JP2013197938A - Receiving device - Google Patents

Receiving device Download PDF

Info

Publication number
JP2013197938A
JP2013197938A JP2012063623A JP2012063623A JP2013197938A JP 2013197938 A JP2013197938 A JP 2013197938A JP 2012063623 A JP2012063623 A JP 2012063623A JP 2012063623 A JP2012063623 A JP 2012063623A JP 2013197938 A JP2013197938 A JP 2013197938A
Authority
JP
Japan
Prior art keywords
transmission line
detection unit
receiving
current
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063623A
Other languages
Japanese (ja)
Other versions
JP5833481B2 (en
Inventor
Yoichiro Suzuki
洋一朗 鈴木
Noboru Maeda
登 前田
Hiroyuki Obata
洋幸 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2012063623A priority Critical patent/JP5833481B2/en
Publication of JP2013197938A publication Critical patent/JP2013197938A/en
Application granted granted Critical
Publication of JP5833481B2 publication Critical patent/JP5833481B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a receiving device that allows preventing the delay of a signal transmitted through a transmission line.SOLUTION: In an observation node 8c connected to a transmission line 2, by turning on a P-channel MOSFET 19 on the basis of a change of a current flowing through a branch line 4c of the transmission line 2 detected by a resistance element 16, a current flowing out of a receiving circuit 18 is consumed by the P-channel MOSFET 19, and input impedance is changed so as to shorten the fall time of a reception signal waveform.

Description

本発明は、伝送線路を介して送信された信号を受信する受信回路の入力インピーダンスを変化させるように制御する受信装置に関する。   The present invention relates to a receiving apparatus that performs control so as to change an input impedance of a receiving circuit that receives a signal transmitted via a transmission line.

通信に使用される伝送線路は、線路長が長くなり、伝送線路に接続される通信ノードの数が増えるほど容量が増加する。そして、伝送線路において送信される信号の波形は、伝送線路に付帯する容量が増加すると、立ち上がり時間や立ち下がり時間に遅延を生じる。したがって、通信を成立させるには、線路長や接続ノード数を制限するか、若しくは伝送線路の途中に中継器を挿入して信号の遅延を抑制する必要がある。   The transmission line used for communication has a longer line length, and the capacity increases as the number of communication nodes connected to the transmission line increases. And the waveform of the signal transmitted in the transmission line causes a delay in the rise time and the fall time when the capacity incidental to the transmission line increases. Therefore, in order to establish communication, it is necessary to limit the line length and the number of connection nodes, or to insert a repeater in the middle of the transmission line to suppress signal delay.

しかし、伝送線路に中継器を導入すればその分だけコストアップするため、それに替えて、受信ノード側で何らかの対策を施すことができれば望ましい。関連する技術として、例えば特許文献1には、受信側で実際に信号波形が変化する状態に応じて、波形歪みを抑制する機能を備えた受信装置が開示されている。   However, if a repeater is introduced in the transmission line, the cost is increased accordingly. Therefore, it is desirable if some measures can be taken on the receiving node side instead. As a related technique, for example, Patent Document 1 discloses a receiving apparatus having a function of suppressing waveform distortion in accordance with a state in which a signal waveform actually changes on the receiving side.

特開2009−225138号公報JP 2009-225138 A

しかしながら、特許文献1では、専ら信号波形のオーバーシュートやアンダーシュート,すなわち信号の反射を抑制することを目的としており、信号波形の立ち上がりや立ち下がりについて発生する遅延時間を抑制することについては、全く着目していない。
本発明は上記事情に鑑みてなされたものであり、その目的は、伝送線路において伝送される信号について発生する遅延を抑制できる受信装置を提供することにある。
However, in Patent Document 1, the purpose is to suppress overshoot and undershoot of a signal waveform, that is, signal reflection, and it is quite possible to suppress the delay time generated for the rise and fall of the signal waveform. Not paying attention.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a receiving apparatus capable of suppressing a delay generated for a signal transmitted in a transmission line.

