JP2013199887A - Exhaust gas recirculation valve - Google Patents

Exhaust gas recirculation valve Download PDF

Info

Publication number
JP2013199887A
JP2013199887A JP2012068841A JP2012068841A JP2013199887A JP 2013199887 A JP2013199887 A JP 2013199887A JP 2012068841 A JP2012068841 A JP 2012068841A JP 2012068841 A JP2012068841 A JP 2012068841A JP 2013199887 A JP2013199887 A JP 2013199887A
Authority
JP
Japan
Prior art keywords
valve
exhaust gas
shaft
axis
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012068841A
Other languages
Japanese (ja)
Inventor
Yuya Yamazaki
裕弥 山嵜
Moriyoshi Awasaka
守良 粟坂
Takaji Numabe
隆次 沼邊
Ken Nakano
賢 仲野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2012068841A priority Critical patent/JP2013199887A/en
Priority to DE102013202416A priority patent/DE102013202416A1/en
Priority to US13/766,863 priority patent/US20130247861A1/en
Priority to CN2013100521644A priority patent/CN103362693A/en
Publication of JP2013199887A publication Critical patent/JP2013199887A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/20Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
    • F16K1/2014Shaping of the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/66Lift valves, e.g. poppet valves
    • F02M26/68Closing members; Valve seats; Flow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/20Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation arranged externally of valve member
    • F16K1/2042Special features or arrangements of the sealing
    • F16K1/2057Special features or arrangements of the sealing the sealing being arranged on the valve seat
    • F16K1/2071Special features or arrangements of the sealing the sealing being arranged on the valve seat and being forced into sealing contact with the valve member by a spring or a spring-like member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lift Valve (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Sliding Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To make flow rate characteristics of exhaust gas have more linear characteristics, and further increase a flow rate of the exhaust gas, in an exhaust gas recirculation valve.SOLUTION: A valve 14 that constitutes an exhaust gas recirculation valve 10 is connected to a shaft 38, and is rotatably arranged together with the shaft 38 in the interior of a body 12. An outer peripheral surface of the valve 14 is formed in a substantially spherical shape, the axis B2 (center of curvature) of the valve and the axis B1 of the shaft 38 being eccentrically arranged by a predetermined distance along a flow direction of the exhaust gas. In addition, a percentage between the eccentric distance L between the center B2 of curvature of the valve 14 and the axis B1 of the shaft 38, and the diameter D of a gas inlet port 20 of the body 12 into which the exhaust gas flows is ≥5.5%.

Description

本発明は、内燃機関の排気系から吸気系へと排気ガスを再循環させる流路を切換可能な排気ガス再循環バルブに関する。   The present invention relates to an exhaust gas recirculation valve capable of switching a flow path for recirculating exhaust gas from an exhaust system of an internal combustion engine to an intake system.

従来から、例えば、内燃機関から排出される有害成分を除去するために、排気ガス再循環バルブが用いられている。この排気ガス再循環バルブは、内燃機関から排出される排気ガスを吸気系に再循環させ、前記排気ガス中に含まれるNOx等の有害成分を減少させるために、前記内燃機関の吸気系と排気系とを連通させる機能を有する。   Conventionally, for example, an exhaust gas recirculation valve has been used to remove harmful components discharged from an internal combustion engine. The exhaust gas recirculation valve recirculates the exhaust gas discharged from the internal combustion engine to the intake system and reduces harmful components such as NOx contained in the exhaust gas to reduce the harmful components such as NOx. Has the function of communicating with the system.

本出願人は、内燃機関の吸気通路と排気通路とを接続する排気ガス還流路に設けられる流路開閉弁を提案している(特許文献1参照)。この流路開閉弁は、排気ガス還流路に接続されるボディ本体を有し、前記ボディ本体の内部には球状のボールバルブが回動自在に配設される。そして、回転駆動源にシャフトを介して連結されたボールバルブが所定角度だけ回動することで、前記ボディ本体に形成された排気ガス流入口と排気ガス流出口との連通状態を切り換え、排気ガス還流路における排気ガスの流通状態を制御している。   The present applicant has proposed a flow path opening / closing valve provided in an exhaust gas recirculation path that connects an intake passage and an exhaust passage of an internal combustion engine (see Patent Document 1). The flow path opening / closing valve has a body main body connected to the exhaust gas recirculation path, and a spherical ball valve is rotatably disposed inside the body main body. Then, the ball valve connected to the rotational drive source via the shaft rotates by a predetermined angle to switch the communication state between the exhaust gas inlet and the exhaust gas outlet formed in the body body, and the exhaust gas The flow state of the exhaust gas in the reflux path is controlled.

