. 3, and in FIG. 4, the concentration is distributed in the range from the maximum value 0 to the minimum value 1.2. I understand that.

(実施例2)
図13、図14は熱可塑樹脂と炭素繊維の短繊維で構成された複合材料の断面写真を二値化したデジタル画像を示している。白が繊維を示しており、黒が樹脂部を示している。図13の断面では、繊維が局所的に束になっているのに対し、図14の断面では、繊維が均質に分散されている。どちらも画像の大きさは横が512画素、縦が384画素であり、この2つの断面画像に対し、ムラの解析を行った。白の画素の重みは1であり、黒の画素の重みは0とした場合、局所領域内の平均的な重みは断面画像における繊維の面積含有率と同意である。
(Example 2)
13 and 14 show digital images obtained by binarizing a cross-sectional photograph of a composite material composed of thermoplastic resin and short fibers of carbon fibers. White indicates the fiber, and black indicates the resin part. In the cross section of FIG. 13, the fibers are locally bundled, whereas in the cross section of FIG. 14, the fibers are uniformly dispersed. In both cases, the image size is 512 pixels in the horizontal direction and 384 pixels in the vertical direction, and unevenness analysis was performed on these two cross-sectional images. When the weight of the white pixel is 1 and the weight of the black pixel is 0, the average weight in the local region is the same as the fiber area content in the cross-sectional image.

図13、図14の断面画像に対して、局所領域の半径を変更し、ムラの解析を繰り返し行い、局所領域の半径の大きさと、標準偏差および尖度の関係を示したグラフをそれぞれ図15、図16に示す。このグラフから、いずれの局所領域のサイズでも、図13が、標準偏差が大きく、ムラが大きい結果となっていることがわかる。尖度からも図13は小さく、ムラが大きいことが示されている。   The cross-sectional images of FIGS. 13 and 14 are obtained by changing the radius of the local region and repeatedly analyzing the unevenness, and showing graphs showing the relationship between the radius of the local region, the standard deviation, and the kurtosis, respectively. As shown in FIG. From this graph, it can be seen that FIG. 13 shows that the standard deviation is large and the unevenness is large regardless of the size of any local region. Also from the kurtosis, FIG. 13 is small and shows that the unevenness is large.

図17,図18は局所領域の半径が40画素の場合における図13、図14のムラの解析から得られた母集団のヒストグラムを示しているが、ヒストグラムから、図13では繊維の面積含有率は最大値0.8から最小値0.3、図14では最大値0.5から最小値0.23の範囲で分布しており、図13では図14より尖度が小さく、繊維の面積含有率が局所領域の場所によって異なる可能性大きく、ムラが大きいことがわかる。また、局所領域の半径が30画素付近で図13と図14の尖度の差が大きく、半径が30画素であれば抽出する局所領域内の平均的な重みにばらつきがでやすいことがわかる。したがって、半径30画素の円がムラの大きさであると推定できる。   17 and 18 show the histograms of the population obtained from the unevenness analysis of FIGS. 13 and 14 when the radius of the local region is 40 pixels. From the histograms, FIG. 13 shows the fiber area content rate. Is distributed in a range from a maximum value of 0.8 to a minimum value of 0.3, and in FIG. 14, a maximum value of 0.5 to a minimum value of 0.23. In FIG. 13, the kurtosis is smaller than that of FIG. It can be seen that there is a large possibility that the rate varies depending on the location of the local region, and the unevenness is large. Further, it can be seen that when the radius of the local region is around 30 pixels, the difference in kurtosis between FIG. 13 and FIG. 14 is large, and if the radius is 30 pixels, the average weight in the extracted local region tends to vary. Therefore, it can be estimated that a circle with a radius of 30 pixels is uneven.