請求項1記載の受信装置によれば、インピーダンス制御手段は、電流検知部により検知される、伝送線路に流れる電流の変化に基づいて受信信号波形の立ち下がり時間を短縮するように入力インピーダンスを変化させる。すなわち、極めて簡単な構成によって受信信号波形の立ち下がり時間を短縮できるので、中継器を使用することなく線路長を延ばしたり、通信ノードの最大接続数を増やすことが可能になる。   According to the receiver of claim 1, the impedance control means changes the input impedance so as to shorten the fall time of the received signal waveform based on the change of the current flowing through the transmission line detected by the current detector. Let That is, since the fall time of the received signal waveform can be shortened with an extremely simple configuration, the line length can be extended and the maximum number of communication nodes can be increased without using a repeater.

第1実施例であり、受信ノードの構成を示す図The figure which is a 1st Example and shows the structure of a receiving node 送信ノードの構成を示す図Diagram showing the configuration of the sending node シミュレーションに使用したネットワーク構成を示す図Diagram showing network configuration used for simulation シミュレーションによる受信信号波形の電圧波形を示す図Diagram showing voltage waveform of received signal waveform by simulation 同各部の電流波形を示す図The figure which shows the current waveform of each part 第2実施例を示す図1相当図FIG. 1 equivalent view showing the second embodiment 第3実施例を示す図1相当図FIG. 1 equivalent view showing the third embodiment 第4実施例を示す図1相当図FIG. 1 equivalent view showing the fourth embodiment 第5実施例を示す図1相当図FIG. 1 equivalent view showing the fifth embodiment 第6実施例を示す図1相当図FIG. 1 equivalent view showing the sixth embodiment

(第1実施例)
以下、本発明を一対の信号線により差動信号を伝送する通信ネットワークに適用した第1実施例について説明する。図3において、通信ネットワーク1は、複数の通信ノードが、ツイストペア線で構成される伝送線路2をなす本線3及び支線4を介して接続されている。本線3の図中左端には送信ノード5が接続され、右端には受信ノード6が接続され、本線3の途中にはHUB7が挿入されている。送信ノード5とHUB7との間を接続する本線3aの線路長,並びにHUB7と受信ノード6との間を接続する本線3bの線路長は、何れも16.5mである。また、送信ノード5,受信ノード6では120Ωの終端抵抗によって伝送線路2を終端している。
(First embodiment)
A first embodiment in which the present invention is applied to a communication network that transmits a differential signal by a pair of signal lines will be described below. In FIG. 3, a communication network 1 includes a plurality of communication nodes connected via a main line 3 and a branch line 4 that form a transmission line 2 composed of twisted pair lines. A transmission node 5 is connected to the left end of the main line 3 in the figure, a reception node 6 is connected to the right end, and a HUB 7 is inserted in the middle of the main line 3. The line length of the main line 3a connecting between the transmitting node 5 and the HUB 7 and the line length of the main line 3b connecting between the HUB 7 and the receiving node 6 are both 16.5 m. The transmission node 5 and the reception node 6 terminate the transmission line 2 with a 120Ω termination resistor.

また、HUB7には6本の支線4a〜4fが接続されており、これらの一端には受信ノード8a〜8fが接続されており、支線4の線路長は何れも2mである。そして、受信ノード8a〜8fの1つである受信ノード8cを観測ノードとして、送信ノード5より送信した差動信号を観測ノード8c(受信装置)で受信した際の波形を、以下に述べる条件でシミュレーションした。   In addition, six branch lines 4a to 4f are connected to the HUB 7, and reception nodes 8a to 8f are connected to one end thereof, and the line length of each of the branch lines 4 is 2 m. Then, the reception node 8c, which is one of the reception nodes 8a to 8f, is used as an observation node, and the waveform when the differential signal transmitted from the transmission node 5 is received by the observation node 8c (reception device) is as described below. Simulated.