特開2010−236686号公報JP 2010-236686 A

本発明は、前記の提案に基づいてなされたものであり、排気ガスの流量特性をより一層リニアな特性としつつ、該排気ガスの流量を増加させることが可能な排気ガス再循環バルブを提供することを目的とする。   The present invention has been made based on the above proposal, and provides an exhaust gas recirculation valve capable of increasing the flow rate of the exhaust gas while making the flow rate characteristic of the exhaust gas more linear. For the purpose.

前記の目的を達成するために、本発明は、排気ガスの流通する流路を有したボディと、少なくとも外周面の一部が球状であり前記流路に配置され前記排気ガスの流通状態を切り換えるバルブと、前記流路において前記バルブより上流側に設けられ前記バルブの着座するシート部を有したシート部材と、前記バルブに連結され該バルブを回動させるシャフトとを備える排気ガス再循環バルブにおいて、
前記バルブの曲率中心と前記シャフトの軸線との前記排気ガスの流通方向に沿った偏心量は、前記ボディに形成され前記排気ガスの流入する流入口の直径に対対する比が、5.5%以上となるように設定されることを特徴とする。
In order to achieve the above object, the present invention provides a body having a flow path through which exhaust gas circulates, and at least a part of the outer peripheral surface is spherical and disposed in the flow path to switch the flow state of the exhaust gas. In an exhaust gas recirculation valve comprising: a valve; a seat member provided upstream of the valve in the flow path and having a seat portion on which the valve is seated; and a shaft connected to the valve and rotating the valve. ,
The amount of eccentricity along the flow direction of the exhaust gas between the center of curvature of the valve and the axis of the shaft is 5.5% of the diameter of the inlet formed in the body and into which the exhaust gas flows. It is set so that it may become the above.

本発明によれば、少なくとも外周面の一部が球状であるバルブを有した排気ガス再循環バルブにおいて、前記外周面の曲率中心と該バルブを回転させるシャフトの軸心との偏心距離が、排気ガスの流入するボディの流入口の直径に対する比が、前記偏心距離が直径の5.5%以上となるように設定することにより、流路を流通する排気ガスの流量特性をより一層リニアな特性としつつ、その流量を増加させることができる。   According to the present invention, in the exhaust gas recirculation valve having a valve having at least a part of the outer peripheral surface being spherical, the eccentric distance between the center of curvature of the outer peripheral surface and the axis of the shaft rotating the valve is an exhaust gas. By setting the ratio of the gas inflow body to the diameter of the inlet of the body so that the eccentric distance is 5.5% or more of the diameter, the flow rate characteristic of the exhaust gas flowing through the flow path is more linear. However, the flow rate can be increased.

本発明によれば、以下の効果が得られる。   According to the present invention, the following effects can be obtained.

すなわち、少なくとも外周面の一部が球状であるバルブを有した排気ガス再循環バルブにおいて、前記外周面の曲率中心と該バルブを回転させるシャフトの軸心との偏心距離は、排気ガスの流入するボディの流入口の直径に対する比が5.5%以上となるように設定することにより、流路を流通する排気ガスの流量特性をより一層リニアな特性としつつ、その流量を増加させることが可能となる。   That is, in an exhaust gas recirculation valve having a valve whose spherical surface is at least a part of the outer peripheral surface, the eccentric distance between the center of curvature of the outer peripheral surface and the axis of the shaft that rotates the valve is such that exhaust gas flows in. By setting the ratio of the body inlet to the inlet diameter to be 5.5% or more, it is possible to increase the flow rate while making the flow rate characteristic of the exhaust gas flowing through the flow path more linear. It becomes.