(比較例1)
図13、図14を、特許文献4、特許文献5、特許文献6に示されたように互いに重なり合わない正方形の局所領域に区切り、局所領域内の繊維の面積含有率を母集団とし、ムラの定量化を行った。領域の区切り方は場所を変えて5通り選び、母集団のばらつきの変動を評価した。その結果を図19に示す。この結果、ムラの小さい図14では領域の位置による差は小さいが、ムラの大きい図13は領域の位置によって大きく変動していることがわかる。したがって、ムラの大きい複合材料では、区切られた領域を局所領域とする方法はムラの定量化には適していないことがわかる。
(Comparative Example 1)
13 and 14 are divided into square local regions that do not overlap each other as shown in Patent Literature 4, Patent Literature 5, and Patent Literature 6, and the area content of fibers in the local region is defined as a population. Quantification was performed. The method of dividing the area was selected from five different places, and the variation of the population variation was evaluated. The result is shown in FIG. As a result, in FIG. 14 where the unevenness is small, the difference due to the position of the region is small, but in FIG. Therefore, it can be seen that, in a composite material with large unevenness, the method in which the divided region is a local region is not suitable for quantifying unevenness.

(実施例3)
図20、図21、図22は一方向繊維強化複合材料の繊維直角方向の断面を仮定しており、それぞれ規則的な繊維配置、ランダムな繊維配置、疎密差が大きい繊維配置を想定している。
(Example 3)
20, FIG. 21, and FIG. 22 assume a cross-section in the direction perpendicular to the fiber of a unidirectional fiber-reinforced composite material, and assume a regular fiber arrangement, a random fiber arrangement, and a fiber arrangement with a large difference in density. .

本発明を用いた場合の一方向繊維強化複合材料の繊維配置のムラを標準偏差と尖度により評価した結果をそれぞれ図23、図24に示す。   The results of evaluating the unevenness in fiber arrangement of the unidirectional fiber-reinforced composite material using the present invention based on standard deviation and kurtosis are shown in FIGS. 23 and 24, respectively.

本発明における標準偏差と尖度では、規則的な配置ではムラが小さく、疎密差の大きい図22ではムラが大きい結果が得られており、本発明が繊維配置の疎密差を評価する上で有効であることがわかる。   In the standard deviation and kurtosis in the present invention, the irregularity is small in the regular arrangement, and the large irregularity is obtained in FIG. 22, which is effective in evaluating the density difference of the fiber arrangement. It can be seen that it is.

(比較例2)
図20、図21、図22の断面画像に対し、Ripley’s K function(K(h))を用いた場合を図25に示す。
(Comparative Example 2)
FIG. 25 shows a case where Ripley's K function (K (h)) is used for the cross-sectional images of FIGS.

図25でhは局所領域の半径(マイクロメートル)とRは繊維の半径(マイクロメートル)である。Ripley’s K functionでは規則的な配置とそうでない場合の配置の差は示されているが、図21と図22の違いは示されていないため、Ripley’s K functionは繊維配置のムラの評価には適用できないことがわかる。   In FIG. 25, h is the radius of the local region (micrometer) and R is the radius of the fiber (micrometer). In Ripley's K function, the difference between the regular arrangement and the arrangement in the other case is shown, but the difference between FIG. 21 and FIG. 22 is not shown. Therefore, Ripley's K function It turns out that it is not applicable to evaluation.

a:解析領域
b:色と特性値の対応
c:局所領域の一例
d:一部が解析領域aからはみ出ている局所領域の一例
e:解析領域aと局所領域dが重なる領域
f:画素
g:解析領域の縁
h:画素を中心とした局所領域の一例
i:一部が解析領域の縁gからはみ出している局所領域
j:画素の色と濃度の対応
a: Analysis region b: Correspondence between color and characteristic value c: Example of local region d: Example of local region partially protruding from analysis region a e: Region where analysis region a and local region d overlap f: Pixel g : Edge of analysis area h: Example of local area centered on pixel i: Local area partially protruding from edge g of analysis area j: Correspondence between color and density of pixel

Claims (6)