図2において、電源Vccとグランドとの間には、PチャネルMOSFET11,抵抗素子12,NチャネルMOSFET13の直列回路が接続されている。NチャネルMOSFET13のゲートにはゲート駆動信号が直接与えられ、PチャネルMOSFET11のゲートには、ゲート駆動信号がNOTゲート14を介して与えられる。本線3aをなす信号線3aH(Bus_high)はPチャネルMOSFET11のドレインに接続され、同信号線3aL(Bus_low)はNチャネルMOSFET13のドレインに接続されている。そして、抵抗素子12には、120Ωの終端抵抗15が並列に接続されている。以上が送信ノード5を構成している。   In FIG. 2, a series circuit of a P-channel MOSFET 11, a resistance element 12, and an N-channel MOSFET 13 is connected between a power supply Vcc and the ground. A gate drive signal is directly applied to the gate of the N-channel MOSFET 13, and a gate drive signal is applied to the gate of the P-channel MOSFET 11 via the NOT gate 14. The signal line 3aH (Bus_high) forming the main line 3a is connected to the drain of the P-channel MOSFET 11, and the signal line 3aL (Bus_low) is connected to the drain of the N-channel MOSFET 13. A 120Ω termination resistor 15 is connected to the resistance element 12 in parallel. The above constitutes the transmission node 5.

図1において、支線4cをなす信号線4cH,4cLの間には、抵抗素子16,17を介して受信回路18が接続されている。但し、受信回路18は、シミュレーション上では所定容量のコンデンサとしてシミュレートしており、図中ではコンデンサのシンボルで示している。抵抗素子16(電流検出部,インピーダンス制御手段)の一端(信号線4cH側)にはPチャネルMOSFET19(インピーダンス制御手段,電圧駆動型スイッチング素子)のゲートが接続されており、他端(受信回路18側)には、PチャネルMOSFET19のソースが接続されている。そして、PチャネルMOSFET19のドレインは、抵抗素子17と受信回路18との共通接続点に接続されている。以上が観測ノード8cを構成している。   In FIG. 1, a reception circuit 18 is connected between signal lines 4cH and 4cL forming a branch line 4c via resistance elements 16 and 17. However, the receiving circuit 18 is simulated as a capacitor having a predetermined capacity in the simulation, and is indicated by a capacitor symbol in the drawing. A gate of a P-channel MOSFET 19 (impedance control means, voltage-driven switching element) is connected to one end (signal line 4cH side) of the resistance element 16 (current detection unit, impedance control means), and the other end (reception circuit 18). Side) is connected to the source of a P-channel MOSFET 19. The drain of the P-channel MOSFET 19 is connected to a common connection point between the resistance element 17 and the receiving circuit 18. The above constitutes the observation node 8c.

尚、受信回路18の容量は250pFとし、抵抗素子16及び17の抵抗値は10kΩとしている。抵抗素子17は、信号線4cH側に抵抗素子16を挿入したことでバランスを取るため信号線4cL側に挿入している。また、PチャネルMOSFET19の閾値電圧Vthは例えば1.5V程度であり、オン抵抗は、伝送線路2のインピーダンスである120Ωと等しくなるように設定している。   The capacity of the receiving circuit 18 is 250 pF, and the resistance values of the resistance elements 16 and 17 are 10 kΩ. The resistance element 17 is inserted on the signal line 4cL side in order to balance the resistance element 16 inserted on the signal line 4cH side. Further, the threshold voltage Vth of the P-channel MOSFET 19 is about 1.5 V, for example, and the on-resistance is set to be equal to 120Ω which is the impedance of the transmission line 2.

次に、本実施例の作用について図4及び図5も参照して説明する。送信ノード5において、ハイレベルパルスのゲート駆動信号を与えることでPチャネルMOSFET11及びNチャネルMOSFET13を同時にオンさせて差動信号を送信する。送信された信号が観測ノード8cに到達すると、受信回路18の容量を充電する。このとき、図4に示す電圧波形は立ち上がりを示す期間となる。   Next, the operation of this embodiment will be described with reference to FIGS. In the transmission node 5, a high level pulse gate drive signal is applied to simultaneously turn on the P-channel MOSFET 11 and the N-channel MOSFET 13 to transmit a differential signal. When the transmitted signal reaches the observation node 8c, the capacity of the receiving circuit 18 is charged. At this time, the voltage waveform shown in FIG.