本発明の実施の形態に係る排気ガス再循環バルブの一部断面斜視図である。1 is a partial cross-sectional perspective view of an exhaust gas recirculation valve according to an embodiment of the present invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 図1の排気ガス再循環バルブにおけるシャフトの軸線とバルブの軸線との偏心距離と排気ガスの全開時流量との関係を示す特性線図である。FIG. 2 is a characteristic diagram showing a relationship between an eccentric distance between a shaft axis and a valve axis in the exhaust gas recirculation valve of FIG. 1 and a flow rate when exhaust gas is fully opened. 図4Aは、図1の排気ガス再循環バルブに対してガス流入口の直径を小さくした場合におけるシャフトの偏心距離と排気ガスの全開時流量との関係を示す特性線図であり、図4Bは、図1の排気ガス再循環バルブに対してガス流入口の直径を大きくした場合におけるシャフトの偏心距離と排気ガスの全開時流量との関係を示す特性線図である。4A is a characteristic diagram showing the relationship between the eccentric distance of the shaft and the flow rate when the exhaust gas is fully opened when the diameter of the gas inlet is made smaller than that of the exhaust gas recirculation valve of FIG. FIG. 2 is a characteristic diagram showing the relationship between the eccentric distance of the shaft and the flow rate when the exhaust gas is fully opened when the diameter of the gas inlet is increased with respect to the exhaust gas recirculation valve of FIG.

本発明に係る排気ガス再循環バルブ10について好適な実施の形態を挙げ、添付の図面を参照しながら以下詳細に説明する。図1において、参照符号10は、本発明の実施の形態に係る排気ガス再循環バルブを示す。   A preferred embodiment of the exhaust gas recirculation valve 10 according to the present invention will be described below and described in detail with reference to the accompanying drawings. In FIG. 1, reference numeral 10 indicates an exhaust gas recirculation valve according to an embodiment of the present invention.

この排気ガス再循環バルブ10は、図1及び図2に示されるように、ボディ本体(ボディ)12と、該ボディ本体12の内部に回動自在に設けられるバルブ14と、前記バルブ14の外周面に当接するバルブシート(シート部材)16と、前記ボディ本体12の上部に設けられ、前記バルブ14に対して回転駆動力を付与する駆動力伝達機構18とを含む。   As shown in FIGS. 1 and 2, the exhaust gas recirculation valve 10 includes a body body 12, a valve 14 that is rotatably provided inside the body body 12, and an outer periphery of the valve 14. It includes a valve seat (seat member) 16 that contacts the surface, and a driving force transmission mechanism 18 that is provided on the upper portion of the body main body 12 and applies a rotational driving force to the valve 14.

このボディ本体12は、例えば、金属製材料から形成され、その下側には、排気ガスの供給されるガス流入口(流入口)20と、その反対側に設けられ前記排気ガスを導出して内燃機関(図示せず)へと循環させるガス流出口22とが設けられている。なお、ボディ本体12において、ガス流入口20とガス流出口22とは略一直線上に設けられる。また、ボディ本体12には、ガス流入口20とガス流出口22との間に連通室(流路)24が形成され、この連通室24の内部に略円盤状のバルブ14が回動自在に配設される。   The body main body 12 is made of, for example, a metal material, and a gas inlet (inlet) 20 to which exhaust gas is supplied is provided on the lower side, and the exhaust gas is led out on the opposite side. A gas outlet 22 is provided for circulation to an internal combustion engine (not shown). In the body main body 12, the gas inlet 20 and the gas outlet 22 are provided on a substantially straight line. In addition, a communication chamber (flow path) 24 is formed in the body main body 12 between the gas inlet 20 and the gas outlet 22, and a substantially disk-shaped valve 14 is rotatable inside the communication chamber 24. Arranged.

連通室24とガス流入口20との間には、ガス流入口20に対して拡径した装着孔26が形成され、該装着孔26には、バルブ14の外周面に摺接するバルブシート16が設けられる。このバルブシート16は、例えば、金属製材料から形成され、軸方向(矢印A1、A2方向)に沿って貫通した連通孔28と、該連通孔28の内から徐々に拡径するテーパ状のシート部30とを備え、装着孔26において、前記連通孔28がボディ本体12のガス流入口20側(矢印A2方向)、シート部30が連通室24側(矢印A1方向)となるように配置される。そして、バルブシート16の連通孔28を通じてガス流入口20と連通室24とが連通している。   A mounting hole 26 having a diameter larger than that of the gas inlet 20 is formed between the communication chamber 24 and the gas inlet 20, and a valve seat 16 slidably contacting the outer peripheral surface of the valve 14 is formed in the mounting hole 26. Provided. The valve seat 16 is made of, for example, a metal material, and has a communication hole 28 that penetrates along the axial direction (arrows A1 and A2 directions), and a tapered seat that gradually increases in diameter from the communication hole 28. The mounting hole 26 is arranged so that the communication hole 28 is on the gas inlet 20 side (in the direction of arrow A2) of the body body 12 and the seat portion 30 is on the side of the communication chamber 24 (in the direction of arrow A1). The The gas inlet 20 and the communication chamber 24 communicate with each other through the communication hole 28 of the valve seat 16.