同一の特性値を同色で描いたデジタル画像から特性値の分布のムラを定量化するムラの解析方法であって、デジタル画像内から解析領域を抽出する第1ステップ、解析領域内の各々の画素に対し、各画素が持つ色調に応じて所定の重みを与える第2ステップ、解析領域内の各々の画素を中心として解析領域よりも小さな点対称形状である局所領域を抽出する第3ステップ、各局所領域内の全ての画素の重みの合計を局所領域の総画素数で割り局所領域内の平均的な重みを算出する第4ステップ、各局所領域内の平均的な重みを母集団とする第5ステップおよび、母集団のばらつきをムラとし、母集団の変動係数または標準偏差によりムラを定量化する第6ステップを有するムラの解析方法。 An unevenness analysis method for quantifying unevenness of distribution of characteristic values from a digital image in which the same characteristic values are drawn in the same color, the first step of extracting an analysis area from the digital image, and each pixel in the analysis area On the other hand, a second step of giving a predetermined weight according to the color tone of each pixel, a third step of extracting a local region having a point symmetric shape smaller than the analysis region around each pixel in the analysis region, The fourth step of calculating the average weight in the local area by dividing the sum of the weights of all the pixels in the local area by the total number of pixels in the local area, and the average weight in each local area as the population An unevenness analysis method having five steps and a sixth step of quantifying the unevenness by a variation coefficient or a standard deviation of the population, with the variation of the population being the unevenness. デジタル画像が、2種類以上の構成材から成る複合材料の特性値の分布を示したものである請求項1に記載のムラの解析方法。 The method for analyzing unevenness according to claim 1, wherein the digital image shows a distribution of characteristic values of a composite material composed of two or more kinds of constituent materials. デジタル画像が、2種類以上の構成材から成る複合材料の断面画像を二値化した画像である請求項1または2に記載のムラの解析方法。 The method for analyzing unevenness according to claim 1 or 2, wherein the digital image is an image obtained by binarizing a cross-sectional image of a composite material composed of two or more kinds of constituent materials. 第3ステップにおいて、一部の重み範囲を示す画素に限定して該画素を中心に局所領域を抽出する請求項1〜3のいずれかに記載のムラの解析方法。 The unevenness analysis method according to any one of claims 1 to 3, wherein in the third step, a local region is extracted centering on a pixel that is limited to a pixel indicating a partial weight range. 第6ステップにおいて、ムラを母集団の尖度により定量化する請求項1〜4のいずれかに記載のムラの解析方法。 The method for analyzing unevenness according to any one of claims 1 to 4, wherein in the sixth step, unevenness is quantified by the kurtosis of the population. 局所領域の面積を変えて母集団を複数準備し、各々の母集団に対して請求項1〜5のいずれかに記載のムラの解析方法を実行する、ムラの大きさの推定手法。 An unevenness size estimation method, wherein a plurality of populations are prepared by changing the area of the local region, and the unevenness analysis method according to any one of claims 1 to 5 is executed for each population.
JP2014007658A 2014-01-20 2014-01-20 Unevenness analysis method Pending JP2015138271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014007658A JP2015138271A (en) 2014-01-20 2014-01-20 Unevenness analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007658A JP2015138271A (en) 2014-01-20 2014-01-20 Unevenness analysis method

Publications (1)

Publication Number Publication Date
JP2015138271A true JP2015138271A (en) 2015-07-30

Family

ID=53769265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007658A Pending JP2015138271A (en) 2014-01-20 2014-01-20 Unevenness analysis method

Country Status (1)

