JP2013195901A - Image forming device - Google Patents

Image forming device Download PDF

Info

Publication number
JP2013195901A
JP2013195901A JP2012065209A JP2012065209A JP2013195901A JP 2013195901 A JP2013195901 A JP 2013195901A JP 2012065209 A JP2012065209 A JP 2012065209A JP 2012065209 A JP2012065209 A JP 2012065209A JP 2013195901 A JP2013195901 A JP 2013195901A
Authority
JP
Japan
Prior art keywords
latent image
photosensitive member
image
spot light
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012065209A
Other languages
Japanese (ja)
Inventor
Masako Yoshii
雅子 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2012065209A priority Critical patent/JP2013195901A/en
Publication of JP2013195901A publication Critical patent/JP2013195901A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an image forming device capable of detecting photoreceptor characteristics with high accuracy.SOLUTION: An image forming device includes: a photoreceptor 1; charging means 2 which charges a surface of the photoreceptor; exposure means 3 which exposes the surface of the photoreceptor charged by the charging means, and forms a latent image; spot light irradiation means 12 which irradiates the latent image on the surface of the photoreceptor and its surroundings with spot light; induction current detection means 11 which detects a change in a surface charge amount caused by optical attenuation of the photoreceptor by being irradiated with the spot light as induction current; and latent image measurement means 10 which measures the latent image formed on the surface of the photoreceptor on the basis of a detection result of the induction current detection means. The latent image measurement means irradiates a plurality of measurement positions on the surface of the photoreceptor with spot light by means of the spot light irradiation means simultaneously or substantially simultaneously, and the induction current detection means detects the induction current at the plurality of measurement positions.

Description

本発明は、プリンタ、ファクシミリ、複写機などの画像形成装置に関するものである。   The present invention relates to an image forming apparatus such as a printer, a facsimile machine, and a copying machine.

従来より、経時や環境で感光体特性が変動することによる画像ボケとして、ドット画像やライン画像の画像劣化が発生している。そのため、感光体表面に形成されたドット潜像やライン潜像を画像形成装置内で計測することによって、ドット潜像やライン潜像の形状から感光体特性を精度良く検出することが求められている。   Conventionally, image degradation of dot images and line images has occurred as image blur due to fluctuations in the characteristics of the photoconductor over time and in the environment. Therefore, it is required to accurately detect the characteristics of the photoconductor from the shape of the dot latent image or line latent image by measuring the dot latent image or line latent image formed on the surface of the photoconductor in the image forming apparatus. Yes.

感光体表面に形成された潜像の形状は感光体表面の電位で表すことができ、潜像を計測する方法としては、光減衰による誘導電流方式が知られている(例えば、特許文献1や非特許文献1など)。   The shape of the latent image formed on the surface of the photoconductor can be expressed by the potential of the surface of the photoconductor. As a method for measuring the latent image, an induced current method using light attenuation is known (for example, Patent Document 1 and Non-patent document 1).

この誘導電流方式では、回転している感光体の表面を帯電装置によって帯電させ、帯電した感光体表面を露光装置で感光体軸方向に1回露光走査してライン潜像を書き込む。そして、感光体表面に近接して設置された透明電極の背面からスポット光照射装置により照射される、感光体回転方向でライン潜像の幅よりも小さな照射幅のスポット光の照射領域に、感光体の回転に伴ってライン潜像が到達したら、感光体の帯電及び回転を停止させる。また、ライン潜像の感光体回転方向における複数箇所の電位を知るために、ライン潜像を感光体回転方向で分割した複数の計測位置が、感光体回転方向に同一直線上で設定されている。前述したように感光体の帯電及び回転を停止させた後、前記複数の計測位置のうち、感光体回転方向最下流側に位置する計測位置に、スポット光照射装置からスポット光を照射し、光減衰により微小領域部分で表面電位変化を生じさせる。そして、この表面電位変化により透明電極に誘導される電荷量の変化すなわち誘導電流を検出する。   In this induced current method, the surface of a rotating photoconductor is charged by a charging device, and the charged photoconductor surface is exposed and scanned once in the axial direction of the photoconductor by an exposure device to write a line latent image. Then, a spot light irradiation region irradiated with a spot light irradiation device from the back surface of the transparent electrode installed in the vicinity of the surface of the photosensitive member is irradiated with a spot light irradiation region having an irradiation width smaller than the width of the line latent image in the rotation direction of the photosensitive member. When the line latent image arrives with the rotation of the body, charging and rotation of the photosensitive member are stopped. Further, in order to know the potentials at a plurality of locations in the photosensitive drum rotation direction of the line latent image, a plurality of measurement positions obtained by dividing the line latent image in the photosensitive drum rotation direction are set on the same straight line in the photosensitive drum rotation direction. . After stopping the charging and rotation of the photoconductor as described above, spot light is irradiated from the spot light irradiation device to the measurement position located on the most downstream side in the rotation direction of the photoconductor among the plurality of measurement positions. A surface potential change is caused in the minute region due to the attenuation. Then, a change in the amount of charge induced in the transparent electrode by this surface potential change, that is, an induced current is detected.

次に、感光体を所定ピッチだけ回転させた後、感光体の回転を停止し、次の計測位置にスポット光を照射して透明電極に誘導される誘導電流を検出する。このような計測をライン潜像の感光体回転方向における全ての計測位置で行われるまで繰り返す。検出した誘導電流量から計測位置におけるスポット光照射前の感光体表面の電位を知ることができ、感光体表面の各計測位置での電位分布によって、ライン潜像の感光体回転方向の形状を把握することができる。   Next, after rotating the photosensitive member by a predetermined pitch, the rotation of the photosensitive member is stopped, and the induced current induced in the transparent electrode is detected by irradiating spot light to the next measurement position. Such measurement is repeated until the measurement is performed at all the measurement positions of the line latent image in the photoconductor rotation direction. From the detected amount of induced current, the potential of the surface of the photoconductor before spot light irradiation at the measurement position can be determined, and the shape of the line latent image in the direction of rotation of the photoconductor is determined by the potential distribution at each measurement position on the surface of the photoconductor. can do.

このように、潜像の形状を把握することで、感光体特性の変動により潜像の形状がボケてきた場合などに、画像形成プロセス条件を変化させて所望の潜像を形成したり、感光体を交換したりすることにより画像の劣化を抑制することができる。   In this way, by grasping the shape of the latent image, if the shape of the latent image is blurred due to fluctuations in the photoreceptor characteristics, the desired image can be formed by changing the image forming process conditions, The deterioration of the image can be suppressed by exchanging the body.

しかしながら、感光体の回転と停止とを繰り返し、感光体回転方向で計測位置を順次変えながら各計測位置の誘導電流を検出するため、帯電装置による感光体表面の帯電を停止させてから、全ての計測位置で計測が終わるまでに時間がかかってしまう。そのため、感光体表面の帯電電位の暗減衰の影響を受けて、後の計測位置になるほど誘導電流量が減ってしまい、潜像が実際よりも浅く計測されてしまう。よって、計測された潜像が実際の潜像よりもぼけた潜像として計測されてしまい、潜像の計測結果に基づいて感光体特性を精度良く検出することができないといった問題が生じる。   However, the rotation and stop of the photoconductor is repeated, and the induced current at each measurement position is detected while sequentially changing the measurement position in the photoconductor rotation direction. It takes time to finish the measurement at the measurement position. Therefore, under the influence of the dark decay of the charged potential on the surface of the photoconductor, the amount of induced current decreases toward the later measurement position, and the latent image is measured shallower than actual. Therefore, the measured latent image is measured as a latent image that is more blurred than the actual latent image, and there is a problem that the photoconductor characteristics cannot be accurately detected based on the measurement result of the latent image.

本発明は以上の問題点に鑑みなされたものであり、その目的は、感光体特性を精度良く検出することができる画像形成装置を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide an image forming apparatus capable of accurately detecting the characteristics of a photoreceptor.

上記目的を達成するために、請求項1の発明は、回転可能に設けられた感光体と、前記感光体の表面を帯電せしめる帯電手段と、前記帯電手段によって帯電せしめられた前記感光体の表面を露光して潜像を形成する露光手段と、前記露光手段によって形成された潜像よりも小さな照射範囲のスポット光を感光体表面に照射するスポット光照射手段、及び、該スポット光が照射されることで該感光体の光減衰による表面電荷量の変化を誘導電流として検出する誘導電流検出手段を有し、該誘導電流検出手段の検出結果に基づいて該感光体の表面に形成された潜像を計測する潜像計測手段とを備えた画像形成装置において、前記潜像計測手段は、前記潜像及びその周辺に設定された複数の計測位置へ、同時または略同時に前記スポット光照射手段によって前記スポット光を照射し、該複数の計測位置の誘導電流を前記誘導電流検出手段で検出することを特徴とするものである。   In order to achieve the above object, the invention of claim 1 includes a photoconductor that is rotatably provided, a charging unit that charges the surface of the photoconductor, and a surface of the photoconductor that is charged by the charging unit. Exposing means for forming a latent image by exposing the surface of the photosensitive member, spot light irradiating means for irradiating the surface of the photosensitive member with spot light in an irradiation range smaller than the latent image formed by the exposure means, and the spot light is irradiated In this way, there is induced current detection means for detecting a change in the surface charge amount due to light attenuation of the photoconductor as an induced current, and a latent image formed on the surface of the photoconductor based on the detection result of the induced current detection means. In the image forming apparatus including a latent image measuring unit for measuring an image, the latent image measuring unit is configured to simultaneously or substantially simultaneously apply the spot light irradiation unit to the latent image and a plurality of measurement positions set in the vicinity thereof. Therefore irradiating the spot light, it is characterized in detecting the induced current measurement position of the plurality of by the induced current detector.