また、バルブシート16は、装着孔26において軸方向(矢印A1、A2方向)及び径方向に移動可能に設けられ、該装着孔26の連通室24側(矢印A1方向)に設けられたリング状のストッパ32との間にスプリング34が介装され、該スプリング34によって前記バルブシート16がガス流入口20側(矢印A2方向)へと付勢されている。   Further, the valve seat 16 is provided in the mounting hole 26 so as to be movable in the axial direction (arrow A1, A2 direction) and the radial direction, and is provided in a ring shape provided on the communication chamber 24 side (arrow A1 direction) of the mounting hole 26. The spring 34 is interposed between the stopper 32 and the valve seat 16 is biased toward the gas inlet 20 (in the direction of the arrow A2).

一方、ボディ本体12の略中央部には、図1に示されるように、連通室24から鉛直上方に向かって貫通したシャフト孔36が形成され、後述する駆動力伝達機構18のシャフト38が挿通される。   On the other hand, as shown in FIG. 1, a shaft hole 36 penetrating vertically upward from the communication chamber 24 is formed in a substantially central portion of the body body 12, and a shaft 38 of the driving force transmission mechanism 18 described later is inserted. Is done.

バルブ14は、半球面状の外周面を有し略円盤状に形成された本体部40と、該本体部40の端部から軸方向(矢印A1方向)に突出し、シャフト38に連結される軸部42とを備える。   The valve 14 has a main body portion 40 having a hemispherical outer peripheral surface and formed in a substantially disk shape, and a shaft that protrudes from the end of the main body portion 40 in the axial direction (arrow A1 direction) and is connected to the shaft 38. Part 42.

駆動力伝達機構18は、バルブ14の連結されるシャフト38と、前記シャフト38の上端部に連結されるバルブギア44と、ボディ本体12の上部に連結され前記バルブギア44を介して前記シャフト38を回転駆動させる駆動源46とを含む。   The driving force transmission mechanism 18 is connected to the shaft 38 to which the valve 14 is connected, the valve gear 44 is connected to the upper end of the shaft 38, and is connected to the upper part of the body body 12 to rotate the shaft 38 via the valve gear 44. Drive source 46 to be driven.

シャフト38は、その上端部がバルブギア44の略中央部に挿通されてナット48を締め付けることによって固定されると共に、ボディ本体12においてバルブ14の上方及び下方にそれぞれ装着された一組の軸受50a、50bによって回転自在に支持されている。   The shaft 38 has an upper end inserted through a substantially central portion of the valve gear 44 and fixed by tightening a nut 48, and a pair of bearings 50a mounted on the body main body 12 above and below the valve 14, respectively. 50b is rotatably supported.

また、図2に示されるように、シャフト38の軸線B1は、バルブ14における外周面の曲率中心を通る軸線B2に対して偏心した位置となるように連結されている。すなわち、軸線B1は、バルブ14の軸線B2に対して所定距離だけ離間して平行となるように設定されている。   As shown in FIG. 2, the axis B <b> 1 of the shaft 38 is connected so as to be eccentric with respect to the axis B <b> 2 passing through the center of curvature of the outer peripheral surface of the valve 14. That is, the axis B1 is set to be parallel to the axis B2 of the valve 14 with a predetermined distance.

このため、バルブ14は、軸線B2から偏心した位置に設定された軸線B1を中心として回動(揺動)するように連通室24内に設置されている。   For this reason, the valve 14 is installed in the communication chamber 24 so as to rotate (swing) about the axis B1 set at a position eccentric from the axis B2.

このシャフト38の軸線B1は、バルブ14の軸線B2に対して排気ガスの流通方向に沿った下流側(矢印A1方向)に所定距離(偏心距離L)だけ偏心するように配置される。   The axis B1 of the shaft 38 is arranged to be eccentric by a predetermined distance (eccentric distance L) on the downstream side (arrow A1 direction) along the exhaust gas flow direction with respect to the axis B2 of the valve 14.

詳細には、偏心距離Lは、ボディ本体12におけるガス流入口20の直径Dに対する比が、5.5%以上となるように設定される(L/D×100=5.5)。換言すれば、偏心距離Lを直径Dで除した値が、0.055以上となるように設定される。   Specifically, the eccentric distance L is set such that the ratio of the gas inlet 20 in the body main body 12 to the diameter D is 5.5% or more (L / D × 100 = 5.5). In other words, the value obtained by dividing the eccentric distance L by the diameter D is set to be 0.055 or more.