Country Link
JP (1) JP2015138271A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016212079A1 (en) 2015-07-10 2017-01-12 Yazaki Corporation Backup battery system
CN109374467A (en) * 2018-12-29 2019-02-22 无锡威孚环保催化剂有限公司 The method for measuring auto-exhaust catalyst coating uniformity
CN113030086A (en) * 2021-02-26 2021-06-25 甘肃省公路交通建设集团有限公司 Method for evaluating fiber dispersibility in asphalt concrete
CN115619848A (en) * 2022-10-13 2023-01-17 水利部交通运输部国家能源局南京水利科学研究院 Method for evaluating distribution characteristics of alkali silicate reactive minerals in aggregate
CN116797051A (en) * 2023-08-24 2023-09-22 青岛海洋地质研究所 Ocean carbon leakage point number evaluation method based on multi-distance spatial cluster analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016212079A1 (en) 2015-07-10 2017-01-12 Yazaki Corporation Backup battery system
CN109374467A (en) * 2018-12-29 2019-02-22 无锡威孚环保催化剂有限公司 The method for measuring auto-exhaust catalyst coating uniformity
CN113030086A (en) * 2021-02-26 2021-06-25 甘肃省公路交通建设集团有限公司 Method for evaluating fiber dispersibility in asphalt concrete
CN113030086B (en) * 2021-02-26 2023-09-22 甘肃省公路交通建设集团有限公司 Method for evaluating fiber dispersibility in asphalt concrete
CN115619848A (en) * 2022-10-13 2023-01-17 水利部交通运输部国家能源局南京水利科学研究院 Method for evaluating distribution characteristics of alkali silicate reactive minerals in aggregate
CN115619848B (en) * 2022-10-13 2023-08-11 水利部交通运输部国家能源局南京水利科学研究院 Method for evaluating distribution characteristics of alkali silicate reactive minerals in aggregate
CN116797051A (en) * 2023-08-24 2023-09-22 青岛海洋地质研究所 Ocean carbon leakage point number evaluation method based on multi-distance spatial cluster analysis
CN116797051B (en) * 2023-08-24 2023-11-14 青岛海洋地质研究所 Ocean carbon leakage point number evaluation method based on multi-distance spatial cluster analysis

Similar Documents

Publication Publication Date Title
Truong et al. Automatic image thresholding using Otsu’s method and entropy weighting scheme for surface defect detection
JP2015138271A (en) Unevenness analysis method
Glaskova et al. Method of quantitative analysis of filler dispersion in composite systems with spherical inclusions
Koho et al. Image quality ranking method for microscopy
Anderson et al. Repeatability and reproducibility of TEM soot primary particle size measurements and comparison of automated methods
Li et al. Automatic quantification of filler dispersion in polymer composites
du Plessis et al. Quality Investigation of 3D printer filament using laboratory X-ray tomography
Swery et al. Automated tool to determine geometric measurements of woven textiles using digital image analysis techniques
Yang et al. Detection of size of manufactured sand particles based on digital image processing
Glinz et al. Non-destructive characterisation of out-of-plane fibre waviness in carbon fibre reinforced polymers by X-ray dark-field radiography
KR101370496B1 (en) Estimation method for volume fractions of constituent materials in a unit voxel of x-ray ct image
CN102692365A (en) Method and system for measuring out-of-roundness of particles
Zhang et al. Study on the extraction of CT images with non-uniform illumination for the microstructure of asphalt mixture
Chen et al. Flexural behavior of wood in the transverse direction investigated using novel computer vision and machine learning approach
CN111932573B (en) Automatic test method for spatial resolution of optical system
Kim et al. Linking the effect of aggregate interaction to the compaction theory for asphalt mixtures using image processing
Molendowska et al. Development of the measuring techniques for estimating the air void system parameters in concrete using 2D analysis method
Tunák et al. Spatial arrangement of stainless steel fibers within hybrid yarns designed for electromagnetic shielding
Zhao et al. The use of Photoshop software to estimate the adhesion and rust‐resistant properties of coating film
Shimoni et al. Normalized polarization ratios for the analysis of cell polarity
Chmielewski et al. Detection of surface defects of type ‘orange skin’in furniture elements with conventional image processing methods
Zhang et al. Novel damage index-based rapid evaluation of civil infrastructure subsurface defects using thermography analytics
Liu et al. AFM image processing for estimating the number and volume of nanoparticles on a rough surface
JP6189059B2 (en) Soil size analysis method
JP6155110B2 (en) Dispersibility evaluation method, dispersibility evaluation apparatus, and computer-readable recording medium recording a program for causing a computer to realize the dispersibility evaluation function