そして、送信ノード5が伝送線路2のドライブを停止すると、前記容量を充電した電荷が放電される。このとき、図4に示す電圧波形は立ち下がりを示す期間となり、抵抗素子16には、受信回路18側より信号線4cHの方向に電流が流れる。すると、PチャネルMOSFET19のゲート電位がソース電位よりも低下して、電位差が閾値Vthを超えることでPチャネルMOSFET19がオンする。これにより、観測ノード8cの入力インピーダンスが低下し、伝送線路2のインピーダンスである120Ωに等しくなる。   When the transmission node 5 stops driving the transmission line 2, the charge that has charged the capacitor is discharged. At this time, the voltage waveform shown in FIG. 4 has a falling period, and a current flows through the resistance element 16 in the direction of the signal line 4cH from the receiving circuit 18 side. Then, the gate potential of the P-channel MOSFET 19 is lower than the source potential, and the P-channel MOSFET 19 is turned on when the potential difference exceeds the threshold value Vth. As a result, the input impedance of the observation node 8c is lowered and becomes equal to 120Ω, which is the impedance of the transmission line 2.

図4において、実線で示す「対策あり」は観測ノード8cがPチャネルMOSFET19を備えている場合の信号波形であり、破線で示す「対策なし」は観測ノード8cがPチャネルMOSFET19を備えていない場合の信号波形である。両者の相違から明らかなように、「対策あり」の信号波形の立ち下がり時間は、「対策なし」の波形の立ち下がり時間よりも短くなっている。   In FIG. 4, “with countermeasure” indicated by a solid line is a signal waveform when the observation node 8 c includes the P-channel MOSFET 19, and “without countermeasure” indicated by a broken line indicates when the observation node 8 c does not include the P-channel MOSFET 19. It is a signal waveform. As is apparent from the difference between the two, the fall time of the “measured” signal waveform is shorter than the fall time of the “no countermeasure” waveform.

また、図5は、図4の信号波形の変化に対応するもので、信号線4cHに流れる電流波形(丸数字の「1」)と、PチャネルMOSFET19を介して流れる電流波形(丸数字の「2」)を示している。図4に示す電圧波形が立ち下がりに転じる瞬間に、PチャネルMOSFET19が一瞬オンしてインパルス状の電流が流れる。この作用により、信号線4cHに流れる電流の一部がPチャネルMOSFET19によって消費され、二点鎖線で示す信号線4cHに流れる電流のピークは、破線で示す「対策なし」の場合よりも低くなっている。   FIG. 5 corresponds to the change in the signal waveform of FIG. 4. The current waveform flowing through the signal line 4 cH (circled number “1”) and the current waveform flowing through the P-channel MOSFET 19 (rounded number “ 2 "). At the moment when the voltage waveform shown in FIG. 4 starts to fall, the P-channel MOSFET 19 is turned on momentarily and an impulse-like current flows. As a result, a part of the current flowing through the signal line 4cH is consumed by the P-channel MOSFET 19, and the peak of the current flowing through the signal line 4cH indicated by the two-dot chain line is lower than that of “no countermeasure” indicated by the broken line. Yes.

以上のように本実施例によれば、伝送線路2に接続される観測ノード8cにおいて、抵抗素子16により検知される、伝送線路2の支線4cに流れる電流の変化に基づいてPチャネルMOSFET19をオンさせ、受信回路18の容量を充電するように流入したものが流出に転じることで信号線4cHに流れる電流をPチャネルMOSFET19により消費させ、受信信号波形の立ち下がり時間を短縮するように入力インピーダンスを変化させるようにした。   As described above, according to the present embodiment, in the observation node 8c connected to the transmission line 2, the P-channel MOSFET 19 is turned on based on the change in the current flowing through the branch line 4c of the transmission line 2 detected by the resistance element 16. As a result, the current flowing in the signal line 4cH is consumed by the P-channel MOSFET 19 when the flowed in so as to charge the capacity of the receiving circuit 18 is turned out, and the input impedance is set so as to shorten the falling time of the received signal waveform. I changed it.