駆動源46は、例えば、通電作用下に回転駆動するステッピングモータやロータリーアクチュエータからなり、その回転駆動力がバルブギア44を介してシャフト38へと伝達されることにより、シャフト38に連結されたバルブ14が軸線B1を中心として回動動作する。   The drive source 46 is composed of, for example, a stepping motor or a rotary actuator that is rotationally driven under an energization action, and the rotational driving force is transmitted to the shaft 38 via the valve gear 44, whereby the valve 14 connected to the shaft 38. Rotates around the axis B1.

本発明の実施の形態に係る排気ガス再循環バルブ10は、基本的には以上のように構成されるものであり、次にその動作並びに作用効果について説明する。なお、ここでは、図1及び図2に示されるように、バルブ14の外周面がバルブシート16のシート部30に着座し、ガス流入口20とガス流出口22との間の連通が遮断された弁閉状態を初期位置として説明する。   The exhaust gas recirculation valve 10 according to the embodiment of the present invention is basically configured as described above. Next, the operation and effect of the exhaust gas recirculation valve 10 will be described. Here, as shown in FIGS. 1 and 2, the outer peripheral surface of the valve 14 is seated on the seat portion 30 of the valve seat 16, and communication between the gas inlet 20 and the gas outlet 22 is blocked. The valve closed state will be described as the initial position.

このような弁閉状態にある初期位置から、駆動力伝達機構18の駆動源46が駆動することで、該駆動源46の回転駆動力がバルブギア44を介してシャフト38へと伝達され、前記シャフト38に連結されたバルブ14が軸線B2から偏心した位置に設定された軸線B1を中心として所定角度だけ反時計回りに回転する。これにより、バルブ14はバルブシート16から徐々に離間する方向に変位する。   When the drive source 46 of the drive force transmission mechanism 18 is driven from the initial position in such a valve closed state, the rotational drive force of the drive source 46 is transmitted to the shaft 38 via the valve gear 44, and the shaft The valve 14 connected to the valve 38 rotates counterclockwise by a predetermined angle around the axis B1 set at a position eccentric from the axis B2. Thereby, the valve 14 is displaced in a direction gradually separating from the valve seat 16.

そして、バルブ14の外周面が、バルブシート16のシート部30から離間することによって、弁開状態となり該外周面と前記シート部30との間の間隙を通じてガス流入口20に供給された排気ガスが連通室24内へと導入される。駆動源46の駆動作用下にさらにバルブ14を回転させることにより、該バルブ14がシート部30から徐々に離間し、前記バルブ14が初期位置から、例えば、約90°回転した状態で完全な弁開状態となる。このような弁開状態において、ガス流入口20に供給された排気ガスが、バルブシート16の連通孔28、連通室24を通じてガス流出口22へと流通し、図示しない内燃機関へと供給される。   When the outer peripheral surface of the valve 14 is separated from the seat portion 30 of the valve seat 16, the valve is opened, and the exhaust gas supplied to the gas inlet 20 through the gap between the outer peripheral surface and the seat portion 30. Is introduced into the communication chamber 24. By further rotating the valve 14 under the driving action of the drive source 46, the valve 14 is gradually separated from the seat portion 30, and the valve 14 is rotated in a state where it is rotated, for example, about 90 ° from the initial position. Opened. In such a valve open state, the exhaust gas supplied to the gas inlet 20 flows to the gas outlet 22 through the communication hole 28 and the communication chamber 24 of the valve seat 16 and is supplied to an internal combustion engine (not shown). .