本発明においては、感光体表面の潜像及びその周辺に設定された複数の計測位置へ、同時または略同時にスポット光照射手段から前記スポット光を照射して誘導電流を誘導電流検出手段で検出する。これにより、計測位置を順次変えて計測を行う場合よりも、全ての計測位置で計測が終わるまでの時間を短縮できるので、感光体表面の帯電電位の暗減衰の影響により、誘導電流量が減少するのを抑制することができる。よって、誘導電流検出手段の検出結果に基づいて潜像が実際よりも浅く計測されてしまうのが抑えられ、計測位置を順次変えて計測を行う場合よりも、潜像の計測結果に基づいて感光体特性を精度良く検出することができる。   In the present invention, the induced light is detected by the induced current detecting means by irradiating the spot light from the spot light irradiating means simultaneously or substantially simultaneously to the latent image on the surface of the photosensitive member and a plurality of measurement positions set in the periphery thereof . As a result, it is possible to shorten the time until measurement is completed at all measurement positions, compared with the case where measurement is performed by sequentially changing the measurement positions, so the amount of induced current is reduced due to the effect of dark decay of the charged potential on the surface of the photoconductor. Can be suppressed. Therefore, it is possible to prevent the latent image from being measured to be shallower than the actual measurement based on the detection result of the induced current detection means, and to detect the latent image based on the measurement result of the latent image, rather than performing measurement by sequentially changing the measurement position. Body characteristics can be detected with high accuracy.

以上、本発明によれば、感光体特性を精度良く検出することができるという優れた効果がある。   As described above, according to the present invention, there is an excellent effect that the characteristics of the photoconductor can be detected with high accuracy.

感光体に対する電極の配置例を示す図。The figure which shows the example of arrangement | positioning of the electrode with respect to a photoreceptor. 実施形態に係る画像形成装置の要部の概略構成図。1 is a schematic configuration diagram of a main part of an image forming apparatus according to an embodiment. 潜像計測装置の説明図。Explanatory drawing of a latent image measuring device. 潜像電荷密度分布を示すグラフ。The graph which shows latent image charge density distribution. 潜像電荷密度分布を示すグラフ。The graph which shows latent image charge density distribution. 多色対応画像形成装置の要部の概略構成図。1 is a schematic configuration diagram of a main part of a multicolor image forming apparatus. 感光体に対する電極の配置例を示す図。The figure which shows the example of arrangement | positioning of the electrode with respect to a photoreceptor. 実施例3に係る画像形成装置の要部の概略構成図。FIG. 9 is a schematic configuration diagram of a main part of an image forming apparatus according to a third embodiment. 潜像計測の制御にかかるフローチャート。The flowchart concerning control of latent image measurement. 感光体光減衰特性の例を示すグラフ。The graph which shows the example of a photoreceptor light attenuation characteristic.

以下、本発明を画像形成装置に適用した実施形態について説明する。図2は、本実施形態に係る画像形成装置の要部の概略構成図である。   Embodiments in which the present invention is applied to an image forming apparatus will be described below. FIG. 2 is a schematic configuration diagram of a main part of the image forming apparatus according to the present embodiment.

[実施例1]
ドラム状の像担持体である感光体1は、図中矢印C方向に回転可能に設けられている。このとき、感光体1の表面が帯電装置2によって所定の極性、本実施形態ではマイナス極性に帯電される。その帯電後の感光体表面は、露光装置3によって画像情報に基づいて露光され、感光体1に静電潜像が形成される。この静電潜像は、現像装置4によってトナー像として可視像化される。感光体1上のトナー像は、図示していない給紙装置から図中矢印X方向に給送された転写材Pに、転写装置5の作用により転写される。このトナー像が転写された転写材Pは、定着装置6を通り熱と圧力とによってトナー像が転写材Pに定着される。また、感光体1上から転写材Pへトナー像を転写した後に、感光体表面に残留する転写残トナーは、クリーニング装置7によって除去される。クリーニング装置7によりクリーニングされた感光体1の表面には、除電装置である除電ランプ8からの除電光が照射されて感光体1の表面電位が初期化される。
[Example 1]
A photoconductor 1 that is a drum-shaped image carrier is provided to be rotatable in the direction of arrow C in the drawing. At this time, the surface of the photoconductor 1 is charged by the charging device 2 to a predetermined polarity, in this embodiment, a negative polarity. The charged photoreceptor surface is exposed based on image information by the exposure device 3, and an electrostatic latent image is formed on the photoreceptor 1. The electrostatic latent image is visualized as a toner image by the developing device 4. The toner image on the photosensitive member 1 is transferred to the transfer material P fed in the direction of arrow X in the drawing by a function of the transfer device 5 from a paper supply device (not shown). The transfer material P onto which the toner image has been transferred passes through the fixing device 6 and is fixed to the transfer material P by heat and pressure. Further, after the toner image is transferred from the photosensitive member 1 to the transfer material P, the transfer residual toner remaining on the surface of the photosensitive member is removed by the cleaning device 7. The surface of the photosensitive member 1 cleaned by the cleaning device 7 is irradiated with the neutralizing light from the neutralizing lamp 8 which is a neutralizing device, and the surface potential of the photosensitive member 1 is initialized.

図2に示した画像形成装置の例では、感光体1上に形成されたトナー像を直に最終的な転写材Pに転写するように構成されているが、感光体1上のトナー像を中間転写体より成る転写材に転写し、その中間転写体上のトナー像を最終転写材に転写するように構成することもできる。   In the example of the image forming apparatus shown in FIG. 2, the toner image formed on the photosensitive member 1 is directly transferred to the final transfer material P. However, the toner image on the photosensitive member 1 is transferred. It is also possible to transfer to a transfer material made of an intermediate transfer member and transfer the toner image on the intermediate transfer member to the final transfer material.

露光装置3と現像装置4との間には潜像計測装置10が配置される。潜像計測装置10は後述するように、感光体1と所定の距離の位置に配置される透明電極、レーザービーム光学系、誘導電流を計測する計測部から構成される。レーザービーム光学系は半導体レーザー(LD)を有しているか、レーザービームの代わりに発光ダイオード(LED)を使用しても良い。   A latent image measuring device 10 is disposed between the exposure device 3 and the developing device 4. As will be described later, the latent image measuring device 10 includes a transparent electrode disposed at a predetermined distance from the photoconductor 1, a laser beam optical system, and a measuring unit that measures an induced current. The laser beam optical system may include a semiconductor laser (LD), or a light emitting diode (LED) may be used instead of the laser beam.

潜像計測装置10による潜像計測は通常の画像形成時ではなく、起動時や一定枚数画像形成後、一定時間経過後等、画像形成装置を制御するとき、例えば、画像形成プロセス条件を変更するプロセスコントロール実行時にあわせて行うと良い。   The latent image measurement by the latent image measuring device 10 is not performed at the time of normal image formation, but when the image forming apparatus is controlled at the time of start-up, after a certain number of images are formed, or after a certain time has elapsed, for example, the image forming process conditions are changed. This should be done at the time of process control execution.

潜像計測時には、感光体1の表面を露光装置3により露光して所定のテスト潜像パターン(ライン潜像またはドット潜像)を形成する。そして、検知光を照射する位置にあたる感光体1上の部位が、信号検出部直前に来たところで、帯電装置2による感光体表面への帯電と感光体1の回転とを停止し、潜像計測装置10から検知光を照射して、発生した誘導電流の量を検出し、潜像を計測する。   During the latent image measurement, the surface of the photoreceptor 1 is exposed by the exposure device 3 to form a predetermined test latent image pattern (line latent image or dot latent image). Then, when the part on the photosensitive member 1 corresponding to the position where the detection light is irradiated comes immediately before the signal detection unit, charging of the photosensitive member surface by the charging device 2 and rotation of the photosensitive member 1 are stopped, and latent image measurement is performed. The detection light is emitted from the device 10, the amount of the induced current generated is detected, and the latent image is measured.

このように、画像形成装置内に潜像計測装置10を設けて潜像を計測することにより、経時や環境で変動した感光体特性を精度よく検出することができ、それに応じて画像形成プロセス条件を変更する制御を実施することで高品質の画像形成を行うことができる。   Thus, by providing the latent image measuring device 10 in the image forming apparatus and measuring the latent image, it is possible to accurately detect the characteristics of the photoconductor that has changed over time or in the environment, and in accordance with the image forming process condition accordingly. High quality image formation can be performed by performing control to change the.

なお、感光体特性の情報としては、感光体の膜厚、表面特性(摩擦係数、凹凸)、表面電位(各プロセス前後)、表面エネルギー、散乱光、温度、色、表面位置(フレ)、線速度、電位減衰速度、抵抗・静電容量、表面水分量などが挙げられる。   The photoconductor characteristics information includes photoconductor film thickness, surface characteristics (friction coefficient, unevenness), surface potential (before and after each process), surface energy, scattered light, temperature, color, surface position (flare), line Speed, potential decay speed, resistance / capacitance, surface moisture content, and the like.

図3を用いて潜像計測装置10について説明する。
潜像計測装置10は、透明電極11や、検知光を照射するレーザービーム光学系12や、誘導電流を計測する計測部13などを有している。
The latent image measuring device 10 will be described with reference to FIG.
The latent image measuring device 10 includes a transparent electrode 11, a laser beam optical system 12 that emits detection light, a measuring unit 13 that measures an induced current, and the like.