したがって、極めて簡単な構成によって受信信号波形の立ち下がり時間を短縮でき、中継器を使用することなく線路長を延ばしたり、通信ノードの最大接続数を増やすことが可能になる。また、PチャネルMOSFET19がオンした際の抵抗が、伝送線路2のインピーダンスと等しくなるように設定したので、受信信号が支線4c側に極力反射させないようにして不要輻射ノイズが発生することを抑制できる。   Accordingly, the fall time of the received signal waveform can be shortened with an extremely simple configuration, and the line length can be extended without using a repeater, or the maximum number of communication nodes can be increased. Further, since the resistance when the P-channel MOSFET 19 is turned on is set to be equal to the impedance of the transmission line 2, it is possible to suppress the generation of unnecessary radiation noise by preventing the received signal from being reflected to the branch line 4c as much as possible. .

(第2実施例)
以降、既に説明済みの構成と同一部分には同一符号を付して説明を省略し、異なる部分についてのみで説明する。第2実施例では、PチャネルMOSFET19のドレインに抵抗素子20(インピーダンス制御手段)を挿入して、受信ノード21を構成している。このように構成すれば、PチャネルMOSFET19のオン抵抗のみでは所望の抵抗値を得ることが困難な場合でも、抵抗素子20の抵抗値を変化させることで調整を容易に行うことができる。
(Second embodiment)
Hereinafter, the same parts as those already described are denoted by the same reference numerals, description thereof is omitted, and only different parts will be described. In the second embodiment, the reception node 21 is configured by inserting a resistance element 20 (impedance control means) into the drain of the P-channel MOSFET 19. With this configuration, even when it is difficult to obtain a desired resistance value only by the on-resistance of the P-channel MOSFET 19, adjustment can be easily performed by changing the resistance value of the resistance element 20.

(第3実施例)
第3実施例では、第1実施例の構成より抵抗素子16,17を削除し、抵抗素子16に替えて、信号線4cHの電流変化をカレントトランス22(電流検知部,インピーダンス制御手段)によって検出し、前記電流変化に応じた電圧信号をPチャネルMOSFET19のゲートに印加する。以上が受信ノード23を構成している。このように構成した場合も、受信信号波形の立ち下がり期間において受信回路18側より信号線4cH側に電流が流出すると、カレントトランス22がその電流変化を検出することでゲート電位を低下させてPチャネルMOSFET19をオンさせることができる。
(Third embodiment)
In the third embodiment, the resistance elements 16 and 17 are deleted from the configuration of the first embodiment, and instead of the resistance element 16, a current change in the signal line 4cH is detected by the current transformer 22 (current detection unit, impedance control means). Then, a voltage signal corresponding to the current change is applied to the gate of the P-channel MOSFET 19. The above constitutes the receiving node 23. Even in such a configuration, when a current flows out from the receiving circuit 18 side to the signal line 4cH side during the falling period of the received signal waveform, the current transformer 22 detects the change in the current, thereby lowering the gate potential. The channel MOSFET 19 can be turned on.

(第4実施例)
第4実施例では、第3実施例のカレントトランス22に替えて、信号線4cHにダイオード24(アノードが受信回路18側)及び抵抗素子25の直列回路を挿入し、この直列回路に並列に、ダイオード26をダイオード24とは逆方向となるように接続している(電流検知部,インピーダンス制御手段)。以上が受信ノード27を構成している。
(Fourth embodiment)
In the fourth embodiment, instead of the current transformer 22 of the third embodiment, a series circuit of a diode 24 (anode is on the receiving circuit 18 side) and a resistance element 25 is inserted in the signal line 4cH, and in parallel with this series circuit, The diode 26 is connected to be opposite to the diode 24 (current detection unit, impedance control means). The above constitutes the receiving node 27.