次に、ボディ本体12におけるガス流入口20の直径D、偏心距離L、バルブ14の弁開時における全開時流量との関係について、図3、図4A及び図4Bを参照しながら説明する。なお、図3は、ガス流入口20の直径Dが18mmの場合における偏心距離Lと、バルブ14の全開時における排気ガスの流量との関係を示す特性線図であり、図4Aは、上述した図3のガス流入口20より小径である直径Dが9mmの場合における偏心距離Lと排気ガスの流量との関係を示す特性線図であり、図4Bは、上述した図3のガス流入口20より大径である直径Dが27mmの場合における偏心距離Lと排気ガスの流量との関係を示す特性線図である。   Next, the relationship between the diameter D of the gas inlet 20 in the body body 12, the eccentric distance L, and the flow rate when the valve 14 is fully opened will be described with reference to FIGS. 3, 4A, and 4B. FIG. 3 is a characteristic diagram showing the relationship between the eccentric distance L when the diameter D of the gas inlet 20 is 18 mm and the flow rate of the exhaust gas when the valve 14 is fully opened, and FIG. 4A is described above. FIG. 4B is a characteristic diagram showing the relationship between the eccentric distance L and the flow rate of exhaust gas when the diameter D, which is smaller than the gas inlet 20 of FIG. 3, is 9 mm, and FIG. 4B is the above-described gas inlet 20 of FIG. It is a characteristic diagram which shows the relationship between the eccentric distance L and the flow volume of exhaust gas in case diameter D which is a larger diameter is 27 mm.

先ず、図3に示される特性線図では、偏心距離Lのない状態(L=0)から約1mm近傍に到達する辺りまで排気ガスの流量が急激に増加し、該偏心距離Lが1mm以上となるに従って、前記流量の増加が鈍化していることが諒解される。換言すれば、排気ガスの流量増加代は、偏心距離Lが約1mmとなるまでが最も大きくなる。すなわち、流量特性は、偏心距離Lが約1mm近傍で変化している。   First, in the characteristic diagram shown in FIG. 3, the flow rate of the exhaust gas increases rapidly from the state without the eccentric distance L (L = 0) to the vicinity of about 1 mm, and the eccentric distance L becomes 1 mm or more. It can be seen that the increase in the flow rate is slowing down. In other words, the amount of increase in the flow rate of the exhaust gas is greatest until the eccentric distance L reaches about 1 mm. That is, the flow rate characteristics change when the eccentric distance L is about 1 mm.

そのため、ガス流入口20の直径Dと偏心距離Lとの比(L/D×100)が、約5.5%となる前記偏心距離Lに到達するまでの排気ガスの流量増加が大きくなるため、少なくとも前記ガス流入口20の直径Dに対する偏心距離Lの比が、約5.5%以上となるように設定するとよい。   Therefore, the flow rate of the exhaust gas increases until the eccentric distance L reaches a ratio (L / D × 100) between the diameter D of the gas inlet 20 and the eccentric distance L of about 5.5%. The ratio of the eccentric distance L to the diameter D of the gas inlet 20 is preferably set to be about 5.5% or more.

また、図4Aに示される特性線図では、偏心距離Lのない状態(L=0)から約0.5mmに到達する辺りまで排気ガスの流量が急激に増加し、該偏心距離Lが0.5mm以上となるに従って、前記流量の増加が徐々に緩やかになっていくことが諒解される。すなわち、流量特性は、偏心距離Lが約0.5mm近傍で変化している。この場合も、ガス流入口20の直径Dと偏心距離Lとの関係は、0.5/9×100≒5.5%となる。   Further, in the characteristic diagram shown in FIG. 4A, the flow rate of the exhaust gas increases rapidly from the state where there is no eccentric distance L (L = 0) to the point where it reaches about 0.5 mm. It can be seen that the increase in the flow rate gradually decreases as the distance becomes 5 mm or more. That is, the flow rate characteristic changes when the eccentric distance L is about 0.5 mm. Also in this case, the relationship between the diameter D of the gas inlet 20 and the eccentric distance L is 0.5 / 9 × 100≈5.5%.

さらに、図4Bに示される特性線図では、偏心距離Lのない状態(L=0)から約1.5mmに到達する辺りまで排気ガスの流量が急激に増加し、該偏心距離Lが1.5mm以上となるに従って、前記増加代が徐々に緩やかとなっていくことが諒解される。すなわち、流量特性は、偏心距離Lが約1.5mm近傍で変化しており、この場合も、ガス流入口20の直径Dと偏心距離Lとの関係は、1.5/27×100≒5.5%となる。   Further, in the characteristic diagram shown in FIG. 4B, the flow rate of the exhaust gas increases rapidly from the state where there is no eccentric distance L (L = 0) to the point where it reaches about 1.5 mm. It is understood that the increase margin gradually becomes gradually as it becomes 5 mm or more. That is, the flow rate characteristic changes when the eccentric distance L is about 1.5 mm, and also in this case, the relationship between the diameter D of the gas inlet 20 and the eccentric distance L is 1.5 / 27 × 100≈5. .5%.