透明電極11は透明ガラスに透明導電性薄膜を成膜したもので、電極背面から感光体1に向けてレーザー光を照射可能としている。透明ガラスとしては石英ガラス等の透過波長域が広いものが望ましく、透明導電薄膜としてはITO(酸化インジウムスズ)が一般的であるが、これら以外でも問題はない。   The transparent electrode 11 is formed by forming a transparent conductive thin film on transparent glass, and is capable of irradiating laser light from the back surface of the electrode toward the photoreceptor 1. The transparent glass preferably has a wide transmission wavelength range such as quartz glass, and the transparent conductive thin film is generally ITO (indium tin oxide), but there is no problem in addition to these.

透明導電薄膜の成膜は、透明ガラスの片側全面に成膜しても、パターンマスクを使い、細線(≦1[mm])でメッシュ状に成膜しても、どちらでもかまわない。   The transparent conductive thin film may be formed on the entire surface of one side of the transparent glass, or may be formed in a mesh shape with a fine line (≦ 1 [mm]) using a pattern mask.

この場合は、[ITO成膜部分の面積/ITO成膜無し部分の面積]の面積比が、0.2前後であるようにすると、透明電極11を通過させる光が800[nm]以上の波長を含むとき、この波長の光を大きく損なうことなく通過させることができる。   In this case, if the area ratio of [area of ITO film forming portion / area of non-ITO film forming portion] is about 0.2, the light passing through the transparent electrode 11 has a wavelength of 800 [nm] or more. When this is included, light of this wavelength can be passed through without significant loss.

また、通過させる光がレーザーである場合、透明ガラスのレーザー入射側のガラス表面には反射防止膜をつけるのが好ましい。これは、レーザー入射側のガラス表面で反射したレーザーが発光部に戻り、複合共振器を形成して、レーザー光に揺らぎが生じる、所謂戻り光ノイズを防ぐためである。   Moreover, when the light to pass is a laser, it is preferable to attach an antireflection film to the glass surface of the transparent glass on the laser incident side. This is to prevent so-called return light noise, in which the laser beam reflected by the glass surface on the laser incident side returns to the light emitting part to form a composite resonator and the laser light fluctuates.

次に、検知光を照射するレーザービーム光学系12について説明する。使用する検知光照射手段である光源は感光体1の感度を有する波長のレーザー光源を用いることが望ましい。LDドライバー14は、レーザービーム光学系12を含むレーザー光源及びその駆動装置であり、レーザー光の照射はLDパワーと点灯時間とを調整して行なわれる。また、PCコントローラ15からパルスジェネレータ16を通じてLD駆動電流を制御する。レーザー光源が感光体1に与える露光エネルギーは、LDパワーや点灯時間を調整して、所定の帯電電位(例えば−800[V])を最も減衰する飽和電位(例えば−100[V])にするのに必要な露光エネルギー程度になるようにする。   Next, the laser beam optical system 12 that irradiates the detection light will be described. It is desirable to use a laser light source having a wavelength having the sensitivity of the photosensitive member 1 as the light source that is the detection light irradiation means to be used. The LD driver 14 is a laser light source including the laser beam optical system 12 and a driving device thereof, and laser light irradiation is performed by adjusting LD power and lighting time. Further, the LD drive current is controlled from the PC controller 15 through the pulse generator 16. The exposure energy given to the photosensitive member 1 by the laser light source is adjusted to the saturation potential (for example, −100 [V]) that attenuates the predetermined charging potential (for example, −800 [V]) most by adjusting the LD power and the lighting time. The exposure energy is required to be about the same level as the above.

LDパワーはレーザー駆動電流を調節して決め、レーザー点灯時間は感光体1のキャリアトランジットタイムを基準にこれ以下に設定するのが好ましい。これは測定される信号強度は電極に誘起される電荷密度の流れであり、時間が短い程、信号が大きくなるためである。   The LD power is preferably determined by adjusting the laser drive current, and the laser lighting time is preferably set to be less than this with reference to the carrier transit time of the photoreceptor 1. This is because the measured signal intensity is the flow of charge density induced in the electrode, and the shorter the time, the greater the signal.

また、LDのビームスポット径(レーザービームは通常ガウシアン分布をしたビームを想定し、最大強度の1/e(約13.5[%])の強度になる範囲位置(直径))は検知光の信号強度(誘導電流)が計測できる程度に大きいことが望ましい。また、特許文献1にあるように、主走査方向のサイズを大きくすることにより検出信号のS/N比を向上させているラインLD等を用いることも望ましい。 Also, the beam spot diameter of the LD (assuming that the laser beam is usually a Gaussian-distributed beam, the range position (diameter) where the intensity is 1 / e 2 (about 13.5 [%]) of the maximum intensity) is the detection light. It is desirable that the signal intensity (inductive current) is large enough to be measured. Further, as disclosed in Patent Document 1, it is also desirable to use a line LD or the like that improves the S / N ratio of the detection signal by increasing the size in the main scanning direction.

これらのレーザービーム光学系12を用いて、感光体1上の計測潜像が所望の位置に来た際に検知光を点灯させ、誘導電流を計測する。誘導電流を計測する計測部13は、電流を増幅する電流増幅器18と、信号を出力するオシロスコープ17とを有する。また、検知光を照射するレーザービーム光学系12、誘導電流を計測する計測部13、及び、感光体1を駆動する駆動回転コントローラ19は、PCコントローラ15で制御されている。   Using these laser beam optical systems 12, when the measurement latent image on the photosensitive member 1 reaches a desired position, the detection light is turned on to measure the induced current. The measuring unit 13 that measures the induced current includes a current amplifier 18 that amplifies the current and an oscilloscope 17 that outputs a signal. The PC controller 15 controls the laser beam optical system 12 that irradiates the detection light, the measurement unit 13 that measures the induced current, and the drive rotation controller 19 that drives the photosensitive member 1.

図1に感光体1に対する透明電極11の配置例を示したものである。図1では、感光体軸方向に透明電極11を複数個配置している。   FIG. 1 shows an arrangement example of the transparent electrode 11 with respect to the photoreceptor 1. In FIG. 1, a plurality of transparent electrodes 11 are arranged in the photoconductor axial direction.

例えば、感光体軸方向である主走査方向に延びるライン潜像30を計測する場合、複数の透明電極11を前記主走査方向と、その主走査方向と直交する方向であり感光体回転方向である副走査方向とにずらして配置する。ライン潜像30の副走査方向の幅が100[μm]の場合には、透明電極11a,11b,11c,11d,11e,11fそれぞれを前記副走査方向で距離Aだけずらして配置する。ここでは、距離Aを50[μm]とし、各透明電極11によって、感光体1上にライン潜像30が形成された画像部と、ライン潜像30が形成されていない非画像部とを計測できるようにしている。   For example, when measuring the line latent image 30 extending in the main scanning direction which is the photosensitive member axial direction, the plurality of transparent electrodes 11 are in the main scanning direction and in the direction orthogonal to the main scanning direction and the photosensitive member rotation direction. Arranged in the sub-scanning direction. When the width of the line latent image 30 in the sub-scanning direction is 100 [μm], the transparent electrodes 11a, 11b, 11c, 11d, 11e, and 11f are arranged so as to be shifted by a distance A in the sub-scanning direction. Here, the distance A is set to 50 [μm], and each transparent electrode 11 measures an image portion in which the line latent image 30 is formed on the photoreceptor 1 and a non-image portion in which the line latent image 30 is not formed. I can do it.

各透明電極11は、感光体1の表面に対して0.1[mm]程度のギャップを空けて配置している。この際に、ギャップ調整用コロ20(図3参照)等によるギャップ制御を行うことが望ましい。   Each transparent electrode 11 is arranged with a gap of about 0.1 [mm] with respect to the surface of the photoreceptor 1. At this time, it is desirable to perform gap control using a gap adjusting roller 20 (see FIG. 3) or the like.

また、隣り合う透明電極11間で前記主走査方向にずらす距離Bは、前述した感光体1の表面と透明電極11とのギャップ以下にすることが望ましく、各透明電極11を用いて前記画像部と前記非画像部とを計測できる距離とする。   The distance B shifted in the main scanning direction between the adjacent transparent electrodes 11 is preferably equal to or smaller than the gap between the surface of the photoreceptor 1 and the transparent electrode 11 described above. And the non-image portion can be measured.

前記副走査方向の幅が100[μm]の前記主走査方向に延びるライン潜像30を計測する場合、隣り合う透明電極11を前記副走査方向に数十[μm]〜100[μm]離して配置することが望ましい。また、図1では感光体1に対して6つの透明電極11を配置しているが、透明電極11を配置する数はその限りではない。隣り合う透明電極11間の前記主走査方向の距離としては、各透明電極11による誘導電流の計測に影響しないよう、数[mm]〜数十[mm]の間隔をあけることが望ましい。   When measuring the line latent image 30 extending in the main scanning direction with a width of 100 [μm] in the sub-scanning direction, the adjacent transparent electrodes 11 are separated by several tens [μm] to 100 [μm] in the sub-scanning direction. It is desirable to arrange. In FIG. 1, six transparent electrodes 11 are disposed on the photoreceptor 1, but the number of the transparent electrodes 11 is not limited thereto. The distance in the main scanning direction between the adjacent transparent electrodes 11 is preferably set to a distance of several [mm] to several tens [mm] so as not to affect the measurement of the induced current by each transparent electrode 11.