このように構成すれば、受信信号波形の立ち上がり期間では、電流はダイオード26を介して受信回路18側に流入する。一方、上記波形の立ち上がり期間では、電流は受信回路18よりダイオード24を介して信号線4cH側に流出する。このとき、ダイオード24の順方向電圧Vfと、抵抗素子25に発生する電圧降下分とを加えた電圧が閾値電圧Vthを超えることでPチャネルMOSFET19がオンする。   According to this configuration, current flows into the receiving circuit 18 via the diode 26 during the rising period of the received signal waveform. On the other hand, during the rising period of the waveform, current flows from the receiving circuit 18 to the signal line 4cH side via the diode 24. At this time, the P-channel MOSFET 19 is turned on when the voltage obtained by adding the forward voltage Vf of the diode 24 and the voltage drop generated in the resistance element 25 exceeds the threshold voltage Vth.

(第5実施例)
第5実施例は、第1実施例のPチャネルMOSFET19をNチャネルMOSFET28(インピーダンス制御手段,電圧駆動型スイッチング素子)に置き換えたもので、NチャネルMOSFET28のソースを受信回路18と抵抗素子17(電流検出部,インピーダンス制御手段)の共通接続点に接続し、ゲートを抵抗素子17と信号線4cLとの共通接続点に接続する。以上が受信ノード29を構成している。このように構成すれば、受信信号波形の立ち下がり期間において、信号線4cL側では電流が受信回路18側に流入する方向となるので、ゲート電位が上昇してNチャネルMOSFET28がオンする。したがって、第1実施例と同様の効果が得られる。
(5th Example)
In the fifth embodiment, the P-channel MOSFET 19 of the first embodiment is replaced with an N-channel MOSFET 28 (impedance control means, voltage-driven switching element). The source of the N-channel MOSFET 28 is the receiving circuit 18 and the resistance element 17 (current). The detector is connected to the common connection point of the impedance control means), and the gate is connected to the common connection point of the resistance element 17 and the signal line 4cL. The above constitutes the receiving node 29. With this configuration, during the falling period of the received signal waveform, the current flows into the receiving circuit 18 side on the signal line 4cL side, so the gate potential rises and the N-channel MOSFET 28 is turned on. Therefore, the same effect as the first embodiment can be obtained.

(第6実施例)
第6実施例は、伝送線路が差動信号を伝送するものではなく、受信回路18は、信号線30に挿入された抵抗素子16とグランドとの間に接続されている。これにより、受信ノード31が構成されている。すなわち、伝送線路が信号線30のみからなるシングルエンド型に本発明を適用した場合を示す。このように構成した場合も、NチャネルMOSFET19は第1実施例と同様に動作して、受信信号波形の立ち下がり時間を短縮するように動作する。
(Sixth embodiment)
In the sixth embodiment, the transmission line does not transmit a differential signal, and the receiving circuit 18 is connected between the resistance element 16 inserted in the signal line 30 and the ground. Thereby, the receiving node 31 is configured. That is, the case where the present invention is applied to a single-ended type in which the transmission line is composed of only the signal line 30 is shown. Even in such a configuration, the N-channel MOSFET 19 operates in the same manner as in the first embodiment so as to shorten the fall time of the received signal waveform.

本発明は上記した、又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
伝送線路の線路長や、伝送線路に接続する通信ノードの数は、適宜変更して実施すれば良い。
また、抵抗値や容量値,MOSFETの閾値電圧等についても、個別の設計に応じて適宜変更すれば良い。
第3〜第6実施例において、第2実施例と同様にMOSFETと直列に抵抗素子を接続しても良い。
The present invention is not limited to the embodiments described above or shown in the drawings, and the following modifications or expansions are possible.
The line length of the transmission line and the number of communication nodes connected to the transmission line may be changed as appropriate.
Further, the resistance value, the capacitance value, the threshold voltage of the MOSFET, and the like may be appropriately changed according to the individual design.
In the third to sixth embodiments, a resistance element may be connected in series with the MOSFET as in the second embodiment.