以上のように、本実施の形態では、バルブ14の曲率中心(軸線)B2と該バルブ14を回転させるシャフト38の軸心B1とが偏心した排気ガス再循環バルブ10において、ボディ本体12に形成され排気ガスの流入するガス流入口20の直径Dと、排気ガスの流通方向に沿った前記バルブ14の曲率中心(軸線)B2とシャフト38の軸線B1との偏心距離Lとの関係を、前記偏心距離Lが直径Dの5.5%以上となるように設定することにより、排気ガスの流量特性をより一層リニアとしつつ、その流量を増加させることが可能となる。   As described above, in the present embodiment, the exhaust gas recirculation valve 10 in which the center of curvature (axis) B2 of the valve 14 and the axis B1 of the shaft 38 that rotates the valve 14 are eccentric is formed in the body body 12. The relationship between the diameter D of the gas inlet 20 through which exhaust gas flows and the eccentric distance L between the center of curvature (axis) B2 of the valve 14 along the flow direction of the exhaust gas and the axis B1 of the shaft 38 is By setting the eccentric distance L to be 5.5% or more of the diameter D, it is possible to increase the flow rate while making the flow rate characteristic of the exhaust gas more linear.

なお、本発明に係る排気ガス再循環バルブは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。   The exhaust gas recirculation valve according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

10…排気ガス再循環バルブ 12…ボディ本体
14…バルブ 16…バルブシート
18…駆動力伝達機構 20…ガス流入口
22…ガス流出口 24…連通室
30…シート部 38…シャフト
46…駆動源
DESCRIPTION OF SYMBOLS 10 ... Exhaust gas recirculation valve 12 ... Body main body 14 ... Valve 16 ... Valve seat 18 ... Driving force transmission mechanism 20 ... Gas inlet 22 ... Gas outlet 24 ... Communication chamber 30 ... Seat part 38 ... Shaft 46 ... Drive source

Claims (1)

排気ガスの流通する流路を有したボディと、少なくとも外周面の一部が球状であり前記流路に配置され前記排気ガスの流通状態を切り換えるバルブと、前記流路において前記バルブより上流側に設けられ前記バルブの着座するシート部を有したシート部材と、前記バルブに連結され該バルブを回動させるシャフトとを備える排気ガス再循環バルブにおいて、
前記バルブの曲率中心と前記シャフトの軸線との前記排気ガスの流通方向に沿った偏心量は、前記ボディに形成され前記排気ガスの流入する流入口の直径に対する比が、5.5%以上となるように設定されることを特徴とする排気ガス再循環バルブ。
A body having a flow path through which exhaust gas circulates, a valve having at least a part of the outer peripheral surface being spherical and arranged in the flow path for switching the flow state of the exhaust gas, and upstream of the valve in the flow path In an exhaust gas recirculation valve comprising a seat member having a seat portion provided and seated on the valve, and a shaft connected to the valve and rotating the valve,
The amount of eccentricity along the flow direction of the exhaust gas between the curvature center of the valve and the axis of the shaft is such that the ratio to the diameter of the inlet port formed in the body and into which the exhaust gas flows is 5.5% or more. An exhaust gas recirculation valve characterized by being set to be
JP2012068841A 2012-03-26 2012-03-26 Exhaust gas recirculation valve Pending JP2013199887A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012068841A JP2013199887A (en) 2012-03-26 2012-03-26 Exhaust gas recirculation valve
DE102013202416A DE102013202416A1 (en) 2012-03-26 2013-02-14 Exhaust gas recirculation valve
US13/766,863 US20130247861A1 (en) 2012-03-26 2013-02-14 Exhaust gas recirculation valve
CN2013100521644A CN103362693A (en) 2012-03-26 2013-02-18 Exhaust gas recirculation valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068841A JP2013199887A (en) 2012-03-26 2012-03-26 Exhaust gas recirculation valve

Publications (1)

Publication Number Publication Date
JP2013199887A true JP2013199887A (en) 2013-10-03

Family

ID=49112374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068841A Pending JP2013199887A (en) 2012-03-26 2012-03-26 Exhaust gas recirculation valve

Country Status (4)