次に本実施例での潜像計測手順について具体的に説明する。
まず、感光体1を回転させ、帯電装置2による感光体表面の帯電、露光装置3による感光体表面への潜像書き込みを行う。潜像は検知光照射時の誘導電流が計測しやすい前記主走査方向のライン潜像が望ましいがこの限りではなく、ドット潜像等でも可能である。ここでは、潜像として前記主走査方向に延びるライン潜像を形成し、そのライン潜像の前記副走査方向の幅は2ドットラインを形成し、そのライン幅は約100[μm]である。
Next, the latent image measurement procedure in the present embodiment will be specifically described.
First, the photosensitive member 1 is rotated, the surface of the photosensitive member is charged by the charging device 2, and the latent image is written on the surface of the photosensitive member by the exposure device 3. The latent image is preferably a line latent image in the main scanning direction in which an induced current at the time of detection light irradiation can be easily measured. However, the latent image is not limited to this, and may be a dot latent image. Here, a line latent image extending in the main scanning direction is formed as a latent image, the width of the line latent image in the sub-scanning direction is a 2-dot line, and the line width is about 100 [μm].

次に、ライン潜像が形成された感光体1上の所定の部位が信号検出部に来たところで帯電装置2による帯電と感光体1の回転を停止し、図1に示すように各位置に設置した各透明電極11から検知光を同時に照射する。この検知光の照射は、任意波形発生装置を使用し、One shot pulseを発生させ、これをトリガーとして行う。   Next, when a predetermined part on the photosensitive member 1 on which the line latent image is formed reaches the signal detection unit, the charging by the charging device 2 and the rotation of the photosensitive member 1 are stopped, and each position is set as shown in FIG. The detection light is simultaneously irradiated from the installed transparent electrodes 11. The detection light is irradiated by using an arbitrary waveform generator to generate a one shot pulse, which is used as a trigger.

同時照射とは、検知光を照射して感光体内部にキャリアが発生・移動し感光体内部の電界が変化までの短い時間内の照射を示す。キャリア発生層で生成した正負キャリアのうち正キャリアがキャリア移動層中を電界に従い感光体表層に向かって移動していく過程で内部電界は正キャリアの影響を受ける。そのため、同時照射としては、正のキャリアがキャリア生成層を通過する時間以内に照射を行えばよい。なお、この時間は感光体1の種類にもよるが、数[μs]〜数十[μs]程度である。   Simultaneous irradiation refers to irradiation within a short period of time until the detection light is irradiated and carriers are generated and moved inside the photoconductor to change the electric field inside the photoconductor. Of the positive and negative carriers generated in the carrier generating layer, the internal electric field is affected by positive carriers in the process of moving positive carriers in the carrier moving layer toward the surface of the photoreceptor according to the electric field. Therefore, the simultaneous irradiation may be performed within the time during which positive carriers pass through the carrier generation layer. Although this time depends on the type of the photoreceptor 1, it is about several [μs] to several tens [μs].

このとき生じた電位減衰(=電荷変化)による誘導電流(変位電流)を測定する。計測は検知光による生成キャリアが移動するまでのトランジットタイムを考慮し計測を行う。なお、−800[V]におけるトランジットタイムはおよそ300[μs]である。主走査方向の位置の制御は、ポリゴンミラー等を使用したスキャンを用いて、点灯開始時間だけを制御する。また、感光体回転時は除電ランプ8をONにし、感光体表面の電荷を除電する。次に、本検討で行った計測例を以下に示す。   The induced current (displacement current) due to the potential decay (= charge change) generated at this time is measured. The measurement is performed in consideration of the transit time until the generated carrier due to the detection light moves. The transit time at −800 [V] is about 300 [μs]. For the control of the position in the main scanning direction, only the lighting start time is controlled using scanning using a polygon mirror or the like. Further, when the photosensitive member rotates, the static elimination lamp 8 is turned on to remove the charge on the photosensitive member surface. Next, the measurement examples performed in this study are shown below.

・感光体:積層OPC(有機光半導体)ドラム,60[mm]φ×334[mm]長
・帯電電位:−800[V]
・書き込みレーザービーム径(1/e径):50[μm]×60[μm]
Photoconductor: laminated OPC (organic optical semiconductor) drum, 60 [mm] φ × 334 [mm] long ・ Charging potential: −800 [V]
Writing laser beam diameter (1 / e 2 diameter): 50 [μm] × 60 [μm]

<検知光条件>
・レーザービーム径(1/e径):主走査方向24[μm]×副走査方向3[mm]の655[nm]のラインレーザビーム
・露光エネルギー:0.3[μJ/cm](感光体帯電電位−800[V]を−100[V]にするための必要露光エネルギー)
・レーザーのトリガー:任意波形発生装置(アジレント・テクノロジーHP33120A)を使用
・点灯パルス幅:2[μs]
・検知光照射位置:潜像上端から約150[μm]の非画像部位置から副走査方向に約50[μm]ピッチで6箇所計測
<Detection light conditions>
Laser beam diameter (1 / e 2 diameter): 655 [nm] line laser beam in main scanning direction 24 [μm] × sub-scanning direction 3 [mm] Exposure energy: 0.3 [μJ / cm 2 ] ( (Required exposure energy for changing the photosensitive member charging potential from −800 [V] to −100 [V])
・ Laser trigger: Arbitrary waveform generator (Agilent Technology HP33120A) is used ・ Lighting pulse width: 2 [μs]
・ Detection light irradiation position: Measured at six locations at a pitch of about 50 [μm] in the sub-scanning direction from a non-image portion position of about 150 [μm] from the top of the latent image

誘導電流は感光体1上が帯電している場合、その帯電電荷量に応じた誘導電流が計測される。誘導電流は感光体1上にたくさん電荷が乗っている非画像部に比べ、画像部では感光体1上の電荷量が減少するため少なくなる。また、誘導電流は電流が計測された時間を乗じて誘導電荷量に換算することができる。   As for the induced current, when the surface of the photosensitive member 1 is charged, the induced current corresponding to the charged charge amount is measured. The induced current is smaller in the image portion because the amount of charge on the photoconductor 1 is reduced in the image portion than in the non-image portion where a lot of electric charge is on the photoconductor 1. The induced current can be converted into an induced charge amount by multiplying the time when the current is measured.

図4を用いて、従来の方式及び本件の方式で計測された各々の誘導電荷量について、シミュレーションで予測した潜像のプロファイル(電荷量分布)と対応させて説明する。   With reference to FIG. 4, each induced charge amount measured by the conventional method and the present method will be described in association with the latent image profile (charge amount distribution) predicted by the simulation.

図4に示された細線は、シミュレーションにより算出した潜像の電荷密度分布である。ここで用いたシミュレーションは、非特許文献2のレーザー露光に注目した電荷キャリア発生から輸送までの過程を完全陰解法に基づく差分法に逐次近似法を適用した手法を使用している。細線は通常の感光体1における予測潜像の電荷密度分布である。   The thin line shown in FIG. 4 is the charge density distribution of the latent image calculated by simulation. The simulation used here uses the technique of applying the successive approximation method to the difference method based on the complete implicit method for the process from charge carrier generation to transport focusing on laser exposure in Non-Patent Document 2. A thin line is a charge density distribution of a predicted latent image on a normal photoreceptor 1.

また、図4において、従来の検知光照射、誘導電流の測定を繰り返す潜像計測方法による誘導電荷量を白丸で示しており、本実施例の潜像計測方法による誘導電荷量を黒丸で示している。従来の順次計測を行う方法では、前に点灯させた検知光の影響を受けるため誘導電荷量が減り、非画像部の誘導電荷量が−600[μC/m]であるのに比べて、本実施例の潜像計測方法では−750[μC/m]と15[%]程度計測電流量が多くなっている。このことから、シミュレーションによる非画像部の電荷量と同等の誘導電荷量を計測できていることが確認できた。このように従来の計測方法では潜像形状がブロードに計測されるが、本実施例の潜像計測方法では精度良い潜像計測が可能となる。これは劣化した感光体1でも同様である。 Also, in FIG. 4, the induced charge amount by the latent image measuring method in which the conventional detection light irradiation and induced current measurement are repeated is indicated by white circles, and the induced charge amount by the latent image measuring method of the present embodiment is indicated by black circles. Yes. In the conventional method of sequential measurement, the amount of induced charge is reduced due to the influence of the previously lit detection light, and the amount of induced charge in the non-image area is −600 [μC / m 2 ], In the latent image measuring method of this embodiment, the measured current amount is increased by about −750 [μC / m 2 ] and 15 [%]. From this, it was confirmed that an induced charge amount equivalent to the charge amount of the non-image part by simulation could be measured. Thus, although the latent image shape is broadly measured in the conventional measurement method, the latent image measurement method of the present embodiment enables accurate latent image measurement. The same applies to the deteriorated photoreceptor 1.

次に、劣化した感光体潜像のシミュレーション結果及び計測例を図5に示す。
図5において、シミュレーションによる通常の感光体1の計測潜像を細線で示しており、劣化潜像を点線で示している。また、計測結果は、通常の感光体1の場合を黒丸で示しており、劣化した感光体1の場合を黒三角で示している。図5からわかるように、通常の感光体1の計測潜像に比べて劣化潜像の分布はブロードになっており、潜像が劣化していることを計測できている。
Next, FIG. 5 shows a simulation result and measurement example of the deteriorated photoreceptor latent image.
In FIG. 5, the measurement latent image of the normal photoconductor 1 by simulation is indicated by a thin line, and the deteriorated latent image is indicated by a dotted line. In addition, the measurement result shows the case of the normal photoconductor 1 with a black circle, and the case of the deteriorated photoconductor 1 with a black triangle. As can be seen from FIG. 5, the distribution of the deteriorated latent image is broader than that of the normal measured latent image of the photoreceptor 1, and it can be measured that the latent image is deteriorated.