第4実施例において、ダイオード24の順方向電圧のみでPチャネルMOSFET19をオンさせることができれば、抵抗素子25を削除しても良い。また、ダイオードを複数個直列に接続しても良い。
立ち下がり時間の短縮について十分な効果が得られれば、必ずしも、伝送線路のインピーダンスと整合させるようにインピーダンスを変化させる必要はない。
In the fourth embodiment, if the P-channel MOSFET 19 can be turned on only by the forward voltage of the diode 24, the resistance element 25 may be omitted. A plurality of diodes may be connected in series.
If a sufficient effect for shortening the fall time is obtained, it is not always necessary to change the impedance so as to match the impedance of the transmission line.

図面中、2は伝送線路、8cは観測ノード(受信装置)、16は抵抗素子(電流検出部,インピーダンス制御手段)、19はPチャネルMOSFET(インピーダンス制御手段)、18は受信回路を示す。   In the drawing, 2 is a transmission line, 8c is an observation node (receiving device), 16 is a resistance element (current detection unit, impedance control means), 19 is a P-channel MOSFET (impedance control means), and 18 is a receiving circuit.

Claims (10)

伝送線路(2)を介して送信された信号を受信する受信回路(18)と、
前記伝送線路に流れる電流を検知する電流検知部(16,17,22,24〜26)を備え、この電流検知部により検知される電流の変化に基づいて、前記受信信号波形の立ち下がり時間を短縮するように入力インピーダンスを変化させるインピーダンス制御手段(19,20,28)とで構成されることを特徴とする受信装置。
A receiving circuit (18) for receiving a signal transmitted via the transmission line (2);
A current detection unit (16, 17, 22, 24 to 26) for detecting a current flowing through the transmission line is provided, and a fall time of the received signal waveform is determined based on a change in current detected by the current detection unit. A receiving apparatus comprising: impedance control means (19, 20, 28) for changing input impedance so as to shorten.
前記インピーダンス制御手段(19,20)は、前記伝送線路に流れる電流が、前記受信回路に流入する方向から転じて流出を開始した際に、前記入力インピーダンスを変化させることを特徴とする請求項1記載の受信装置。   The said impedance control means (19, 20) changes the said input impedance when the electric current which flows into the said transmission line starts to flow out from the direction which flows in into the said receiving circuit, and starts flowing out. The receiving device described. 前記インピーダンス制御手段(19,20,28)は、前記受信回路より流出する電流を消費するように、前記入力インピーダンスを変化させることを特徴とする請求項2記載の受信装置。   The receiving apparatus according to claim 2, wherein the impedance control means (19, 20, 28) changes the input impedance so as to consume a current flowing out from the receiving circuit. 前記インピーダンス制御手段(19,20,28)は、前記入力インピーダンスを、前記伝送線路のインピーダンスと整合させるように変化させることを特徴とする請求項1ないし3の何れかに記載の受信装置。   4. The receiving apparatus according to claim 1, wherein the impedance control means (19, 20, 28) changes the input impedance so as to match the impedance of the transmission line. 前記インピーダンス制御手段は、前記電流検出部の両端にソース,ゲートが接続され、ドレインが、前記電流検出部が挿入されている側とは異なる側の伝送線路に接続されるMOSFET(19,28)を備えて構成されることを特徴とする請求項1ないし4の何れかに記載の受信装置。   The impedance control means includes a MOSFET (19, 28) in which a source and a gate are connected to both ends of the current detection unit, and a drain is connected to a transmission line on a side different from the side where the current detection unit is inserted. The receiving apparatus according to claim 1, comprising: 前記インピーダンス制御手段は、前記MOSFETと直列に接続される抵抗素子(20)を備えて構成されることを特徴とする請求項5記載の受信装置。   6. The receiving apparatus according to claim 5, wherein the impedance control means includes a resistance element (20) connected in series with the MOSFET. 前記電流検出部は、前記伝送線路に挿入される抵抗素子(16,17)で構成されることを特徴とする請求項1ないし6の何れかに記載の受信装置。   The receiving device according to claim 1, wherein the current detection unit includes a resistance element (16, 17) inserted into the transmission line. 前記電流検出部は、カレントトランス(22)で構成されることを特徴とする請求項1ないし6の何れかに記載の受信装置。   The receiving device according to claim 1, wherein the current detection unit includes a current transformer. 前記電流検出部は、前記伝送線路に挿入され、互いに逆方向に接続されるそれぞれ1個以上のダイオード(24,26)を備えて構成されることを特徴とする請求項1ないし6の何れかに記載の受信装置。   The current detection unit includes one or more diodes (24, 26) inserted into the transmission line and connected in opposite directions to each other. The receiving device described in 1. 前記電流検出部は、前記ダイオードに直列に接続される抵抗素子(25)を備えて構成されることを特徴とする請求項9記載の受信装置。   The receiving device according to claim 9, wherein the current detection unit includes a resistance element (25) connected in series to the diode.
JP2012063623A 2012-03-21 2012-03-21 Receiver Expired - Fee Related JP5833481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063623A JP5833481B2 (en) 2012-03-21 2012-03-21 Receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063623A JP5833481B2 (en) 2012-03-21 2012-03-21 Receiver