Country Link
US (1) US20130247861A1 (en)
JP (1) JP2013199887A (en)
CN (1) CN103362693A (en)
DE (1) DE102013202416A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108294A (en) * 2013-12-03 2015-06-11 三菱電機株式会社 Exhaust gas recirculation valve
JP2019035495A (en) * 2017-08-22 2019-03-07 日立金属株式会社 Valve device and seat support member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762250A (en) * 2015-11-23 2017-05-31 宁波思明汽车科技股份有限公司 Diesel engine egr valve
JP6698419B2 (en) * 2016-05-06 2020-05-27 愛三工業株式会社 Exhaust gas recirculation valve
JP6768427B2 (en) * 2016-06-01 2020-10-14 愛三工業株式会社 Double eccentric valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331224A (en) * 1976-09-06 1978-03-24 Yamatake Honeywell Co Ltd Valve seat
JPH08312803A (en) * 1995-05-16 1996-11-26 Hitachi Valve Kk Valve having bonnet
US6024125A (en) * 1996-06-13 2000-02-15 Fisher Controls International, Inc. Rotary valve

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497176A (en) * 1967-10-09 1970-02-24 Hills Mccanna Co Ball valve having progressive engagement of ball and yieldable seat
US4164343A (en) * 1977-09-12 1979-08-14 Henry Voyt Machine Co. Inc. Eccentric ball type valve
US4519579A (en) * 1983-02-14 1985-05-28 Fisher Controls, International, Inc. Cam valve self-centering seat
CH666103A5 (en) * 1985-05-13 1988-06-30 Fischer Ag Georg SHUT-OFF VALVE WITH SPHERICAL CHICK.
US5618026A (en) * 1995-02-13 1997-04-08 General Signal Corporation Hybrid rotary control valve assembly
JP4606757B2 (en) * 2004-03-15 2011-01-05 三菱電機株式会社 EGR valve device
JP5259478B2 (en) 2009-03-31 2013-08-07 株式会社ケーヒン Channel open / close valve
US8720854B2 (en) * 2010-04-30 2014-05-13 Fisher Controls International Llc Floating ball valve seal with dynamic C-seal and static C-seal
CN102128104A (en) * 2011-04-08 2011-07-20 无锡隆盛科技有限公司 Power-driven EGR (exhaust gas recirculation) valve with interchangeable gas inlet and gas outlet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331224A (en) * 1976-09-06 1978-03-24 Yamatake Honeywell Co Ltd Valve seat
JPH08312803A (en) * 1995-05-16 1996-11-26 Hitachi Valve Kk Valve having bonnet
US6024125A (en) * 1996-06-13 2000-02-15 Fisher Controls International, Inc. Rotary valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108294A (en) * 2013-12-03 2015-06-11 三菱電機株式会社 Exhaust gas recirculation valve
JP2019035495A (en) * 2017-08-22 2019-03-07 日立金属株式会社 Valve device and seat support member
JP7298987B2 (en) 2017-08-22 2023-06-27 株式会社プロテリアル valve devices, seat support members

Also Published As

Publication number Publication date
CN103362693A (en) 2013-10-23
DE102013202416A1 (en) 2013-09-26
US20130247861A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP2013199887A (en) Exhaust gas recirculation valve
JP5759647B1 (en) Double eccentric valve
JP5772881B2 (en) solenoid valve
DE112013002329T5 (en) Variable flow valve mechanism and vehicle turbocharger
AU2012237690A1 (en) Valve with dual rotation valve member
JP2018537615A (en) Exhaust circulation part of exhaust turbine supercharger and method of operating exhaust turbine supercharger
WO2010087056A1 (en) Exhaust throttle valve for internal combustion engine
KR101278688B1 (en) Throttle valve preventing sudden unintended acceleration
US20160090951A1 (en) Intake air control apparatus of engine
JP6051633B2 (en) Valve device and hot water supply device
JP2014218945A (en) Flow rate variable valve mechanism and supercharger
JP5615117B2 (en) Channel open / close valve
US20150292369A1 (en) Valve timing controller
US9932886B2 (en) Turbocharger with rotary bypass valve operable to selectively configure the turbine volute as single-scroll or twin-scroll
JP2010116796A (en) Intake air-flow control device for internal combustion engine
JP6424968B2 (en) Flow variable valve mechanism and supercharger
JP2013199867A (en) Exhaust gas recirculation valve
JP2012202432A (en) Valve device
JP2012067882A (en) Passage switching valve
JP6751591B2 (en) Flow control valve
JP2015048853A (en) Valve device
JP6118283B2 (en) Ball valve
JP6189141B2 (en) Channel open / close valve
JP2012067814A (en) Passage switching valve
JP2012132391A (en) Check valve device and valve timing adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329