また、従来の潜像計測方式では計測時間が数秒から十数秒かかるのに対し、本実施例の潜像計測方法では一度の計測ですむため時間のロスがなく、時間の経過によって感光体1上の電荷が減衰する暗減衰等の影響を受けない。   In contrast, the conventional latent image measurement method takes several seconds to several tens of seconds, whereas the latent image measurement method of this embodiment requires only one measurement, so there is no time loss. It is not affected by dark decay or the like in which the electric charge is attenuated.

また、本実施例では検知光照射位置として、計測潜像であるライン潜像の副走査方向上端部から感光体回転方向上流側に約150[μm]離れた位置にある非画像部から感光体回転方向下流側に50[μm]ピッチで6個の透明電極11により計測を行っているが、計測回数及び間隔はこの限りではない。   Further, in this embodiment, the detection light irradiation position is a photosensitive body from a non-image portion at a position about 150 [μm] away from the upper end in the sub scanning direction of the line latent image as a measurement latent image on the upstream side in the rotational direction of the photosensitive body. Measurement is performed with six transparent electrodes 11 at a pitch of 50 [μm] on the downstream side in the rotation direction, but the number of measurements and the interval are not limited to this.

また、本実施例では、前記主走査方向に延びるライン潜像の計測について説明を行っているが、前記副走査方向に延びるライン潜像や、ドット潜像を計測する場合にも適用可能である。   In the present embodiment, the measurement of the line latent image extending in the main scanning direction has been described. However, the present invention can also be applied to the case of measuring a line latent image extending in the sub scanning direction or a dot latent image. .

また、本実施例では検知光としてラインレーザビームについて説明を行ったが、レーザービーム径が前記主走査方向と前記副走査方向とで同等なレーザービームを使用することも可能である。また、検知光としてレーザービームではなく、電極位置に配置した複数のLEDを使用することも可能である。   In the present embodiment, the line laser beam has been described as the detection light. However, it is also possible to use a laser beam having the same laser beam diameter in the main scanning direction and the sub-scanning direction. Moreover, it is also possible to use a plurality of LEDs arranged at electrode positions instead of the laser beam as the detection light.

また、本実施例では感光体1上の画像部と非画像部との誘導電荷量の比率を比較することで、プロセスコントロールにより帯電電位を低下した場合でも劣化潜像と検知することなく、潜像の形状の変化量を予測することができる。   Further, in this embodiment, the ratio of the induced charge amount between the image portion and the non-image portion on the photosensitive member 1 is compared, so that the latent image is not detected as a deteriorated latent image even when the charged potential is lowered by process control. The amount of change in the shape of the image can be predicted.

また、本実施例の潜像計測方法は、感光体1及びその周辺機器を複数配置した、カラー画像形成装置への展開も可能である。   Further, the latent image measuring method of this embodiment can be developed to a color image forming apparatus in which a plurality of photosensitive members 1 and their peripheral devices are arranged.

図6にカラー画像形成装置の要部の概略構成を示す。なお、図中の「Y」はイエロー、「M」はマゼンダ、「C」はシアン、「K」はブラックの各色を示す。   FIG. 6 shows a schematic configuration of a main part of the color image forming apparatus. In the drawing, “Y” indicates yellow, “M” indicates magenta, “C” indicates cyan, and “K” indicates black.

図6において、感光体1Y,1M,1C,1Kは図中時計回り方向に回転する。そして、その回転順に帯電装置2Y,2M,2C,2K、現像装置4Y,4M,4C,4K、転写装置5Y,5M,5C,5K、クリーニング装置7Y,7M,7C,7Kが、感光体1Y,1M,1C,1Kの周りに配置されている。   In FIG. 6, the photoconductors 1Y, 1M, 1C, and 1K rotate in the clockwise direction in the drawing. The charging devices 2Y, 2M, 2C, and 2K, the developing devices 4Y, 4M, 4C, and 4K, the transfer devices 5Y, 5M, 5C, and 5K, and the cleaning devices 7Y, 7M, 7C, and 7K in the rotation order are the photoreceptors 1Y, It is arranged around 1M, 1C, 1K.

帯電装置2Y,2M,2C,2Kと現像装置4Y,4M,4C,4Kとの間にある感光体表面に露光装置3によってビームが照射され、感光体1Y,1M,1C,1Kに潜像が形成されるようになっている。そして、その潜像に対して現像装置4Y,4M,4C,4Kによりトナーを用いて各感光体1上にトナー像が形成される。さらに、転写装置5Y,5M,5C,5Kにより、感光体1Y,1M,1C,1K上から搬送ベルト40に担持搬送される転写材Pに各色順次転写トナー像が転写され、最終的に定着装置6により転写材Pに画像が定着する。   The exposure device 3 irradiates the photosensitive member surface between the charging devices 2Y, 2M, 2C, and 2K and the developing devices 4Y, 4M, 4C, and 4K with a beam, and latent images are formed on the photosensitive members 1Y, 1M, 1C, and 1K. It is supposed to be formed. Then, toner images are formed on the respective photoreceptors 1 by using the developing devices 4Y, 4M, 4C, and 4K with respect to the latent images. Further, the transfer devices 5Y, 5M, 5C, and 5K transfer the respective color sequential transfer toner images onto the transfer material P carried on the conveyance belt 40 from the photoreceptors 1Y, 1M, 1C, and 1K, and finally the fixing device. 6 fixes the image on the transfer material P.

また、感光体1Y,1M,1C,1Kの回転方向において、露光装置3による潜像書込位置と各現像装置4Y,4M,4C,4Kとの間の感光体表面に対向させて、潜像計測装置10Y,10M,10C,10Kが配置されている。そして、潜像計測装置10Y,10M,10C,10Kにより感光体1Y,1M,1C,1Kそれぞれの潜像の状態を上述した本実施例の計測方法により計測することができる。   Further, in the rotation direction of the photoconductors 1Y, 1M, 1C, and 1K, the latent image is formed so as to face the surface of the photoconductor between the latent image writing position by the exposure device 3 and the developing devices 4Y, 4M, 4C, and 4K. Measuring devices 10Y, 10M, 10C, and 10K are arranged. Then, the states of the latent images of the photoreceptors 1Y, 1M, 1C, and 1K can be measured by the latent image measuring devices 10Y, 10M, 10C, and 10K by the measurement method of the present embodiment described above.

[実施例2]
本実施例では、図7に示すように感光体回転方向である副走査方向に延びるライン潜像を計測する場合について説明する。このように、前記副走査方向のライン潜像を計測することで、少ない計測で効果的な計測を行うことができる。
[Example 2]
In this embodiment, a case where a line latent image extending in the sub-scanning direction that is the photosensitive member rotation direction is measured as shown in FIG. 7 will be described. Thus, by measuring the line latent image in the sub-scanning direction, effective measurement can be performed with a small number of measurements.

例えば、前記副走査方向に100[μm]のライン潜像70を計測する場合、透明電極11a,11bは、ライン潜像が形成された画像部と、ライン潜像が形成されていない非画像部とが計測できるように、感光体軸方向である主走査方向に距離Aだけずらして配置する。また、ギャップ調整用コロ20(図3参照)等を用いて感光体表面に対して0.1[mm]程度のギャップをもたせて、透明電極11a及び透明電極11bを配置する。また、透明電極11aと透明電極11bとの前記副走査方向でずらす距離Bは、互いが計測する各誘導電流の計測に影響しないよう、数[mm]〜数十[mm]の間隔をあけることが望ましい。   For example, when measuring a line latent image 70 of 100 [μm] in the sub-scanning direction, the transparent electrodes 11a and 11b are provided with an image portion where a line latent image is formed and a non-image portion where a line latent image is not formed. Are shifted by a distance A in the main scanning direction which is the photosensitive member axial direction. Further, the transparent electrode 11a and the transparent electrode 11b are arranged with a gap of about 0.1 [mm] with respect to the surface of the photoreceptor using a gap adjusting roller 20 (see FIG. 3) or the like. Further, the distance B shifted in the sub-scanning direction between the transparent electrode 11a and the transparent electrode 11b is spaced from several [mm] to several tens [mm] so as not to affect the measurement of each induced current measured by each other. Is desirable.

本実施例では、感光体1に対して2つの透明電極11を配置しているが、3個以上の透明電極11を配置することも可能であるが、感光体表面の少なくとも画像部及び非画像部それぞれの1箇所ずつ合わせて2箇所の計測を行い、各々の誘導電荷量比率の変動量により感光体1の劣化を計測する。次に、計測条件の一例を示す。   In the present embodiment, the two transparent electrodes 11 are arranged on the photosensitive member 1, but it is possible to arrange three or more transparent electrodes 11, but at least an image portion and a non-image on the surface of the photosensitive member. Measurement is performed at two locations, one at a time, and deterioration of the photoconductor 1 is measured based on the amount of variation in the ratio of the induced charge amounts. Next, an example of measurement conditions is shown.

・感光体:積層OPC(有機光半導体)ドラム,60[mm]φ×334[mm]長
・帯電電位:−800[V]
・書き込みレーザービーム径(1/e径):50[μm]×60[μm]
Photoconductor: laminated OPC (organic optical semiconductor) drum, 60 [mm] φ × 334 [mm] long ・ Charging potential: −800 [V]
Writing laser beam diameter (1 / e 2 diameter): 50 [μm] × 60 [μm]

<検知光条件>
・レーザービーム径(1/e径):主走査方向24[μm]×副走査方向24[μm]の655[nm]のレーザービーム
・露光エネルギー:0.3[μJ/cm](感光体帯電電位−800[V]を−100[V]にするための必要露光エネルギー)
・レーザーのトリガー:任意波形発生装置(アジレント・テクノロジーHP33120A)を使用
・点灯パルス幅:2[μs]
・検知光照射位置:副走査方向上端部照射位置から1[mm]左方の非画像部と画像端部から30[μm]の画像部
<Detection light conditions>
Laser beam diameter (1 / e 2 diameter): 655 [nm] laser beam in the main scanning direction 24 [μm] × sub-scanning direction 24 [μm] Exposure energy: 0.3 [μJ / cm 2 ] (photosensitive Exposure energy required to change the charged body potential from -800 [V] to -100 [V])
・ Laser trigger: Arbitrary waveform generator (Agilent Technology HP33120A) is used ・ Lighting pulse width: 2 [μs]
Detection light irradiation position: non-image portion 1 [mm] left from the irradiation position of the upper end portion in the sub-scanning direction and image portion 30 [μm] from the image end portion

このような計測条件で計測を行った結果、非画像部の誘導電荷量が−750[μC/m]で、画像部の誘導電荷量が−250[μC/m]であり、画像部/非画像部の誘導電荷量比率が約1/3であった。これに対して、劣化した感光体1の非画像部誘導電荷量が−650[μC/m]で、画像部誘導電荷量が−450[μC/m]であり、画像部/非画像部の誘導電荷量比率が約3/4と増加している。これは、画像部の誘導電荷量比率が高い、すなわち掘り込みが浅く潜像が劣化していることを計測できていることになる。 As a result of measurement under such a measurement condition, the induced charge amount of the non-image portion is −750 [μC / m 2 ], the induced charge amount of the image portion is −250 [μC / m 2 ], and the image portion / The ratio of induced charges in the non-image area was about 1/3. On the other hand, the non-image area induced charge amount of the deteriorated photoreceptor 1 is −650 [μC / m 2 ], the image area induced charge amount is −450 [μC / m 2 ], and the image area / non-image area. The ratio of the induced charge amount of the part is increased to about 3/4. This means that the induced charge amount ratio in the image portion is high, that is, it can be measured that the digging is shallow and the latent image is deteriorated.

本実施例では前記副走査方向に延びるライン潜像を計測する場合について説明を行ったが、前記主走査方向に延びるライン潜像やドット潜像を計測する場合にも適用可能である。   In this embodiment, the case where the line latent image extending in the sub-scanning direction is measured has been described. However, the present invention can be applied to the case where the line latent image and the dot latent image extending in the main scanning direction are measured.

[実施例3]
実施例1及び実施例2に対し、さらに計測精度を向上するための実施例を図8に示す。
感光体1の劣化に伴い暗減衰が悪化した場合、潜像を露光装置3によって感光体1上に書き込んだ直後に計測するのではなく、ある程度時間が経過した後のほうがより潜像が広がり、感光体1の劣化を計測することが可能になる。
[Example 3]
FIG. 8 shows an embodiment for further improving the measurement accuracy with respect to the first embodiment and the second embodiment.
When dark decay deteriorates with the deterioration of the photoreceptor 1, the latent image spreads more after a certain amount of time, rather than measuring immediately after the latent image is written on the photoreceptor 1 by the exposure device 3. It becomes possible to measure the deterioration of the photoreceptor 1.

例えば、図8のように、クリーニング装置7よりも感光体回転方向下流側で除電ランプ8よりも感光体回転方向上流側における感光体表面に対向させて潜像計測装置10を設けて、除電前に潜像の計測を行うことが望ましい。この際に、潜像にトナーが付着していると、トナーの電荷により潜像が浅く計測されてしまう。そのため、潜像計測装置10による潜像の計測時には、現像装置4によって潜像をトナーで現像せず付着させないことが望ましい。また、転写装置5による転写プロセスでのバイアス印加しないのが望ましい。また、潜像計測装置10による潜像の計測位置は、除電ランプ8による除電前に限らず、現像装置4よりも感光体回転方向下流側で除電ランプ8よりも感光体回転方向上流側のいずれの位置に配置することも可能である。   For example, as shown in FIG. 8, a latent image measuring device 10 is provided opposite to the surface of the photoconductor on the downstream side of the photoconductor rotation direction from the cleaning device 7 and on the upstream side of the static discharge lamp 8 in the rotation direction of the photoconductor. It is desirable to measure the latent image. At this time, if toner adheres to the latent image, the latent image is measured shallow due to the charge of the toner. For this reason, when the latent image is measured by the latent image measuring device 10, it is desirable that the developing device 4 does not develop the latent image with toner and does not attach it. Further, it is desirable not to apply a bias in the transfer process by the transfer device 5. In addition, the latent image measurement position by the latent image measuring device 10 is not limited to before the charge removal by the charge removal lamp 8, but any position on the downstream side in the photosensitive member rotation direction from the developing device 4 and any upstream side in the photosensitive member rotation direction from the charge removal lamp 8. It is also possible to arrange at the position.

[実施例4]
図9を用いて潜像計測を実施するタイミングについて説明を行う。
画像形成装置では経時や環境で変動したプロセスを制御し(プロセスコントロール)、安定で高品質な画像形成を行っている。なお、プロセスコントロールとしては公知の種々の方法を適宜用いれば良い。
[Example 4]
The timing for performing latent image measurement will be described with reference to FIG.
An image forming apparatus controls a process that has changed over time or in the environment (process control), and forms a stable and high-quality image. In addition, what is necessary is just to use well-known various methods suitably as process control.

本実施形態の画像形成装置で実行されるプロセスコントロールの一例について説明する。本実施形態における画像形成装置では、プロセスコントロールを実行させることにより、環境変動や経時変動による画質変動を抑えている。具体的には、プロセスコントロールが実行されると、あるトナーパターンの画像を現像バイアス電圧を一定にした条件下で感光体1上に形成し、その画像濃度を不図示の光学センサで検出し、濃度変化から現像装置4の現像能力を把握することができる。そして、この現像能力が所定の目標現像能力になるように、露光エネルギーや帯電電圧や現像バイアスなどの画像形成プロセス条件の設定値を変更することで、画質を一定に保つことができる。   An example of process control executed by the image forming apparatus of this embodiment will be described. In the image forming apparatus according to the present embodiment, process control is executed to suppress image quality fluctuations due to environmental fluctuations and temporal fluctuations. Specifically, when the process control is executed, an image of a certain toner pattern is formed on the photoconductor 1 under a condition that the development bias voltage is constant, and the image density is detected by an optical sensor (not shown), The developing ability of the developing device 4 can be grasped from the density change. The image quality can be kept constant by changing the set values of the image forming process conditions such as exposure energy, charging voltage and developing bias so that the developing ability becomes a predetermined target developing ability.

感光体1の経時劣化や環境変動なども画像に影響する。よって、図9に示すフローチャートで、プロセスコントロール実施時に潜像計測も同時に行い(S1)、例えば、潜像判定を行って潜像がボケて浅くなってしまった場合には(S2でYes)、前記画像形成プロセス条件を変化させるよう装置本体の制御部へフィードバックする。これにより、感光体1の経時劣化や環境変動などの変動に応じた画像形成プロセス条件の変更が行われ(S3)、高品質な画像形成を行うことができる。   The deterioration of the photoreceptor 1 over time and environmental fluctuations also affect the image. Therefore, in the flowchart shown in FIG. 9, the latent image measurement is performed at the same time when the process control is performed (S1). For example, when the latent image is determined and the latent image becomes blurred and shallow (Yes in S2), Feedback is provided to the control unit of the apparatus main body so as to change the image forming process conditions. As a result, the image forming process conditions are changed in accordance with changes such as deterioration of the photoreceptor 1 with time and environmental changes (S3), and high-quality image formation can be performed.

例えば、経時使用によって感光体1の膜厚が減り、感光体1の感度が低下する場合について例を示す。感光体1の感度が低下した場合、画像部/非画像部の誘導電荷量比率が高くなる。これは、図10に示すように薄膜化により感光体1の感度が低下するために潜像の掘り込みが浅くなるためである。この場合は、感光体表面の帯電電位を下げることにより同様の潜像プロファイルを形成することが可能になる。   For example, an example will be described in which the film thickness of the photoreceptor 1 decreases due to use over time, and the sensitivity of the photoreceptor 1 decreases. When the sensitivity of the photosensitive member 1 is lowered, the induced charge amount ratio of the image portion / non-image portion is increased. This is because the digging of the latent image becomes shallow because the sensitivity of the photosensitive member 1 is reduced due to the thin film as shown in FIG. In this case, it is possible to form a similar latent image profile by lowering the charged potential on the surface of the photoreceptor.

例えば、初期の画像形成プロセス条件が帯電電位−800[V]のときに、画像部/非画像部の誘導電荷量比率が高くなってきた場合には、感光体表面の帯電電位が−700[V]となるように帯電電圧を低くするような画像形成プロセス条件の変更を行う。また、画像形成プロセス条件としては帯電電位を変更せずに露光装置3による露光エネルギーを強くしても同様の潜像プロファイルを形成することができる。   For example, when the initial image forming process condition is a charged potential of −800 [V] and the induced charge amount ratio of the image portion / non-image portion is increased, the charged potential on the surface of the photoconductor is −700 [V]. The image forming process conditions are changed so as to lower the charging voltage so as to be V]. Further, as an image forming process condition, the same latent image profile can be formed even if the exposure energy by the exposure apparatus 3 is increased without changing the charging potential.

また、経時使用によって感光体1の表層に帯電生成物などの物質が付着したり、環境変動によって感光体1の抵抗が異なったりして潜像がボケる場合について例を示す。これらの現象では、感光体表層の抵抗が低くなって電荷分布が崩れてしまい潜像が浅くなるといった原因が考えられる。この際には、感光体表面の帯電電位を増加させたり露光エネルギーを強くしたりして深く潜像を形成し、潜像が多少流れても顕像化できる程度の潜像分布を保持できるようにプロセスを変更するなどの制御が考えられる。   Further, an example will be described in which a latent image is blurred because a substance such as a charged product adheres to the surface layer of the photoconductor 1 due to use over time or the resistance of the photoconductor 1 varies due to environmental changes. These phenomena may be caused by a decrease in the resistance of the surface layer of the photoreceptor, a charge distribution being disrupted, and a latent image becoming shallow. In this case, it is possible to form a latent image deeply by increasing the charging potential on the surface of the photoreceptor or increasing the exposure energy, and to maintain a latent image distribution that can be visualized even if the latent image slightly flows. Control such as changing the process can be considered.

以上のように、画像部/非画像部の誘導電荷量比率が高くなった場合、上述のように画像形成プロセス条件を可変させ、経時や環境における変動を制御し、良好に画像を提供することが可能となる。これらのフィードバックは繰り返し行うことにより、より精度の高い制御を行うことが可能となる。   As described above, when the induced charge amount ratio of the image portion / non-image portion becomes high, the image forming process conditions are varied as described above, and the change with time and environment is controlled to provide a good image. Is possible. By repeatedly performing these feedbacks, it is possible to perform more accurate control.

以上に説明したものは一例であり、本発明は、次の態様毎に特有の効果を奏する。
(態様A)
感光体1などの感光体と、感光体の表面を帯電せしめる帯電装置2などの帯電手段と、帯電手段によって帯電せしめられた感光体の表面を露光して潜像を形成する露光装置3などの露光手段と、前記露光手段によって形成された潜像よりも小さな照射範囲のスポット光を感光体表面に照射するレーザー光学系12などのスポット光照射手段、及び、スポット光が照射されることで感光体の光減衰による表面電荷量の変化を誘導電流として検出する透明電極11などの誘導電流検出手段を有し、誘導電流検出手段の検出結果に基づいて感光体の表面に形成された潜像を計測する潜像計測装置10などの潜像計測手段とを備えた画像形成装置において、潜像計測手段は、スポット光照射手段及び誘導電流検出手段を複数有しており、潜像及びその周辺に設定された複数の計測位置へ、同時または略同時に各スポット光照射手段によって前記スポット光を照射し、前記複数の計測位置の誘導電流を各誘導電流検出手段で検出する。これよれば、上記実施形態について説明したように、感光体特性を精度良く検出することができる。
(態様B)
(態様A)において、上記複数の計測位置には、上記潜像が形成された画像部と、該潜像が形成されていない非画像部とを含む。これによれば、上記実施形態について説明したように、経時や環境で変動した感光体特性を精度良く検出することができる。
(態様C)
(態様A)または(態様B)において、上記感光体の表面に感光体軸方向または感光体回転方向に延びるライン潜像30,70などのライン潜像を上記露光手段によって形成し、上記スポット光照射手段は、前記ライン潜像の幅よりも小さい照射幅のスポット光を照射するものであり、上記潜像計測手段は、感光体軸方向及び感光体回転方向それぞれで、前記ライン潜像に対する位置をずらして設定された複数の計測位置へ、同時または略同時に前記スポット光照射手段によって前記スポット光を照射し、該複数の計測位置の誘導電流を前記誘導電流検出手段で検出する。これによれば、上記実施形態について説明したように、スポット光照射時の誘導電流が計測しやすくなる。
(態様D)
(態様A)、(態様B)または(態様C)において、感光体は回転可能に設けられており、感光体の表面に形成された潜像を現像してトナー像化するための現像装置4などの現像手段と、現像手段よりも感光体回転方向下流側に設けられ、感光体上から転写紙Pなどの転写体上にトナー像を転写する転写装置5などの転写手段と、転写手段よりも感光体回転方向下流側に設けられ、転写手段によって感光体上から転写体上にトナー像が転写された後の感光体の表面を除電する除電ランプ8などの除電手段とを有しており、現像手段よりも感光体回転方向下流側で除電手段よりも感光体回転方向上流側に潜像計測手段を位置させて設けた。これによれば、上記実施形態について説明したように、感光体の劣化に伴い暗減衰が悪化した場合に、感光体特性をより精度良く検出することができる。
(態様E)
(態様A)、(態様B)、(態様C)または(態様D)において、潜像計測手段による潜像の計測を、画像形成プロセス条件を変更するプロセスコントロール実行時に行う。これによれば、上記実施形態について説明したように、高品質な画像形成を行うことができる。
(態様F)
(態様A)、(態様B)、(態様C)、(態様D)または(態様E)において、誘導電流検出手段は、感光体表面と所定間隔をあけて対向するように配置された透明電極11などの透明電極部材を複数有しており、透明電極部材を通して感光体にスポット光が照射されるように、透明電極部材を挟んで感光体とは反対側にスポット光照射手段を位置させて設けた。これによれば、上記実施形態について説明したように、透明電極により誘導電流を検出して潜像の計測を行うことができる。
What has been described above is merely an example, and the present invention has a specific effect for each of the following modes.
(Aspect A)
A photosensitive member such as the photosensitive member 1; a charging unit such as a charging device 2 that charges the surface of the photosensitive member; and an exposure device 3 that exposes the surface of the photosensitive member charged by the charging unit to form a latent image. Exposure means, spot light irradiation means such as a laser optical system 12 for irradiating the surface of the photosensitive member with spot light in an irradiation range smaller than the latent image formed by the exposure means, and exposure by spot light irradiation. Inductive current detection means such as a transparent electrode 11 that detects a change in surface charge amount due to light attenuation of the body as an induced current, and a latent image formed on the surface of the photoconductor based on the detection result of the induced current detection means In an image forming apparatus provided with a latent image measuring means such as a latent image measuring apparatus 10 for measuring, the latent image measuring means has a plurality of spot light irradiating means and induced current detecting means. To a plurality of measurement positions set in the sides, the spot light is irradiated by the simultaneous or substantially simultaneously each spot light irradiating means, the induced current of the plurality of measurement positions is detected at each induced current detecting means. According to this, as described in the above embodiment, it is possible to accurately detect the photoconductor characteristics.
(Aspect B)
In (Aspect A), the plurality of measurement positions include an image portion where the latent image is formed and a non-image portion where the latent image is not formed. According to this, as described in the above embodiment, it is possible to accurately detect the characteristics of the photoconductor that has changed over time or in the environment.
(Aspect C)
In (Aspect A) or (Aspect B), a line latent image such as the line latent images 30 and 70 extending in the photosensitive member axial direction or the photosensitive member rotating direction is formed on the surface of the photosensitive member by the exposure means, and the spot light The irradiating means irradiates spot light having an irradiation width smaller than the width of the line latent image, and the latent image measuring means is positioned relative to the line latent image in each of the photosensitive member axial direction and the photosensitive member rotating direction. The spot light irradiating means irradiates a plurality of measurement positions set by shifting the spot light simultaneously or substantially simultaneously, and the induced current detection means detects the induced currents at the plurality of measurement positions. According to this, as described in the above embodiment, it is easy to measure the induced current at the time of spot light irradiation.
(Aspect D)
In (Aspect A), (Aspect B) or (Aspect C), the photosensitive member is rotatably provided, and a developing device 4 for developing a latent image formed on the surface of the photosensitive member to form a toner image. A transfer unit such as a transfer device 5 that is provided downstream of the developing unit in the rotation direction of the photosensitive member and transfers the toner image onto the transfer member such as the transfer paper P from the photosensitive member; And a discharging means such as a discharging lamp 8 for discharging the surface of the photosensitive member after the toner image is transferred from the photosensitive member to the transferring member by the transferring means. The latent image measuring means is located downstream of the developing means in the direction of rotation of the photoconductor and upstream of the static elimination means in the direction of rotation of the photoconductor. According to this, as described in the above embodiment, when the dark attenuation is deteriorated with the deterioration of the photoconductor, the photoconductor characteristics can be detected with higher accuracy.
(Aspect E)
In (Aspect A), (Aspect B), (Aspect C), or (Aspect D), the latent image is measured by the latent image measuring unit when the process control for changing the image forming process condition is executed. According to this, as described in the above embodiment, high-quality image formation can be performed.
(Aspect F)
In (Aspect A), (Aspect B), (Aspect C), (Aspect D) or (Aspect E), the induced current detection means is a transparent electrode arranged so as to face the surface of the photoreceptor at a predetermined interval. 11. A plurality of transparent electrode members such as 11 are provided, and the spot light irradiation means is positioned on the opposite side of the photoconductor across the transparent electrode member so that the photoconductor is irradiated with spot light through the transparent electrode member. Provided. According to this, as described in the above embodiment, the latent image can be measured by detecting the induced current with the transparent electrode.

1 感光体
2 帯電装置
3 露光装置
4 現像装置
5 転写装置
6 定着装置
7 クリーニング装置
8 除電ランプ
10 潜像計測装置
11 透明電極
12 レーザービーム光学系
13 計測部
14 LDドライバー
15 コントローラ
16 パルスジェネレータ
17 オシロスコープ
18 電流増幅器
19 駆動回転コントローラ
20 ギャップ調整用コロ
30 ライン潜像
70 ライン潜像
DESCRIPTION OF SYMBOLS 1 Photoconductor 2 Charging apparatus 3 Exposure apparatus 4 Developing apparatus 5 Transfer apparatus 6 Fixing apparatus 7 Cleaning apparatus 8 Static elimination lamp 10 Latent image measuring apparatus 11 Transparent electrode 12 Laser beam optical system 13 Measuring part 14 LD driver 15 Controller 16 Pulse generator 17 Oscilloscope 18 Current Amplifier 19 Drive Rotation Controller 20 Gap Adjustment Roller 30 Line Latent Image 70 Line Latent Image

特開2006−038666号公報JP 2006-038666 A

竹嶋、会沢他、Japan Hardcopy 2001 論文集,B−32,第281頁Takeshima, Aizawa et al., Japan Hardcopy 2001, Proceedings, B-32, 281 渡辺、川本他、Japan Hardcopy 2000 論文集,A−26,第125頁Watanabe, Kawamoto et al., Japan Hardcopy 2000 Proceedings, A-26, p. 125

Claims (6)

回転可能に設けられた感光体と、
前記感光体の表面を帯電せしめる帯電手段と、
前記帯電手段によって帯電せしめられた前記感光体の表面を露光して潜像を形成する露光手段と、
前記露光手段によって形成された潜像よりも小さな照射範囲のスポット光を感光体表面に照射するスポット光照射手段、及び、該スポット光が照射されることで該感光体の光減衰による表面電荷量の変化を誘導電流として検出する誘導電流検出手段を有し、該誘導電流検出手段の検出結果に基づいて該感光体の表面に形成された潜像を計測する潜像計測手段とを備えた画像形成装置において、
前記潜像計測手段は、前記潜像及びその周辺に設定された複数の計測位置へ、同時または略同時に前記スポット光照射手段によって前記スポット光を照射し、該複数の計測位置の誘導電流を前記誘導電流検出手段で検出することを特徴とする画像形成装置。
A photoconductor provided rotatably;
Charging means for charging the surface of the photoreceptor;
Exposure means for exposing the surface of the photoreceptor charged by the charging means to form a latent image;
Spot light irradiating means for irradiating the surface of the photosensitive member with spot light in an irradiation range smaller than the latent image formed by the exposure means, and surface charge amount due to light attenuation of the photosensitive member by irradiating the spot light And an latent image measuring means for measuring a latent image formed on the surface of the photosensitive member based on a detection result of the induced current detecting means. In the forming device,
The latent image measuring means irradiates the spot light to the plurality of measurement positions set around the latent image and its periphery simultaneously or substantially simultaneously by the spot light irradiating means, and generates induced currents at the plurality of measurement positions. An image forming apparatus characterized by detecting by an induced current detecting means.
請求項1の画像形成装置において、
上記複数の計測位置には、上記潜像が形成された画像部と、該潜像が形成されていない非画像部とを含むことを特徴とする画像形成装置。
The image forming apparatus according to claim 1.
The image forming apparatus, wherein the plurality of measurement positions include an image portion on which the latent image is formed and a non-image portion on which the latent image is not formed.
請求項1または2の画像形成装置において、
上記感光体の表面に感光体軸方向または感光体回転方向に延びるライン潜像を上記露光手段によって形成し、
上記スポット光照射手段は、前記ライン潜像の幅よりも小さい照射幅のスポット光を照射するものであり、
上記潜像計測手段は、感光体軸方向及び感光体回転方向それぞれで、前記ライン潜像に対する位置をずらして設定された複数の計測位置へ、同時または略同時に前記スポット光照射手段によって前記スポット光を照射し、該複数の計測位置の誘導電流を前記誘導電流検出手段で検出することを特徴とする画像形成装置。
The image forming apparatus according to claim 1 or 2,
A line latent image extending in the photosensitive member axial direction or the photosensitive member rotating direction is formed on the surface of the photosensitive member by the exposing means,
The spot light irradiation means irradiates spot light having an irradiation width smaller than the width of the line latent image,
The latent image measuring unit is configured to shift the spot light by the spot light irradiating unit simultaneously or substantially simultaneously to a plurality of measurement positions set by shifting the position with respect to the line latent image in each of the photosensitive member axial direction and the photosensitive member rotating direction. , And the induced current detection means detects the induced current at the plurality of measurement positions.
請求項1、2または3の画像形成装置において、
上記感光体の表面に形成された上記潜像を現像してトナー像化するための現像手段と、
前記現像手段よりも感光体回転方向下流側に設けられ、前記感光体上から転写体上にトナー像を転写する転写手段と、
前記転写手段よりも感光体回転方向下流側に設けられ、前記転写手段によって前記感光体上から転写体上にトナー像が転写された後の該感光体の表面を除電する除電手段とを有しており、
上記現像装置よりも感光体回転方向下流側で前記除電手段よりも感光体回転方向上流側に上記潜像計測手段を位置させて設けたことを特徴とする画像形成装置。
The image forming apparatus according to claim 1, 2 or 3.
Developing means for developing the latent image formed on the surface of the photoconductor to form a toner image;
A transfer unit provided on the downstream side in the rotation direction of the photoconductor relative to the developing unit, and transferring a toner image from the photoconductor onto the transfer body;
A discharger provided downstream of the transfer unit in the rotation direction of the photosensitive member and discharging the surface of the photosensitive member after the toner image is transferred from the photosensitive member to the transfer member by the transfer unit; And
An image forming apparatus, wherein the latent image measuring unit is provided downstream of the developing device in the rotation direction of the photosensitive member and upstream of the neutralizing unit in the rotation direction of the photosensitive member.
請求項1、2、3または4の画像形成装置において、
上記潜像計測手段による潜像の計測を、画像形成プロセス条件を変更するプロセスコントロール実行時に行うことを特徴とする画像形成装置。
The image forming apparatus according to claim 1, 2, 3, or 4.
An image forming apparatus, wherein measurement of a latent image by the latent image measuring unit is performed at the time of execution of process control for changing an image forming process condition.
請求項1、2、3、4または5の画像形成装置において、
上記誘導電流検出手段は、感光体表面と所定間隔をあけて対向するように配置された透明電極部材を複数有しており、
前記透明電極部材を通して上記感光体に上記スポット光が照射されるように、該透明電極部材を挟んで該感光体とは反対側に上記スポット光照射手段を位置させて設けたことを特徴とする画像形成装置。
The image forming apparatus according to claim 1, 2, 3, 4, or 5.
The induced current detection means has a plurality of transparent electrode members arranged to face the surface of the photoreceptor with a predetermined interval,
The spot light irradiating means is provided on the opposite side of the photosensitive member so that the spot light is irradiated to the photosensitive member through the transparent electrode member. Image forming apparatus.
JP2012065209A 2012-03-22 2012-03-22 Image forming device Pending JP2013195901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012065209A JP2013195901A (en) 2012-03-22 2012-03-22 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065209A JP2013195901A (en) 2012-03-22 2012-03-22 Image forming device

Publications (1)

Publication Number Publication Date
JP2013195901A true JP2013195901A (en) 2013-09-30

Family

ID=49394874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065209A Pending JP2013195901A (en) 2012-03-22 2012-03-22 Image forming device

Country Status (1)

Country Link
JP (1) JP2013195901A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038666A (en) * 2004-07-28 2006-02-09 Ricoh Co Ltd Electric potential variation measuring device
JP2006163182A (en) * 2004-12-09 2006-06-22 Canon Inc Potential profile measuring instrument and image forming apparatus with the same
JP2010039468A (en) * 2008-07-09 2010-02-18 Ricoh Co Ltd Image forming apparatus
JP2011133911A (en) * 2004-11-12 2011-07-07 Toshiba Corp Image forming apparatus, and integrally formed control apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038666A (en) * 2004-07-28 2006-02-09 Ricoh Co Ltd Electric potential variation measuring device
JP2011133911A (en) * 2004-11-12 2011-07-07 Toshiba Corp Image forming apparatus, and integrally formed control apparatus
JP2006163182A (en) * 2004-12-09 2006-06-22 Canon Inc Potential profile measuring instrument and image forming apparatus with the same
JP2010039468A (en) * 2008-07-09 2010-02-18 Ricoh Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
JP4898478B2 (en) Image forming apparatus
JP2010152108A (en) Image forming apparatus
JP2003215862A (en) Image forming device and image forming method
JP2014240881A (en) Image forming apparatus
JP4661247B2 (en) Image forming apparatus
JP2013195901A (en) Image forming device
JP2016118703A (en) Electricity eliminating/charging device, process cartridge, and image forming apparatus
JP3770088B2 (en) Image forming apparatus
US8867938B2 (en) Image forming apparatus for optically detecting and adjusting a toner image
JP6143177B2 (en) Image forming apparatus
JP2009251471A (en) Image forming apparatus
JP2011085743A (en) Image forming apparatus, and image forming method
JP2013061542A (en) Latent image measurement device, and image forming apparatus including the latent image measurement device
JP4453766B2 (en) Image forming apparatus and image forming method
JP2012078777A (en) Latent image measuring device
JP2000275872A (en) Characteristic evaluation apparatus for photoreceptor
JP4743877B2 (en) Photoreceptor evaluation apparatus, image forming apparatus, and evaluation method
JP2003215864A (en) Image forming device and image forming method
JP4686417B2 (en) Photoconductor durability characteristic evaluation apparatus and photoconductor durability characteristic evaluation method
JP2010271364A (en) Image forming apparatus
JP2008233187A (en) Speed change detection apparatus, image forming apparatus and speed change detection method
JP2016090955A (en) Image forming apparatus
JP2002040727A (en) Image forming device
JP6390403B2 (en) Charging device, image forming unit, and image forming apparatus
JPH0229761A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160415