Publications (2)

Publication Number Publication Date
JP2013197938A true JP2013197938A (en) 2013-09-30
JP5833481B2 JP5833481B2 (en) 2015-12-16

Family

ID=49396344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063623A Expired - Fee Related JP5833481B2 (en) 2012-03-21 2012-03-21 Receiver

Country Status (1)

Country Link
JP (1) JP5833481B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215239A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Optical transmission circuit
JPH07131488A (en) * 1993-10-28 1995-05-19 Hamamatsu Photonics Kk Driving circuit for light emitting element
JP2003008669A (en) * 2001-06-22 2003-01-10 Mitsubishi Electric Corp Signal transmission circuit
JP2006157607A (en) * 2004-11-30 2006-06-15 Texas Instr Japan Ltd Amplifier
JP2009225138A (en) * 2008-03-17 2009-10-01 Nippon Soken Inc Receiver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215239A (en) * 1989-02-16 1990-08-28 Matsushita Electric Ind Co Ltd Optical transmission circuit
JPH07131488A (en) * 1993-10-28 1995-05-19 Hamamatsu Photonics Kk Driving circuit for light emitting element
JP2003008669A (en) * 2001-06-22 2003-01-10 Mitsubishi Electric Corp Signal transmission circuit
JP2006157607A (en) * 2004-11-30 2006-06-15 Texas Instr Japan Ltd Amplifier
JP2009225138A (en) * 2008-03-17 2009-10-01 Nippon Soken Inc Receiver

Also Published As

Publication number Publication date
JP5833481B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6193331B2 (en) Signal isolator system with common mode transient protection
JP5498527B2 (en) Ringing suppression circuit
JP5543402B2 (en) Ringing suppression circuit
KR101847103B1 (en) Semiconductor device
US7822890B2 (en) Bidirectional data repeater switch
CN108712313B (en) Electronic circuit, method of operating the same and network for suppressing ringing
JP6886903B2 (en) Battery monitoring device and battery monitoring system
JP4567762B2 (en) Receiver
JP5803895B2 (en) Transmission equipment
US8896289B2 (en) Circuit and method of signal detection
JPWO2014128986A1 (en) Burst optical receiver and bias voltage control method for APD of burst optical receiver
US8634480B2 (en) Signal transmission arrangement with a transformer and signal transmission method
US20140210520A1 (en) Low power low voltage differential driver
JP5932526B2 (en) Receiver
CN205430254U (en) Transmission rate 32Kbps~80Mbps receives and dispatches integrative SFP optical module
JP5833481B2 (en) Receiver
US20150010094A1 (en) Method for communication and validation of electrical signals
JP5231118B2 (en) Receiver amplifier circuit
CN108270210A (en) Power supply switch device
CN104660229A (en) PWM modulation device and output power limiting circuit thereof
JP2009207144A (en) Circuit and method for signal voltage transmission within driver circuit of power semiconductor switch
KR20110096845A (en) Calibration circuit
CN107947782B (en) Circuit for improving transmission characteristics of optocoupler
US20150370746A1 (en) Bidirectional data transmission system
JP6272724B2 (en) Photocoupler communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151029

R150 Certificate of patent or registration of utility model

Ref document number: 5833481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees